数据挖掘决策树算法概述

合集下载

决策树算法介绍(DOC)

决策树算法介绍(DOC)

决策树算法介绍(DOC)3.1 分类与决策树概述3.1.1 分类与预测分类是⼀种应⽤⾮常⼴泛的数据挖掘技术,应⽤的例⼦也很多。

例如,根据信⽤卡⽀付历史记录,来判断具备哪些特征的⽤户往往具有良好的信⽤;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。

这些过程的⼀个共同特点是:根据数据的某些属性,来估计⼀个特定属性的值。

例如在信⽤分析案例中,根据⽤户的“年龄”、“性别”、“收⼊⽔平”、“职业”等属性的值,来估计该⽤户“信⽤度”属性的值应该取“好”还是“差”,在这个例⼦中,所研究的属性“信⽤度”是⼀个离散属性,它的取值是⼀个类别值,这种问题在数据挖掘中被称为分类。

还有⼀种问题,例如根据股市交易的历史数据估计下⼀个交易⽇的⼤盘指数,这⾥所研究的属性“⼤盘指数”是⼀个连续属性,它的取值是⼀个实数。

那么这种问题在数据挖掘中被称为预测。

总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。

3.1.2 决策树的基本原理1.构建决策树通过⼀个实际的例⼦,来了解⼀些与决策树有关的基本概念。

表3-1是⼀个数据库表,记载着某银⾏的客户信⽤记录,属性包括“姓名”、“年龄”、“职业”、“⽉薪”、......、“信⽤等级”,每⼀⾏是⼀个客户样本,每⼀列是⼀个属性(字段)。

这⾥把这个表记做数据集D。

银⾏需要解决的问题是,根据数据集D,建⽴⼀个信⽤等级分析模型,并根据这个模型,产⽣⼀系列规则。

当银⾏在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、⽉薪等属性,来预测其信⽤等级,以确定是否提供贷款给该⽤户。

这⾥的信⽤等级分析模型,就可以是⼀棵决策树。

在这个案例中,研究的重点是“信⽤等级”这个属性。

给定⼀个信⽤等级未知的客户,要根据他/她的其他属性来估计“信⽤等级”的值是“优”、“良”还是“差”,也就是说,要把这客户划分到信⽤等级为“优”、“良”、“差”这3个类别的某⼀类别中去。

数据挖掘的分类算法

数据挖掘的分类算法

数据挖掘的分类算法数据挖掘是指通过分析大量数据来发现隐藏在其中的规律和趋势的过程。

分类算法是数据挖掘中的一种重要方法,主要是通过构建模型将数据划分为不同的类别。

在本文中,我们将讨论几种常见的分类算法。

1. 决策树算法决策树算法是一种基于树形数据结构的分类算法。

它将数据集分成许多小的子集,并对每个子集进行分类。

决策树的节点表示一个属性,每个分支代表该属性可能的取值。

通过选择适当的划分条件,可以使决策树的分类效果更加准确。

2. 朴素贝叶斯算法朴素贝叶斯算法是一种基于概率论的分类算法。

它基于贝叶斯定理,利用先验概率和条件概率推断后验概率,并将数据分为不同的类别。

朴素贝叶斯算法在文本分类、垃圾邮件识别等方面有广泛的应用。

3. 支持向量机算法支持向量机算法是一种基于分类的学习方法,通过构造一个最优的超平面将数据集分为两个或多个类别。

该算法可以用于解决多分类、回归、异常检测等问题。

支持向量机算法在人脸识别、文本分类、图像识别等方面有很好的应用。

4. K近邻算法K近邻算法通过计算样本之间的距离来确定每个样本的类别,即将每个样本划分到与其最近的K个邻居的类别中。

该算法是一种简单有效的分类算法,在文本分类、医学诊断等方面得到了广泛应用。

5. 神经网络算法神经网络算法是一种基于类似人类神经系统的计算模型,通过构造多个神经元并利用它们之间的联系来分类。

该算法可以解决多分类、回归、信号识别等问题,并在语音识别、图像处理等方面得到了广泛应用。

总之,分类算法在数据挖掘中起着重要的作用。

通过对不同分类算法的了解和应用,可以提高分类的准确性和效率。

在实际应用中,需要根据数据类型、数据量和应用场景等因素选择合适的分类算法。

决策树算法

决策树算法
一个类(buys_computer=yes,或buys_computer=no))
3
第一节 决策树算法原理
优点: 使用者不需要了解很多背景知识,只要训练事例能用属性 →结论的方式表达出来,就能用该算法学习; 决策树模型效率高,对训练集数据量较大的情况较为适合; 分类模型是树状结构,简单直观,可将到达每个叶结点的 路径转换为IF→THEN形式的规则,易于理解; 决策树方法具有较高的分类精确度。
14
第一节 决策树算法原理
决策树算法的大体框架都是一样的,都采用了贪心(非回 溯的)方法来以自顶向下递归的方式构造决策树。 它首先根据所使用的分裂方法来对训练集递归地划分递归 地建立树的节点,直至满足下面两个条件之一,算法才停 止运行:( 1)训练数据集中每个子集的记录项全部属于 一类或某一个类占压倒性的多数;(2)生成的树节点通 过某个终止的分裂准则;最后,建立起决策树分类模型。
4
第一节 决策树算法原理
缺点: 不易处理连续数据。数据的属性必须被划分为不同的类别 才能处理,但是并非所有的分类问题都能明确划分成这个 区域类型; 对缺失数据难以处理,这是由于不能对缺失数据产生正确 的分支进而影响了整个决策树的生成; 决策树的过程忽略了数据库属性之间的相关性。
5
第一节 决策树算法原理
21
2.1 ID3算法
属性选择度量 在树的每个节点上使用信息增益(information gain)度量选 择测试属性。这种度量称作属性选择度量或分裂的优良性度 量。 选择具有最高信息增益(或最大信息熵压缩)的属性作为当 前节点的测试属性。该属性使得对结果划分中的样本分类所 需的信息量最小,并反映划分的最小随机性或“不纯性”。 这种信息理论方法使得对一个对象分类所需的期望测试数目 达到最小,并确保找到一棵简单的(但不必是最简单的)树。

决策树总结

决策树总结

决策树总结决策树是一种常用的机器学习算法,它在数据挖掘和预测分析中被广泛应用。

本文将对决策树进行总结,包括其基本原理、构造方法、优缺点以及应用场景。

1. 基本原理决策树基于一系列的决策规则来完成分类或回归任务。

它将数据集划分为不同的子集,并在每个子集上继续进行划分,直到得到满足某个条件的叶节点。

在每次划分时,决策树算法通过计算某个指标(如信息增益、基尼指数)来选择最优的划分属性。

最终得到的决策树可以被用于预测新样本的类别或者回归值。

2. 构造方法决策树的构造方法主要有以下几种:ID3、C4.5、CART等。

ID3算法通过计算信息增益来选择最优划分属性,但存在对取值数目较多的属性偏好的问题;C4.5算法在ID3的基础上引入了信息增益比,更好地处理了取值数目较多的属性;CART算法则根据最小化基尼指数来选择最优划分属性,适用于分类和回归问题。

3. 优缺点决策树的优点在于简单易懂、可解释性强、适用于处理多类别问题、能处理连续属性等。

此外,决策树不需要对数据进行过多的预处理,而且在构建过程中能够自动选择重要特征。

然而,决策树也存在一些缺点。

首先,决策树容易过拟合,特别是当树的深度过大时。

为了解决这个问题,可以通过剪枝操作或者限制决策树的最大深度来减少过拟合风险。

其次,决策树对于缺失值的处理不够灵活,常常需要进行数据填充。

最后,决策树算法对于噪声和异常值比较敏感,容易产生不稳定的结果。

4. 应用场景决策树广泛应用于各种领域,其中包括金融、医疗、市场营销等。

在金融领域,决策树可以用于信用评分、风险识别、投资决策等。

在医疗领域,决策树可以用于疾病诊断、药物治疗方案选择等。

在市场营销领域,决策树可以用于客户分群、推荐系统等。

总之,决策树是一种常用的机器学习算法,它通过一系列的决策规则来完成分类或回归任务。

决策树算法具有简单易懂、可解释性强、适用于多类别问题等优点。

然而,它也存在容易过拟合、对异常值敏感等缺点。

决策树在金融、医疗、市场营销等领域都有广泛应用,可以用于信用评分、疾病诊断、客户分群等任务。

数据挖掘主要算法

数据挖掘主要算法

数据挖掘主要算法数据挖掘是从大量数据中提取有价值信息的过程,它涉及到使用各种算法和技术来发现隐藏在数据暗地里的模式、关联和趋势。

在数据挖掘中,有许多主要算法被广泛应用于不同的数据分析和预测任务。

以下是一些常见的数据挖掘主要算法:1. 决策树算法决策树是一种基于树状结构的分类和回归算法。

它通过将数据集划分为不同的子集,每一个子集对应于一个决策树节点,来预测目标变量的值。

决策树算法可用于分类和回归问题,并且易于理解和解释。

2. 随机森林算法随机森林是一种集成学习算法,它通过构建多个决策树并对它们的结果进行平均或者投票来进行预测。

每一个决策树都是通过对训练数据进行随机采样和特征选择来构建的,从而增加了模型的准确性和鲁棒性。

3. 朴素贝叶斯算法朴素贝叶斯算法基于贝叶斯定理和特征条件独立性假设。

它用于分类和文本挖掘任务,通过计算每一个类别的概率来预测新样本的类别。

朴素贝叶斯算法简单高效,适合于处理大规模数据集。

4. 支持向量机算法支持向量机是一种二分类算法,它通过在特征空间中构建一个最优的超平面来实现分类。

支持向量机算法具有较强的泛化能力和鲁棒性,适合于处理高维数据和非线性问题。

5. K均值聚类算法K均值聚类是一种无监督学习算法,用于将数据集划分为K个不重叠的簇。

它通过最小化簇内样本的平方距离和来确定簇的中心,并将每一个样本分配到最近的簇中。

K均值聚类算法广泛应用于图象分割、市场细分和异常检测等领域。

6. 神经网络算法神经网络是一种摹仿人脑神经元网络结构和功能的机器学习模型。

它由多个神经元和层级组成,通过学习权重和偏差来进行模式识别和预测。

神经网络算法适合于处理复杂的非线性问题,并在图象识别、自然语言处理和人工智能等领域取得了显著成果。

以上是一些常见的数据挖掘主要算法,它们在不同的数据分析和预测任务中发挥着重要的作用。

根据具体的问题和数据特征,选择适合的算法可以提高数据挖掘模型的准确性和效率。

数据挖掘的发展也在不断推动算法的创新和改进,为我们提供更多有效的工具来探索和利用数据的潜力。

什么是决策树算法?

什么是决策树算法?

什么是决策树算法?作为数据挖掘领域中最重要的算法之一,决策树算法是一个用于分类和回归分析的非常有用的工具。

决策树算法采用树形结构来表示决策过程,并通过构建具有最佳分类效果的决策树来实现。

那么为什么我们需要决策树算法呢?在实际的应用场景中,我们通常需要从众多的数据中挑选出最为关键的信息。

这样,我们就可以更好地理解数据,并作出相应的决策。

而决策树算法恰恰可以帮助我们完成这一任务。

那么究竟什么是决策树算法,它又是如何运作的呢?让我们逐步探讨吧。

一、什么是决策树算法?决策树算法是一种树形结构的分类和回归分析方法。

它将一个问题分解为许多小问题,并通过一系列可行的测试来解决问题。

决策树算法可以应用于很多领域,包括医学、天气预测、金融等。

二、决策树算法的构建决策树算法的构建过程非常简单。

首先,将训练集数据拆分为子集并构建决策树。

然后,将训练集输入到决策树中,以确定输入数据的类别。

具体而言,决策树算法是通过一个包含一系列节点的层次结构来实现的。

每个节点都代表了一个问题或一个决策。

从根节点开始,每个节点包含一个或多个分支,每个分支代表一个可能的方式来回答节点所代表的问题。

它们的组合形成了决策树。

三、决策树算法的优缺点决策树算法有许多优点。

首先,它们是一种易于理解和解释的算法,能够对大规模数据进行快速的处理。

其次,通过决策树算法,我们能够轻松地检测出具有决策价值的特征。

最后,决策树算法的使用能够避免假定数据的线性关系。

然而,决策树算法也有其缺点。

首先,决策树算法容易出现过拟合的问题。

其次,当决策树的分支过于复杂时,我们很难解释树的结果。

最后,决策树算法的结果很容易被误解。

四、应用案例决策树算法可以应用于很多领域,下面我们就来介绍几个相对典型的应用案例。

1. 银行信贷风险评估银行需要通过信贷风险评估来决定是否给用户发放贷款。

采用决策树算法,我们可以根据贷款人的个人信息、信用记录等因素来判断其是否符合信贷标准。

2. 个性化推荐决策树算法同样可以应用在个性化推荐领域。

数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用数据挖掘是指从大量的数据中发现关联规则、分类模型、聚类模型等有用的信息的过程。

以下是数据挖掘领域的十大经典算法原理及应用:1. 决策树算法(Decision Tree)决策树是一种基于树形结构的分类模型,它通过构建树来将输入数据集划分为不同的类别。

决策树算法在金融风险评估、医疗诊断等领域有广泛应用。

2. 支持向量机算法(Support Vector Machine,SVM)支持向量机是一种二分类模型,其目标是在高维空间中找到一个最优的超平面,将不同类别的样本分离开来。

SVM在图像识别、文本分类等领域有广泛应用。

3. 神经网络算法(Neural Network)神经网络模拟人脑的工作原理,通过连接众多的神经元来完成学习和预测任务。

神经网络在图像处理、自然语言处理等领域有广泛应用。

4. 朴素贝叶斯算法(Naive Bayes)朴素贝叶斯算法是一种基于贝叶斯定理的统计分类方法,它假设所有特征之间相互独立,并通过计算后验概率来进行分类。

朴素贝叶斯在垃圾邮件过滤、文本分类等领域有广泛应用。

5. K均值聚类算法(K-means Clustering)K均值聚类是一种无监督学习算法,它通过将样本分成K个簇来实现数据的聚类。

K均值聚类在市场细分、客户群体分析等领域有广泛应用。

6. Apriori算法Apriori算法是一种频繁项集挖掘算法,它可以找出数据集中项之间的关联关系。

Apriori算法在购物篮分析、推荐系统等领域有广泛应用。

7. PageRank算法PageRank算法是一种用于网页排序的算法,它通过计算网页之间的链接关系来确定网页的重要性。

PageRank算法在引擎领域有广泛应用。

8. 随机森林算法(Random Forest)随机森林是一种集成学习算法,它通过构建多个决策树,并通过投票方式来进行分类或回归。

随机森林在金融风险评估、信用评分等领域有广泛应用。

9. AdaBoost算法AdaBoost是一种迭代的强学习算法,它通过调整样本权重来训练多个弱分类器,并通过加权投票方式来进行分类。

数据挖掘中的分类算法

数据挖掘中的分类算法

数据挖掘中的分类算法数据挖掘是一种通过分析大量数据来发现模式、关联和趋势的方法。

分类算法是数据挖掘中的一种核心技术,它可以将数据分为不同的类别,有助于我们理解和利用数据。

本文将介绍数据挖掘中常用的几种分类算法。

一、决策树算法决策树算法是一种基于树形结构的分类算法,它将数据集划分为多个子集,每个子集都对应一个决策节点。

通过不断选择最佳划分节点,最终形成一棵完整的决策树。

决策树算法简单易懂,可解释性强,适用于离散型和连续型数据。

常见的决策树算法包括ID3、C4.5和CART 算法。

二、朴素贝叶斯算法朴素贝叶斯算法是一种基于概率统计的分类算法,它基于贝叶斯定理和特征条件独立假设,通过计算后验概率来进行分类。

朴素贝叶斯算法在文本分类、垃圾邮件过滤等领域有广泛应用。

它的优点是简单高效,对小样本数据有较好的分类效果。

三、支持向量机算法支持向量机算法是一种通过寻找最优超平面来进行分类的算法。

它的核心思想是将数据映射到高维特征空间,找到能够最好地将不同类别分开的超平面。

支持向量机算法适用于高维数据和样本较少的情况,具有较好的泛化能力和鲁棒性。

四、K近邻算法K近邻算法是一种基于距离度量的分类算法,它的原理是通过计算新样本与训练样本的距离,选取K个最近邻的样本来进行分类。

K近邻算法简单直观,适用于多样本情况下的分类问题。

然而,K近邻算法计算复杂度高,对异常值和噪声敏感。

五、神经网络算法神经网络算法是一种模拟人脑神经元连接方式的分类算法。

它通过构建多层网络、定义激活函数和调整权重来实现分类。

神经网络算法能够处理非线性问题,但对于大规模数据和参数调整比较困难。

六、集成学习算法集成学习算法是一种通过组合多个分类器的预测结果来进行分类的方法。

常见的集成学习算法有随机森林、AdaBoost和梯度提升树等。

集成学习算法能够有效地提高分类准确率和鲁棒性,适用于大规模数据和复杂问题。

在选择分类算法时,需要综合考虑数据类型、数据量、准确性要求以及计算资源等因素。

数据挖掘十大经典算法

数据挖掘十大经典算法

数据挖掘十大经典算法数据挖掘是通过分析大量数据来发现隐藏的模式和关联,提供商业决策支持的过程。

在数据挖掘中,算法起着至关重要的作用,因为它们能够帮助我们从数据中提取有用的信息。

以下是十大经典的数据挖掘算法:1.决策树算法:决策树是一种基于分层选择的预测模型,它使用树状图的结构来表示决策规则。

决策树算法适用于分类和回归问题,并且可以解释性强。

常用的决策树算法有ID3、C4.5和CART。

2.朴素贝叶斯算法:朴素贝叶斯是一种基于概率的分类算法,它假设特征之间是相互独立的。

朴素贝叶斯算法简单有效,适用于大规模数据集和高维数据。

3.支持向量机(SVM)算法:SVM是一种针对分类和回归问题的监督学习算法,它通过构建一个最优的超平面来实现分类。

SVM在处理非线性问题时使用核函数进行转换,具有较强的泛化能力。

4.K近邻算法:K近邻是一种基于实例的分类算法,它通过找到与目标实例最接近的K个邻居来确定目标实例的类别。

K近邻算法简单易懂,但对于大规模数据集的计算成本较高。

5.聚类算法:聚类是一种无监督学习算法,它将相似的实例聚集在一起形成簇。

常用的聚类算法有K均值聚类、层次聚类和DBSCAN等。

6.主成分分析(PCA)算法:PCA是一种常用的降维算法,它通过线性变换将原始数据转换为具有更少维度的新数据。

PCA能够保留原始数据的大部分信息,并且可以降低计算的复杂性。

7. 关联规则算法:关联规则用于发现项集之间的关联关系,常用于市场篮子分析和推荐系统。

Apriori算法是一个经典的关联规则算法。

8.神经网络算法:神经网络是一种模仿人脑神经元通信方式的机器学习算法,它能够学习和适应数据。

神经网络适用于各种问题的处理,但对于参数选择和计算量较大。

9.随机森林算法:随机森林是一种基于决策树的集成学习算法,它通过建立多个决策树来提高预测的准确性。

随机森林具有较强的鲁棒性和泛化能力。

10.改进的遗传算法:遗传算法是一种模拟生物进化过程的优化算法,在数据挖掘中常用于最优解。

决策树名词解释

决策树名词解释

决策树名词解释决策树(DecisionTree)是一种常见的数据挖掘技术,也称为决策树分类(Decision Tree Classification)。

决策树是一种以树状结构表示数据的模型,它可以用来描述一组数据集的概念,它可以用来作出决策。

策树是一种数据挖掘的常用算法,它可以用于分类、回归任务,以及关联规则建模,它可以帮助智能系统理解数据,从而实现更好的决策。

决策树的基本原理很简单,它是一种将每个属性值与实例的关联转换成树形结构的方法。

在这种树形结构中,每个节点存储关联属性的值,从而决定一个决策。

策树通常用于研究一组已知数据,它可以用来预测未知数据的结果,也可以用来归类数据,从而发现数据的规律性。

决策树的建立有很多步骤,但是大致可以分为以下几个步骤:(1)数据集准备:首先,需要对数据集进行预处理,将数据分成训练集和测试集。

(2)决策树划分:根据训练集中的特征属性,将数据集划分为不同的分支,并且不断划分,直到达到决策树模型所需要的精度或停止条件为止。

(3)估属性:根据训练集中的数据,选择最优的划分属性,用于对训练集进行划分。

(4)决策树剪枝:新建的决策树可能过度拟合训练数据,这会使训练出来的决策树在测试数据上的表现变差,因此,需要使用剪枝算法,来减少决策树的过拟合现象。

(5)测试:根据训练好的决策树,对测试集数据进行分类,统计测试集分类正确率,从而对决策树进行评估。

决策树在实际应用中可以用于社会决策分析、企业决策分析、关联规则挖掘等应用场景,但是决策树也有若干缺点。

其一,决策树生成过程中属性之间的关系可能非线性,而决策树假设属性之间的关系是线性的,因此可能导致决策树模型的准确性不足。

其二,决策树的剪枝操作可能会过度剪枝,也影响模型的准确性。

总之,决策树是一种常用的数据挖掘技术,它可以用于推理和预测数据,它可以用来帮助智能系统理解数据,从而改善决策效率。

但是,因为决策树的局限性,仍然需要其他的数据挖掘技术来提高决策的准确性。

消费者行为分析中的决策树算法研究

消费者行为分析中的决策树算法研究

消费者行为分析中的决策树算法研究一、引言消费者行为分析一直是市场营销学中的重要研究领域,其目的是揭示消费者消费行为背后的动因和规律,为企业的市场营销活动提供基础数据和决策支持。

在消费者行为分析中,决策树算法是一种常用的数据挖掘技术,本文将从理论与实践两个方面,探究决策树算法在消费者行为分析中的应用。

二、决策树算法原理决策树算法是一种基于树形结构的分类方法,其本质是构建一棵树,通过对导致不同决策结果的因素分析,确定决策树节点及其对应的条件,最终将数据样本划分到各个叶节点中。

通俗地讲,决策树算法就像是一个问题的解答者,在不断地向下分支、细节化,直到找到答案为止。

因此,决策树算法具有良好的可解释性、易理解性、易扩展性等优良特性,被广泛应用于数据挖掘和知识发现领域。

三、决策树算法在消费者行为分析中的应用1.利用决策树算法判断消费者购买意愿:利用决策树算法,建立一个决策树模型,判断顾客是有购买意愿还是无购买意愿。

具体要素包括:性别、年龄、职业、频道偏好、搜索历史、行为习惯等。

例如,若性别为女性、年龄在20-30岁之间、职业为白领、频道偏好为文化娱乐、搜索历史含有美容护肤品关键词,那么这些因素就可以作为决策树的节点条件,判断该消费者是否会购买美容护肤品。

2.利用决策树算法进行商品推荐:利用决策树算法建模,为不同消费者推荐不同商品。

具体要素包括:年龄、职业、关注内容、购买历史等。

例如,若某消费者的职业为教师、年龄为40岁以上、关注内容为书籍、购买历史中包含文学类图书,那么推荐该消费者购买当前畅销的一本作家的新书。

3.利用决策树算法进行用户细分:利用决策树算法建模,将不同消费者分为不同的用户类别。

具体要素包括:性别、年龄、工作类型、购物偏好等。

例如,将消费者分为“年轻上班族”、“中年家庭主妇”、“退休老人”等不同的类别。

这种细分可以帮助企业更精准地针对不同类别的消费者制定更加有效的营销策略,从而提高营销效果。

四、决策树算法在消费者行为分析中的优势和局限性1. 优势(1)可解释性好:决策树算法生成的模型,可以通过简单的图示表示出来,易于人们理解和维护;(2)分类效果较好:决策树算法通过构建树形结构,对样本进行分类,可以得到比较准确的分类结果;(3)易于扩展: 由于决策树算法的结构简单、易于理解和扩展,可以通过增加新的节点或者更新节点条件,来提高算法的准确性。

决策树算法例题

决策树算法例题

决策树算法例题【原创版】目录1.决策树算法概述2.决策树算法的基本原理3.决策树算法的例题解析4.决策树算法的应用场景与优缺点正文【决策树算法概述】决策树算法是一种常见的基于特征的分类与回归方法,通过将数据集分成许多子集,每个子集对应一个决策节点,直到最终得到叶子节点为止。

这种树形结构可以用来预测新数据的分类或回归值。

【决策树算法的基本原理】决策树算法基于以下两个原则:1.信息增益:选择一个特征,使得信息增益最大,即信息熵增加,从而选择最佳特征进行分裂。

2.基尼指数:在构建分类树时,使用基尼指数来评估特征的选择,目标是最小化基尼指数,从而得到最优特征。

【决策树算法的例题解析】假设有一个数据集,包含以下几个特征:身高、体重、是否购买衬衫。

目标是预测用户是否购买衬衫。

首先,根据信息增益原则,选择身高作为最佳特征进行分裂。

将数据集按照身高分为两部分,一部分是身高小于 170 的用户,另一部分是身高大于等于 170 的用户。

然后,针对身高小于 170 的用户,再根据信息增益原则选择体重作为最佳特征进行分裂。

将这部分数据集按照体重分为两部分,一部分是体重小于 60 的用户,另一部分是体重大于等于 60 的用户。

接着,针对身高大于等于 170 的用户,再根据信息增益原则选择体重作为最佳特征进行分裂。

将这部分数据集按照体重分为两部分,一部分是体重小于 70 的用户,另一部分是体重大于等于 70 的用户。

最后,针对身高小于 170 且体重小于 60 的用户,以及身高大于等于 170 且体重大于等于 70 的用户,可以判断他们很可能不会购买衬衫。

而其他用户则可能会购买衬衫。

通过以上步骤,我们可以构建一个简单的决策树,用于预测用户是否购买衬衫。

【决策树算法的应用场景与优缺点】决策树算法广泛应用于数据挖掘、机器学习、生物信息学等领域。

其优点包括易于理解和解释、特征选择能力强等。

然而,决策树算法也存在过拟合、容易受到噪声干扰等缺点。

数据挖掘论文决策树

数据挖掘论文决策树

数据挖掘论文决策树决策树是一种基本的数据挖掘算法,它通过对数据集的属性进行递归分割,构建出一棵以属性为节点,以属性值为分叉条件的树状结构,用于进行分类、回归以及其他任务的预测。

决策树算法简单直观,并且在处理大规模数据集时具有良好的可扩展性,因此在数据挖掘研究中被广泛应用。

决策树的构建过程是一个自顶向下的递归过程。

从根节点开始,根据一些属性对数据集进行划分,然后递归地对子数据集进行划分,直到满足其中一种条件为止。

在划分过程中,可以根据不同的分割标准选择最优的属性,以最大程度地提高决策树的预测性能。

常见的分割标准包括信息增益、信息增益率、基尼指数等。

决策树算法的核心是选择最优划分属性。

信息增益是一种常见的划分标准,它根据信息熵的变化来评估属性的选择性。

信息熵是衡量数据集纯度的指标,纯度越高,熵值越低。

信息增益就是指划分前后信息熵的差值。

在构建决策树时,选择信息增益最大的属性进行划分,可以使得决策树的预测性能最优。

决策树算法在实际应用中具有广泛的用途。

例如,在医学领域,决策树可以用于诊断疾病和判断患者的生存率。

在金融领域,决策树可以用于信用评估和风险管理。

在市场营销领域,决策树可以用于客户分群和精准营销。

决策树算法的应用范围非常广泛,并且可以与其他机器学习算法结合使用,提高预测效果。

决策树算法虽然简单直观,但也存在一些问题。

例如,决策树容易过拟合,即在训练数据上表现良好,但在测试数据上表现不佳。

过拟合可以通过剪枝技术来解决,即在决策树构建的过程中对树进行裁剪,减少决策树的复杂度和泛化误差。

此外,决策树算法对于连续属性的处理也存在一些困难。

传统的决策树算法只能处理离散属性,无法直接处理连续属性。

为了解决这个问题,可以使用二分法、多分桶等方法将连续属性转换为离散属性,然后再进行划分。

总结起来,决策树是一种简单直观的数据挖掘算法,可以用于分类、回归和其他任务的预测。

它具有良好的可扩展性和广泛的应用范围。

虽然决策树算法存在一些问题,但通过剪枝和处理连续属性的技术,可以提高决策树的预测性能。

数据挖掘最常用的算法

数据挖掘最常用的算法

数据挖掘最常用的算法数据挖掘是指从大量数据中挖掘出有价值的信息和知识的过程。

在数据挖掘过程中,使用各种算法来实现数据的预处理、特征提取、模型构建和结果评估等任务。

下面是数据挖掘中最常用的算法:1.决策树算法决策树是一种基于树状结构的分类算法,它通过构建一系列的决策节点和对应的条件判断,将数据集划分为不同的类别。

决策树具有易于理解和解释的特点,广泛应用于各种领域,如医疗、金融和营销等。

2.K近邻算法K近邻算法通过使用样本之间的距离度量,将新的样本分类为与之最相似的K个已知类别中的一类。

该算法简单易懂,并且可以应用于多分类任务。

3.朴素贝叶斯算法朴素贝叶斯算法基于贝叶斯定理,通过计算样本在给定类别下的概率,来判断新样本的类别。

该算法具有简单高效的特点,在垃圾邮件过滤、文本分类等任务中应用广泛。

4.逻辑回归算法逻辑回归算法是一种广义线性模型,用于二分类问题。

该算法通过构建一个线性模型和一个逻辑函数,将输入特征映射到概率输出。

逻辑回归在广告点击率预测、客户流失预测等领域有较好的应用效果。

5.支持向量机算法支持向量机算法是一种二分类模型,通过构建一个边界超平面,将不同类别的样本分开。

该算法具有良好的泛化能力和对高维数据的适应性,在图像分类、文本分类等任务中广泛应用。

6.随机森林算法随机森林是一种集成学习算法,通过集成多个决策树的结果来进行分类或回归。

该算法通过随机选择特征子集和样本子集的方法,减少过拟合的风险,并且具有较强的抗噪声能力。

7.神经网络算法神经网络是一种模仿人脑结构和功能的计算模型,通过构建多层神经元和权重连接,学习输入数据的复杂模式。

神经网络在图像识别、语音识别等领域有着广泛应用。

8.关联规则算法关联规则算法用于在大规模数据集中挖掘出有趣的关联规则。

该算法通过计算项目之间的频繁度和支持度,发现不同项集之间的关联关系。

关联规则在市场篮子分析、推荐系统等领域具有重要应用。

除了上述算法,还有一些其他的算法也被广泛应用于数据挖掘,如聚类算法、主成分分析算法、梯度提升算法等。

基于决策树的数据挖掘算法研究及应用

基于决策树的数据挖掘算法研究及应用

基于决策树的数据挖掘算法研究及应用随着数据采集和存储技术的不断发展,越来越多的数据被积累和储存。

如何从大量的数据中提取有用的信息,是一个重要的问题。

数据挖掘技术就是解决这一问题的有力工具之一。

在数据挖掘领域,决策树是一种重要的算法。

一、决策树算法及其原理决策树是一种树形结构,可以将数据集按照特征进行划分,最终得到一棵树。

在分类问题中,决策树的叶节点代表不同的分类结果,而内部节点则代表特征。

根据不同的原则,可以得到不同的决策树算法。

以ID3算法为例,其核心思想是在构造决策树时,在每个节点上选择最优的特征进行划分。

具体原理如下:1.计算每个特征的信息熵信息熵是衡量随机变量不确定度的指标,计算公式为:H(X) = -Σ P(xi) * log2 P(xi)其中xi表示随机变量X的不同取值,P(xi)表示xi的概率。

计算特征A的信息熵时,可以按照以下步骤进行:1)对于特征A的每个取值ai,计算数据集D中该取值出现的概率P(ai);2)根据当前特征A的取值ai将数据集D分为若干个子集Di,每个子集Di包含特征A取值为ai的数据样本;3)计算每个子集Di的信息熵,记为H(Di);4)根据子集Di的大小,计算特征A的信息熵:H(A) = -Σ P(ai) * H(Di)2.计算每个特征的信息增益信息增益是指使用特征A对数据集D进行划分所获得的纯度提升。

信息增益越大,说明特征A对分类结果的影响越大。

计算特征A的信息增益的公式为:Gain(A) = H(D) - H(A)其中H(D)为数据集D的信息熵。

3.构造决策树根据信息增益排序选择最优特征A,以该特征为节点划分数据集。

对于特征A的每个取值ai,生成一个子节点,并以该子集Di 为数据集,递归构建决策树。

二、决策树算法的应用决策树算法在数据挖掘领域广泛应用。

以下是几种常见的应用场景。

1.客户分类在销售和营销领域,决策树可以用于客户分类。

以银行为例,客户可以根据年龄、收入、教育程度等特征进行分类,然后针对不同客户群体推出相应的金融产品。

数据挖掘中的决策树算法

数据挖掘中的决策树算法

数据挖掘中的决策树算法数据挖掘是一种从大数据集中提取信息的技术,其目的是了解数据集中的模式、趋势和规律,以便为业务做出更明智的决策。

决策树算法是其中一种重要的数据挖掘算法,能够帮助我们对数据进行分析和预测。

一、决策树算法简介决策树算法是一种以树形结构展现决策结果的分类器。

它可以被用来处理由分类和回归两种类型组成的问题,因为它可以将输入数据分成类别或数值。

决策树算法适用于高维数据集,也适用于分类问题和回归问题。

在决策树算法中,我们会根据数据的特征对数据进行分类。

通过对分类树的不断划分,最终我们能够得到一个树形结构,每个叶节点代表一种类别。

当新的数据输入时,我们可以将其通过这个分类树,快速判断其所属的类别。

决策树算法的主要优点是容易理解和解释,并且需要的计算量较少。

然而,它也有其局限性,例如容易出现过度拟合(即过于复杂的分类树会难以泛化)和选择非最优的特征等。

二、决策树算法的基本流程决策树算法的基本流程如下:1. 根据数据集的特征选择一个最优的划分点。

2. 根据这个最优的划分点,将数据集分成两个子集。

3. 对每个子集重复执行1和2,直到划分到某个条件时停止。

4. 将每个子集的划分结果标记为该子集的类别。

这里需要解释一下什么是“最优的划分点”。

最优划分点被定义为可以让每个决策树节点的纯度最大化的分割点。

纯度越高,表示在该节点中有更多相似的数据。

三、决策树算法的分类方法决策树算法主要有两种分类方法:1. ID3算法ID3算法是决策树算法中最早的算法之一,它根据信息熵的概念选择特征。

在ID3算法中,我们会针对数据集的每个特征计算信息熵,根据信息熵的大小来选择最优的特征。

信息熵可以理解为代表一个系统混乱程度的指数,当信息熵越低时,说明数据越有条理。

2. C4.5算法C4.5算法是ID3算法的改进版本,在选择特征时引入了信息增益比的概念。

信息增益比是指将信息增益除以一个归一化项,这个归一化项是针对不同特征计算的。

数据挖掘中的十大算法

数据挖掘中的十大算法

数据挖掘中的十大算法数据挖掘是当今最火热的技术之一,而算法则是数据挖掘的核心,其中有十大算法是数据挖掘领域中最常用的,这十大算法分别是:C4.5决策树算法、朴素贝叶斯算法、k-近邻算法、支持向量机算法、Apriori算法、EM算法、PageRank算法、AdaBoost算法、k-均值聚类算法以及PCA算法。

1. C4.5决策树算法决策树算法是以树形结构来模拟分析决策过程的一类算法,C4.5决策树算法是一种非常常见的决策树算法,它可以适用于多分类、连续值和缺失值情况,同时还可以通过剪枝技术降低过拟合现象。

2. 朴素贝叶斯算法朴素贝叶斯算法是一种基于贝叶斯定理的概率模型,它通常用于解决分类和回归问题。

朴素贝叶斯算法可以通过估计概率来预测结果,因此需要大量的训练数据。

3. k-近邻算法k-近邻算法是一种基于距离的分类算法,它通过比较样本之间的距离来确定它们之间的相似度。

k-近邻算法通常在训练数据已知的情况下使用,它使用最近邻居的标签来预测新的标签。

4. 支持向量机算法支持向量机算法是一种最优化算法,它通常用于解决分类和回归问题。

支持向量机算法通过找到最大间隔超平面来进行分类,同时还可以使用核函数来处理非线性问题。

5. Apriori算法Apriori算法是一种关联规则算法,它通过寻找频繁项集来确定标签之间的关联性。

Apriori算法通常用于市场分析和推荐系统中。

6. EM算法EM算法是一种用于模型参数估计的迭代算法,它被广泛应用于未观测数据的概率推断中。

EM算法通常用于高斯混合模型和隐马尔科夫模型中。

7. PageRank算法PageRank算法是一种用于网页排名的算法,它基于网页的链接结构确定网页的权重。

PageRank算法被广泛应用于搜索引擎中。

8. AdaBoost算法AdaBoost算法是一种基于多个弱分类器构建强分类器的算法,它通常用于解决分类问题。

AdaBoost算法可以通过加权算法使得数据分布发生变化,从而提高分类的精度。

决策树算法的研究与应用

决策树算法的研究与应用

决策树算法的研究与应用一、本文概述随着大数据时代的到来,如何从海量的数据中提取出有价值的信息并做出准确的决策,成为了当前研究的重要课题。

决策树算法作为一种重要的数据挖掘和机器学习技术,具有直观易懂、分类效果好、适用范围广等优点,被广泛应用于金融、医疗、教育、工业等多个领域。

本文旨在对决策树算法进行深入研究,探讨其基本原理、分类方法、优化策略以及在实际应用中的案例分析。

通过本文的论述,希望能够为读者提供一个全面、系统的决策树算法知识框架,为推动决策树算法在实际应用中的发展提供参考和借鉴。

二、决策树算法的基本原理决策树算法是一种基于树形结构的监督学习算法,主要用于分类和回归任务。

其基本原理是通过递归地将数据集划分为若干个子集,以生成一个树状结构,每个内部节点表示一个属性上的判断条件,每个分支代表一个可能的属性值,每个叶节点代表一个类别(对于分类任务)或一个具体数值(对于回归任务)。

在决策树生成过程中,通常会选择一个最优划分属性作为当前节点的划分标准,以便根据该属性将数据集划分为尽可能纯净的子集。

划分属性的选择标准有多种,如信息增益、增益率和基尼指数等。

其中,信息增益是基于熵的概念来度量数据集的不确定性,增益率则是对信息增益的一种改进,旨在解决信息增益偏向于选择取值较多的属性的问题;而基尼指数则是基于基尼不纯度来度量数据集的不确定性。

决策树算法具有直观易懂、易于实现和可解释性强的优点,因此在许多领域得到了广泛应用。

然而,它也存在一些局限性,如容易过拟合、对噪声数据和缺失数据敏感等问题。

为了解决这些问题,研究者们提出了多种改进策略,如剪枝、集成学习和随机森林等。

剪枝是一种通过去除决策树中的部分节点或子树来防止过拟合的策略,包括预剪枝和后剪枝两种方式。

预剪枝是在决策树生成过程中提前停止树的生长,而后剪枝则是在决策树生成完成后对其进行简化。

剪枝策略可以有效地减少决策树的复杂度,从而提高其泛化能力。

集成学习则是一种通过结合多个单一模型的预测结果来构建一个更加强大的模型的方法。

数据挖掘算法决策树算法及应用扩展.pptx

数据挖掘算法决策树算法及应用扩展.pptx

input 判定树分类算法 output 训练集
决策树
使用决策树进行分类
决策树
一个树性的结构 内部节点上选用一个属性进行分割 每个分叉都是分割的一个部分 叶子节点表示一个分布
决策树生成算法分成两个步骤
树的生成 开始,数据都在根节点 递归的进行数据分片
树的修剪 去掉一些可能是噪音或者异常的数据
概述(二)
捕捉新旧数据变化的目的:
挖掘出变化的趋势
例:啤酒——尿布
阻止/延缓不利变化的发生
例:金融危机——银行的信贷策略
差异挖掘算法的主要思想:
合理比较新/旧数据的挖掘结果,并清晰的 描述其变化部分
预备知识一(Building Tree)
基本思想: 用途:提取分类规则,进行分类预测
gini(T ) 1
n
p 2j
j 1
如果集合T分成两部分 N1 and N2 。那么这个分割的
Gini就是
ginisplit (T
)
N1 N
gini(T1)
N2 N
gini(T
2)
提供最小Ginisplit 就被选择作为分割的标准(对于每个 属性都要遍历所有可以的分割方法).
预备知识二(Pruning Tree)
属性选择的统计度量
信息增益——Information gain (ID3/C4.5)
所有属性假设都是种类字段 经过修改之后可以适用于数值字段
基尼指数——Gini index (IBM IntelligentMiner)
能够适用于种类和数值字段
信息增益度度量(ID3/C4.5)
任意样本分类的期望信息:
决策树使用: 对未知数据进行分割
按照决策树上采用的分割属性逐层往下,直到一个叶子节点

数据挖掘的常用分类算法

数据挖掘的常用分类算法

数据挖掘的常用分类算法数据挖掘是从大量数据中提取出有用信息的过程。

在数据挖掘中,分类算法被广泛应用于将数据样本分为不同的类别。

下面将介绍一些常见的分类算法。

1.决策树算法:决策树是一种基于树形结构的分类算法。

它通过对样本的特征进行逻辑分割,最终得到一个决策树模型。

决策树有许多不同的变种,例如ID3、C4.5和CART算法。

决策树算法易于理解和实现,它能够处理连续和离散的数据,并且能够提供特征的重要性排名。

2.朴素贝叶斯算法:朴素贝叶斯算法是基于贝叶斯定理和特征条件独立性假设的统计分类算法。

该算法假设所有特征之间相互独立,因此计算条件概率时只需要考虑个别特征的概率。

朴素贝叶斯算法在文本分类和垃圾邮件过滤等领域具有广泛的应用。

3. 逻辑回归算法:逻辑回归是一种适用于二分类问题的线性模型。

该算法通过将特征的线性组合映射到一个sigmoid函数上,从而将实数域的输入映射到0~1之间的输出。

逻辑回归算法可以用于预测二分类概率,并且容易解释和使用。

4.支持向量机算法:支持向量机是一种用于二分类和多分类的机器学习算法。

它通过在特征空间中构建一个超平面来实现分类。

支持向量机算法具有稳定的表现、鲁棒性和优化能力,并且在高维空间中效果良好。

5.K近邻算法:K近邻算法是一种基于邻居的分类算法。

该算法将未知数据点分类为其最近邻居所属的类别。

K近邻算法没有显式的训练过程,可以用于处理大型数据集。

然而,该算法对于高维数据和异常值敏感。

6.随机森林算法:随机森林是一种集成学习算法,它综合了多个决策树的分类结果。

随机森林通过随机选择特征子集进行决策树的训练,并采用投票机制来确定最终分类结果。

随机森林算法可以降低过拟合风险,并提供特征重要性排名。

7.梯度提升算法:梯度提升是一种集成学习算法,它通过迭代地训练一系列弱分类器,并将它们组合成一个强分类器。

梯度提升算法通过最小化损失函数的梯度来优化模型,从而能够处理分类和回归问题。

这些分类算法在数据挖掘中被广泛应用,并且具有各自的优缺点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

决策树是分类应用中采用最广泛的模型之一。

与神经网络和贝叶斯方法相比,决策树无须花费大量的时间和进行上千次的迭代来训练模型,适用于大规模数据集,除了训练数据中的信息外不再需要其他额外信息,表现了很好的分类精确度。

其核心问题是测试属性选择的策略,以及对决策树进行剪枝。

连续属性离散化和对高维大规模数据降维,也是扩展决策树算法应用范围的关键技术。

本文以决策树为研究对象,主要研究内容有:首先介绍了数据挖掘的历史、现状、理论和过程,然后详细介绍了三种决策树算法,包括其概念、形式模型和优略性,并通过实例对其进行了分析研究目录一、引言 (1)二、数据挖掘 (2)(一)概念 (2)(二)数据挖掘的起源 (2)(三)数据挖掘的对象 (3)(四)数据挖掘的任务 (3)(五)数据挖掘的过程 (3)(六)数据挖掘的常用方法 (3)(七)数据挖掘的应用 (5)三、决策树算法介绍 (5)(一)归纳学习 (5)(二)分类算法概述 (5)(三)决策树学习算法 (6)1、决策树描述 (7)2、决策树的类型 (8)3、递归方式 (8)4、决策树的构造算法 (8)5、决策树的简化方法 (9)6、决策树算法的讨论 (10)四、ID3、C4.5和CART算法介绍 (10)(一)ID3学习算法 (11)1、基本原理 (11)2、ID3算法的形式化模型 (13)(二)C4.5算法 (14)(三)CART算法 (17)1、CART算法理论 (17)2、CART树的分支过程 (17)(四)算法比较 (19)五、结论 (24)参考文献...................................................................................... 错误!未定义书签。

致谢.............................................................................................. 错误!未定义书签。

数据挖掘中决策树算法的研究一、引言在激烈的市场竞争中,信息对于企业的生存和发展越来越起到至关重要的作用,随着数据库技术的迅速发展以及数据库管理系统的广泛应用,数据库中表达信息的数据亦随着时间和业务的发展而急剧膨胀,人们需要对数据进行更高层次的处理,从中找出规律和模式,以帮助人们更好的利用数据进行决策和研究。

目前的数据库系统虽然可以实现高效的数据录入、查询、统计等功能,却无法发现数据中存在的关系和规则,无法根据现有的数据预测未来的发展趋势。

由于缺乏挖掘数据背后隐藏的知识的手段,导致了“数据爆炸但知识贫乏”的现象,面对“人们被数据淹没,人们却饥饿于知识”的挑战,数据挖掘和知识发现技术应运而生,并得以蓬勃发展,越来越显示出其强大的生命力。

数据挖掘的核心部分是为数据集建立模型的过程,不同的数据挖掘方法构造数据模型的方式也不相同,在进行数据挖掘时可采用许多不同的方法,例如神经网络、决策树、遗传算法和可视化技术等,同时同一方法下又有数以百计的派生方法。

决策树算法是数据挖掘常用的方法之一,但它一直未受到人们重视,直到1984年Breiman等人合著出版了《分类和回归树》一书,决策树方法才开始被统计学界接受并获得了信赖,并很快得到推广应用。

现在很多公司的数据挖掘产品中都采用了决策树数据挖掘算法,J.R.Quinlan对决策树算法作出了详细的理论描述决策树算法中一种广为人知的算法就是ID3算法,是1986年由Quinlan提出的一种基于信息墒的决策树算法,近年来在很多知识发现领域得到应用,很多学者针对ID3算法进行研究。

本课题主要研究了ID3算法、C4.5算法等的优势和略势,比较了各算法在实际应用中的好处和不足。

二、数据挖掘(一)概念图 1-1数据挖掘,在人工智能领域,习惯上又称为数据库中知识发现(Knowledge Discovery in Database, KDD),也有人把数据挖掘视为数据库中知识发现过程的一个基本步骤。

知识发现过程以下三个阶段组成:(1)数据准备,(2)数据挖掘,(3)结果表达和解释。

数据挖掘可以与用户或知识库交互。

并非所有的信息发现任务都被视为数据挖掘。

例如,使用数据库管理系统查找个别的记录,或通过因特网的搜索引擎查找特定的Web页面,则是信息检索(information retrieval)领域的任务。

虽然这些任务是重要的,可能涉及使用复杂的算法和数据结构,但是它们主要依赖传统的计算机科学技术和数据的明显特征来创建索引结构,从而有效地组织和检索信息。

尽管如此,数据挖掘技术也已用来增强信息检索系统的能力。

(二)数据挖掘的起源要是发明之母。

近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。

获取的信息和知识可以广泛用于各种应用,包括商务管理,生产控制,市场分析,工程设计和科学探索等。

(三)数据挖掘的对象数据挖掘可以在任何类型的数据上进行,即可以来自社会科学,又可以来自自然科学产生的数据,还可以是卫星观测得到的数据。

数据形式和结构也各不相同,可以是传统的关系数据库,可以是面向对象的高级数据库系统,也可以是面向特殊应用的数据库,如空间数据库、时序数据库、文本数据库和多媒体数据库等,还可以是Web数据信息。

(四)数据挖掘的任务数据挖掘的目标是从海量数据中发现隐含的、有意义的知识。

它的任务主要是分类、预测、时间序列模式、聚类分析、关联分析预测和偏差分析等。

分类:分类就是按照一定的标准把数据对象划归成不同类别的过程。

预测:预测就是通过对历史数据的分析找出规律,并建立模型,通过模型对未来数据的种类和特征进行分析。

时间序列模式:时间序列模式就是根据数据对象随时间变化的规律或趋势来预测将来的值。

聚类分析:聚类分析是在没有给定划分类的情况下,根据数据信息的相似度进行数据聚集的一种方法。

关联分析预测:关联分析就是对大量的数据进行分析,从中发现满足一定支持度和可信度的数据项之间的联系规则。

偏差分析:偏差分析就是通过对数据库中的孤立点数据进行分析,寻找有价值和意义的信息。

(五)数据挖掘的过程数据挖掘使用一定的算法从实际应用数据中挖掘出未知、有价值的模式或规律等知识,整个过程由数据准备、数据挖掘、模式评估、结果分析和运用知识等步骤组成。

数据准备:数据挖掘的处理对象是数据,这些数据一般存储在数据库系统中,是长期积累的结果。

但往往不适合直接在这些数据上进行知识挖掘,首先要清除数据噪声和与挖掘主题明显无关的数据;其次将来自多数据源中的相关数据组合并;然后将数据转换为易于进行数据挖掘的数据存储形式,这就是数据准备。

数据挖掘:数据挖掘就是根据数据挖掘的目标,选取相应算法及参数,分析准备好的数据,产生一个特定的模式或数据集,从而得到可能形成知识的模式模型。

模式评估:由挖掘算法产生的模式规律,存在无实际意义或无实用价值的情况,也存在不能准确反映数据的真实意义的情况,甚至在某些情况下与事实相反,因此需要对其进行评估,从挖掘结果中筛选出有意义的模式规律。

在此过程中,为了取得更为有效的知识,可能会返回前面的某一处理步骤中以反复提取,从而提取出更有效的知识。

巩固知识:解释并评估结果.其使用的分析方法一般应作数据挖掘操作而定,通常会用到可视化技术.运用知识:将分析所得到的知识集成到业务信息系统的组织结构中去.(六)数据挖掘的常用方法决策树方法:决策树是一种常用于预测模型的算法,它通过一系列规则将大量数据有目的分类,从中找到一些有价值的、潜在的信息。

它的主要优点是描述简单,分类速度快,易于理解、精度较高,特别适合大规模的数据处理,在知识发现系统中应用较广。

它的主要缺点是很难基于多个变量组合发现规则。

在数据挖掘中,决策树方法主要用于分类。

神经网络方法:神经网络是模拟人类的形象直觉思维,在生物神经网络研究的基础上,根据生物神经元和神经网络的特点,通过简化、归纳、提炼总结出来的一类并行处理网络,利用其非线性映射的思想和并行处理的方法,用神经网络本身结构来表达输入和输出的关联知识。

粗糙集方法:粗糙集理论是一种研究不精确、不确定知识的数学工具。

粗糙集处理的对象是类似二维关系表的信息表。

目前成熟的关系数据库管理系统和新发展起来的数据仓库管理系统,为粗糙集的数据挖掘奠定了坚实的基础。

粗糙集理论能够在缺少先验知识的情况下,对数据进行分类处理。

在该方法中知识是以信息系统的形式表示的,先对信息系统进行归约,再从经过归约后的知识库抽取得到更有价值、更准确的一系列规则。

因此,基于粗糙集的数据挖掘算法实际上就是对大量数据构成的信息系统进行约简,得到一种属性归约集的过程,最后抽取规则。

遗传算法:遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法。

数据挖掘是从大量数据中提取人们感兴趣的知识,这些知识是隐含的、事先未知的、潜在有用的信息。

因此,许多数据挖掘问题可以看成是搜索问题,数据库或者数据仓库为搜索空间,挖掘算法是搜索策略。

应用遗传算法在数据库中进行搜索,对随机产生的一组规则进行进化,直到数据库能被该组规则覆盖,就可以挖掘出隐含在数据库中的规则。

(七)数据挖掘的应用数据挖掘技术在各个需要进行信息分析的领域得到十分广泛的应用。

它可以带来显著的经济效益,不仅可以控制成本,也可以给企业带来更多效益。

在金融业,可以通过信用卡历史数据的分析,判断哪些人有风险,哪些人没有;在超市,可以通过对超市交易信息的分析,安排货价货物摆设,以提高销售收入;在保险业,可以通过对保险公司客户记录的分析,来判定哪些客户是花费昂贵的对象;在学校,可以通过分析学校学生课程及成绩等信息,来判断课程之间的关系。

此外,在医学中,可以利用数据挖掘技术对疾病发作前后症状的分析,来对病症进行诊断;在体育运动中,利用数据挖掘技术对对抗性强的积极运动进行分析,发现对方弱点,制定有效的战术。

三、决策树算法介绍(一)归纳学习归纳学习是符号学习中研究的最为广泛的一种方法。

它着眼于从一组无次序、无规则的实力中,找出蕴涵规律,事例一般是基于属性理论的,有特定的属性值得到问题某个结论,给定关于某个概念的一系列已知的正例和反例,其任务是从中归纳出一个通用概念描述。

它能够获得新的概念,创立新的规则,发现新的理论。

它的一般的操作是泛化和特化。

泛化用来扩展假设的语义信息,以使其包含更多的正例,应用于更多的情况。

特化是泛化的相反操作,用于限制概念描述的应用范围。

分类算法是归类学习的一种类型。

(二)分类算法概述分类算法是数据挖掘中的一个重要课题,可用于预测和决策。

分类算法也是数据挖掘算法中很很重要的一种,决策树(decision tree)算法是主要分类算法之一。

相关文档
最新文档