简单的线性规划问题2
3.3.2简单的线性规划问题
![3.3.2简单的线性规划问题](https://img.taocdn.com/s3/m/36a9de7a580102020740be1e650e52ea5518ce92.png)
变式:求利润z=x+3y的最大值. y
x2y 8
44
x y
16 12
x
0
y 0
4 N(2,3) 3
0
4
8x
y 1 x4
2
y1x z
33
zmax 2 3 3 11
名称 约束条件 线性约束条件 目标函数 线性目标函数
(3)掌握对一些实际优化问题建立线性规划数学 模型并运用图解法进行求解的基本方法和步骤 .
学习重点:线性规划的图解法
学习难点:寻求线性规划问题的最优解
一、导学提示,自主学习
2.本节主要题型 题型一 求线性目标函数的最值 题型二 线性规划的实际应用 3.自主学习教材P87-P91 3. 3.2简单的线性规划问题
经理,问各截这两种钢板多少张既能满足顾客要求又使所用钢板张
数最少。
分 析
解:设需截第一种钢板x张,第二种钢板y张,
2x+y≥15,
钢板总张数为Z则,
问
x+2y≥18,
题
x+3y≥27, x≥0
:
y≥0
标目函数: z=x+y (x,y N)
约束条件:
{ 2x+y≥15, x+2y≥18, x+3y≥27, x≥0,
33
3
在y轴上的截距为 z 的直线, 3
当点P在可允许的取值范围变化时,
求截距 z 的最值,即可得z的最值. 3
问题:求利润z=2x+3y的最大值. y
x2y 8
44
x y
16 12
简单的线性规划问题(附答案)
![简单的线性规划问题(附答案)](https://img.taocdn.com/s3/m/3a288f13f61fb7360a4c65d3.png)
简单的线性规划问题(附答案)简单的线性规划问题[学习目标]知识点一线性规划中的基本概念知识点二线性规划问题1.目标函数的最值线性目标函数z=ax+by(b≠0)对应的斜截式直线方程是y=-ab x+zb,在y轴上的截距是zb,当z变化时,方程表示一组互相平行的直线.当b>0,截距最大时,z取得最大值,截距最小时,z取得最小值;当b<0,截距最大时,z取得最小值,截距最小时,z取得最大值.2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.知识点三简单线性规划问题的实际应用1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有:①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大?③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一求线性目标函数的最值例1 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则z =3x +y 的最大值为( )A .12B .11C .3D .-1答案 B 解析 首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y =-3x +z 经过点A时,z 取得最大值.由⎩⎨⎧ y =2,x -y =1⇒⎩⎨⎧x =3,y =2,此时z =3x +y =11.跟踪训练1 (1)x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.答案 (1)D (2)1解析 (1)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z =3x +y ,即y =-3x +z 过点(0,1)时z 取最小值1.题型二 非线性目标函数的最值问题例2 设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,求 (1)x 2+y 2的最小值;(2)y x 的最大值.解 如图,画出不等式组表示的平面区域ABC ,(1)令u =x 2+y 2,其几何意义是可行域ABC 内任一点(x ,y )与原点的距离的平方.过原点向直线x +2y -4=0作垂线y =2x ,则垂足为⎩⎨⎧x +2y -4=0,y =2x 的解,即⎝ ⎛⎭⎪⎪⎫45,85, 又由⎩⎨⎧ x +2y -4=0,2y -3=0,得C ⎝ ⎛⎭⎪⎪⎫1,32, 所以垂足在线段AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC |= 1+⎝ ⎛⎭⎪⎪⎫322=132,所以,x 2+y 2的最小值为134.(2)令v =yx ,其几何意义是可行域ABC 内任一点(x ,y )与原点相连的直线l 的斜率为v ,即v =y -0x -0.由图形可知,当直线l 经过可行域内点C 时,v 最大,由(1)知C ⎝⎛⎭⎪⎪⎫1,32,所以v max =32,所以y x 的最大值为32.跟踪训练2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y 2的最小值为________.答案10解析画出可行域(如图所示).(x+3)2+y2即点A(-3,0)与可行域内点(x,y)之间距离的平方.显然AC长度最小,∴AC2=(0+3)2+(1-0)2=10,即(x+3)2+y2的最小值为10.题型三线性规划的实际应用例3某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少? 解 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,于是有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,z=300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值, 最大值是z =300×4+400×4=2 800, 即该公司可获得的最大利润是2 800元. 反思与感悟 线性规划解决实际问题的步骤:①分析并根据已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解. 跟踪训练3 预算用2 000元购买单价为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行? 解 设桌子、椅子分别买x 张、y 把,目标函数z =x +y ,把所给的条件表示成不等式组,即约束条件为⎩⎪⎪⎨⎪⎪⎧50x +20y ≤2 000,y ≥x ,y ≤1.5x ,x ≥0,x ∈N *,y ≥0,y ∈N *.由⎩⎨⎧50x +20y =2 000,y =x ,解得⎩⎪⎨⎪⎧x =2007,y =2007,所以A 点的坐标为⎝⎛⎭⎪⎪⎫2007,2007. 由⎩⎨⎧50x +20y =2 000,y =1.5x ,解得⎩⎨⎧x =25,y =752,所以B 点的坐标为⎝⎛⎭⎪⎪⎫25,752.所以满足条件的可行域是以A ⎝⎛⎭⎪⎪⎫2007,2007,B ⎝⎛⎭⎪⎪⎫25,752,O (0,0)为顶点的三角形区域(如图).由图形可知,目标函数z =x +y 在可行域内的最优解为B ⎝⎛⎭⎪⎪⎫25,752,但注意到x ∈N *,y ∈N *,故取⎩⎨⎧x =25,y =37.故买桌子25张,椅子37把是最好的选择.1.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( ) A .-1 B .1 C.32D .22.某公司招收男职员x 名,女职员y 名,x 和y需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,x ∈N *,y ∈N *,则z =10x+10y 的最大值是( ) A .80 B .85 C .90 D .953.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤1,x ≤1,x +y ≥1,则z =x 2+y 2的最小值为________.一、选择题1.若点(x, y )位于曲线y =|x |与y =2所围成的封闭区域, 则2x -y 的最小值为()A .-6B .-2C .0D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为( )A .-4B .0 C.43D .43.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y ≥0,则z =y -1x 的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )(整点是指横、纵坐标都是整数的点)恰有9个,则整数a 的值为( )A .-3B .-2C .-1D .05.已知x ,y 满足⎩⎪⎨⎪⎧x ≥1,x +y ≤4,x +by +c ≤0,目标函数z=2x +y 的最大值为7,最小值为1,则b ,c 的值分别为( )A .-1,4B .-1,-3C .-2,-1D .-1,-26.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≥0,x ≤3,使z=x +ay (a >0)取得最小值的最优解有无数个,则a 的值为( )A .-3B .3C .-1D .1二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤2,y ≤2,x +y ≥2,则z =x+2y 的取值范围是________.8.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示). 9.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y 给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为________.10.满足|x |+|y |≤2的点(x ,y )中整点(横纵坐标都是整数)有________个.11.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________. 三、解答题12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,目标函数z =2x -y ,求z 的最大值和最小值.13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,求a 的取值范围.14.某家具厂有方木料90 m3,五合板600 m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3,五合板2 m2,生产每个书橱需要方木料0.2 m3,五合板1 m2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利润最大?当堂检测答案1.答案 B解析如图,当y=2x经过且只经过x+y-3=0和x=m的交点时,m取到最大值,此时,即(m,2m)在直线x +y-3=0上,则m=1.2.答案 C解析该不等式组表示的平面区域为如图所示的阴影部分.由于x ,y ∈N *,计算区域内与⎝⎛⎭⎪⎪⎫112,92最近的点为(5,4),故当x =5,y =4时,z 取得最大值为90.3.答案 12解析实数x ,y 满足的可行域如图中阴影部分所示,则z 的最小值为原点到直线AB 的距离的平方,故z min =⎝ ⎛⎭⎪⎫122=12.课时精练答案一、选择题1.答案 A解析画出可行域,如图所示,解得A(-2,2),设z=2x-y,把z=2x-y变形为y=2x-z,则直线经过点A时z取得最小值;所以z min=2×(-2)-2=-6,故选A.2.答案 D解析作出可行域,如图所示.联立⎩⎨⎧ x +y -4=0,x -3y +4=0,解得⎩⎨⎧x =2,y =2.当目标函数z =3x -y 移到(2,2)时,z =3x -y 有最大值4. 3.答案 D解析 作出可行域,如图所示,y -1x的几何意义是点(x ,y )与点(0,1)连线l 的斜率,当直线l 过B (1,0)时k l 最小,最小为-1.又直线l 不能与直线x -y =0平行,∴k l <1.综上,k ∈[-1,1).4.答案 C解析不等式组所表示的平面区域如图阴影部分所示,当a=0时,只有4个整点(1,1),(0,0),(1,0),(2,0).当a=-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点.故选C.5.答案 D解析由题意知,直线x+by+c=0经过直线2x +y=7与直线x+y=4的交点,且经过直线2x +y=1和直线x=1的交点,即经过点(3,1)和点(1,-1),∴⎩⎨⎧ 3+b +c =0,1-b +c =0,解得⎩⎨⎧b =-1,c =-2.6.答案 D解析 如图,作出可行域,作直线l :x +ay =0,要使目标函数z =x +ay (a >0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x +y =5重合,故a =1,选D.二、填空题 7.答案 [2,6]解析 如图,作出可行域,作直线l :x +2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故z 的取值范围为[2,6].8.答案 [3,8] 解析 作出不等式组⎩⎨⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值z min =2×3-3×1=3;当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值z max =2×1+3×2=8.所以z ∈[3,8]. 9.答案 4解析 由线性约束条件⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图中阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.10.答案13解析 |x |+|y |≤2可化为⎩⎪⎨⎪⎧x +y ≤2 (x ≥0,y ≥0),x -y ≤2 (x ≥0,y <0),-x +y ≤2 (x <0,y ≥0),-x -y ≤2 (x <0,y <0),作出可行域为如图正方形内部(包括边界),容易得到整点个数为13个. 11.答案 21解析 作出可行域(如图),即△ABC 所围区域(包括边界),其顶点为A (1,3),B (7,9),C(3,1)方法一∵可行域内的点都在直线x+2y-4=0上方,∴x+2y-4>0,则目标函数等价于z=x+2y-4,易得当直线z=x+2y-4在点B(7,9)处,目标函数取得最大值z max=21.方法二z=|x+2y-4|=|x+2y-4|5·5,令P(x,y)为可行域内一动点,定直线x+2y-4=0,则z=5d,其中d为P(x,y)到直线x+2y-4=0的距离.由图可知,区域内的点B与直线的距离最大,故d的最大值为|7+2×9-4|5=215.故目标函数z max=215·5=21.三、解答题12.解z=2x-y可化为y=2x-z,z的几何意义是直线在y轴上的截距的相反数,故当z取得最大值和最小值时,应是直线在y轴上分别取得最小和最大截距的时候.作一组与l0:2x-y=0平行的直线系l,经上下平移,可得:当l移动到l1,即经过点A(5,2)时,z max=2×5-2=8.当l移动到l2,即过点C(1,4.4)时,z min=2×1-4.4=-2.4.13.解先画出可行域,如图所示,y=a x必须过图中阴影部分或其边界.∵A(2,9),∴9=a2,∴a=3.∵a>1,∴1<a≤3.14.解由题意可画表格如下:(1)设只生产书桌x张,可获得利润z元,则⎩⎪⎨⎪⎧0.1x ≤90,2x ≤600,z =80x ,x ≥0⇒⎩⎪⎨⎪⎧x ≤900,x ≤300,x ≥0⇒0≤x ≤300. 所以当x =300时,z max =80×300=24 000(元), 即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元.(2)设只生产书橱y 个,可获得利润z 元,则⎩⎪⎨⎪⎧0.2y ≤90,1·y ≤600,z =120y ,y ≥0⇒⎩⎪⎨⎪⎧y ≤450,y ≤600,y ≥0⇒0≤y ≤450. 所以当y =450时,z max =120×450=54 000(元), 即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元.(3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤90,2x +y ≤600,x ≥0,y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图).作直线l :80x +120y =0,即直线l :2x +3y =0. 把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎨⎧x +2y =900,2x +y =600,解得,点M 的坐标为(100,400).所以当x=100,y=400时,z max=80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.。
2020高考文科数学(人教版)一轮复习讲义:第43讲简单的线性规划问题含答案 (2)
![2020高考文科数学(人教版)一轮复习讲义:第43讲简单的线性规划问题含答案 (2)](https://img.taocdn.com/s3/m/156c02995fbfc77da269b1e4.png)
第43讲简单的线性规划问题1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.2.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知识梳理1.二元一次不等式(组)表示平面区域(1)二元一次不等式Ax+By+C>0(或<0)表示直线Ax+By+C=0某一侧所有点组成的平面区域.(2)二元一次不等式组所表示的平面区域是各个不等式所表示的平面点集的交集,即各个不等式所表示的平面区域的公共部分.(3)画或判断二元一次不等式表示的平面区域常采用直线定界,特殊点定“域”.2.线性规划的有关概念(1)线性约束条件——由条件列出的二元一次不等式组;(2)线性目标函数——由条件列出的一次函数表达式;(3)线性规划——求线性目标函数在线性约束条件下的最大值或最小值问题,称为线性规划问题.(4)可行解、可行域、最优解:满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域,使线性目标函数取得最大值和最小值的可行解叫做最优解.3.利用线性规划求最值的一般步骤:(1)根据线性约束条件画出可行域;(2)设z=0,画出直线l0;(3)观察、分析、平移直线l0,从而找到最优解;(4)求出目标函数的最大值或最小值.热身练习1.下列各点中,不在x+y-1≤0表示的平面区域内的点是(C)A.(0,0) B.(-1,1)C.(-1,3) D.(2,-1)将上述各点代入不等式检验,若满足不等式,则点在所表示的平面区域内,否则,不在.因为(0,0),(-1,1),(2,-1)都满足不等式,所以这些点都在所表示的平面区域内,而(-1,3)不满足不等式,故选 C.2.如图所示,不等式2x-y<0表示的平面区域是(B)直线定界,因为2x-y=0不经过(2,1)点排除D,2x-y<0不包括边界,排除A,再取特殊点(1,0)代入得2-0>0,故(1,0)不在2x-y<0表示的区域内,故排除C,选B.3.不等式组x≥0,x+3y≥4,3x+y≤4所表示的平面区域的面积等于(C)A.32B.23C.43D.34不等式组表示的平面区域是各个不等式表示的平面区域的交集,作出不等式组表示的平面区域如右图:所以S阴=12×4-43×1=43.4.目标函数z=x+2y,将其看成直线方程时,z的意义是(C) A.该直线的截距B.该直线的纵截距C.该直线纵截距的2倍D.该直线纵截距的1 2将z=x+2y化为y=-12x+z2,可知z=2b,表示该直线的纵截距的2倍.5.(2015·北京卷)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为7.把z=2x+3y变形为y=-23x+13z,通过平移直线y=-23x知,当过点A(2,1)时,z=2x+3y取得最大值且z max=2×2+3×1=7.。
第一部分 第三章 3.3 第二课时 简单的线性规划问题
![第一部分 第三章 3.3 第二课时 简单的线性规划问题](https://img.taocdn.com/s3/m/6bbf9d53af1ffc4ffe47acc5.png)
5.某公司租赁甲、乙两种设备生产A、B两类产品,甲种设 备每天能生产A类产品5件和B类产品10件,乙种设备每 天能生产A类产品6件和B类产品20件.已知设备甲每天 的租赁费为200元,设备乙每天的租赁费为300元,现该 公司至少要生产A类产品50件,B类产品140件,所需租 赁费最少为__________元.
3.3
第 三 章
二元 一次 不等 式组
第二 课时
简单
不 等 式
与简 单的 线性 规划
的线 性规 划问 题
问题
理解教材新知 把握热点考向 应用创新演练
考点一 考点二 考点三
返回
返回
第二课时 简单的线性规划问题 返回
返回
现在是信息时代,广告可以给公司带来效益.某公 司计划在甲、乙两个电视台做总时间不超过300分钟的 广告,广告总费用不超过9万元,甲、乙两个电视台的 收费标准分别为500元/分钟和200元/分钟. 问题1:设在甲、乙两个电视台做广告的时间分别为x分 钟,y分钟,试ห้องสมุดไป่ตู้出满足条件的不等关系.
答案:9
返回
2.在如下图所示的可行域内(阴影部分且包括边界), 目标函数z=x-y,则使z取得最小值的点的坐标 为____________.
解析:对直线y=x+b进行平移,注意b越大,z越 小故,四个点中,过点A(1,1)时 z取最小值0. 答案:(1,1)
返回
返回
[例 2]
0≤x≤1 (2011·苏 北 四 市 三 调 )在 约 束 条 件 0≤y≤2 2y-x≥1
返回
[一点通] 解答线性规划应用题的一般步骤: (1)审题——仔细阅读,对关键部分进行“精读”,准 确理解题意,明确有哪些限制条件,起关键作用的变量 有哪些,由于线性规划应用题中的量较多,为了理顺题 目中量与量之间的关系,有时可借助表格来理顺. (2)转化——设元.写出约束条件和目标函数,从而 将实际问题转化为数学上的线性规划问题. (3)求解——解这个纯数学的线性规划问题. (4)作答——就应用题提出的问题作出回答.
3.3.2简单线性规划(1_2)--上课用
![3.3.2简单线性规划(1_2)--上课用](https://img.taocdn.com/s3/m/8dc576ff4693daef5ef73d7e.png)
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,
3.3.2简单的线性规划问题2
![3.3.2简单的线性规划问题2](https://img.taocdn.com/s3/m/247005533b3567ec102d8a4f.png)
[规范作答] 设需截第一种钢板 x 张,第二种钢板 y 张. 2x+y≥15, x+2y≥18, 可得 x+3y≥27, x≥0,y≥0.
且 x、y 都是整数,
求目标函数 z=x+y 取最小值时的 x、y.2 分 作可行域如图所示,6 分
18 x= 5 , x + 3 y = 27 , ∵ ∴ 2x+y=15, y=39, 5 平移直线
18 39 ∴A 5 , 5
18 39 z=x+y,可知直线经过点 5 , 5 ,此时
x+y
18 39 57 18 39 =5, 但 5 与 5 都不是整数, 所以可行域内的点 A 5 , 5 不
是最优解.8 分
方法一:平移求解法 首先在可行域内打网格,其次描出
下取得最大值时的最优解只有一个, 则实数 a
的取值范围是________. 解析:
x+y-3≥0 作出线性约束条件2x-y≤0 y≤a
表示的平面
区域, 如图中阴影部分所示.
• 因为取得最大值时的最优解只有一个,所以目 标函数对应的直线与平面区域的边界线不平行, 根据图形及直线的斜率,可得实数 a的取值范 围是[2,+∞). • 答案: [2,+∞)
∴A′(3,3)是最优解. 所以,甲、乙两种药片各用 3 片配餐最好.
•
已知变量x,y满足约束条件1≤x+y≤4,-2≤x -y≤2.若目标函数z=ax+y(其中a>0)仅在点(3,1) 处取得最大值,则a的取值范围为________.
• 由题目可获取以下主要信息: • ①可行域已知; • ②目标函数z=ax+y(a>0)仅在(3,1)处取得最大 值. • 解答本题可先画出可行域,利用数形结合求解.
• 1 . 用图解法解决线性目标函数的最优解问题的 一般步骤 • (1)画:根据线性约束条件,在直角坐标系中,把 可行域表示的平面图形准确地画出来,可行域可 以是封闭的多边形,也可以是一侧开放的无限大 的平面区域. • (2)移:运用数形结合的思想,把线性目标函数看 成直线系,把目标函数表示的直线平行移动,最 先通过或最后通过的顶点便是所需要的点. • (3)求:解方程组求最优解,进而求出目标函数的 最大值和最小值.
简单的线性规划问题(二)
![简单的线性规划问题(二)](https://img.taocdn.com/s3/m/cb8059e4856a561252d36fb0.png)
3 .在△ ABC 中,三顶点坐标为 A (2,4) , B(-1,2),C(1,0),点P(x,y)在△ABC内部 及边界运动,则z=x-y的最大,最小值分 别是 ( ) A.3,1 B.-1,-3 C.1,-3 D.3,-1
解析:本题运用线性规划问题的图象解 法.只需画出约束条件对应的可行域,即 一个封闭的三角形区域(含边界),再平移直 线x-y=0使之经过可行域,观察图形,找 出动直线纵截距最大时和最小时经过的点, 然后计算可得答案. 答案:C
x-y=-1, 解方程组 x+y=5,
得 A(2,3),
所以 zmin=2×2-3×3=-5. 当直线经过点 B 时, 直线的纵截距最小, 此时 z 最大.
x-y=3, 解方程组 x+y=1,
得 B(2,-1),
所以 zmax=2×2-3×(-1)=7. 所以 2x-3y 的取值范围是[-5,7]
[点评] 对于线性规划中的最优整数解的问 题,当解方程组得到的解不是整数解时, 可用下面的方法求解: ①平移直线法:先在可行域内打网格,再 描整点,平移直线 l ,最先经过或最后经过 的整点坐标是整点最优解. ②检查优值法:当可行域内整点个数较少 时,也可将整点坐标逐一代入目标函数求 值,经比较得出最优解. ③调整优值法:先求非整点最优解及最优 值,再借助不定方程知识调整最优值,最
[解] 设隔出大房间 x 间,小房间 y 间,获得收 益为 z 元,则
18x+15y≤180, 1000x+600y≤8000, x≥0,y≥0,且x,y∈N, 6x+5y≤60,① 即5x+3y≤40,② x≥0,y≥0,且x,y∈N.
目标函数为 z=200x+150y, 画出可行域如右图 8 所示.
高中数学人教A版必修5第三章3.3.2简单的线性规划问题(二)课件
![高中数学人教A版必修5第三章3.3.2简单的线性规划问题(二)课件](https://img.taocdn.com/s3/m/6f25de786ad97f192279168884868762caaebbc1.png)
学段 初中 高中
硬件建设 班级学生数 配备教师数 万元
45
2
26/班
40
3
54/班
教师年薪 万元
2/人 2/人
分别用数学关系式和图形表示上述限制条件。若 根据有关部门的规定,初中每人每年可收学费1600 元,高中每人每年可收学费2700元。那么开设初中 班和高中班多少个?每年收费的学费总额最多?
解:设开设初中班x个,高中班y个。因办学规模以 20~30个班为宜,所以, 20≤x+y≤30
2x+y=15 x+y=12 x+2y=18
x 27
x+3y=27
当直线经过点A时z=x+y=11.4, 但它不是最优整数解. 作直线x+y=12
B(3,9)和C(4,8)在直线上,且在可行域内, 整点是B(3,9)和C(4,8),它们是最优解. 答(略)
{2x+y≥15, x+2y≥18, x+3y≥27, x≥0, x∈N* y≥0 y∈N*
目标函数t = x+y
y 15
B(3,9)
9
C(4,8)
A(18/5,39/5)
打网格线法
x+y =0
2 1 0 12 78
x
18
27
作出直线 x+y=0,
2x+y=15
x+2y=18 x+3y=27
当直线经过点A时t=x+y=11.4,但它不是最优整数解,
在可行域内打出网格线, 将直线x+y=11.4继续向上平移,
7 x 7 y 5
14x 7 y 6
x
1 7
得M点的坐标为:
简单的线性规划问题课件
![简单的线性规划问题课件](https://img.taocdn.com/s3/m/9e6932a9f71fb7360b4c2e3f5727a5e9846a275b.png)
y
y 2x 12
y 2x 3
C(1, 4.4)
y 2x 5
x 4 y 3 这 纵是 截3xx斜距1率为5为zy的-2直,2线5
B(1, 1)
O1
x=1
x-4y+3=0 求z=2x+y的最大
A(5, 2)
值和最小值。
所以z最大值12
5
x
3x+5y-25=0
z最小值为3
【解析】
由z 2x y y 2x z
A
3, 2
5 2
,
zmax
17
B 2, 1, zmax 11
5x+3y≤15 y≤ x+1 x-5y≤3
【解析】
5x 3y 15 0
x y1 0
A
练习 B
x 5y 3 0
7
解线性规划问题的步骤:
(1)画:画出线性约束条件所表示的可行域,
和直线 ax by 不0(全a,b为 目标0函,数为
y
C
5
A B
O1
x
5
1
复习: vv二元一次不等式Ax+By+C>0在平面直角 坐标系中表示直线Ax+By+C=0某一侧所有 点组成的平面区域。
确定方法:
方法1:直线定界,特殊点定域;
若C≠0,则直线定界,原点定域;
方法2:如:x-y+1<0
x<y-1
表示直线x-y+1=0左侧的区域。
注意:若不等式中是严格不等号,则边界
【解析】
由z 2x y y 2x z
A(5,2) C(1, 22)
5
zmin
21
22 5
简单的线性规划典型例题
![简单的线性规划典型例题](https://img.taocdn.com/s3/m/a7856cd00975f46527d3e149.png)
简单的线性规划典型例题篇一:典型例题:简单的线性规划问题典型例题【例1】求不等式|x-1|+|y-1|≤2表示的平面区域的面积.【例2】某矿山车队有4辆载重量为10 t的甲型卡车和7辆载重量为6 t的乙型卡车,有9名驾驶员此车队每天至少要运360 t矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次甲型卡车每辆每天的成本费为252元,乙型卡车每辆每天的成本费为160元.问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?参考答案例1:【分析】依据条件画出所表达的区域,再根据区域的特点求其面积.【解】|x-1|+|y-1|≤2可化为或其平面区域如图:或或∴面积S=×4×4=8【点拨】画平面区域时作图要尽量准确,要注意边界.例2:【分析】弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解.【解】设每天派出甲型车x辆、乙型车y辆,车队所花成本费为z元,那么z=252x+160y,作出不等式组所表示的平面区域,即可行域,如图作出直线l0:252x+160y=0,把直线l向右上方平移,使其经过可行域上的整点,且使在y轴上的截距最小.观察图形,可见当直线252x+160y=t经过点(2,5)时,满足上述要求.此时,z=252x+160y取得最小值,即x=2,y=5时,zmin=252×2+160×5=1304.答:每天派出甲型车2辆,乙型车5辆,车队所用成本费最低.【点拨】用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系f(x,y)=t的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.篇二:不等式线性规划知识点梳理及经典例题及解析线性规划讲义【考纲说明】(1)了解线性规划的意义、了解可行域的意义;(2)掌握简单的二元线性规划问题的解法.(3)巩固图解法求线性目标函数的最大、最小值的方法;(4)会用画网格的方法求解整数线性规划问题.(5)培养学生的数学应用意识和解决问题的能力.【知识梳理】简单的线性规划问题一、知识点1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验. 3. 平移直线y=-kx+P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一.1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B0时,Ax0+By0+C0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同,(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反,即:1.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的同侧,则有(Ax1+By1+C)( Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)①二元一次不等式Ax+By+C>0(或②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
3.3.3简单的线性规划问题(2)
![3.3.3简单的线性规划问题(2)](https://img.taocdn.com/s3/m/657189d57f1922791688e872.png)
3.3.3简单的线性规划问题(2)
一、学习目标
1.通过本节学习,能解决与线性规划相关的实际问题,学会从实际情境中抽象出二元线性规划的模型;
2.培养学生观察、联想以及作图能力,渗透集合以及数形结合的数学思想。
教学重点、难点 :从实际问题中抽象出线性规划问题的模型。
二、课前自学
在约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+0
921432y x y x y x 下,求目标函数的S =3x +2y 的最大值,
并求出此时的x ,y 的取值.
三、问题探究
例1.投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米,可获利润300万元;投资生产B 产品时,每生产100米需要资金300万元,需场地100平方米,可获利润200万元.现某单位可使用资金1400万元,场地900平方米,问:应作怎样的组合投资,可获利最大?
例2.某运输公司向某地区运送物资,每天至少运送180t. 该公司有8辆载重为6t的A型卡车与4辆载重为10t的B型卡车,有10名驾驶员。
每辆卡车每天往返次数为A型车4次,B型车3次。
每辆卡车每天往返的成本费A型车320元,B型车为504元。
试为该公司设计调配车辆方案,使公司花费的成本最低。
四、反馈小结
反馈:必修五P86 练习4
1.某人承揽一项业务,需做文字标牌4个,绘画标牌6个。
现有两种规格原料,甲规格每张3平方米,可做文字标牌1个,绘画标牌2个;乙种规格每张2平方米,可做文字标牌2个,绘画标牌1 个。
求两种规格的原料各用多少张,才能使总的用料面积最小?
小结。
图解法求解简单线性规划问题
![图解法求解简单线性规划问题](https://img.taocdn.com/s3/m/48d4d0880d22590102020740be1e650e53eacf71.png)
y x=1
C
在该平面区域上
问题 1:x有无最大(小)值? 问题2:y有无最大(小)值? 问题3:2x+y有无最大(小)值?
B
o
A
第2页/共10页
x-4y=-3
3x+5y=25
x
设z=2x+y,式中变量x、y满足下列条件
求z的最大值和最小值。
y x=1
x-4y≤-3 3x+5y≤25,
可行域:所有可行解组成的集合。 最优解:使目标函数达到最大值
y
或 最小值 的可 行 解。
C
设Z=2x+y,式中变量x、y
x-4y≤-3
满足下列条件 3x+5y≤25 ,
B
x≥1
o
x-4y=-3
A
3x+5y=25
x
求z的最大值和最小值。 第5页-3
例1:设z=2x-y,式中变量x、y满足下列条件 3x+5y≤25
x≥1
C
B
o
x-4y=-3
A
3x+5y=25
x
第3页/共10页
x-4y≤-3
设z=2x+y,式中变量x、y满足下列条件 3x+5y≤25 ,
求z的最大值和最小值。
x≥1
问题 1: 将z=2x+y变形?
y=-2x+ z
问题 2: z几何意义是__斜__率__为__-2_的__直__线__在__y_轴__上__的__截__距___。
有关概念
约束条件:由x、y的不等式(方程)构成的不等式组。
线性约束条件:约束条件中均为关于x、y的一次不等式或方程。
3.3.3简单的线性规划问题(2)(2015年人教A版数学必修五导学案)
![3.3.3简单的线性规划问题(2)(2015年人教A版数学必修五导学案)](https://img.taocdn.com/s3/m/ee104a681ed9ad51f01df230.png)
2、若点 P 满足 ( x 2 y 1)(x y 3 0) ,求 P 到原点的最小距离.
【课后巩固】
1.一家饮料厂生产甲、乙两种果汁饮料,甲种饮料主要西方是每 3 份李子汁加1 份苹 果汁,乙种饮料的西方是李子汁和苹果汁各一半.该厂每天能获得的原料是 2000 L 李子汁和 1000 L 苹果汁, 又厂方的利润是生产 1L 甲种饮料得 3 元, 生产 1L
课题:3.3.3 简单的线性规划问题(2)导学案
班级: 姓名: 学号: 第 学习小组 【学习目标】 1、 能够将实际问题抽象概括为线性问题; 2、 能用线性规划的知识知识解决实际问题的能力. 【课前预习】 x y 2 2 2 1.已知 x, y 满足 x 2 ,则 x y 的最小值是__________. y 2
4.设实数 x, y 满足不等式组
1 x y 4 . y 2 2 x 3 y 2
(1)求作此不等式组表示的平面区域; (2)设 a 1 ,求函数 f ( x,y) y ax 的最大值和最小值.
例 2、某运输公司向某地区运送物资,每天至少运送 180t .该公司有 8 辆载重为 6t 的 A 型卡车与 4 辆载重为 10t 的 B 型卡车,有 10 名驾驶员.每辆卡车每天往返次 数为 A 型车 4 次,B 型车 3 次. 每辆卡车每天往返的成本费 A 型车为 320 元,B 型车为 504 元.试为该公司设计调配车辆方案,使公司花费的成本最低.
x y 2 0 y 2.设实数 x, y 满足 y 1 ,则 的最大值是__________. x x 4 x y 3 y 1 3.已知 x, y 满足约束条件 x 1 ,则 的最大值是__________. x 1 y 1
简单的线性规划典型例题
![简单的线性规划典型例题](https://img.taocdn.com/s3/m/c6212e5add3383c4ba4cd23d.png)
简单的线性规划典型例题「_x +y _2 兰0,例1画出不等式组」x+y—4兰0,表示的平面区域.x -3y 3 _ 0.分析:采用“图解法”确定不等式组每一不等式所表示的平面区域,然后求其公共部分.解:把x=0 , y=0 代入-x y-2中得-00-2:::0二不等式-x * y-2乞0表示直线-X,y-2=0下方的区域(包括边界),即位于原点的一侧,同理可画出其他两部分,不等式组所表示的区域如图所示.说明:“图解法”是判别二元一次不等式所表示的区域行之有效的一种方法.例2画出2x-3:m表示的区域,并求所有的正整数解(x,y).分析:原不等式等价于'而求正整数解则意味着x , y "3. '上>0, y >0,x € z y w z有限制条件,即求;y J .j y〉2x-3,yg解:依照二元一次不等式表示的平面区域,知2x-3:::八3表示的区域如下图:x>0, y >0,对于2x-3曲空3的正整数解,先画出不等式组.X Z ,r Z,所表示y>2x-3,八3.的平面区域,如图所示.容易求得,在其区域内的整数解为(1,1)、(1,2)、(1,3)、(2,2)、(2,3). 说明:这类题可以将平面直角坐标系用网络线画出来,然后在不等式组所表示的平面区域内找出符合题设要求的整数点来.y 环+1 _1例3求不等式组< ''所表示的平面区域的面积.“兰-x+1分析:本题的关键是能够将不等式组所表示的平面区域作出来,判断其形状进而求出其面积.而要将平面区域作出来的关键又是能够对不等式组中的两个不等式进行化简和变形,如何变形?需对绝对值加以讨论.解:不等式y A|x+1| -1 可化为y X x(x 兰-1)或y 二-x~2(x v -1);不等式y _ _x 1 可化为y - -x 1(x 一0)或y 1(x :: 0).在平面直角坐标系内作出四条射线AB: y =x(x _ -1),AC : y - -x-2(x :: -1)DE : y = —x 1(x 亠0),DF : y = x 1(x :: 0)则不等式组所表示的平面区域如图由于AB与AC、DE与DF互相垂直,所以平面区域是一个矩形.根据两条平行线之间的距离公式可得矩形的两条边的长度分别为2和注.2 2所以其面积为3.2‘2x + y -12 喳0,例4 若x、y满足条件』3x-2y+10^0,求z = x+ 2y的最大值和最小值.x -4y +10 兰0.分析:画出可行域,平移直线找最优解.解:作出约束条件所表示的平面区域,即可行域,如图所示. 作直线I:x2y = z,即y = -1x -z,它表示斜率为一丄,纵截距2 2 2为2的平行直线系,当它在可行域内滑动时,由图可知,直线l过点时,Z取得最大值,当I过点B时,z取得最小值.二Z max = 2 28 = 18二Z min _ -2 22 =2说明:解决线性规划问题,首先应明确可行域,再将线性目标函数作平移取得最值.例5用不等式表示以A(1,4) , B(-3,0) , C(-2,-2)为顶点的三角形内部的平面区域.分析:首先要将三点中的任意两点所确定的直线方程写出来,然后结合图形考虑三角形内部区域应怎样表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“中国结”需要甲、乙两种彩绳,并需将 其截成A、B、C三种规格的彩绳段,其中 每根甲种彩绳可同时截得A规格的彩绳段2 根,B规格的彩绳段1根,C规格的彩绳段1 根,每根乙种彩绳可同时截得A规格的彩 绳段1根,B规格的彩绳段2根,C规格的彩 绳段3根。一个“中国结”共需要A规格的 彩绳段15根,B规格的彩绳段18根,C规 格的彩绳段27根,若甲绳每根8元,乙绳 每根6元,问应买甲、乙两种彩绳各多少根, 才能使花费最省?试建立此问题的线性规
划模型。
列表:
一根甲种彩绳 一根乙种彩绳 所需条数A规格2来自B规格1C规格
1
1
15
2
18
3
27
解:需甲种彩绳 x 根,乙种彩绳 y根, 设总花费为 z 元。
则 z 8x 6y
2x y 15
x、y 满足的条件为:
x 2 y 18 x 3 y 27
x N , y N
• 建立线性规划模型的一般步骤:
由题意得 z 0.5x 0.3 y
线性约
x、y 满足的条件为:
目标函数
30
x
y x
2
3 y
60
束条件
(线性目标函数)
x
N
,
y
N
线性规划
18 y 36,12 x 24
问题
当 x 12, y 18 时
zmin 0.5 12 0.3 18 11.4 元
为使联欢会上的气氛更有节日感,有人提
1、理清题意,列出表格; 2、根据题意设好未知量; 3 、建立线性目标函数; 4 、列出线性约束条件(不等式组).
三、课堂练习
1、央视为改版后的《非常6+1》栏目播放两套宣传片。 其中宣传片甲播映时间为3分30秒,广告时间为30 秒,收视观众为60万,宣传片乙播映时间为1分钟, 广告时间为1分钟,收视观众为20万.广告公司规定 每周至少有3.5分钟广告,而电视台每周只能为该栏 目宣传片提供不多于16分钟的节目时间。电视台每 周应播映两套宣传片各多少次,才能使得收视观众
1500y
6000
500x 400 y 2000
四、思考问题:
私人办学市教育发展的方向,某人准备投资1200万元 兴办一所完全中学,为了考虑社会效益和经济效益, 对该地区教育市场进行调查,得出一组数据表(以班级 为单位):
班级学生数 配备教师数 硬件建设 教师年薪 (万元) (万元)
初中
50
2.0
最多?试建立此问题的线性规划模型。
分析:将已知数据列表
播放片甲 播放片乙 节目要求
每次时间(分)
3.5
广告时间(分) 0.5
1
≤16
1
≥3.5
收视观众(万)
60
20
解:设电视台每周应播映片甲x次, 片乙y次,总收视
观众为z万人。 则总收视观众为z 60x 20 y
4x 2 y 16
x、y
20
2.4
高中
40
2.5
70
3.6
根据物价部门的有关文件,初中是义务教育阶段,收费 标准适当控制。预计出书本费、办公费以外每个学生每 年2000元,高中每个学生每年可收取4000元,因生源 和环境条件限制,办学规模以20至30个班为宜,教师实 行聘任制。初、高中的教育周期均为三年,请你合理安 排招生计划,使年利润最大。
问题的线性规划模型。
分析:将已知数据列表
成本 运费 产品
甲原料(吨) 1000 500 90
乙原料(吨) 1500 400 100
费用限额 6000 2000
解:设此工厂每月甲、乙两种原料各x吨、y吨,
生产z千克产品,则:z 90x 100 y
x 0
x、y
满足的条件为:
y 0 1000x
满足的条件为:
0.5x y 3.5
x N , y N
2、某工厂用两种不同原料均可生产同一产品,若采用 甲种原料,每吨成本1000元,运费500元,可得产 品90千克;若采用乙种原料,每吨成本为1500元, 运费400元,可得产品100千克,如果每月原料的 总成本不超过6000元,运费不超过2000元,那么 此工厂每月最多可生产多少千克产品?试建立此
y
o
x
授课教师:市八中学 黄达兴
一、引例:
元旦联欢会,需要甲、乙两种不同的气球来 布置班级,要求甲、乙两种气球的比例2:3, 且它们的和不小于30只,不多于60只。若甲 种气球每只0.5元,乙种气球每只0.3元,问 应买甲、乙两种气球各多少只,才能使花费 最省?
解: 设甲种气球需 x 只, 乙种气球需 y 只, 总的费用 z .