5、对偶单纯形法

合集下载

对偶单纯形法的原理和应用

对偶单纯形法的原理和应用

对偶单纯形法的原理和应用一、原理介绍对偶单纯形法是线性规划的一种求解方法,通过对原问题的对偶问题进行迭代求解,来达到求解原问题的目的。

下面详细介绍对偶单纯形法的原理。

1. 线性规划问题的对偶性在线性规划问题中,我们常常需要求解最小化或最大化线性目标函数的问题,同时满足一系列线性约束条件。

对于这样的问题,可以通过定义对偶问题来求解。

2. 对偶问题的定义对于原问题的最小化形式,可以定义对偶问题的最大化形式。

对于原问题的最大化形式,可以定义对偶问题的最小化形式。

对偶问题和原问题之间具有很强的对称性。

3. 对偶单纯形法的基本思想对偶单纯形法的基本思想是通过迭代求解对偶问题来达到求解原问题的目的。

在每一次迭代中,首先确定最优解是否已经找到,如果找到最优解,则结束算法;否则,确定要改进的变量,通过计算改变最变量之前对应的对偶变量的值,然后再进行下一次迭代。

二、应用场景对偶单纯形法在实际应用中有着广泛的应用场景。

下面列举几个典型的应用场景。

1. 生产计划问题在生产计划问题中,常常需要确定各个生产线的产量,以最小化总成本或最大化总利润。

对偶单纯形法可以应用于该问题的求解,通过定义对偶问题,并通过迭代求解对偶问题,来确定生产线的产量。

2. 项目调度问题在项目调度问题中,需要确定各个项目的开始时间和结束时间,以最小化总工期或最大化资源利用率。

对偶单纯形法可以应用于该问题的求解,通过定义对偶问题,并通过迭代求解对偶问题,来确定项目的调度方案。

3. 运输问题在运输问题中,需要确定各个供应商到各个销售点的运输量,以最小化总运输成本。

对偶单纯形法可以应用于该问题的求解,通过定义对偶问题,并通过迭代求解对偶问题,来确定每个供应商和销售点的运输量。

4. 资源分配问题在资源分配问题中,需要确定各个资源的分配比例,以最大化总效益或最小化总成本。

对偶单纯形法可以应用于该问题的求解,通过定义对偶问题,并通过迭代求解对偶问题,来确定资源的分配比例。

(完整版)对偶单纯形法详解

(完整版)对偶单纯形法详解
2.3 对偶单纯形法
一、什么是对偶单纯形法?
对偶单纯形法是应用对偶原理求解原始 线性规划的一种方法——在原始问题的单 纯形表格上进行对偶处理。
注意:不是解对偶问题的单纯形法!
二、对偶单纯形法的基本思想 1、对“单纯形法”求解过程认识的提升— —
从更高的层次理解单纯形法 初始可行基(对应一个初始基本可行解)
3 4
x1, x2 , x3, x4, x5 0
以此形式进行列表求解,满足对偶单纯形 法的基本条件,具体如下:
CB
XB
0
x4
0
x5
cj -2 -3 -4 0 0
xj b
x1 x2 x3 x4 x5
-3
-1 -2 -1 1 0
-4
-2 1 -3 0 1
-Z
0
-2 -3 -4 0 0

值 -2/-2 --- -4/-3 --- ---
2/5
11/5
-2 -3 -4 0 0 x1 x2 x3 x4 x5
0 1 -1/5 -2/5 1/5 1 0 7/5 -1/5 -2/5
cj-zj
0
0 0 -3/5 -8/5 -1/5
最优解: X*=(11/5,2/5, 0, 0, 0)T,
最优值: minW= -maxZ* = -[11/5×(-2)+2/5×(-3)]= 28/5
将三个等式约束两边分别乘以-1,然后
列表求解如下:
CB
XB
0
y3
0
y4
0
y5
-Z

cj yj b
-3 -9 0 y1 y2 y3
00 y4 y5
-2
-1 -1 1 0 0

对偶单纯形法例题详细步骤

对偶单纯形法例题详细步骤

对偶单纯形法例题详细步骤
对偶单纯形法是一种常用的解除线性规划问题的数学方法,由美国数学家鲍门士(George B. Dantzig)在1950年提出,早期更多用于研究管理科学问题,现在广泛用于线性规划问题的求解。

先来回顾一下线性规划的定义:给定线性约束条件和目标函数,要求寻找这样一组变量使目标函数极值化,称为线性规划问题,其中的线性约束条件主要可以分为等于约束和不等于约束,可以分为最大化型和最小化型。

由于线性规划问题本身涉及到多个变量约束严格,可能由于几何等原因不容易采取直接解决,而且有可能会涉及到多目标求解,因此对偶单纯形法是一种更为合理的求解方法。

该方法的目标是建立一个对偶问题,该问题只有一个变量,可以用单纯形法解决。

通过构建相应的对偶问题,将多个目标变量整合为一个,用一个变量来表示即可,这样只需解决一个线性规划问题,就可以根据对偶变量的极值情况,求出原始变量的最优解。

具体到此例来说,我们的目标就是要找出最优解。

我们先要把问题抽象为一个线性规划问题,它包括等式约束条件和不等式约束。

接下来我们可以根据问题性质来分析模型,确定问题的类型,然后找出原始最优解,剩余的就是利用对偶单纯形法求解,方法往往是把原始的规划问题转换为对偶的单纯形问题,求出对偶变量的最优解,再把它转换成原始问题的最优解。

总之,对偶单纯形法是一种非常灵活有效的求解线性规划问题的数学方法,其安全可靠性被广泛应用于解决众多线性规划问题。

对偶单纯形法

对偶单纯形法
单纯形法迭代过程的实质是:在保持原问题可行性的前提下,驱使对偶问题从 不可行转变为可行的发展历程。
把上述思想移植到对偶问题上。
对偶单纯形法迭代过程的实质是:保持对偶问题的可行性(只要检验数≤0即可), 通过改变对偶问题的可行基,使原问题由不可行变为可行。根据对偶理论,这两 个可行解就是原始和对偶问题的最优解。
例2.4.1 用对偶单纯形法求解下列线性规划问题。 min z = 15x1+24 x2 +5 x3
6 x2 + x3 ≥2
st.
5x1+2 x2 + x3 ≥1
x1 , x2 , x3 ≥0
解:把线性规划问题化为标准形式。
max z′ = -15x1-24 x2 - x3 +0 x4 +0 x5
-2/3是主元素, x3是换入变量。
ቤተ መጻሕፍቲ ባይዱj
-15 -24 - 5
CB
XB
b
x1
x2
x3
-24
x2 1/4
-5/4
1
0
表 11
0
0
x4
x5
-1/4 1/4
5
x3 1/2 15/2
0
1
1/2 -3/2
(cj-zj) 或 j
-15/2 0
0
-7/2 -3/2
由于原始,对偶都已经可行,所以,表11对应的解是最优解。
求极大为标准形式时
min j
c
j
arj
z
j
arj
0
cs zs ars
求极小为标准形式时
min j
z
j c arj
j
arj
0

对偶与对偶单纯形法的应用

对偶与对偶单纯形法的应用

y1+2y2
≥50
y1 + y2+y3 ≥100
其中y1,y2,y3均≥0
其对偶问题是?
17
• Max z=50x1 +100x2 • x1 +x2 ≤300 • 2x1+x2 ≤400 • x2 ≤250 • x1,x2≥0
18
(二)若原问题为(弱对偶性定理) maxZ=CX AX ≤b X ≥0 其对偶问题为 Minw=Yb YA ≥C Y ≥0 若X为原问题任一可行解,Y为对偶问题任一 可行解,则必有CX ≤Yb
3}=-3;
确定进基变量:θ=min{δ/akj,akj<0}={-15/-5} 从而确定主元素akr,以此为中心做初等行变换。
39
对偶单纯性表2
ci
-12 -16 -15 0 0
CB B b y1 y2 y3 y4 y5
0 y4 -2 -2 -4 0 1 0
-15 y3 3/5 2/5 0 1 0 -1/5
9
记忆宝典: 1、Max——Min 2、C ——b
3、无约束等于0,个数m变n。 4、max就反正,min就正反。(约束条 件——变量)
10
示例:转化为对偶问题
mz a 3 x x 1 4 x 2 6 x 3
2 x1 3 x 2 6 x3 440 , 6 x1 4 x 2 x3 100 , 5 x1 3 x 2 x3 200 , x1 , x 2 , x3 0
δ -6 -16 0 0 -3
确定出基变量:bk=min{bi , bi<0}=min{15}=-15;
确定进基变量:θ=min{δ/akj,akj<0}={-6/-2, -16/-4}=3

对偶单纯形法

对偶单纯形法
2x1 x2 3x3 4 x1 , x2 , x3 0
1. 换出变量的确定原则
常数列中最小的负元素所在的行所对应的基变量为换出变量.
p11-1
§3.4 灵敏度分析
运筹学
灵敏度分析——研究系数变化对最优解的影响.
一、改变价值向量
在最终表内, cr的变化只引起检验数的变化, 需重新计算检验数.
§3.3 对偶单纯形法
运筹学
一、对偶单纯形法与单纯形法的区别
对 运用对偶单纯形法时, 不需要引入人工变量, 但必须先给 定原问题的一个对偶可行基本解.
二、对偶单纯形法的求解方法
▲ 以求解下述线性规划 问题为例
min z 2x1 3x2 4x3 s.t. x1 2x2 x3 3
二、改变资源向量
在最终表内, br的变化只引起右端项的变化, 需重新计算右端项. 利用B-1(b+b).
三、改变A中的一列
通常是非基变量所对应的列, 需重新计算检验数.
四、增加一个新的约束条件
五、增加一个新的变量
p11-2
运筹学
作业:P81第1.12题之(2); 第1.13题
p11-3

对偶单纯形法的条件

对偶单纯形法的条件

对偶单纯形法的条件
首先,对偶单纯形法的条件包括:
1. 对偶可行性条件,对偶单纯形法要求原始问题和对偶问题都是可行的。

也就是说,原始问题的约束条件和对偶问题的变量非负条件都必须满足。

2. 对偶非退化条件,这个条件要求对偶单纯形表中的对偶变量都是非负的,且对偶问题的最优解是非退化的。

3. 对偶互补松弛条件,这个条件指的是原始问题的最优解和对偶问题的最优解之间存在一种互补关系,即原始问题的最优解和对偶问题的最优解必须满足一组互补松弛条件。

其次,对偶单纯形法的条件还涉及到对偶单纯形表的构建和迭代计算的条件:
1. 对偶单纯形表的构建需要满足对偶问题的约束条件和非负条件,通过构建对偶单纯形表,可以进行对偶单纯形法的迭代计算。

2. 对偶单纯形法的迭代计算需要满足一定的迭代规则和条件,
包括选择合适的进入变量和离开变量,进行主元素的换入换出操作,更新对偶单纯形表等操作。

最后,对偶单纯形法的条件还包括了对原始问题和对偶问题的
理解和转化能力:
1. 需要理解原始问题和对偶问题之间的对偶关系,以及如何通
过对偶问题来求解原始问题的最优解。

2. 需要具备将原始问题转化为对偶问题的能力,以及对对偶问
题的理解和求解能力。

总的来说,对偶单纯形法的条件涉及到对原始问题和对偶问题
的理解、对偶单纯形表的构建和迭代计算条件,以及对偶问题的可
行性、非退化性和互补松弛条件的满足。

这些条件是对偶单纯形法
顺利求解线性规划问题的基础,需要严格满足和理解。

对偶单纯形法详解

对偶单纯形法详解

对偶单纯形法详解一、对偶单纯形法的基本概念1. 对偶单纯形法呀,就像是单纯形法的一个“双胞胎兄弟”,但是又有自己独特的地方。

我们知道单纯形法是从一个基本可行解开始,逐步迭代找到最优解。

可对偶单纯形法呢,它是从一个满足对偶可行性的基本解开始。

啥叫对偶可行性呢?就是对应的对偶问题的解是可行的。

说白了,这就像是走了一条和单纯形法不太一样的路,但是目标都是找到那个最优解。

2. 比如说,我们有一个线性规划问题,它的标准形式是有目标函数,还有一系列的约束条件。

对偶单纯形法在处理这个问题的时候,会关注对偶问题的一些特性。

就好比我们看一个东西,不能只看表面,还要看它背后的影子一样,对偶单纯形法就是把目光投向了对偶问题这个“影子”,通过这个来找到原问题的最优解。

二、对偶单纯形法的计算步骤1. 第一步,要先确定一个初始的对偶可行基本解。

这个可不像随便找个数字就行,它是有要求的。

就像我们搭积木,每一块积木的位置都很重要。

这个初始解要满足对偶可行性的条件。

如果不满足,那后面的计算就像是在歪歪扭扭的地基上盖房子,肯定不行。

2. 第二步,检查这个基本解对应的检验数。

这检验数就像是一个小裁判,告诉我们这个解是不是朝着最优解的方向去的。

如果检验数都满足一定的条件,那说明我们离最优解已经很近了,就像我们快到山顶了,能看到山顶的风景了。

3. 第三步,如果检验数不满足条件,那就得进行换基操作。

这换基就像是换火车轨道一样,要小心翼翼的。

要选择合适的变量进基和出基,这样才能保证我们换了之后朝着最优解的方向前进。

而且这个过程要不断重复,直到找到那个最优解为止。

就像我们在迷宫里找出口,不断尝试不同的路,直到找到正确的出口。

三、对偶单纯形法的优势1. 对偶单纯形法在处理一些特殊类型的线性规划问题的时候特别有用。

比如说当我们的线性规划问题的约束条件系数矩阵比较特殊的时候,它可能比单纯形法更高效。

这就好比在不同的路况下,有的车适合走平坦的公路,有的车适合走崎岖的山路,对偶单纯形法就是适合某些特殊“路况”的方法。

对偶单纯形法

对偶单纯形法

y1, y2 0
Min w 2 y1 3y2
解:
先将原问题化为下列形式
s.t.
2 y1 y1
y1 y2 y3 4 3y2 y4 6 y2 y5 3
y1, y2 , y3, y4 , y5 0
对偶单纯形法举例(例2-2) 则第一个基为B1=(P3,P4,P5)=I 基变量为y3,y4,y5 第一个对偶可行基对应的单纯形表如下
5
-w 8 -15 0 -1 -4 0
对偶单纯形法举例(例1-4)
T(B2) XB b Y1 Y2 Y3 Y4 Y5 Y2 1/3 0 1 1/6 -1/6 0
Y -1/3 -5 0
5
-w 8 -15 0
-2/3 -1/3 1 -1 -4 0
T(B3)
Y2 1/4 -5/4 1 Y3 1/2 15/2 0 -w 17/2 -15/2 0
5
w 0 -2 -3 0 0 0
Y3 -2 -5/3 0 Y2 2 1/3 1 Y5 -1 -2/3 0
1 -1/3 -1/3 0 -1/3 -1/3 0 -1/3 2/3
w 6 -1 0 0 -1 -1
对偶单纯形法举例(例3-1)
例3:用对偶单纯形法解下列线性规划
Min w x1 x2
3x1 x2 x3 1
s.t.
x1 x2 2x1 2x2
x4 2 x5 4
x j 0 j 1,2,3,4,5
解: 取B1=(P3,P4,P5)=I
为对偶可行基
因此其对应的单纯形表如下
对偶单纯形法举例(例3-2)
T(B1)
x1 x2 x3 x4
x5
x3 -1 3 -1 1 0 0
x4 -2 -1 1 0 1

对偶单纯形法的计算步骤_实用运筹学:案例、方法及应用_[共3页]

对偶单纯形法的计算步骤_实用运筹学:案例、方法及应用_[共3页]

41第2章对偶理论与灵敏度分析即y 是对偶问题(D )的一个可行解。

条件式(2-21)称为对偶可行性条件,即最优性条件式(2-20)与对偶可行性条件式(2-21)是等价的,因此,如果一个原始可行基B 是原问题(P )的最优基,则1=B y c B -就是对偶问题(D )的一个可行解,此时对应的目标函数值1B w=yb =c B -,等于原问题(P )的目标函数值,可知1=B y c B -也是对偶问题(D )的最优解。

若原问题(P )的一个基本解1=0B b x ⎛⎞⎜⎟⎝⎠-对应的检验数向量满足条件式(2-20),即 =(,)=0,0B N N B σσσc c B N -1(-)≤则称x 为(P )的一个正则解。

于是可知,原问题(P )的正则解x 与对偶问题(D )的可行解y 是一一对应的,它们由同一个基B 所决定,我们称这一基为正则基。

因此,我们可以设想另一条求解思路,即在迭代过程中,始终保持对偶问题解的可行性,而原问题的解由不可行逐渐向可行性转化,一旦原问题的解也满足了可行性条件,也就达到了最优解。

也即在保持正则解的正则性不变条件下,在迭代过程中,使原问题解的不可行性逐步消失,一旦迭代到可行解时,即达到了最优解。

这正是对偶单纯形法的思路,这个方法并不需要把原问题化为对偶问题,利用原问题与对偶问题的数据相同(只是所处位置不同)这一特点,直接在反映原问题的单纯形表上进行运算。

2.3.2 对偶单纯形法的计算步骤求解如下标准形式线性规划问题:max =z cx s.t.0Ax =bx ⎧⎨⎩≥对偶单纯形法的计算步骤如下:(1)找一个正则基B 和初始正则解(0)x ;将原问题化为关于基B [不妨设12=(,,,)m B P P P ]的典式,列初始对偶单纯形表,如表2-5所示。

表2-5 对偶单纯形表12 1 2 12121c 1x 1'b 1 0 … 0 1+1'm a 1+2'm a … 1'n a 2c 2x 2'b 01 02+1'm a 2+2'm a … 2'n am c m x'm b 0…1 +1'mm a +2'mm a … 'mn a c j -z j0 0 0+1m σ+2m σ…n σ(2)若1=b'B b -≥0,则停止计算,当前的正则解1=x B b -,即为原问题的最优解;否则转下一步。

对偶单纯形法

对偶单纯形法

2 2
x1 x1
+x2 + 4x3 2 +2x2 + 4x4 3

x
j

0,
j
= 1, 2,3
MinS =1200x1 +800x2 +1600x3 +1200x4 + 0x5 + 0x6
−−22xx11
− −
x 2

2
x2
4x3 + − 4x4
x
+
=
5
x6
−2 = −3

K
Min{-1200/-2; -800/-2; -1200/-4}=300
Cj
CB
XB
0
X5
1200
X4
Zj
cj-zj
1200 800 1600 1200 0
0
b
x1
x2
x3x4x5Fra bibliotekx6L
-2
-2
--11
-4
0
1
0
3/4
1/2 1/2
0
1
0
-1/4
600 600
0 1200
0
-300
600 200 1600 0
即:保持对偶问 题可行,将原问 题由不可行化为 可行
➢算法流程:
? 找出初始基本解,满足cj-zj≤0 (MaxZ)
bi>0? N
Y
最优解
i=L
Y
aLj 0 ?
N
无解
? 找出新的基本解,满足cj-zj≤0
例题: 解:标准型为
Min S = 1200x1 +800x2 + 1600x3 + 1200x4

对偶单纯形法+灵敏度分析讲解

对偶单纯形法+灵敏度分析讲解
答:不能。因为此时右边常数项为负数,解不可 行。为了保证初始解可行
北京联合大学 耿钰
第四节 对偶单纯形法
例 用对偶单纯形法求解
maxZ x1 4x2 3x4
x1 2x2 x3 x4 3
x
2x j
10 jx2
1,24,x33,4 x4

2
能否用对偶单纯形法呢?
原问题表中的检验数满足最优性条件
CN-CB B-1 N≤0
ATY ≥ CT;
min w Y T b bTY
-CB B-1 ≤0;
Y≥0
CB:1×m B-1:m ×m
YT= CB B-1
CB B-1:1 ×m Y: m ×1
ATY CT s.t.
Y 0
从上面可以看出:
1、当原问题达到最优时,松弛变量经过上述转换后构成的检验 数的相反数为其对偶问题的一个可行解,反之亦成立
-1 x1 7 0 x3 4
7
1 7/2 0 5/2 -2 -1/2 0 3/2 1 3/2 -1 -1/2 0 -1/2 0 -1/2 -2 -1/2
最优解 X*=(7,0,4, 0)T
Z*=-7
北京联合大学 耿钰
例6 用对偶单纯形法求解
min w 2x1 3x2 4x3
(P)
x1 2x2 x3 3 2x1 x2 3x3 4
原问题不 可行,应 该换基迭 代。但按 对偶单纯 形法的思 想,每次 均应保证 检验数均 非正
cj
CB XB b -1 x1 3 0 x6 -8
3
-1 -4 0 -3 0 0
x1 x2 x3 x4 x5 x6 1 2 - 1 1 -1 0 0 -3 -2 -3 2 1 0 -2 -1 -2 -1 0

对偶单纯形法

对偶单纯形法
min f c j x j
j1 n
c
j
0
n i 1, 2, , m a ij x j bi j1 x 0, j 1, 2, , n j
在引入松弛变量化为标准型之后,约束等 式两侧同乘-1,能够立即得到检验数全部非正 的原规划基本解,可以直接建立初始对偶单纯 形表进行求解,非常方便。
对偶单纯形法求解线性规划问题过程:
1.建立初始单纯形表,检查b列中的各分量,若都为非 负,且检验数均非正,则已得到最优解,若b列中至 少有一个负分量,检验数非正,则转2; 2.确定换出变量
min
(bi 0)
确定对应的基变量xi为出基变量,转3 3.在单纯形表中检查xi所在行的各系数,若所有 aij≥0,则原问题无可行解,停止;否则,若有aij<0 则选 =min{j/aij┃ aij<0}=k/aik 那么xk为进基变量,转4; 4.以aik为主元,进行迭代运算,得到新的单纯形表; 5.重复上述步骤,直到求得最优解。
(2) 影子价格表明资源增加对总效益产生 的影响。根据推论“设x0和y0分别为原规划(P) 和对偶规划(D)的可行解,当cx0=y0b时,x0、 y0 分别是两个问题的最优解”可知,在最优解 的情况下,有关系
Z w b y b2 y bm y
* * * 1 1 * 2
* m
因此,可以将z*看作是bi,i=1,2,… ,m的函数, 对bi求偏导数可得到
影子价格y2 0的经济意义:原料 的供应量b2增加 个单位 B 1 时,最大利润将不变化 .
影子价格y3 50的经济意义:原料 的供应量b2增加 个单位 C 1 时,最大利润将增加 个单位. 50
(3)设该厂将A, B, C三种原料的价格分别定 y1, y2 , y3 , 为

对偶单纯形法

对偶单纯形法

3x2 2x2
x4 x5
x7 3
6
用单纯形 法求解
x1, x2 , x3 , x4 , x5 0
对偶单纯形法的优点:
1、不需要人工变量;
2、当变量多于约束时,用对偶单 纯形法可减少迭代次数;
3、在灵敏度分析中,有时需要用对 偶单纯形法处理简化。
注意:对偶单纯形法仅限于初始基B对应
X(0)为基本可行 解的X(条0)件为?最优解的 条件?
B-1b≥0 C CBB1 A 0
原问题最优解条件
令Y=CBB-1,代入原问题最优解条件,→YA≥C
min Yb
YA C Y无符号限制
取基本解X1 B1b,0
保证对偶问题的可行性,逐
步改进原问题的可行性,求
x1 x3 2
s.t

x2
2x3
5
x1,x2,x3 0
若取初始基B1 P4,P5
则关于B1的标准型为
max Z 4x1 3x2 8x3
不s可.t 行 x1x2
x3 2x3

x4
2 x5 5
x1,x2,x3 , x4 , x5 0
且由对偶理论知,Y0 CB B 1为(D)的最优解
对偶单纯形法步骤:
1. 列出初始单纯形表,检查b 列的数字若都为非负, 则已得到最优解,停止计算,若b列的数字中至少 有一个负分量,转第二步。
2. 确定出基变量
按 min B1b i B1b i 0 B1b l ,对应的基变量法: 求max Z x6 Mx9

2x2 x3 x4 x5
x9 1

对偶单纯形法(经典运筹学)

对偶单纯形法(经典运筹学)

解:问题化为标准型 max Z 2 x1 x 2 5 x1 x 2 x3 2 x 2 x3 x 4 5 s.t 6x xx 9 xx 2 2 6 x3 3 5 5 9 44 x1 , x 2 , x3,x 4,x5 0
X1 X2 X3 X4 X 5
2 检 0 1 -1 1 2 -4 0 -2 1 1 -6 0 0 1 0 0 0 0 1
Z Z-10
X1 1 X4 0
5 5 -9
X5 0
4
14 13 X1 X 2 X 3

X1 X4
0 1 0 0 0 0 0 1
X4
X5
-1/4 Z-31/4 1/4 1/2 11/4 1/2
所在行的基变量出基 则取br
4、以ari0 为主元素进行换基迭代 ,得一新的单纯形表, 转2
例:用对偶单纯形法 求解下列问题 max Z 2 x1 x 2 x1 x 2 x3 5 2x x 5 11 9 2 3 最优解 X ( ,) s.t 4 4 4 x 6 x 9 2 3 31 x1 , x 2 ,Z x3 0 最优值
-1/2 0 -1/2 0 -2 3/2 1 0
X2
-1/4 9/4
11 9 1 最优解 X ( ,, 0, , 0 ) 4 4 2 初始基 B (P ) 1,P 4,P 5 31 最优值 Z 不是典则形式 4
注意:对偶单纯形法仅限于初始基B对应 可用对偶单 的典则形式中目标函数的系数(检 纯形法 验数)均≤0的情形。 B的典则形式
对偶单纯形法是求解对偶规划的一种方法 × 对偶单纯形法:利用对偶理论得到的一个 求解线性规划问题的方法
单纯形法(原始单纯形法)的两个条件:

对偶单纯形法bland法则

对偶单纯形法bland法则

对偶单纯形法bland法则
偶单纯形法(Duality Simplex Algorithm)是求解线性优化问题的一种常见方法。

这种方法的核心思想是基于线性规划的对偶性的。

它的基础是著名的双重模型(dual problem),即由原始线性规划问题派生出的等价的对偶线性规划问题。

偶单纯形法是将求解整数规划问题的配套技术,是一种基于可变缩减实现系统设计的启发式方法。

原始线性规划问题通过变量的解除转化为一个对偶的新的线性规划问题。

偶单纯形法比较适用于不约束的线性优化问题,也可以被应用到更加复杂的约束条件下的求解问题。

Bland法则是偶单纯形法的一种变体,该法则提出要在每一步中都选择最“可能”基本变量进行变换,可能意味着从潜在可行性基变量中选择120英寸可行松弛性单纯形变量。

该法则是线性优化中比较重要的最小化技术,可用于执行最优化准则,检查问题的最优解,并在找到最优解前止血处理的可行解。

偶单纯形法与Bland法则的中心思想在于解决线性规划问题,它们最大的优势在于能够解决问题更加迅速和有效,同时在系统推导出算法时,可以更容易理解和实现。

偶单纯形法Bland法则是常用的算法之一,它将精确解决线性优化问题,可以在短时间内找到可行解,可以开发出一类求解工具,帮助企业和机构解决线性规划问题,以获得自己理想的最优解。

对偶单纯形法原理

对偶单纯形法原理

对偶单纯形法原理咱先得知道啥是单纯形法。

你可以把它想象成在一个超级复杂的迷宫里找宝藏。

这个迷宫就是我们的线性规划问题的可行域,宝藏呢就是最优解。

单纯形法就是一种聪明的走迷宫方法,它从可行域的一个顶点开始,沿着边走到另一个顶点,每次都想办法让目标函数变得更好,就像你在迷宫里每次都朝着更接近宝藏的方向走一样。

那对偶单纯形法是咋回事呢?这就像是从另一个角度来看这个迷宫啦。

你看,原来的单纯形法是直接在原问题的可行域里蹦跶,对偶单纯形法呢,是在对偶问题的可行域里搞事情。

对偶问题和原问题就像是一对好兄弟,有很奇妙的关系。

原问题可能是说,我要怎么安排生产才能让利润最大呢,比如说生产A产品多少个,B产品多少个。

对偶问题就变成了,我要是想让成本最小,那各种资源的价格应该是多少呢。

这两个问题虽然看起来不一样,但它们之间有好多内在联系。

对偶单纯形法开始的时候,就有点像你站在对偶问题的一个特殊的点上。

这个点可能一开始不是最优的,但它有自己的特点。

它可能不满足原问题的可行性,但是它满足对偶问题的可行性。

这就像是你在一个奇怪的地方,虽然不是直接能找到宝藏的地方,但是在这个新的规则下,你有自己的优势。

然后呢,对偶单纯形法就开始调整啦。

它就像一个小机灵鬼,通过改变一些变量的值,慢慢地让这个点既满足对偶问题的可行性,又开始向满足原问题的可行性靠近。

这个过程就像是在两个世界之间搭一座桥,一边是对偶问题的世界,一边是原问题的世界。

在这个调整的过程中,它也是有自己的小窍门的。

它会看一些比率,就像你在玩游戏的时候看一些属性值一样。

通过比较这些比率,它就能知道往哪个方向调整变量会让情况变得更好。

每调整一次,就像是在这座桥上向前走了一小步。

而且啊,对偶单纯形法还有一个很可爱的地方。

它有时候在处理一些特殊情况的时候特别好用。

比如说原问题的初始可行解很难找的时候,对偶单纯形法就可以从对偶问题的可行解入手,然后迂回地找到原问题的最优解。

这就像是你本来找不到去宝藏的直路,但是你绕了个弯,从旁边的小路也能到达宝藏的地方。

对偶单纯形法

对偶单纯形法

x 1 , x 2 , , x n x

是原问题 LP 的可行解,并且当扩充问题的最优
就是原问题 LP 的最优解. 值与大 M 无关时, x
以上通过构造扩充问题运用对偶单纯形法求解 LP 的做法与 单纯形法中的大 M 法相似。
例 3.3.2
用对偶单纯形法求解下列线性规划问题:
x j 0, j 1, 2, , 6
把扩充问题的数据列入表 3-7 中,并计算各检验数 j .

2
2
0
0
0
0

b
8
x1
1
x2
4
x3
1
x4
1
x5
0
1
x6
0 0
1
x4 x5 x6
6
M
1
2
2
0
0
1
2
1
2
1
0 0
0 0
j
0
0
因 1 2 ,故此时的基本解还不是对偶可行的.选择 x1 为换入变量, x6 为换出 变量,即以 a31 1 为主元素进行变换,得到表 3.8.
j j
am1, j am1,k
k
其中 j 是变换后在新基下的检验数. 当 j n 1 时,am1, j 1 , 而 am1,k 1 , 故有 j j k 0 ;而当 j n 1 时, j 0, am1, j 0 ,故有 j 0 .
min z 2 x1 2 x2 s.t. x1 4 x2 x3 8 x1 2 x2 2 x3 6 x1 , x2 , x3 0
解 式:
引入剩余变量 x4 和松弛变量 x5 ,把问题化为标准形

对偶单纯形法(经典运筹学)

对偶单纯形法(经典运筹学)
基本解 X 0, 0, 3 , 6, 3
X1 X2 X3 X4 X5 检 X3 -2 -1 0 -3 -1 1 0 0 0 0 Z -3
X4
X5
-4 -3 0
1 2 0
1
0
0
1
-6
3
不 可 行
即max Z 2 x1 x2
3 3x1 x 2 x3 4 x 3x x4 6 1 2 s.t x5 3 x1 2 x 2 x1 , x 2 , x3 , x 4 , x5 0
-1/3 0 -1/3 0 2/3 1
X 3 X4 X5 0 -3/5 -2/5 Z+12/5 1 -1 -1 0
X2 0 X1 1
1 0
0 0
1/5 4/5 6/5 -2/5 -3/5 3/5
3 6 最优解X ( ,, 0, 0, 0 ) 5 5 最优值Z 12 5
则取xi0 为入基变量
1
1
令X N 0 得X B B b 0 得基本可行解 X 1 B b,0
1
1

1 、若所有的检验数 CN B 1 N 0 , 则X 1为最优解
2、检验数 C N C B B 1 N中存在一个分量 0, 且该分量对应的列 向量中所有的分量 0, 则目标函数值在可行解 域内无上界
1、确定出基变量: 设br =min{bi | bi <0} 则取br所在行的基变量 为出基变量 即取X4为出基变量 2、确定入基变量: 原则: 保持检验行系数≤0
i i0 设 min | a ri 0 a ri a ri 0
1 21 3
X1 检 -2/3 X3 -5/3 X2 4/3 X5 -5/3 X1 检 0 X3 0 X3 X4 0 -1/3 1 0 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5、对偶单纯形法
在标准形式的线性规划问题中,如果σj =c j -C B P j ≤0,但b i 的值不一定为正,这时可用对偶单纯形法继续求解,直到所有b i ≥0。

对偶单纯形法的步骤:
1、 确定出基变量
存在小于零的b i 时,令b r =min{b i },其对应变量x r 为出基变量。

(先定出基变量)
2、 确定入基变量
在非基变量中找出a rj <0(j=m+1,….,n ),令
θ=mjn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<0rj rj j a a σ=rs
s a σ 称a rs 为主元素,x s 为入基变量 3、 用入基变量替换出基变量,得到一个新的基。

用新的基再检查是否所有b i ≥0,如果是,找到了问题的最优解,否则,回到第一步再重复计算。

【例】求解线性规划问题
min ω=12y 1+16y 2+15y 3
s.t. ⎪⎩⎪⎨⎧≥≥+≥+0,,3522423
213121y y y y y y y 【解】 转化为目标函数最大化,并化为标准形
min (-ω)=-12y 1-16y 2-15y 3+0y 4+0y 5
s.t. ⎪⎩⎪⎨⎧≥=-+=-+)5,4,3,2,1(0352242531421j
y y y y y y y
但这时没有单位矩阵,需要用大M 法或两阶段法求解,较麻烦。

但这时可用对偶单纯形法求解。

在约束条件的两边乘-1,得
min (-ω)=-12y 1-16y 2-15y 3+0y 4+0y 5
s.t. ⎪⎩⎪⎨⎧≥-=---=--)5,4,3,2,1(0352242531421j
y y y y y y y 有单位矩阵,
列出单纯形表,用对偶单纯形法求解,此时3)3,2min(-=--,y 5为出基变量,3515,212min =⎭
⎬⎫⎩⎨⎧----,y 3为入基变量
3416,26min =⎭
⎬⎫⎩⎨⎧----,y 1为入基变量
此时所有的σj =c j -C B P j ≤0,b i ≥0,有最有解
得最优解 Y * = (1,0,1/5,0,0)
最优值 ω =15
注意最终单纯形表中剩余变量(y 4,y 5)的检验数所对应的值(符号相反),正好为原问题(常山机器厂)的最优解。

相关文档
最新文档