初中数学九年级上册教案
北师大新版九年级数学上册教案带教学反思
北师大新版九年级数学上册教案带教学反思一、内容概览本章节是北师大新版九年级数学上册的一部分内容,围绕核心数学主题进行展开,涉及重要的数学概念和应用技能的培养。
教学计划结合教学目标以及学生的实际认知发展水平和学习需求精心设计,目的是提高学生解决实际问题的能力。
这一章的主题包括了代数、几何、概率与统计等关键数学领域的内容。
每个小节都将包含新的知识点和关键技能,并围绕这些知识点展开一系列的学习活动。
代数部分将涵盖二次方程、不等式及其求解技巧等。
几何部分将探讨复杂的几何图形及其性质,包括三角形、四边形、圆的性质等。
概率与统计也将是本章节的重要部分,包括数据的收集、整理和分析方法,以及概率的基本概念和计算方法等。
本章节还将注重数学知识的实际应用,通过解决一系列实际问题来加强学生对数学知识的理解和应用能力的提升。
在现实生活中运用数学知识解决实际问题,以及如何利用数学模型预测未来的趋势等。
这种实践导向的教学方式将极大地提高学生解决问题的能力。
每一课都会根据新课标的要求进行设计,保证知识深度、难度的递进关系处理得当,有助于提高学生综合分析问题解决问题的能力。
通过这个过程,学生可以深化对数学的理解和认识,进而对更高层次的数学学习产生积极的影响。
对于这一阶段的教学过程,教师会进行详细的反思和总结,以便更好地调整教学策略和方案。
1. 介绍北师大新版九年级数学上册的教学目标和重要性。
北师大新版九年级数学上册的教学目标是全面提升学生的数学素养和综合能力。
该教材紧扣国家课程标准,遵循学生的认知规律,注重知识与能力、过程与方法、情感态度与价值观的有机结合。
主要教学目标包括:知识与能力:使学生掌握初中数学的基本概念、原理和方法,包括代数、几何、概率统计等领域的基础知识。
注重培养学生的计算能力、推理能力、空间想象能力和数据处理能力等。
过程与方法:引导学生通过探究、合作、实践等多种方式学习,培养学生的自主学习能力、创新意识和实践能力。
新人教版初中数学九年级上册全册教案
新人教版初中数学九年级上册全册教案一. 教材内容概述本教案为新人教版初中数学九年级上册的全册教案。
该教材主要包括以下几个模块:- 整式与分式- 历史与人物- 概率与统计- 等比数列- 性质与运算二. 教学目标通过本教材的研究,学生应达到以下数学能力和知识:1. 掌握整式与分式的基础概念和运算方法;2. 了解数学发展历史和相关数学人物的贡献;3. 理解和应用概率与统计的基本概念与方法;4. 掌握等比数列的性质和求解方法;5. 熟悉数的性质与数的运算法则。
三. 教学重点与难点1. 教学重点:整式与分式的基础概念与运算方法,概率与统计的基本概念和应用,等比数列的性质和求解方法。
2. 教学难点:整式与分式的运算方法,概率与统计的应用,等比数列的推导和求解。
四. 教学方法和手段本教案将采用以下教学方法和手段,以培养学生的数学思维和解决问题能力:1. 导入法:通过引入学生已有的数学知识,激发学生对新知识的兴趣;2. 探究法:组织学生进行探索性研究,培养学生的自主研究和合作研究能力;3. 归纳法:引导学生总结、归纳已学的数学知识,提高他们的综合运用能力;4. 实践法:设计适当的练和实践任务,帮助学生将所学的数学知识应用到实际问题中。
五. 教学内容安排根据教材的章节划分,本教案将按照以下方式安排教学内容:- 第一单元:整式与分式- 第二单元:历史与人物- 第三单元:概率与统计- 第四单元:等比数列- 第五单元:性质与运算六. 教学评价方法为了准确评价学生的数学研究情况,本教案将采用以下评价方法:1. 测试:通过书面测试和口头测试,检查学生对教学内容的掌握情况;2. 实践任务评价:评估学生在实际问题中应用数学知识的能力;3. 个人报告评价:鼓励学生进行主题研究,并评估他们的表达和分析能力。
七. 教学资源准备为了有效开展教学活动,本教案将准备以下教学资源:1. 教材:新人教版初中数学九年级上册教材;2. 录像资料:教学视频和相关实验视频等;3. 教学工具:计算器、几何工具、教学演示软件等。
九年级数学上册教案15篇
九年级数学上册教案15篇九年级数学上册教案(篇1)一、指导思想:深入推进和贯彻《初中数学新课程标准》的精神,以学生发展为本,以改变学习方式为目的,以培养高素质的人才为目标,,培养学生创新精神和实践能力为重点的素质教育,探索有效教学的新模式。
义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。
它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
以课堂教学为中心,紧紧围绕初中数学教材、数学学科“基本要求”进行教学,针对近年来中考命题的变化和趋势进行研究,收集试卷,精选习题,建立题库,努力把握中考方向,积极探索高效的复习途径,力求达到减负、加压、增效的目的,力求中考取得好成绩。
二、教学目标:教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。
会用归纳演绎、类比进行简单的推理。
使学生懂得数学****于实践又反过来作用于实践。
提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。
顽强的学习毅力和独立思考、探索的新思想。
培养学生应用数学知识解决问题的能力。
三、教学措施:在教学过程中抓住以下几个环节(1) 认真备课。
认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。
(2)上好课:在备好课的基础上,上好每一个45分钟,提高40分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能有所收获。
(3)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。
人教版初中九年级数学上册全册完整教案
人教版初中九年级数学上册全册教案第二十一章一元二次方程第1课时一元二次方程教学目标1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程一、复习引入学生活动:列方程.问题(1)古算趣题:“执竿进屋”笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。
有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。
借问竿长多少数,谁人算出我佩服。
如果假设门的高为x•尺,•那么,•这个门的宽为_______•尺,长为_______•尺,•根据题意,•得________.整理、化简,得:__________.问题(2)如图,如果,那么点C叫做线段AB的黄金分割点.如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.整理得:_________.问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.老师点评并分析如何建立一元二次方程的数学模型,并整理.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?还是与多项式一样只有式子?因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:略注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:略三、巩固练习教材P32 练习1、2补充练习:判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x2=4 (3) 3x2- =0 (4) x2-4=(x+2) 2 (5)ax2+bx+c=0四、应用拓展例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.证明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0∴不论m取何值,该方程都是一元二次方程.•练习: 1.方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?2.当m为何值时,方程(m+1)x/4m/-4+27mx+5=0是关于的一元二次方程五、归纳小结本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业教材P34 习题22.1 1(2)(4)(6)、2.第2课时一元二次方程教学目标1.了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.2. 提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.重难点1.重点:判定一个数是否是方程的根;2.难点:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.教学过程一、复习引入学生活动:请同学独立完成下列问题.问题1.前面有关“执竿进屋”的问题中,我们列得方程x2-8x+20=0列表:x 1 2 3 4 5 6 7 8 9 10 11 …x2-8x+20 …问题2.前面有关长方形的面积的问题中,我们列得方程x2+7x-44=0即x2+7x=44x 1 2 3 4 5 6 …x2+7x …列表:老师点评(略)二、探索新知提问:(1)问题1中一元二次方程的解是多少?问题2•中一元二次方程的解是多少?(2)如果抛开实际问题,问题2中还有其它解吗?老师点评:(1)问题1中x=2与x=10是x2-8x+20=0的解,问题2中,x=4是x2+7x-44=0的解.(2)如果抛开实际问题,问题2中还有x=-11的解.一元二次方程的解也叫做一元二次方程的根.回过头来看:x2-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.例1.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.例2.若x=1是关于x的一元二次方程a x2+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值练习:关于x的一元二次方程(a-1) x2+x+a 2-1=0的一个根为0,则求a的值点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解.例3.你能用以前所学的知识求出下列方程的根吗?(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义.解:略三、巩固练习教材P33 思考题练习1、2.四、应用拓展例3.要剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm,•这块铁片应该怎样剪?设长为xcm,则宽为(x-5)cm列方程x(x-5)=150,即x2-5x-150=0请根据列方程回答以下问题:(1)x可能小于5吗?可能等于10吗?说说你的理由.(2)完成下表:x 10 11 12 13 14 15 16 17 …x2-5x-150(3)你知道铁片的长x是多少吗?分析:x2-5x-150=0与上面两道例题明显不同,不能用平方根的意义和八年级上册的整式中的分解因式的方法去求根,•但是我们可以用一种新的方法──“夹逼”方法求出该方程的根.解:(1)x不可能小于5.理由:如果x<5,则宽(x-5)<0,不合题意.x不可能等于10.理由:如果x=10,则面积x2-5x-150=-100,也不可能.(2)x 10 11 12 13 14 15 16 17 ……x2-5x-150 -100 -84 -66 -46 -24 0 26 54 ……(3)铁片长x=15cm五、归纳小结本节课应掌握:(1)一元二次方程根的概念;(2)要会判断一个数是否是一元二次方程的根;(3)要会用一些方法求一元二次方程的根.六、布置作业1.P34 复习巩固3、4 综合运用5、6、7 拓广探索8、9.第3课时直接开平方法教学目标1.理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.2.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重难点1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.2.难点:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.教学过程一、复习引入学生活动:请同学们完成下列各题问题1.填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)()2 .问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=--2例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x2-2x+4=-1分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:(2)由已知,得:(x+3)2=2直接开平方,得:x+3=±即x+3= ,x+3=-所以,方程的两根x1=-3+ ,x2=-3-例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.•一年后人均住房面积就应该是10+•10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2 因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.三、巩固练习教材P36 练习.补充题:如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s•的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,•P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?老师点评:问题2:设x秒后△PBQ的面积等于8cm2则PB=x,BQ=2x依题意,得:x•2x=8x2=8根据平方根的意义,得x=±2即x1=2 ,x2=-2可以验证,2 和-2 都是方程x•2x=8的两根,但是移动时间不能是负值.所以2 秒后△PBQ的面积等于8cm2.四、应用拓展例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,•那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.解:设该公司二、三月份营业额平均增长率为x.那么1+(1+x)+(1+x)2=3.31把(1+x)当成一个数,配方得:(1+x+ )2=2.56,即(x+ )2=2.56x+ =±1.6,即x+ =1.6,x+ =-1.6方程的根为x1=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.五、归纳小结本节课应掌握:由应用直接开平方法解形如x2=p (p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.若p<0则方程无解六、布置作业P45 复习巩固1、2.第4课时配方法教学目标1.理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.2.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p (p≥0)的一元二次方程的解法,•引入不能直接化成上面两种形式的解题步骤.重难点1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.2.难点:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.教学过程一、复习引入(学生活动)请同学们解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9(4) 4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±或mx+n=±(p≥0).如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面三个方程的解法呢?问题2:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=•25 •降次→x+3=±5 即x+3=5或x+3=-5解一次方程→x1=2,x2= -8可以验证:x1=2,x2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1.用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x- =0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略三、巩固练习教材P38 讨论改为课堂练习,并说明理由.教材P39 练习1 2.(1)、(2).四、应用拓展例3.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B•两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,•几秒后△PCQ•的面积为Rt△ACB面积的一半.分析:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.•根据已知列出等式.解:设x秒后△PCQ的面积为Rt△ACB面积的一半.根据题意,得:(8-x)(6-x)= ××8×6整理,得:x2-14x+24=0(x-7)2=25即x1=12,x2=2x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.所以2秒后△PCQ的面积为Rt△ACB面积的一半.五、归纳小结本节课应掌握:左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.六、布置作业1.教材P45 复习巩固2.3(1)(2)第5课时配方法教学目标1.了解配方法的概念,掌握运用配方法解一元二次方程的步骤.2.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重难点1.重点:讲清配方法的解题步骤.2.难点:把常数项移到方程右边后,•两边加上的常数是一次项系数一半的平方.教学过程一、复习引入(学生活动)解下列方程:(1)x2-4x+7=0 (2)2x2-8x+1=0老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式,•不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联?二、探索新知讨论:配方法届一元二次方程的一般步骤:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p ±√q;如果q<0,方程无实根.例1.解下列方程(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.解:略三、巩固练习教材P39 练习2.(3)、(4)、(5)、(6).四、应用拓展例2.用配方法解方程(6x+7)2(3x+4)(x+1)=6分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4= (6x+7)+ ,x+1= (6x+7)- ,因此,方程就转化为y•的方程,像这样的转化,我们把它称为换元法.解:设6x+7=y则3x+4= y+ ,x+1= y-依题意,得:y2(y+ )(y- )=6去分母,得:y2(y+1)(y-1)=72y2(y2-1)=72,y4-y2=72(y2- )2=y2- =±y2=9或y2=-8(舍)∴y=±3当y=3时,6x+7=3 6x=-4 x=-当y=-3时,6x+7=-3 6x=-10 x=-所以,原方程的根为x1=- ,x2=- 例3求证:无论y取何值时,代数式-3 y2+8y-6恒小于0.五、归纳小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性(如例3)在今后学习二次函数,到高中学习二次曲线时,还将经常用到。
人教版数学九年级上册教案优秀6篇
人教版数学九年级上册教案优秀6篇中学九年级数学的学习特点和学习重点应该是什么?在这个学习阶段,教案该怎样设计,下面是小编精心为大家整理的人教版数学九年级上册教案优秀6篇,在大家参照的同时,也可以分享一下给您最好的朋友。
新人教版九年级上数学教案篇一1. 各种时态的被动语态结构如下:一般现在时的被动语态:主语+am / is / are (not)+过去分词一般过去时的被动语态:主语+was / were +过去分词现在完成时的被动语态:主语+have / has +been +过去分词一般将来时的被动语态:主语+will +be +过去分词过去将来时的被动语态:主语+would / should + be +过去分词过去进行时的被动语态:主语+was / were + being +过去分词过去完成时的被动语态:主语+had + been +过去分词情态动词的被动语态:情态动词+be+过去分词2. 被动语态的用法(1)不知道或没有必要说明动作的执行者是谁,不用by+动作执行者短语。
Football is played widely all over the world.全世界都广泛地踢足球。
(2)强调动作的承受者。
The bank was robbed yesterday afternoon.昨天下午这家银行遭到抢劫。
(3)作客观说明时,常采用一种被动语态句型。
It is reported that about twenty children have died of flu in the USA.据报道美国大约二十名儿童死于流感。
3. 主动语态的句子变为被动语态的步骤(1)把原句中的宾语变为主语(2)动词改为被动形式,即be+过去分词(3)原来的主语,如果需要的话,放在by后面;如果没必要,可省略。
人教版数学九年级上册教案篇二一、指导思想:以《初中数学新课程标准》为依据,全面推进素质教育。
数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
数学九年级上册教案
数学九年级上册教案教育学生掌控基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力。
这里给大家分享一些关于数学九年级上册教案,方便大家学习。
数学九年级上册教案篇1根据学校工作安排,本学期我担负初三级数学教学工作任务,为更好普及九年义务教育,同时向高中输送合格人才,现将本学期教学计划以下:一、指导思想在教学中努力推动九年义务教育?落实新课改?体现新理念?培养创新精神。
通过数学课的教学?使学生切实学好从事现代化建设和进一步学习现代化科学技术所必须的数学基本知识和基本技能努力培养学生的运算能力、逻辑思维能力?以及分析问题和解决问题的能力二、学情分析:新学期,根据初三年级分班的实际,第一是先摸清底子,稳住学生,然后根据学生学情散布情形,重新划分学习小组,对新分班过来的学生,做好各方面的工作,使他们迅速适应新环境,然后,尽快帮他们找到新的学习榜样和新学伴,帮他们建立竞争意识和发展意识以及创新意识,鼓励大家在新学期,获得更大的进步,获得更大的发展。
三、教学内容本学期所教数学包括第二十一章《二次根式》,第二十二章《一元二次方程》,第二十三章《旋转》,第二十四章《圆》。
第二十五章《概率初步》。
代数三章,几何两章。
而且本学期要授完下册第二十七章内容。
四、教学目标:本学期的主要教学任务目标:(1)根据学情,调剂好教学进度,优化学习方法,激活知识积存。
(2)形成知识网络,解决实际问题。
(3)强化规范训练,提高应考能力。
(4)关注学生特长需求,做好学生心理疏导。
具体的说,教育学生掌控基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐渐学会正确、公道地进行运算,逐渐学会视察分析、综合、抽象、概括。
会用归纳演绎、类比进行简单的推理。
使学生知道数学来源与实践又反过来作用于实践。
提高学习数学的爱好,逐渐培养学生具有良好的学习习惯,实事求是的态度。
坚强的学习毅力和独立摸索、探索的新思想。
九年级数学上册教案(北师大版)
九年级数学上册教案(北师大版)一、教学目标1. 知识与技能:使学生掌握九年级数学上册的基本概念、公式、定理,提高学生的数学运算能力和解决问题的能力。
2. 过程与方法:通过自主学习、合作探究、实践操作等活动,培养学生独立思考、创新能力和团队协作精神。
3. 情感态度与价值观:激发学生对数学的兴趣,培养积极的学习态度,提高学生的自主学习能力。
二、教学内容1. 第一章:实数与方程1.1 实数的概念与性质1.2 一元一次方程1.3 不等式与不等式组2. 第二章:多边形的计算2.1 三角形的面积计算2.2 四边形的面积计算2.3 多边形的面积计算3. 第三章:数据的整理与分析3.1 数据的收集与整理3.2 数据的描述与分析3.3 数据的处理与展示4. 第四章:函数的初步认识4.1 函数的概念与性质4.2 一次函数的图象与性质4.3 二次函数的图象与性质5. 第五章:几何图形的证明5.1 平行线的性质与判定5.2 三角形的性质与判定5.3 四边形的性质与判定三、教学方法1. 启发式教学:通过问题引导,激发学生的思考,培养学生的创新能力和解决问题的能力。
2. 合作学习:组织学生进行小组讨论、探究,培养学生的团队协作精神和沟通能力。
3. 实践操作:引导学生动手操作,提高学生的实践能力和数学运算能力。
4. 信息技术辅助教学:利用多媒体课件、网络资源等,丰富教学手段,提高教学效果。
四、教学评价1. 过程性评价:关注学生在学习过程中的表现,如态度、参与度、合作能力等。
2. 终结性评价:通过考试、测验等方式,检测学生对知识与技能的掌握程度。
3. 自我评价:鼓励学生进行自我反思,提高学生的自主学习能力。
五、教学资源1. 教材:九年级数学上册(北师大版)2. 教辅资料:习题集、解析、教学课件等。
3. 网络资源:相关数学教学网站、视频、论坛等。
4. 教学仪器:黑板、粉笔、多媒体设备等。
六、教学计划1. 第六章:概率初步6.1 随机事件与概率6.2 排列组合6.3 概率的计算与应用2. 第七章:初中数学综合应用7.1 数学与生活7.2 数学与科学7.3 数学与社会科学3. 第八章:数学阅读与写作8.1 数学阅读8.2 数学写作8.3 数学语言表达4. 第九章:数学思想方法9.1 化归思想9.2 数形结合思想9.3 分类讨论思想5. 第十章:总复习10.1 复习要点与方法10.2 中考数学考试大纲解析10.3 模拟测试与真题演练七、教学策略1. 第六章:概率初步运用实例引入概率的概念,通过实践活动让学生体验概率的计算过程,培养学生的实际应用能力。
初中数学人教版九年级上册:因式分解法 教案
21.2.3因式分解法【教学目标】知识技能1.了解因式分解的概念2.会利用因式分解法解某些简单数字系数的一元二次方程情感态度1.学会和他人合作,并能与他人交流思维的过程和结果2.积极探索不同的解法,并和同伴交流,勇于发表自己的观点,从交流中发现最优方法,在学习活动中获得成功的体验,建立学好数学的自信心重点难点重点应用因式分解法解一元二次方程难点将方程化为一般形式后,对方程左侧二次三项式进行因式分解活动1复习引入问题(学生活动)解下列方程.(1)220x x (用配方法),(2)2360x x (用公式法).(3)要使一块矩形场地的长比宽多3m ,并且面积为228m ,场地的长和宽应各是多少?(4)如何设未知数并根据题目的等量关系列出方程?(5)所列方程和以前我们学习的方程2692x x 有何联系和区别?(6)你能由方程2692x x 的解法联想到怎样解方程23280x x 吗?活动2实验发现思考:(1)210x x (),(2)320x x ().问题:(1)你能观察出这两题的特点吗?(2)你知道方程的解吗?说说你的理由.因式分解的理论依据是:两个因式的积等于零,那么这两个因式的值就至少有一个等于零。
即:若ab=0,则a=0或b=0.由上述过程我们知道:当方程的一边能够分解成两个一次因式的乘积而另一边等于0时,即可解之。
这种方法叫做因式分解法.(3)因式分解法解一元二次方程的步骤:①移项,使方程的右边为零;②将方程的分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解都是原方程的解.活动3用因式分解法解决问题教材第14页例3.补充例题解方程(1)238x x ,(2)24312x x ().分析:(1)移项提取公因式x ;(2)等号右侧移项到左侧得312x -,提取因式-3,即34x -(),再提取公因式x-4,便可达到分解因式的目的,一边为两个一次因式的乘积,另一边为0的形式.解:(1)移项,得2380x x ,因式分解,得380x x (),于是,得0380x x ,或,12803x x,(2)移项,得243120x x (),24340x x ()()因式分解,得4430x x ()()整理,得470x x ()()于是,得4070x x 或1247x x ,活动5课堂小结小结:(1)用因式分解法,即用提取公因式法、平方差公式、完全平方公式等解一元二次方程.(2)三种方法(配方法、公式法、因式分解法)的联系与区别:联系:①降次,它们的解题的基本思想是:将二次方程化为一次方程,即降次。
人教版初中九年级上册数学《因式分解法》教案
21.2.3 因式分解法【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.一、情境导入,初步认识问题根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)想一想你能根据题意列出方程吗?你能想出解此方程的简捷方法吗?【教学说明】让学生通过具体问题寻求解决问题的方法,激发学生求知欲望,引入新课.二、思考探究,获取新知学生通过讨论,交流得出方程为10x-4.9x2=0.在学生用配方法或公式法求出上述方程的解后,教师引导学生尝试找出其简捷解法为:x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.从而可知物体被抛出约2.04s后落回到地面.想一想以上解方程的方法是如何使二次方程降为一次方程的?通过学生的讨论、交流可归纳为:当方程的一边为0,而另一边可以分解成两个一次因式的乘积时,利用a·b=0,则a=0或b=0,把一元二次方程变为两个一元一次方程,从而求出方程的解.这种解法称为因式分解法.【教学说明】让学生自主探索,进行归纳总结,既锻炼学生的分析问题,解决问题能力,又能培养总结化归能力,并从中体验转化、降次的思想方法.三、典例精析,掌握新知例1 解下列方程:(1)x(x-2)+x-2=0; (2)5x2-2x-14=x2-2x+34.解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x1=2,x2=-1;(2)原方程整理为4x2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x1=-12,x2=12.想一想以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.例2 用适当的方法解下列方程:(1)3x2+x-1=0; (2)2(2x-3)2=12;(3)(3x-2)2=4(3-x)2; (4)(x-1)(x+2)=-2.分析:根据方程的结构特征,灵活选择恰当的方法来求解.【教学说明】以上两例均应先让学生自主完成,最后共同评析,达到深化理解本节知识的目的.教学时,可选派学生代表上黑板完成.对于学生的解法只要合理就应给予肯定,若有更简捷解法时再予以说明.思考请你谈谈解一元二次方程的几种方法的特点,与同伴交流.【归纳结论】1.配方法要先配方,再降次;公式法可直接套用公式;因式分解法要先使方程的一边为0,而另一边能用提公因式法或公式法分解因式,从而将一元二次方程化为两个一次因式的积为0,达到降次目的,从而解出方程;2.配方法、公式法适用于所有一元二次方程,而因式分解法则只适用于某些一元二次方程,不是所有的一元二次方程都适用因式分解法来求解.四、运用新知,深化理解1.用因式分解法解方程,下列方程中正确的是()A.(2x-2)(3x-4)=0,∴2x-2=0或3x-4=0B.(x+3)(x-1)=1,∴x+3=0或x-1=1C.(x+2)(x-3)=6,∴x+2=3或x-3=2D.x(x+2)=0,∴x+2=02.当x= 时,代数式x2-3x的值是-2.3.已知y=x2+x-6,当x= 时,y的值等于0.当x= 时,y的值等于24.(注:4~5题为教材第14页练习)4.解下列方程:(1)x2+x=0; (2)x2-23x=0;(3)3x2-6x=-3; (4)4x2-121=0;(5)3x(2x+1)=4x+2; (6)(x-4)2=(5-2x)2.5.如图,把小圆形场地的半径增加5m得到大圆形场地,场地面积扩大了一倍.求小圆形场地的半径.【教学说明】针对所设置的作业,可因不同的学生分层次布置作业,让每个学生都能参与数学的学习,激发学习热情.【答案】1.A 2.1或2 3.2或-35或-6 4~5略.五、师生互动,课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?【教学说明】设计两个问题引导学生回顾本课知识的学习过程,反思学习过程中的疑惑,查漏补缺,完善认知.1.布置作业:从教材“习题21.2”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.本节课围绕利用因式分解法解一元二次方程这一重点内容,教师通过问题情境以及学生的合作交流,使学生的问题凸现出来,让学生迅速掌握解题技能,并探讨出解题的一般步骤,使学生知道因式分解法是一元二次方程解法中应用较为广泛的简便方法,提高解题速度.2.学生已经学过多项式的因式分解,所以对本课内容并不陌生,通过本课学习,让学生更能领会因式分解在数学领域的广泛应用.3.本节课有大量的基础计算问题,也有符合不同学生层次的问题,力争让所有学生学有所得,提高课堂效率.4.解一元二次方程是本章教学的重中之重,如何正确选择用不同方法解一元二次方程是关键,本节课中的计算题有一题多解问题,体现了选择“最优化”解方程方法的问题.良好的学习态度能够更好的提高学习能力。
人教版九年级数学上册教案:24.1.4圆内接四边形课堂优秀教学案例
1.创设生活化的情境导入
本教学案例以校园操场的跑道为背景,创设生活化的情境导入,使学生能够从现实生活的实例中感受到圆内接四边形的实际应用,从而激发他们的学习兴趣。这种导入方式充分体现了数学与生活的紧密联系,有助于提高学生对数学知识的应用意识。
2.问题导向的教学策略
本案例以问题导向的教学策略为核心,通过设计不同难度层次的问题,引导学生逐步深入探讨圆内接四边形的性质。这种策略有助于培养学生的逻辑思维能力和解决问题的能力,使学生在解决问题的过程中掌握知识、发展能力。
3.引导学生总结:在问题解决后,引导学生总结圆内接四边形的性质,提高他们的归纳总结能力。
(三)小组合作
小组合作是本节课的重要教学策略,通过分组讨论、合作探究,培养学生的团队协作能力和交流沟通能力。
1.分组讨论:将学生分成若干小组,让他们在组内讨论问题,共同探究圆内接四边形的性质。
2.交流分享:鼓励小组代表在全班分享本组的讨论成果,促进学生之间的交流与互动。
5.知识与技能、过程与方法、情感态度与价值观的全面培养
本教学案例在教学内容与过程中,充分关注知识与技能、过程与方法、情感态度与价值观的全面培养。通过讲授新知、学生小组讨论、总结归纳等环节,引导学生掌握圆内接四边形的性质,提高解题能力。同时,注重培养学生的合作意识、创新意识和数学应用意识,使他们在学习过程中形成正确的价值观。
3.教师评价:教师对学生进行全面的评价,包括知识掌握、技能运用、合作交流等方面,以激励学生不断进步。
四、教学内容与过程
(一)导入新课
在导入新课的环节,我将运用生动的生活实例和问题情境,引导学生从已知的几何知识出发,自然过渡到本节课的主题——圆内接四边形。
1.生活实例引入:展示一幅校园操场的图片,让学生观察并思考:“为什么操场上的跑道是椭圆形而不是圆形?椭圆形内接四边形有哪些特殊性质?”通过这个实例,让学生感受到圆内接四边形在实际生活中的应用,激发他们的学习兴趣。
最新九年级上册数学教案优秀5篇
最新九年级上册数学教案优秀5篇目标和目标解析篇一(一)教学目标1、体会一元二次方程是刻画实际问题的重要数学模型,初步理解一元二次方程的概念;2、了解一元二次方程的一般形式,会将一元二次方程化成一般形式。
(二)目标解析1、通过建立一元方程解决相关的实际问题,让学生体会到未知数相乘导致方程的次数升高,继而产生一元二次方程。
学生能举例说明一元二次方程存在的实际背景,感受一元二次方程是重要的数学模型,体会到学习的必要性;2、将不同形式的一元二次方程统一为一般形式,学生从数学符号的角度,体会概括出数学模型的简洁和必要,针对“二次”规定a≠0的条件,完善一元二次方程的概念。
学生能够将一元二次方程整理成一般形式,准确的说出方程的各项系数,并能确定简单的字母系数方程为一元二次方程的条件。
数学九年级上册优秀教案篇二教学目标知识与技能目标:理解生活中的百分率,掌握求百分率的方法,能正确求出百分率。
过程与方法目标:通过自主探究、合作交流,理解常用百分率的含义及计算方法。
情感、态度与价值观目标:体会求百分率的用处和必要性,感受百分率源于生活,渗透数学来源于生活并服务于生活的数学思想。
教学重难点教学重点:理解生活中常见的百分率的含义。
教学难点:正确计算常见的百分率。
教学过程一、创设情境,探究导入1、课件出示看图,回答下面的问题。
(1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?(2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?2、百分数的意义我们班有36%的学生参加了美术兴趣小组。
世界总人口中大约有50%的人口年龄低于25岁。
一瓶农夫果园饮料中果汁含量大约是10%。
我们班学生的近视率是45%。
3、小刚做了10道题,错了2道做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?做对的题数占总题数的百分之几?做错的题数占总题数的百分之几?求a是b的百分之几和求a是b的几分之几方法是相同的,都是:a÷b4、六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几?六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?学生独立思考、同桌交流:尝试计算,得出结论。
人教版九年级上数学教案
人教版九年级上数学教案让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题,逐渐提高视察和归纳分析能力,体验数形结合的数学方法。
这里给大家分享一些关于人教版九年级上数学教案,方便大家学习。
人教版九年级上数学教案篇1一、学情分析通过对上期末检测分析,发觉本班学生存在很严重的两极分化。
一方面是平时成绩比较突出的学生基本上掌控了学习的数学的方法和技能,对学习数学爱好浓厚。
另一方面是相当部分学生由于各种原因,数学已经落后很远,基本丧失了学习数学的爱好。
从上个学期期末测试就可以看出来,优秀率到达了15%,但及格率降落到 45%,特别是不及格的学生中,大部分学生的成绩在 50 分(总分为 120 分)以下。
二、指导思想坚持贯彻党的十七大教育方针,以《初中数学新课程标准》为准绳,连续深入展开新课程教学改革。
以提高学生中考成绩为动身点,重视培养学生的基础知识和基本技能,提高学生解题答题的能力。
同时通过本学期的课堂教学,完成九年级上册数学教学任务。
并根据实际情形,适当完成九年级下册新授教学内容。
三、教学目标知识技能目标:掌控二次根式的概念、性质及运算;会解一元二次方程;知道旋转的基本性质;掌控圆及与圆有关的概念、性质;知道概率在生活中的运用。
进程方法目标:培养学生的视察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合运用能力。
态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。
四、教材分析第二十一章二次根式:本章主要内容是二次根式的概念、性质、化简和有关的运算。
本章重点是知道二次根式的性质,及二次根式的化简和运算。
本章的难点是正确知道二次根式的性质和运算法则。
第二十二章一元二次方程:本章主要是掌控配方法、公式法和因式分解法解一元二次方程,并运用一元二次方程解决实际问题。
本章重点是解一元二次方程的思路及具体方法。
人教版九年级数学教案初中(实用17篇)
人教版九年级数学教案初中(实用17篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!人教版九年级数学教案初中(实用17篇)教案的设计应注重培养学生的思维能力和创造力,提高学生的综合素质。
人教版九年级数学上册教案5篇
人教版九年级数学上册教案5篇人教版九年级数学上册教案5篇数学是一种精确的艺术,它要求我们严谨和准确地表达思想,从而减少误解和歧义。
这里给大家分享一些关于人教版九年级数学上册教案,供大家参考学习。
人教版九年级数学上册教案【篇1】教材分析:学生在三年级初步感受了生活中的平移与旋转现象,并能在方格纸上画出一个沿水平、垂直方向平移后的图形,本节课所学的图形的旋转内容是在上述基础上的进步发展,通过具体实例的展示,通过操作活动,使学生知道一个简单图形在旋转或平移的过程中,能形成一个较复杂的图形,它的学习对于培养学生的空间观念,感受数学美、运用数学知识进行设计具有重要作用。
教学要求:1、通过实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。
2、能在方格纸上画出简单图形旋转后的图形。
教学重点、难点:1、能在方格纸上将简单图形旋转90,明确是绕哪一点进行旋转的。
2、能找出旋转或平移后的原图形。
教具准备:多媒体、三角形纸学具准备:4张扇形张、方格纸、三角形纸教学过程:一、创设情景电脑出示一组图案,请学生欣赏。
师:这些图案美吗?生:美。
师:这些图案是怎样设计的呢?生:通过旋转设计成的。
师:这些图形是怎样旋转的呢?今天我们就来学习有关图形旋转的知识,并板书课题:图形的旋转。
二、探究新知1、理解顺时针方向。
(1)师出示一个钟面模型。
(2)问:钟面上的时针是怎样旋转的呢?你能用手势比一比吗?(3)抽生比划时针转动的方向,全班一起跟着比手势。
(4)师:时针转动的方向叫顺时针方向。
板书:顺时针方向(5)师:生活中很多图形都是按顺时针方向进行旋转的。
2、体会旋转900的过程,明确是绕哪个点进行旋转的。
(1)电脑出示主题图,请学生仔细观察并思考:图a是怎样变化就得到了图b?生:图a按顺时针方向旋转就得到图b。
师:图a是以哪个点为中心,旋转多少度得到图b的?生:图a是以o点为中心旋转900得到图b的。
师:谁能用完整的语言说说图a到图b的变化过程?生:图a以o点为中心,按顺时针方向旋转900得到图b。
一等奖九年级人教版上册数学教案5篇
一等奖九年级人教版上册数学教案5篇一等奖九年级人教版上册数学教案5篇数学是一座思维的巨塔,它培养了我们的逻辑思维、推理能力和问题解决的技巧,让我们成为深思熟虑的决策者。
这里给大家分享一些关于一等奖九年级人教版上册数学教案,供大家参考学习。
一等奖九年级人教版上册数学教案【篇1】教学目标:1、通过动手操作、实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。
2、通过操作、观察,进一步培养学生的空间思维观念。
教学重点:了解一个简单的图形经过旋转制作复杂图形的过程教学难点:让学生清楚的表述图形的旋转过程。
教学准备:学生准备基本图形卡片、带有小方格的纸,教师准备多媒体演示文稿、纸做小风车。
教学时间:20分钟教学过程:一、在游戏中导入新知教师手拿风车走向讲台。
问:同学们,认识它吗?玩过吗?在今天这个舞台上你敢玩吗?找一名学生上台展示玩法。
问:在你玩的过程中,这个风车的风叶是怎样运动的?它又是怎样旋转的呢?2、看了刚才这位同学的精彩表演,大家是不是也想玩一玩呀?那么就请同学们想办法让手中的东西、桌子上的东西、包中的东西旋转起来,我们来比一比,看谁最会玩?学生活动,教师巡视。
1、刚才,老师看了一下这位同学的玩法,这位同学的玩法很独特,我们就请到前面来展示一下他的玩法。
你能用语言具体描述一下它的旋转过程吗?(说清绕哪一点、按什么方向旋转,旋转的角度)1、刚才大家都让自己手中的东西旋转了起来,玩的开心吗?下面我们换一个玩法。
大家猜想一下,如果我们让一个基本图形旋转起来,会形成什么样的图案呢?2、大屏幕呈现一些美丽的图案。
这些图案美不美?这里的每一个图案都是经过一个图形的旋转而得到的,今天我们就走进图形旋转的天地。
板书课题:图形的旋转二、在实践中探索图形的旋转过程1、请大家继续欣赏这些美丽的图案,他们分别是由哪些基本图形经过旋转得到的呢?下面我们就这两幅图为例来探讨一下。
为了方便大家清楚表述旋转的过程,我们可以先明确一下他们的位置。
新人教版初中数学九年级上册优质课公开课教案
新人教版初中数学九年级上册优质课公开课教案一、教学目标- 熟练掌握矩形的定义与性质;- 理解和应用矩形的周长和面积公式;- 能够解决与矩形相关的实际问题;- 培养学生的逻辑思维和问题解决能力。
二、教学重点- 掌握矩形的周长和面积公式;- 能够独立解决与矩形相关的实际问题。
三、教学内容第一节矩形的定义与性质1. 矩形的定义:四个内角都是直角的四边形;2. 矩形的性质:- 对角线相等;- 对边相等;- 内角均为直角。
第二节矩形的周长和面积公式1. 计算矩形的周长:- 公式:周长 = 2(长 + 宽);- 例题演示;- 学生练。
2. 计算矩形的面积:- 公式:面积 = 长 ×宽;- 例题演示;- 学生练。
第三节矩形的应用1. 解决与矩形相关的实际问题:- 题目分析与解决思路讲解;- 例题演示;- 学生练。
四、教学方法与步骤1. 激发学生兴趣:通过引入有趣的例子或图片,激发学生对矩形的兴趣。
2. 导入新知:介绍矩形的定义和性质,并与学生进行讨论。
3. 掌握公式:讲解矩形的周长和面积公式,并通过例题演示加深学生对公式的理解。
4. 锻炼技能:让学生进行练,巩固对矩形的周长和面积计算的掌握。
5. 应用题:引导学生解决与矩形相关的实际问题,培养其问题解决能力。
6. 总结与归纳:帮助学生总结所学内容,理清矩形的定义、性质和计算方法。
五、教学评价与反思1. 通过学生的课堂表现、练情况和问题解决能力的评估,对学生的研究情况进行评价。
2. 及时反思教学过程中存在的问题,寻找改进方法,提高教育教学质量。
以上是本节课的教案,通过讲解矩形的定义、性质和计算方法,以及引导学生解决相关问题,旨在帮助学生掌握矩形的概念和计算技巧,并培养其逻辑思维和问题解决能力。
人教版九年级数学上册教学设计(全册教案)
九年级数学上册教学计划
一、指导思想
坚持贯彻党十八大教育方针,以《初中数学新课程标准》为准绳,继续深入开展新课程教学改革。以提高学生中考成绩为出发点,注重培养学生基础知识和基本技能,提高学生解题答题的能力。同时通过本学期课堂教学,完成九年级上册数学教学任务。并根据实际情况,计划完成九年级下册新授教学内容。
二、学情分析
通过对上期末检测分析,发现本班学生存在很严重的两极分化。一方面是平时成绩比较突出的学生基本上掌握了学习的数学的方法和技巧,对学习数学兴趣浓厚。另一方面是相当部分学生因为各种原因,数学已经落后很远,基本丧失了学习数学的兴趣。
三、教材分析
第二十一章 一元二次方程(13课时)
本章的主要学习一元二次方程及其有关概念,一元二次方程的解法(配方法、公式法、因式分解法),运用一元二次方程分析和解决实际问题。其中解一元二次方程的基本思路和具体解法是本章的重点内容。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
6、教学中注重数学理论与社会实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力,重视实习作业。指导成立“课外兴趣小组”,开展丰富多彩的课外活动,带动班级学生学习数学,同时发展这一部分学生的特长。
第二十五章 概率初步(12课时)
理解概率的意义及其在生活中的广泛应用。本章的重点是理解概率的意义和应用,掌握概率的计算方法。本章的难点是会用列举法求随机事件的概率。
初中九年级全套数学教案(共36课)
初中九年级全套数学教案(共36课)初中九年级全套数学教案(共36课)
第一课:整式的加减
- 教学目标:研究整式的加减运算
- 教学重点:理解整式的概念,掌握整式的加减运算规则
- 教学内容:整式的定义、整式的加减运算、实例演练
- 教学方法:讲解、示范、练、归纳总结
- 课时安排:两课时
...
(依次编写剩余35课的内容)
...
第三十六课:立体几何
- 教学目标:研究立体几何的基本概念和性质
- 教学重点:了解立体几何中常见的几何体,掌握相关性质
- 教学内容:几何体的定义和分类、立体几何的基本性质、实例演练
- 教学方法:讲解、示范、练、实地观察
- 课时安排:两课时
注意事项:
- 本教案共包含36个数学教学内容,每个教案都包括教学目标、教学重点、教学内容、教学方法和课时安排。
- 教学目标旨在明确学生在本节课中应该达到的研究目标。
- 教学重点是教师在教学过程中需要着重强调和讲解的内容。
- 教学内容包括具体的数学概念、运算规则和实例演练等。
- 教学方法是教师在教学过程中采用的教学手段和策略。
- 课时安排是教师合理安排每节课的时间分配。
请根据实际情况对每节课的教学内容和安排进行具体编写。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章特殊平行四边形1.掌握菱形、矩形、正方形的概念,以及它们之间的关系.2.理解菱形、矩形、正方形的性质定理与判定定理,并能证明其他相关结论.3.掌握直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半.1.经历探索菱形、矩形、正方形的概念、性质与判定的猜想与证明的过程,丰富数学活动经验,进一步发展合情推理和演绎推理的能力.2.理解菱形、矩形、正方形的概念,了解它们与平行四边形之间的关系,进一步体会从一般到特殊的思考问题的方法,提高发现问题和解决问题的能力.3.在参与观察、试验、猜想、证明等数学活动中,有意识地渗透试验论证、逆向思维的思想,提高学生的能力.1.积极参与数学学习活动,对数学有好奇心和求知欲.2.经历图形的分类、性质探讨的过程,掌握图形与几何的基础知识和基本技能.通过“猜想——总结——证明——应用”的数学活动提升科学素养.3.提高自主探究的能力和增强与他人合作交流的意识、方法.四边形是人们日常生活中应用较为广泛的一种几何图形,尤其是平行四边形、菱形、矩形、正方形等特殊四边形的用处更多.因此,四边形既是几何中的基本图形,也是“空间与图形”领域中主要研究对象之一.本章是在已经学过的多边形、平行线、三角形、平行四边形的基础上对菱形、矩形、正方形的有关性质与常用的判定方法的证明与扩充.它们的探索方法也都与平行四边形的性质和判定的探索方法一脉相承.本章的学习有助于深化对平行四边形的理解,以及对识图、画图等操作技能的掌握,丰富学生的数学活动经验和体验,促进其良好数学观的形成.本章主要渗透归纳、类比、转化等数学思想,注重通过引导探索过程来渗透与展现证明的思路.此外还要注意引导学生探索证明的不同思路与方法,并进行适当的比较和讨论,提高分析、寻求证明思路的能力.【重点】菱形、矩形、正方形的定义、性质与判定.【难点】平行四边形与菱形、矩形、正方形之间的联系与区别.本章教学时间约需8课时,具体分配如下:1 菱形的性质与判定3课时2 矩形的性质与判定3课时3 正方形的性质与判定2课时1 菱形的性质与判定理解菱形的概念,了解它与平行四边形之间的关系.1.经历菱形的性质定理与判定定理的探索过程,进一步发展合情推理能力.2.能够用综合法证明菱形的性质定理与判定定理,进一步发展演绎推理能力.体会探索与证明过程中所蕴含的抽象、推理等数学现象.【重点】1.菱形的概念和性质.2.探索菱形的判定方法【难点】菱形的概念和性质在生活中的应用.第课时探索并掌握菱形的概念和菱形所具有的特殊性质,会进行简单的推理和运算.在观察、操作、推理、归纳等探索过程中,发展学生合情推理的能力,进一步让学生养成用数学知识说理的习惯,并要求学生能熟练地按规范的推理格式书写.从学生已有的知识出发,通过欣赏、观察、动手操作等活动让学生感受身边的数学图形的和谐美与对称美,激发他们学习数学的兴趣,树立学好数学的信心,体会学习数学的快乐.培养学生主动探究、自主学习和合作交流的意识.【重点】菱形的概念和性质.【难点】菱形性质的灵活应用.【教师准备】1.教师在课前布置学生复习平行四边形的性质,搜集菱形的相关图片.2.多媒体课件.3.教师准备菱形纸片,上课前发给学生上课时使用.【学生准备】复习平行四边形的性质导入一:请同学们观察投影图片中的四边形并回答下列问题:(1)投影图片中有平行四边形吗?(2)这些平行四边形具有哪些特征?其中哪个特征不是平行四边形的性质?【师生活动】复习平行四边形的定义及性质.导入二:1.提问:什么是平行四边形?学生回顾交流.2.平行四边形的相邻两边可能相等吗?请同学们讨论一下在我们生活中是否有相邻两边相等的平行四边形形状的图案?一、情景交流[过渡语] 今天我们来学习一种特殊的平行四边形,让我们一起观察、猜想、探究、归纳、论证吧!结合上面的观察,你能举出和上述图形具有相同特征的实物图形吗?具有这一特征的平行四边形是什么四边形?【学生活动】通过讨论,以小组为单位分别说出生活中具有邻边相等特征的平行四边形形状的实物.【教师活动】投影图片展示一些生活中的具有邻边相等特征的平行四边形形状的实物.二、学生活动,归纳概念思路一请口答下列问题.(1)上述图形都是平行四边形吗?(2)上述图形都有一组邻边相等吗?(3)如果平行四边形有一组邻边相等,那么另一组邻边也相等吗?小组合作交流,类比平行四边形的定义尝试给出菱形的定义.【老师点评】(1)是平行四边形;(2)都有一组邻边相等.【课件展示】像这样,有一组邻边相等的平行四边形叫做菱形.思路二【师】同学们,在观察上面图片之后,你能从中发现熟悉的图形吗?你能找出它们的共同特征吗?请同学们观察,图中的平行四边形与黑板上所画的▱ABCD 相比较,还有不同点吗?【生】投影图片中的平行四边形不仅对边相等,而且任意两条邻边也相等.【师】同学们观察得很仔细,像这样,有一组邻边相等的平行四边形叫做菱形.三、共同探究【想一想】(1)菱形是特殊的平行四边形,它具有一般平行四边形的所有性质.你能列举一些这样的性质吗?【生】菱形的对边平行且相等,对角相等,对角线互相平分.(2)同学们,你认为菱形还具有哪些特殊的性质?请你与同伴交流.【学生活动】分小组讨论菱形的性质,组长组织组员讨论,让尽可能多的组员发言,并汇总结果.【教师活动】教师巡视,并参与到学生的讨论中,启发学生类比平行四边形从图形的边、角和对角线三个方面探讨菱形的性质.对学生的结论,教师要及时作出评价,积极引导,激励学生.【做一做】请同学们用菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?(2)菱形中有哪些相等的线段?【学生活动】分小组折纸探索答案.组长组织,并汇总结果.【教师活动】教师巡视并参与学生活动,引导学生怎样折纸才能得到正确的结论.学生研讨完毕,教师要展示汇总学生的折纸方法以及相应的结论,以便于后面的教学.【师生结论】(1)菱形是轴对称图形,有两条对称轴,且是菱形的两条对角线所在的直线,两条对称轴互相垂直.(2)菱形的四条边相等.【验证提升】证明菱形性质【师】通过折纸活动,同学们已经对菱形的性质有了初步的理解,下面我们要对菱形的性质进行严谨的逻辑证明.【教师活动】如图所示,在菱形ABCD中,已知AB=AD,对角线AC与BD相交于点O.求证:(1)AB=BC=CD=AD;(2)AC⊥BD.【师生共析】(1)菱形不仅对边相等,而且邻边相等,这样就可以证明菱形的四条边都相等了.(2)因为菱形是平行四边形,所以点O是对角线AC与BD的中点.又因为在图形中可以得到相关的等腰三角形,所以就可以利用“三线合一”来证明结论了.【学生活动】写出证明过程,进行组内交流对比,优化证明方法,掌握相关定理.指名学生在黑板上演示证明过程.证明:(1)∵菱形ABCD是平行四边形,∴AB=CD,AD=BC(平行四边形的对边相等).∵AB=AD,∴AB=BC=CD=AD.(2)∵AB=AD,∴ΔABD是等腰三角形.∵四边形ABCD是菱形,∴OB=OD(菱形的对角线互相平分).在等腰三角形ABD中,∵OB=OD,∴AO⊥BD,即AC⊥BD.【教师活动】展示学生的证明过程,进行恰当的点评和鼓励,优化学生的证明方法,规范学生的书写格式,提高学生的逻辑证明能力.【教师活动】请你根据上面的证明,归纳出菱形的性质.【学生活动】小组交流,共同总结.【教师活动】多媒体课件展示定理:菱形的四条边相等.定理:菱形的对角线互相垂直.最后强调“菱形的四条边相等”“菱形的对角线互相垂直”,让学生形成牢固记忆,留下深刻印象.四、展示交流【教师活动】例题讲解.(教材例1)如图所示,在菱形ABCD中,对角线AC与BD相交于点O, ∠BAD =60°,BD=6,求菱形的边长AB和对角线AC的长.〔解析〕因为菱形的邻边相等,一个内角是60°,这样就可以得到等边三角形ABD,由BD=6知菱形的边长也是6.菱形的对角线互相垂直,可以得到直角三角形AOB.菱形的对角线互相平分,可以得到OB=3,根据勾股定理就可以求出OA的长度,再一次根据菱形的对角线互相平分,即AC=2OA,求出AC.解:∵四边形ABCD是菱形,∴AB=AD(菱形的四条边相等),AC⊥BD(菱形的对角线互相垂直),OB=OD=BD=×6=3(菱形的对角线互相平分).在等腰三角形ABD中,∵∠BAD=60°,∴ΔABD是等边三角形.∴AB=BD=6.在RtΔAOB中,由勾股定理,得:OA2+OB2=AB2,∴OA==3,∴AC=2OA=6.[知识拓展] (1)菱形是特殊的平行四边形,它具有平行四边形的所有性质;(2)菱形的定义既可以看做菱形的性质,也可以看做菱形的判定方法.1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质:(1)菱形是轴对称图形,对称轴是两条对角线所在的直线;(2)菱形的四条边都相等;(3)菱形的对角线互相垂直平分.3.菱形具有平行四边形的所有性质,应用菱形的性质可以进行计算和推理.1.如图所示,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是( )A.20B.15C.10D.5解析:因为四边形ABCD是菱形,所以AB=CB,CD∥BA,所以∠ABC=180°-∠BCD=180°-120°=60°,所以ΔABC是等边三角形,所以AC=AB=5.故选D.2.如图所示,菱形ABCD的周长为8 cm.∠BAD=60°,则AC=cm.解析:因为菱形ABCD的周长为8 cm,所以AB=AD=2 cm.又因为∠BAD=60°,所以ΔABD是等边三角形,所以BD=AB=2 cm,所以OB=BD=1 cm,所以OA=(cm),所以AC=2 cm.故填2.3.如图所示,在四边形ABCD中,AB∥CD,AB=CD=BC,则四边形ABCD是菱形吗?为什么?解:四边形ABCD是菱形.理由:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形.又∵CD=BC,∴平行四边形ABCD是菱形.4.如图所示,四边形ABCD是菱形,F是AB上一点,DF交AC于点E.求证∠AFD =∠CBE.证明:∵四边形ABCD是菱形,∴CB=CD,CA平分∠BCD.∴∠BCE=∠DCE.又∵CE=CE,∴ΔBCE≌ΔDCE(SAS).∴∠CBE=∠CDE.在菱形ABCD中,∵AB∥CD,∴∠AFD=∠CDE.∴∠AFD=∠CBE.第1课时菱形的定义:有一组邻边相等的平行四边形叫做菱形菱形的性质:菱形的四条边相等菱形的对角线互相垂直例1一、教材作业【必做题】教材第4页随堂练习.【选做题】教材第4页习题1.1的1,2题.二、课后作业【基础巩固】1.在菱形ABCD中,AB=5 cm,则此菱形的周长为 ( )A.5 cmB.15 cmC.20 cmD.25 cm2.菱形的周长为8 cm,高为1 cm,则菱形两邻角的度数比为( )A.3∶1B.4∶1C.5∶1D.6∶13.如图所示,在菱形ABCD中,两条对角线的长分别为AC=6,BD=8,则此菱形的边长为 ( )A.5B.6C.8D.104.如图所示,在菱形ABCD中,对角线AC交BD于点O,AB=8,E是CD的中点,则OE的长等于.5.如图所示,已知菱形ABCD,其顶点A,B在数轴上对应的数分别为-4和1,则BC =.6.如图所示,在菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.求证∠AEF=∠AFE.【能力提升】7.如图所示,两个全等菱形的边长均为1 cm,一只蚂蚁由A点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2015 cm后停下,则这只蚂蚁停在点.8.已知菱形ABCD的边长为6,且∠A=60°,如果点P是菱形内一点,且PB=PD =2,那么AP的长为.9.如图所示,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.【拓展探究】10.如图所示,在菱形ABCD中,对角线AC=6,BD=8,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是( )A.3B.4C.5D.611.如图所示,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(1)求证AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由. 【答案与解析】1.C(解析:因为菱形ABCD的四条边相等,所以菱形的周长为5×4=20(cm).故选C.)2.C(解析:如图所示,因为菱形的周长为8 cm,所以AD=2 cm.因为高DE=1 cm,所以DE=AD,所以∠A=30°,所以∠ADC=180°-30°=150°,所以菱形两邻角的度数比为5∶1.故选C.)3.A (解析:因为四边形ABCD是菱形,所以OA=AC=3,OB=BD=4,∠AOB=90°,所以AB==5.故选A.)4.4(解析:因为四边形ABCD是菱形,所以O是AC的中点,且AD=AB=8.又因为E是CD的中点,所以OE是ΔACD的中位线,所以OE=AD=AB=4.故填4.)5.5 (解析:因为点A,B在数轴上对应的数为-4和1,所以AB=1-(-4)=5.因为四边形ABCD是菱形,所以BC=AB=5.故填5.)6.证明:在菱形ABCD中,有AB=AD,∠B=∠D.在ΔABE和ΔADF中,,∴ΔABE≌ΔADF.∴AE=AF.∴∠AEF=∠AFE.7.G(解析:因为两个全等菱形的边长均为1 cm,所以蚂蚁由A点开始按ABCDEFCGA的顺序走一圈的路程为8×1=8(cm),2015÷8=251(cm)……7(cm),所以当蚂蚁走完第251圈后再走7 cm正好到达G点.)8.2或49.解:(1)在菱形ABCD中,AB=AD,∠A=60°,∴ΔABD为等边三角形.∴∠ABD=60°.(2)由(1)可知BD=AB=4.又∵O为BD的中点,∴OB=2.又∵OE⊥AB,∠ABD =60°,∴∠BOE=30°.∴BE=1.10.C11.证明:(1)如图所示,连接AC,∵BD是菱形ABCD的对角线,∴BD垂直平分AC,∴AE=EC.(2)点F是线段BC的中点.理由如下.∵四边形ABCD是菱形,∴AB=CB.又∵∠ABC=60°,∴ΔABC是等边三角形,∴∠BAC=60°.∵AE=EC,∴∠EAC=∠ACE.∵∠CEF=60°,∴∠EAC=30°.∴AF是ΔABC中∠BAC的平分线,∴BF =CF,∴点F是线段BC的中点.本课时的主要教学内容为菱形的定义和性质.学生已经学习了平行四边形的性质,这是本课时知识的基础.关于菱形的定义和性质,就是在平行四边形的基础上,进一步强化条件得到的.本课时授课思路为“创设情境——猜想归纳——逻辑证明——知识运用”.课堂上的折纸活动,可以让学生直观感知图形的特点,还可以激发学生学习的兴趣和积极性.教师应该留给学生充分的独立思考时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.教师要引导学生积极思考,抓住表面现象中的本质.在性质的证明和应用过程中,教师要鼓励学生大胆探索新颖独特的证明思路和证明方法,提倡证明方法的多样性,并引导学生在与其他同学的交流中进行证明方法的比较,优化证明方法,有利于提高学生的逻辑思维水平.随堂练习(教材第4页)解:根据菱形的对角线互相垂直,可知ΔAOB是直角三角形,由勾股定理可求出OB=3 cm,再根据菱形的对角线互相平分可得BD=2OB=6 cm.习题1.1(教材第4页)1.证明:在菱形ABCD中,AB=BC,BC∥AD,∴∠B+∠BAD=180°,∵∠BAD=2∠B,∴∠B=60°,又∵BA=BC,∴ΔABC是等边三角形.2.解:∵四边形ABCD 是菱形,∴AD=DC=CB=BA,AC⊥BD,AO=AC=×8=4,DO=BD=×6=3,在RtΔAOD中,由勾股定理,得AD==5. ∴菱形ABCD的周长为4AD=4×5=20.3.证明:在菱形ABCD中,AD=AB,AC⊥BD,∴AC平分∠DAB,同理,CA平分∠DCB,BD 平分∠ABC和∠ADC.4.解:共有4个等腰三角形,分别为ΔBAD,ΔBCD,ΔADC,ΔABC.共有4个直角三角形,分别为ΔAOB,ΔAOD,ΔCOD,ΔBOC.(1)在折纸过程中,教师要与学生探讨折纸的方法,明确折叠过程中的对应点及相应的对称轴,便于学生正确迅速地找出菱形中的对称关系.掌握数学知识离不开“实践——认识——再实践——认识”这个重要的学习方法,通过说理论证可以使学生充分理解菱形的性质,在这个过程中,教师要充分关注学生使用几何语言的规范性和严谨性.(2)类比方法是数学中重要的方法,所以本课时类比以前学过的平行四边形的有关概念、性质,让学生通过自主学习,共同探究,很自然地突破了重难点.(3)本课时重难点、易错点的掌握要通过不同形式的练习加以巩固,让学生积极参与,培养合作意识,激发学习兴趣,同时教师随时注意学生们出现的问题,及时引导和反馈,使学生在快乐中掌握知识.如图所示,菱形ABCD的边长为4,∠BAD=120°.点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是.〔解析〕如图所示,连接DE,EC,DF,则BF=DF.∵四边形ABCD为菱形,∠BAD=120°,∴∠ABC=60°.∴ΔABC为等边三角形.∵E是AB的中点,∴CE⊥AB,∴CE⊥CD.在RtΔBEC中,∠ABC=60°,BC=4,∴BE=BC=2,CE==2.在RtΔECD中,CE=2,DC=4,∴ED=2.根据两点之间线段最短,可知EF+DF的最小值为2.∴EF+BF的最小值为2.故填2.第课时1.理解菱形的定义,掌握菱形的判定方法;会用这些判定方法进行有关的论证和计算.2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.尝试从不同角度寻求菱形的判定方法,并能有效地解决问题,尝试比较不同判定方法之间的差异,并获得判定四边形是菱形的经验.启发引导学生理解探索结论和证明结论的过程,掌握合情推理与演绎推理的相互依赖和相互补充的辩证关系,培养学生合作交流的能力,以及独立思考的良好习惯.【重点】探索证明菱形的两个判定方法,掌握证明的基本要求和方法.【难点】明确推理证明的条件和结论能用数学语言正确表达.【教师准备】木条和橡皮筋【学生准备】复习上课时的相关知识.导入一:人们戴的帽子的形状千奇百怪,有一段时间,电视上经常看到大学生戴的菱形帽,它是受到外国博士帽的启发.在日本,到第二次世界大战为止,戴菱形帽一直是年轻人的梦想,戴上它显得有知识有学问.这是由于菱形的特殊因素能给人一种舒服的感觉.那么,我们怎样判断一个四边形是否是菱形呢?导入二:什么样的四边形是平行四边形?它有哪些判定方法?教师提示:判定方法应该从三个方面分析:边:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形.角:两组对角分别相等的四边形是平行四边形.对角线:对角线互相平分的四边形是平行四边形.那么,菱形的判定有什么方法呢?[设计意图]通过类比的方法引导学生发现判定菱形的方法.一、由菱形的定义判定[过渡语] 接下来我们研究怎样判断一个四边形是菱形.【学生活动】明确菱形的定义既是菱形的性质,又可作为菱形的第一种判定方法,即有一组邻边相等的平行四边形是菱形.【思考】除了运用菱形的定义,类比平行四边形的性质定理和判定定理,你能找出判定菱形的其他方法吗?二、菱形的判定(1)思路一已知:在▱ABCD中,对角线AC与BD相交于点O,AC⊥BD.求证▱ABCD是菱形.证明:∵四边形ABCD是平行四边形,∴OA=OC.∵AC⊥BD,∴BD所在的直线是线段AC的垂直平分线.∴BA=BC.∴▱ABCD是菱形(菱形的定义).【思考】从上述证明过程中,你得出什么结论?定理:对角线互相垂直的平行四边形是菱形.思路二【学生活动】用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可动的十字,四周围上一根橡皮筋,做成一个四边形.(1)转动木条,这个四边形总有什么特征?你能证明你发现的结论吗?猜想:四边形的对角线互相平分.(2)继续转动木条,观察什么时候橡皮筋围成的四边形变成菱形?猜想:当木条互相垂直时,平行四边形的一组邻边相等,此时四边形为菱形.(3)你能证明你的猜想吗?猜想:如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形.已知:在▱ABCD中,对角线AC,BD互相垂直.求证▱ABCD是菱形.证明:∵四边形ABCD是平行四边形,∴OA=OC(平行四边形的对角线互相平分).又∵AC⊥BD,∴BD所在的直线是线段AC的垂直平分线,∴AB=BC,∴▱ABCD是菱形(有一组邻边相等的平行四边形是菱形).定理:对角线互相垂直的平行四边形是菱形.三、菱形的判定(2)[过渡语] 菱形的判定还有其他的方法吗?思路一学生先画两条等长的线段AB,AD,然后分别以B,D为圆心,AB长为半径画弧,得到两弧的交点C,连接BC,CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画.通过探究,容易得到:四条边相等的四边形是菱形.证明上述结论.[设计意图]采用观察、操作、交流、演绎的手法来突破难点,通过严谨的推理和证明培养学生的几何思维.思路二问题我们如何画一个菱形呢?通常先画两条等长的线段AB,AD,然后分别以B,D 为圆心,AB长为半径画弧,得到两弧交点C,连接BC,CD即可.【学生活动】(1)观察画图的过程,你能说明得到的四边形为什么是菱形吗?学生思考后,展开讨论寻找原因.原因:这个四边形的四条边相等,根据菱形定义即可判定.(2)你能得出什么结论?学生得出从一般的四边形直接判定菱形的方法:四条边相等的四边形是菱形.[设计意图]通过教师画图演示,让学生从直观操作的角度去发现问题,使探究的问题形象化、具体化,培养学生的形象思维能力.利用平行四边形的判定和菱形的定义判定该四边形是菱形,进一步提高学生的抽象思维能力.本活动进一步体现了试验几何和论证几何的有机结合.猜想:四条边相等的四边形是菱形.如图所示,在四边形ABCD,已知AB=BC=CD=DA.求证四边形ABCD是菱形.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).又∵AB=BC,∴平行四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形).[设计意图]由菱形的定义得出从一般的四边形直接判定菱形的方法:四条边相等的四边形是菱形,并激发学生探究的欲望.[知识拓展] 四条边相等的四边形是菱形.在▱ABCD中,已知对角线AC与BD相交于点O,AB=,OA=2,OB=1.求证▱ABCD是菱形.证明:在ΔAOB中,∵AB=,OA=2,OB=1,∴AB2=AO2+OB2.∴ΔAOB是直角三角形,即∠AOB是直角.∴AC⊥BD.∴▱ABCD是菱形(对角线互相垂直的平行四边形是菱形).[知识拓展] (1)菱形的判断可以从两个基本图形(四边形或平行四边形)考虑,进行证明.(2)菱形的性质定理和菱形的判定定理是互逆定理.1.下列命题正确的是( )A.对角线互相平分的四边形是菱形B.对角线互相平分且相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形答案:D2.用两个边长为a的等边三角形纸片拼成的四边形是( )A.等腰梯形B.正方形C.长方形D.菱形答案:D3.如图所示,在ΔABC中,AD⊥BC于D,点D,E,F分别是BC,AB,AC的中点.求证四边形AEDF是菱形.解析:首先判定四边形AEDF是平行四边形,然后连接EF证明EF⊥AD,利用对角线互相垂直的平行四边形是菱形来判定.证明:∵点D,E,F分别是BC,AB,AC的中点,∴DE∥AC,DF∥AB,∴四边形AEDF是平行四边形.连接EF,如图所示,∵点E,F分别是AB和AC的中点,∴EF∥BC.又∵AD⊥BC,∴AD⊥EF,∴平行四边形AEDF是菱形.第2课时1.根据菱形的定义进行判定2.定理:对角线互相垂直的平行四边形是菱形3.定理:四条边相等的四边形是菱形例1例2一、教材作业【必做题】教材第7页随堂练习.【选做题】教材第7页习题1.2的1,2题.二、课后作业【基础巩固】1.下列说法正确的是( )A.对角线互相垂直且相等的四边形是菱形B.四条边都相等的四边形是菱形C.一组邻边相等的四边形是菱形D.对角线相等的四边形是菱形2.已知▱ABCD的对角线相交于点O,分别添加下列条件:①AC⊥BD;②AB=BC;③AC平分∠BAD;④AO=DO.使得▱ABCD是菱形的条件有( )A.1个B.2个C.3个D.4个3.如图所示,如果要使▱ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是.4.如图所示,点E,F,G,H分别是四边形ABCD中AD,BD,BC,CA的中点,当四边形ABCD的边满足条件: 时,四边形EFGH是菱形.【能力提升】5.如图所示,在ΔABC中,CD平分∠ACB交AB于点D,DE∥AC交BC于点E,DF∥BC 交AC于点F.求证四边形DECF是菱形.。