空间向量解立体几何(含综合题习题)
空间向量在立体几何中的应用和习题(含答案)[1]
空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0; ④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则<m 1,m 2>与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4), ∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CN AM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a aa C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D .则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A-PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题: 1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B )2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B )32 (C)33 (D )32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B )θ >ϕ,m <n (C)θ <ϕ,m <n(D )θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图 9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A C A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。
空间向量与立体几何练习题(带答案)
空间向量与立体几何练习题(带答案)一、选择题1.若空间向量a与b不相等,则a与b一定()A.有不同的方向B.有不相等的模C.不可能是平行向量D.不可能都是零向量【解析】若a=0,b=0,则a=b,这与已知矛盾,故选D.【答案】D图2-1-72.如图2-1-7所示,已知平行六面体ABCD-A1B1C1D1,在下列选项中,CD→的相反向量是()A.BA→B.A1C1→C.A1B1→D.AA1→【解析】由相反向量的定义可知,A1B1→是CD→的相反向量.【答案】C图2-1-83.在如图2-1-8所示的正三棱柱中,与〈AB→,AC→〉相等的是() A.〈AB→,BC→〉B.〈BC→,CA→〉C.〈C1B1→,AC→〉D.〈BC→,B1A1→〉【解析】∵B1A1→=BA→,∴〈BA→,BC→〉=〈AB→,AC→〉=〈BC→,B1A1→〉=60°,故选D.【答案】D4.在正三棱锥A-BCD中,E、F分别为棱AB,CD的中点,设〈EF→,AC→〉=α,〈EF→,BD→〉=β,则α+β等于()A.π6B.π4C.π3D.π2【解析】如图,取BC的中点G,连接EG、FG,则EG∥AC,FG∥BD,故∠FEG=α,∠EFG=β.∵A-BCD是正三棱锥,∴AC⊥BD.∴EG⊥FG,即∠EGF=π2.∴α+β=∠FEG+∠EFG=π2.【答案】D5.如图2-1-9所示,正方体ABCD-A1B1C1D1中,以顶点为向量端点的所有向量中,直线AB的方向向量有()图2-1-9A.8个B.7个C.6个D.5个【解析】与向量AB→平行的向量就是直线AB的方向向量,有AB→,BA→,A1B1→,B1A1→,C1D1→,D1C1→,CD→,DC→,共8个,故选A.【答案】A二、填空题6.在正方体ABCD-A1B1C1D1中,若E为A1C1的中点,则向量CE→和BD→的夹角为________.【解析】∵BD→为平面ACC1A1的法向量,而CE在平面ACC1A1中,∴BD→⊥CE→.∴〈BD→,CE→〉=90°.【答案】90°7.下列命题正确的序号是________.①若a∥b,〈b,c〉=π4,则〈a,c〉=π4.②若a,b是同一个平面的两个法向量,则a=B.③若空间向量a,b,c满足a∥b,b∥c,则a∥c.【解析】①〈a,c〉=π4或3π4,①错;②a∥b;②错;③当c=0时,推不出a∥c,③错;④由于异面直线既不平行也不重合,所以它们的方向向量不共线,④对.【答案】④8.在棱长为1的正方体中,S表示所有顶点的集合,向量的集合P={a|a =P1P2→,P1,P2∈S},则在集合P中模为3的向量的个数为________.【解析】由棱长为1的正方体的四条体对角线长均为3知:在集合P 中模为3的向量的个数为8.【答案】8三、解答题图2-1-109.如图2-1-10所示,在长、宽、高分别为AB=3、AD=2、AA1=1的长方体ABCD-A1B1C1D1的八个顶点的两点为始点和终点的向量中,(1)单位向量共有多少个?(2)试写出模为5的所有向量;(3)试写出与AB→相等的所有向量.【解】(1)由于长方体的高为1,所以长方体4条高所对应的AA1→,A1A→,BB1→,B1B→,CC1→,C1C→,DD1→,D1D→这8个向量都是单位向量,而其他向量的模均不为1,故单位向量共8个.(2)由于这个长方体的左右两侧的对角线长均为5,故模为5的向量有AD1→,D1A→,A1D→,DA1→,BC1→,C1B→,B1C→,CB1→共8个.(3)与向量AB→相等的所有向量(除它自身之外)共有A1B1→,DC→及D1C1→3个.图2-1-1110.如图2-1-11所示,正四棱锥S-ABCD中,O为底面中心,求平面SBD的法向量与AD→的夹角.【解】∵正四棱锥底面为正方形,∴BD⊥AC,SO⊥AC又∵BD∩SO=O∴AC⊥平面SBD.∴AC→为平面SBD的一个法向量.∴〈AC→,AD→〉=45°.图2-1-1211.如图2-1-12,四棱锥P—ABCD中,PD⊥平面ABCD,底面ABCD 为正方形且PD=AD,E、F分别是PC、PB的中点.(1)试以F为起点作直线DE的一个方向向量;(2)试以F为起点作平面PBC的一个法向量.【解】(1)取AD的中点M,连接MF,连接EF,∵E、F分别是PC、PB的中点,∴EF綊12BC,又BC綊AD,∴EF綊12AD,则由EF綊DM知四边形DEFM是平行四边形,∴MF∥DE,∴FM→就是直线DE的一个方向向量.(2)∵PD⊥平面ABCD,∴PD⊥BC,又BC⊥CD,∴BC⊥平面PCD,∵平面PCD,∴DE⊥BC,又PD=CD,E为PC中点,∴DE⊥PC,从而DE⊥平面PBC,∴DE→是平面PBC的一个法向量,由(1)可知FM→=ED→,∴FM→就是平面PBC的一个法向量.。
高二数学空间向量与立体几何试题答案及解析
高二数学空间向量与立体几何试题答案及解析1.长方体中,,,,则与所成角的余弦值为.【答案】【解析】以D为空间原点,DA为x轴,D为z轴,DC为y轴,建立空间直角坐标系则=(-1,2,0),=(-1,-2,3)||=,|'|=,·=-3cos<,>==,即为所求。
【考点】本题主要考查空间向量的应用,向量的数量积,向量的坐标运算。
点评:简单题,通过建立空间直角坐标系,将求异面直线的夹角余弦问题,转化成向量的坐标运算。
2.正方体的棱长为1,是底面的中心,则到平面的距离为.【答案】【解析】因为O是A1C1的中点,求O到平面ABC1D1的距离,就是A1到平面ABC1D1的距离的一半,就是A1到AD1的距离的一半.所以,连接A1D与AD1的交点为P,则A1P的距离是:O到平面ABC1D1的距离的2倍O到平面ABC1D1的距离【考点】本题主要考查空间距离的计算。
点评:本题也可以通过建立空间直角坐标系,将求角、求距离问题,转化成向量的坐标运算,是高考典型题目。
3.已知={-4,3,0},则与垂直的单位向量为= .【答案】(,,0)【解析】设与垂直的向量与垂直的向量=(x,y,0),则-4x+3y=0,,解得x= ,y=,所以=(,,0)。
【考点】本题主要考查向量的坐标运算、向量垂直的充要条件、单位向量的概念。
点评:利用向量垂直的充要条件及单位向量的概念。
4.已知向量与向量平行,则()A.B.C.D.【答案】C【解析】因为向量与向量平行,所以,,故选C。
【考点】本题主要考查平行向量及向量的坐标运算。
点评:简单题,按向量平行的充要条件计算。
5.已知点,为线段上一点,且,则的坐标为()A.B.C.D.【答案】C【解析】设C的坐标为(x,y,z)则向量=(x-4,y-1,z-3)向量=(-2,-6,-2),而即=所以x-4=-,y-1=-2,Z-3=-所以x=,y=-1,z=,C的坐标为,选C。
新人教版高中数学选修一第一单元《空间向量与立体几何》测试卷(包含答案解析)
一、选择题1.如图,在正方形中,点,E F 分别是线段,AD BC 上的动点,且,AE BF AC =与EF 交于G ,EF 在AB 与CD 之间滑动,但与AB 和CD 均不重合.在EF 任一确定位置,将四边形EFCD 沿直线EF 折起,使平面EFCD ⊥平面ABFE ,则下列选项中错误的是( )A .AGC ∠的角度不会发生变化B .AC 与EF 所成的角先变小后变大 C .AC 与平面ABFG 所成的角变小D .二面角G AC B --先变大后变小2.如图所示,在正四面体A -BCD 中,E 为棱AD 的中点,则CE 与平面BCD 的夹角的正弦值为( )A .32B .23C .12D .333.如图,在正方体1111ABCD A B C D -中,M ,N ,P 分别为棱AD ,1CC ,11A D 的中点,则1B P 与MN 所成角的余弦值为( )A .3010B .15-C .7010D .154.如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,13AA =,2AB AC BC ===,则1AA 与平面11AB C 所成角的大小为A .30B .45︒C .60︒D .90︒5.四棱锥P ABCD -中,底面ABCD 为直角梯形,AB AD ⊥,//BC AD ,且2AB BC ==,3AD =,PA ⊥平面ABCD 且2PA =,则PB 与平面PCD 所成角的正弦值为( )A 42B 3C 7D 6 6.已知1e ,2e 是夹角为60的两个单位向量,则12a e e =+与122b e e =-的夹角是( ) A .60B .120C .30D .907.如图,平行六面体中1111ABCD A B C D -中,各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,则对角线1BD 的长为( )A .1B .2C .3D .28.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c =,M 是1D D 的中点,点N 是1AC 上的点,且113AN AC =,用,,a b c 表示向量MN 的结果是( )A .12a b c ++ B .114555a b c ++C .1315105a b c --D .121336a b c --9.正方形ABCD 沿对角线BD 折成直二面角,下列结论:①AD 与BC 所成的角为60︒:②AC 与BD 所成的角为90︒:③BC 与面ACD 所成角的正弦值为63:④二面角A BC D --2:其中正确结论的个数为( ) A .4B .3C .2D .110.在棱长为1的正方体1111ABCD A B C D -中,M ,N ,H 分别在棱1BB ,BC ,BA 上,且满足134BM BB =,12BN BC =,12BH BA =,O 是平面1B HN ,平面ACM 与平面11B BDD 的一个公共点,设BO xBH yBN zBM =++,则3x y z ++=( ) A .105B .125C .145D .16511.已知A (1,0,0),B (0,﹣1,1),OA OB λ+与OB (O 为坐标原点)的夹角为30°,则λ的值为( ) A 6 B .6±C 6D .6±12.设向量(),,0u a b =,(),,1c d υ=,其中22221a b c d +=+=,则下列判断错误的是( )A .向量υ与z 轴正方向的夹角为定值(与c 、d 之值无关)B .u υ⋅的最大值为2C .u 与υ夹角的最大值为34π D .ad bc -的最大值为l13.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,则()1,2,,8i AB AP i ⋅=⋅⋅⋅的不同值的个数为( )A .8B .4C .2D .1二、填空题14.在一直角坐标系中,已知()1,6A -,()3,8B -,现沿x 轴将坐标平面折成60︒的二面角,则折叠后A ,B 两点间的距离为__________.15.已知空间向量(0,1,1),(1,0,1)a b ==,则向量a 与b 的夹角为_____________. 16.在长方体1111ABCD A B C D -中,13,3,4AB BC AA ===,则点D 到平面11A D C 的距离是______.17.ABC ∆的三个顶点分别是(1,1,2)A -,(5,6,2)B -,(1,3,1)C -,则AC 边上的高BD 长为__________.18.正四面体ABCD 的棱长为22的球O 过点D ,MN 为球O 的一条直径,则AM AN ⋅的最小值是__________.19.正三棱柱(底面是正三角形的直棱柱)111ABC A B C -的底面边长为2,侧棱长为2,则1AC 与1B C 所成的角为___________.20.如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上.若二面角1D EC D --的大小为4π,则AE =__________.21.如图,棱长为2的正方体1111ABCD A B C D -中,M 是棱1AA 的中点,点P 在侧面11ABB A 内,若1D P 垂直于CM ,则PBC ∆的面积的最小值为__________.22.已知非零向量n b 、及平面α,向量n 是平面α的一个法向量,则0n b ⋅=是“向量b 所在直线在平面α内”的____________条件.23.设向量()1,2,a λ=,()2,2,1b =-,若4cos ,9a b =,则实数λ的值为________. 24.如图,在长方体1111ABCD A B C D -中,1AB =,3BC =,点M 在棱1CC 上,且1MD MA ⊥,则当1MAD 的面积取得最小值时其棱1AA =________.25.已知(2,1,3)a →=-,(4,2,)b x →=-,(1,,2)c x →=-,若a b c →→→⎛⎫+⊥ ⎪⎝⎭,是x =________.26.已知空间四边形ABCD 的每条边和对角线的长都等于2,点E ,F 分别是边BC ,AD 的中点,则AE AF ⋅的值为_____.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】以E 为原点,EA ,EF ,ED 所在的直线为,,x y z 轴,建立空间直角坐标系,设正方形的边长为1,AE a =,利用空间向量的数量积可判断A ,B ;求出平面ABFG 的一个法向量,设AC 与平面ABFG 所成的角为θ,利用向量的数量积可求线面角,进而判断C ;求出平面AGC 的法向量以及平面AGC 的法向量,利用空间向量数量积即可求解. 【详解】以E 为原点,EA ,EF ,ED 所在的直线为,,x y z 轴, 建立空间直角坐标系,设正方形的边长为1,AE a =,(),0,0A a ,()0,1,1C a -,()0,,0G a ,()0,1,0F ,(),1,0B a ,对于A ,(),,0AG a a =-,()0,1,1GC a a =--,()11cos 2221AG GC a a AGC a a AG GC⋅-∠===⋅-, 故AGC ∠的角度不会发生变化,所以A 正确; 对于B ,设AC 与EF 所成的角为θ,(),1,1AC a a =--,()0,1,0EF =, ()222cos 222111AC EF AC EFa a a a θ⋅===-+++-⨯,2222a a -+对称轴为12,且()0,1a ∈,所以2222a a -+先减小后增加, 所以cos θ先增加再减小,即AC 与EF 所成的角先变小后变大,故B 正确; 对于C ,平面ABFG 的一个法向量为()0,0,1m =, 设AC 与平面ABFG 所成的角为θ,sin cos ,ACm AC m ACma θ⋅======, ()0,1a ∈,则1a a+单调递减,sin θ单调递减, 所以AC 与平面ABFG 所成的角变小,故C 正确;对于D ,设平面AGC 的法向量为()111,,n x y z =,则00n AG n AC ⎧⋅=⎨⋅=⎩,即()11111010ax ay ax y a z -+=⎧⎨-++-=⎩,令11x =,11y =,11z =-, 不妨设1,1,1n,设平面ACB 的一个法向量为()222,,p x y z =,则00p AB P CB ⎧⋅=⎨⋅=⎩,()222010y ax a z =⎧⎨+-=⎩,令2z a =,21x a =-,即()1,0,p a a =-,cos,3n pn p n p⋅==== 2221a a -+对称轴为12,在()0,1先减小后增大,()0,1先减小后增大, 二面角G AC B --为钝角,cos ,n p ∴=-先增大后减小, 故二面角G AC B --先减小后增大,故D 错误. 故选:D 【点睛】 思路点睛:解决二面角相关问题通常用向量法,具体步骤为:(1)建坐标系,建立坐标系的原则是尽可能的使得已知点在坐标轴上或在坐标平面内; (2)根据题意写出点的坐标以及向量的坐标,注意坐标不能出错. (3)利用数量积验证垂直或求平面的法向量. (4)利用法向量求距离、线面角或二面角.2.B解析:B 【分析】首先利用正四面体的线与线的位置关系,求出点A 在下底面的投影,进一步求出E 在下底面的射影位置,最后利用所求出的线段长,通过解直角三角形求得结果. 【详解】在正四面体A BCD -中,设棱长为a ,E 为棱AD 的中点, 如下图所示过A 做AO ⊥平面BCD ,则O 为平面BCD 的中心,延长DO 交BC 于G ,过E 做EF GD ⊥, 连接FC ,所以ECF ∠就是所求的CE 与平面BCD 的夹角. 所以222GD CD CG =-,求得3GD a =, 所以33DO a =,利用222AO AD OD =-,解得63AO a =, 所以6EF a =,3CE a =, 在Rt EFC 中,2sin EF ECF CE ∠==,故选B.【点睛】本题主要考查直线与平面所成的角,勾股定理的应用及相关的运算问题,具体的解题步骤与求异面直线所成的角类似,有如下的环节:(1)作--作出斜线与射影所成的角;(2)证--论证所作(或找到的)角就是要求的角;(3)算--常用解三角形的方法(通常是解由垂线段、斜线段、斜线段的射影所组成的直角三角形)求出角;(4)答--回答求解问题.3.A解析:A 【分析】如图以A 为原点,分别以1,,AB AD AA 所在的直线为,,x y z 轴建立空间直角坐标系,求出1B P 和MN 的坐标,设1B P 与MN 所成的角为θ,利用11cos B P MN B P MNθ=⋅⋅即可求解.【详解】如图以A 为原点,分别以1,,AB AD AA 所在的直线为,,x y z 轴建立空间直角坐标系,设正方体的棱长为2,则()0,1,0M ,()2,2,1N ,()12,0,2B ,()0,1,2P , 所以()12,1,0B P =-,()2,1,1MN =, 设1B P 与MN 所成的角为θ, 所以1122130cos 1056B P MN B P MNθ=⋅-⨯+==⨯⋅, 1B P 与MN 所成角的余弦值为3010,故选:A 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.4.A解析:A 【分析】建立空间坐标系,计算1AA 坐标,计算平面11AB C 的法向量,运用空间向量数量积公式,计算夹角即可. 【详解】取AB 的中点D ,连接CD ,以AD 为x 轴,以CD 为y 轴,以1BB 为z 轴,建立空间直角坐标系,可得()1,0,0A ,()11,0,3A ,故()()()11,0,31,0,00,0,3AA =-=,而 ()()111,0,3,0,3,3B C -,设平面11AB C 的法向量为()=,,m a b c ,根据110,0m AB m AC ⋅=⋅=,解得()3,3,2m =-,111 1,?2|?|m AA cos m AA m AA ==.故1AA 与平面11AB C 所成角的大小为030,故选A . 【点睛】考查了空间向量数量积坐标运算,关键构造空间直角坐标系,难度偏难.5.C解析:C 【分析】以A 为坐标原点建立空间坐标系,进而求得PB 和平面PCD 的法向量,再由向量的数量积即可求得PB 与平面PCD 所成角的正弦值. 【详解】依题意,以A 为坐标原点,分别以,,AB AD AP 为,,x y z 轴建立空间直角坐标系O xyz -,2,3,2AB BC AD PA ====,则()()()()0,0,2,2,0,0,2,2,0,0,3,0P B C D ,从而()()()2,0,2,2,2,2,0,3,2PB PC PD =-=-=-设平面PCD 的法向量为(),,n a b c =,00n PC n PD ⎧⋅=⎨⋅=⎩,即2220320a b c b c +-=⎧⎨-=⎩, 不妨取3c =c=3,则1,2a b ==,所以平面PCD 的一个法向量为()1,2,3n =,所以PB 与平面PCD 所成角的正弦值sin cos ,PB n θ===, 故选C.【点睛】本题主要考查了线面所成的角, 其中求解平面的法向量是解题的关键,着重考查了推理与计算能力,属于中档试题. 6.B 解析:B 【分析】利用平面向量的数量积公式先求解a b ⋅,再计算a 与b ,根据数量积夹角公式,即可求解.【详解】由题意得:()()12122a b e e e e ⋅=+⋅-221122132111222e e e e =-⋅-=-⨯⨯-=-,2222121122()21a e e e e e e a ==+=++==⋅ 2222112122(2)4?41b b e e e e e e ==-=+-=-= 设,a b 夹角为312,cos ,018032a b a b θθθ-⋅===-︒≤≤︒⋅, ∴120θ=.故选:B.【点睛】本题考查利用平面向量的数量积计算向量的夹角问题,难度一般,准确运用向量的数量积公式即可.7.B解析:B【分析】在平行六面体中1111ABCD A B C D -中,利用空间向量的加法运算得到11BD BA BB BC =++,再根据模的求法,结合各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,由()()2211BD BA BB BC =++222111222BA BB BC BA BB BC BA BB BC =+++⋅+⋅+⋅求解. 【详解】在平行六面体中1111ABCD A B C D -中,因为各条棱长均为1,共顶点A 的三条棱两两所成的角为60°, 所以111111cos120,11cos6022BA BB BA BC BC BB ⋅=⋅=⨯⨯=-⋅=⨯⨯=, 所以11BD BA BB BC =++,所以()()2211BD BA BB BC =++, 222111222BA BB BC BA BB BC BA BB BC =+++⋅+⋅+⋅,113+22+2222⎛⎫=⨯-⨯⨯= ⎪⎝⎭, 所以12BD =, 故选:B【点睛】本题主要考查空间向量的运算以及向量模的求法,还考查了运算求解的能力,属于中档题. 8.D解析:D【分析】在平行六面体1111ABCD A B C D -中根据空间向量的加法合成法则,对向量MN 进行线性表示,即可求得答案.【详解】连接1C M113AN AC = 可得:1123C N C A = ()111AC AA AC AA AD AB c a b =+=++=++ ∴1122223333C N C A c a b ==--- 又112C M a c =-- ∴11MN C N C M =-22213332c a b a c ⎛⎫=------ ⎪⎝⎭ 121336a b c --= ∴121336a b N c M =-- 故选: D.【点睛】本题考查了空间向量的加法运算,解题关键是掌握向量的加法运算和数形结合,属于基础题. 9.A解析:A【分析】取BD 中点O ,连结AO ,CO ,以O 为原点,OC 为x 轴,OD 为y 轴,OA 为z 轴,建立空间直角坐标系,利用向量法和空间中线线、线面、面面间的位置关系逐一判断四个命题得结论.【详解】解:取BD 中点O ,连结AO ,CO ,∵正方形ABCD 沿对角线BD 折成直二面角,∴以O 为原点,OC 为x 轴,OD 为y 轴,OA 为z 轴,建立空间直角坐标系, 设1OC =,则()0,0,1A ,()0,1,0B -,()1,0,0C ,()0,1,0D ,()0,1,1AD =-,()1,1,0BC =, 1cos 22AD BCAD BC AD BC ⋅⋅===⋅, ∴异面直线AB 与CD 所成的角为60︒,故①正确: ()1,0,1AC =-,()0,2,0BD =,∵0AC BD ⋅=,∴AC BD ⊥,故②正确:设平面ACD 的一个法向量为(),,t x y z =,由00t AC x z t AD y z ⎧⋅=-=⎨⋅=-=⎩,取1z =,得()1,1,1t =,()1,1,0BC =,设BC 与面ACD 所成角为θ,则6sin cos ,332BC t BC t BC t θ⋅====⋅⋅,故③正确:平面BCD 的法向量()0,0,1n =,()0,1,1BA =,()1,1,0BC =,设平面ABC 的法向量(),,m x y z =, 则00m BA y z m BC x y ⎧⋅=+=⎨⋅=+=⎩,取1x =,得()1,1,1m =-, cos ,3m nm n m n⋅<>==⋅, ∴6sin ,3m n <>=. ∴二面角A BC D --的平面角正切值是:2,故④正确.故选:A.【点睛】本题考查利用空间向量法解决立体几何中的问题,属于综合题.10.C解析:C【分析】根据条件确定O 点位置,再根据向量表示确定,,x y z 的值,即得结果.【详解】如图,Q 为AC 与BD 交点,P 为BQ 中点,O 为MQ 与1B P 的交点.过P 作PT 平行MQ 交1BB 于T .如图,则T 为BM 中点,所以1111131334224242MT BM BB MB MB ==⨯=⨯⨯=. 所以123B O OP =, 因此1323421411()555352555BO BB BP BM BH BN BM BH BN =+=⋅+⋅+=++, 因为BO xBH yBN zBM =++,所以411,,555z x y ===,1435x y z ∴++=. 故选:C【点睛】 本题考查平面向量基底表示,考查综合分析求解能力,属中档题.11.C解析:C【分析】运用向量的坐标运算及夹角公式直接求解即可.【详解】解:(1,0,0)(0,,)(1,,)OA OB λλλλλ+=+-=-, ∴2||12,||2OA OB OB λλ+=+=,()2OA OB OB λλ+=,∴cos302λ︒=, ∴4λ=,则0λ>,∴2λ=. 故选:C .【点睛】本题考查空间向量的坐标运算,考查运算求解能力,属于基础题.12.B解析:B【分析】在A 中,取z 轴的正方向向量(0,0,t)t =,求出n 与t 的夹角即可判断命题正确;在B 中,计算u v ac bd ⋅=+,利用不等式求出最大值即可判断命题错误;在C 中,利用数量积求出u 与v 的夹角的最大值,即可判断命题正确;在D 中,利用不等式求出最大值即可判断命题正确.【详解】解:由向量(,,0)u a b =,(,,1)v c d =,其中22221a b c d +=+=,知:在A 中,设z 轴正方向的方向向量(0,0,),0z t t =>,向量v 与z 轴正方向的夹角的余弦值:2cos 452||||z v a z v t c α︒⋅===∴=⋅⋅, ∴向量v 与z 轴正方向的夹角为定值45°(与c ,d 之值无关),故A 正确;在B 中,222222221222a cb d a bcd u v ac bd +++++⋅=+≤+==, 且仅当a =c ,b =d 时取等号,因此u v ⋅的最大值为1,故B 错误;在C 中,由B 可得:||1,11u v u v ⋅≤∴-≤⋅≤,2cos ,||||2u v u v u v a ⋅∴<>==≥=-⋅+, ∴u 与v 的夹角的最大值为34π,故C 正确; 在D 中,222222221222a dbc a b cd ad bc +++++-≤+==, ∴ad −bc 的最大值为1.故D 正确.故选:B .【点睛】本题考查了空间向量的坐标运算、数量积的性质等基础知识与基本技能方法,考查运算求解能力,是中档题.13.D解析:D【分析】根据平面向量运算法则可知2i iAB AP AB AB BP ⋅=+⋅,由线面垂直性质可知0i AB BP ⋅=,从而得到21i AB AP AB ⋅==,进而得到结果. 【详解】 ()2i i i AB AP AB AB BP AB AB BP ⋅=⋅+=+⋅AB ⊥平面286BP P P i AB BP ∴⊥ 0i AB BP ∴⋅= 21i AB APAB ∴⋅== 则()1,2,,8i AB AP i ⋅=⋅⋅⋅的不同值的个数为1个故选:D【点睛】本题考查向量数量积的求解问题,关键是能够利用平面向量线性运算将所求向量数量积转化为已知模长的向量和有垂直关系向量的数量积的运算问题,考查了转化与化归的思想. 二、填空题14.【分析】通过用向量的数量积转化求解距离即可【详解】解:在直角坐标系中已知现沿轴将坐标平面折成的二面角后在平面上的射影为作轴交轴于点所以所以所以故答案为:【点睛】此题考查与二面角有关的立体几何综合题考解析:【分析】通过用向量的数量积转化求解距离即可【详解】解:在直角坐标系中,已知()1,6A -,()3,8B -,现沿x 轴将坐标平面折成60︒的二面角后,()1,6A -在平面xOy 上的射影为C ,作BD x ⊥轴,交x 轴于点D ,所以AB AC CD DB =++,所以2222222AB AC CD DB AC CD CD DB AC DB =+++⋅+⋅+⋅ 2221648268682=++-⨯⨯⨯=,所以AB =,故答案为:【点睛】此题考查与二面角有关的立体几何综合题,考查了数形结合的思想,属于中档题. 15.【分析】根据两向量的夹角余弦公式即可求出两向量的夹角【详解】解:10向量与的夹角为故答案为:【点睛】本题考查空间两向量的夹角大小的应用问题是基础题目 解析:3π【分析】根据两向量的夹角余弦公式,即可求出两向量的夹角.【详解】 解:(0a =,1,1),(1b =,0,1), ∴·1a b =,||2a =,||2b =,cos a ∴<,12||||22a b b a b >===⨯⨯, 向量a 与b 的夹角为3π. 故答案为:3π. 【点睛】 本题考查空间两向量的夹角大小的应用问题,是基础题目.16.【分析】以为原点为轴为轴为轴建立空间直角坐标系利用向量法能求出点到平面的距离【详解】以为原点为轴为轴为轴建立空间直角坐标系设平面的法向量则即取得∴点到平面的距离:故答案为【点睛】空间中点到平面的距离 解析:125【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出点D 到平面11A D C 的距离.【详解】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,(0,0,0)D ,1(3,0,4)A ,1(0,0,4)D ,(0,3,0)C ,1(0,0,4)D D =-,11(3,0,0)D A =,1(0,3,4)DC =-, 设平面11A D C 的法向量(,,)n x y z =,则11100n D A n D C ⎧⋅=⎪⎨⋅=⎪⎩即30340x y z =⎧⎨-=⎩,取4y =,得(0,4,3)n =, ∴点D 到平面11A D C 的距离: 112||5D D nd n ⋅==. 故答案为125. 【点睛】 空间中点到平面的距离的计算,应该通过作出垂足把距离放置在可解的平面图形中计算,注意在平面图形中利用解三角形的方法(如正弦定理、余弦定理等)来求线段的长度、面积等.我们也可以利用空间向量来求,把点到平面的距离问题转化为直线的方向向量在平面的法向量上的投影问题.17.5【解析】分析:设则的坐标利用求得即可得到即可求解的长度详解:设则所以因为所以解得所以所以点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加减或数乘运算(2)解析:5 【解析】 分析:设AD AC λ=,则,OD BD 的坐标,利用BD AC ⊥,求得45λ=-,即可得到 912(4,,)55BD =-,即可求解BD 的长度.详解:设AD λAC =,则()()()OD OA λAC 1,1,2λ0,4,31,14λ,23λ=+=-+-=-+-,所以()BD OD OB 4,54λ,3λ=-=-+-,因为BD AC ⊥,所以()BD AC 0454λ9λ0⋅=+++=,解得4λ5=-, 所以912BD 4,,55⎛⎫=- ⎪⎝⎭,所以(22912BD 5⎫⎛⎫=-=. 点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.18.【解析】很明显当四点共面时数量积能取得最值由题意可知:则是以点D 为顶点的直角三角形且:当向量反向时取得最小值:解析:4-【解析】很明显当,,,O D M N 四点共面时数量积能取得最值,由题意可知:OD OM ON ==,则MDN △是以点D 为顶点的直角三角形,且: ()()()2420,AM AN AD DM AD DN AD AD DM DN DM DNAD DO ⋅=+⋅+=+⋅++⋅=+⋅+ 当向量,AD DO 反向时,AM AN ⋅取得最小值:4224-⨯=-19.【分析】作出图形分别取的中点连接以点为坐标原点所在直线分别为轴建立空间直角坐标系利用空间向量法可求得异面直线与所成的角【详解】分别取的中点连接如下图所示:在正三棱柱中平面且分别为的中点且所以四边形为 解析:3π 【分析】作出图形,分别取AC 、11A C 的中点O 、E ,连接OE 、OB ,以点O 为坐标原点,OB 、OC 、OE 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得异面直线1AC 与1B C 所成的角.【详解】分别取AC 、11A C 的中点O 、E ,连接OE 、OB ,如下图所示:在正三棱柱111ABC A B C -中,1AA ⊥平面ABC ,11//AC A C 且11AC A C =, O 、E 分别为AC 、11A C 的中点,1//AO A E ∴且1AO A E =,所以,四边形1AOEA 为平行四边形,1//OE AA ∴,则OE ⊥平面ABC , ABC 为等边三角形,O 为AC 的中点,则OB AC ⊥,以点O 为坐标原点,OB 、OC 、OE 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()0,1,0A -、()0,1,0C 、13,0,22B 、(10,1,22C , (10,2,22AC =,(13,1,22B C =--, 1111111cos ,22323AC B CAC B C AC B C ⋅<>===-⨯⋅, 因此,1AC 与1B C 所成的角为3π. 故答案为:3π. 【点睛】 方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.20.【解析】分析:以D 为原点建立空间直角坐标系设再求出平面和平面的法向量利用法向量所成的角表示出二面角的平面角解方程即可得出答案详解:以D 为原点以为轴的正方向建立空间直角坐标系设平面的法向量为由题可知平 解析:23【解析】分析:以D 为原点,建立空间直角坐标系,设(02)AE λλ=≤≤,再求出平面AECD 和平面1D EC 的法向量,利用法向量所成的角表示出二面角的平面角,解方程即可得出答案. 详解:以D 为原点,以DA ,DC ,1DD 为,,x y z 轴的正方向,建立空间直角坐标系,设(02)AE λλ=≤≤,平面1D EC 的法向量为(,,)m x y z =由题可知,1(0,0,1)D ,(0,2,0)C ,(1,,0)E λ,1(0,2,1)DC =-,(1,2,0)CE λ=- 平面AECD 的一个法向量为z 轴,∴可取平面AECD 的法向量为(0,0,1)n =(,,)m x y z =为平面1D EC 的法向量,∴120(2)0m D C y z m CE x y λ⎧⋅=-=⎨⋅=+-=⎩ 令1y =,则(2,1,2)m λ=-二面角1D EC D --的大小为4π ∴cos 4m nm n π⋅=⋅,即 222(2)12λ=-++ 解得 23λ=-,23λ=+(舍去)∴23AE =-故答案为23-点睛:空间向量法求二面角(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图2、3,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=(或12,n n π-).21.【分析】建立空间直角坐标系由求得得到进而求得三角形的面积的最小值得到答案【详解】以D 点为空间直角坐标系的原点以DC 所在直线为y 轴以DA 所在直线为x 轴以为z 轴建立空间直角坐标系则点所以因为所以因为所以【分析】建立空间直角坐标系,由1D P CM ⊥,求得22z y =-,得到BP =而求得三角形的面积的最小值,得到答案.【详解】以D 点为空间直角坐标系的原点,以DC 所在直线为y 轴,以DA 所在直线为x 轴,以1DD 为z 轴,建立空间直角坐标系.则点1(2,,),(0,0,2)P y z D ,所以1(2,,2)D P y z =-.因为(0,2,0),(2,0,1)C M ,所以(2,2,1)CM =-,因为1D P CM ⊥,所以4220y z -+-=,所以22z y =-,因为B(2,2,0),所以(0,2,)BP y z =-,所以BP ===因为02y ≤≤,所以当65y =时,min BP =.因为BC ⊥BP ,所以min 1()22PBC S ∆=⨯=. 【点睛】 本题主要考查了空间向量的应用,其中解答建立适当的空间直角坐标系,利用向量的坐标表示,以及向量的数量积的运算,求得BP 的最小值是解答的关键,着重考查了推理与运算能力,属于中档试题.22.必要不充分【分析】根据充分条件和必要条件的定义进行判断即可【详解】解:若向量是平面的法向量则若则则向量所在直线平行于平面或在平面内即充分性不成立若向量所在直线平行于平面或在平面内则向量是平面的法向量 解析:必要不充分【分析】根据充分条件和必要条件的定义进行判断即可.【详解】解:若向量n 是平面α的法向量,则n α⊥,若0n b =,则//b α,则向量b 所在直线平行于平面α或在平面α内,即充分性不成立, 若向量b 所在直线平行于平面α或在平面α内,则//b α,向量n 是平面α的法向量,∴n α⊥,则n b ⊥,即0n b =,即必要性成立,则0n b =是向量b 所在直线平行于平面α或在平面α内的必要条件,故答案为:必要不充分【点睛】本题主要考查充分条件和必要条件的判断,根据向量和平面的位置关系是解决本题的关键.23.或【分析】由公式结合空间向量数量积的坐标运算律得出关于实数的方程解出该方程可得出实数的值【详解】则解得或故答案为或【点睛】本题考查空间向量数量积的坐标运算解题的关键就是利用空间向量数量积的坐标运算列 解析:2或1227-. 【分析】 由公式4cos ,9a ba b a b ⋅==⋅结合空间向量数量积的坐标运算律得出关于实数λ的方程,解出该方程可得出实数λ的值. 【详解】()1,2,a λ=,()2,2,1b =-,246a b λλ⋅=+-=-,25a λ=+,3b =, 24cos ,9a ba b a b λ⋅===+⋅,则606λλ->⇒<,解得2λ=或1227-. 故答案为2或1227-. 【点睛】 本题考查空间向量数量积的坐标运算,解题的关键就是利用空间向量数量积的坐标运算列出方程求解,考查运算求解能力,属于中等题.24.【分析】设建立空间直角坐标系由向量的垂直可得进而可得由基本不等式即可得解【详解】设如图建立空间直角坐标系则所以又所以所以所以当且仅当时等号成立所以当的面积取得最小值时其棱故答案为:【点睛】本题考查了 解析:2【分析】设()10AA m m =>,()0M n n C m =≤≤,建立空间直角坐标系,由向量的垂直可得1m n n -=,进而可得1221452MAD S n n=++△,由基本不等式即可得解. 【详解】设()10AA m m =>,()0M n n C m =≤≤,如图建立空间直角坐标系,则()10,0,D m ,()0,1,M n ,()3,0,0A , 所以()10,1,M n m D =-,()3,1,AM n =-,又1MD MA ⊥,所以()110M A D M n n m ⋅=+-=,所以1m n n -=, 所以()122122111113114222MAD S M AM m n n n nD =⋅=+-++=++△()2222221114143415522222n n n n n n ⎛⎫=++=++≥+⋅= ⎪⎝⎭, 当且仅当2n =322m =时,等号成立, 所以当1MAD 的面积取得最小值时其棱1322AA =. 故答案为:322. 【点睛】 本题考查了空间向量及基本不等式的应用,考查了运算求解能力,合理转化、细心计算是解题关键,属于中档题.25.-4【分析】由题可知可得运用向量数量积的坐标运算即可求出【详解】解:根据题意得解得:故答案为:【点睛】本题考查空间向量垂直的数量积关系运用空间向量数量积的坐标运算考查计算能力解析:-4【分析】由题可知,a b c →→→⎛⎫+⊥ ⎪⎝⎭,可得0a b c →→→⎛⎫+= ⎪⎝⎭,运用向量数量积的坐标运算,即可求出x . 【详解】解:根据题意得, ()2,1,3a b x →→+=-+ a b c →→→⎛⎫+⊥ ⎪⎝⎭, ∴22(3)0a b c x x →→→⎛⎫+=--++= ⎪⎝⎭, 解得:4x =-.故答案为:4-.【点睛】本题考查空间向量垂直的数量积关系,运用空间向量数量积的坐标运算,考查计算能力. 26.1【分析】结合已知条件运用向量的数量积运算法则即可求出结果【详解】因为点分别是边的中点则又因为空间四边形ABCD 的每条边和对角线的长都等于2所以原式故答案为:【点睛】本题考查了向量数量积的运算解题过 解析:1【分析】结合已知条件运用向量的数量积运算法则即可求出结果.【详解】因为点E ,F 分别是边BC ,AD 的中点, 则111()()224AE AF AB AC AD AB AD AC AD ⋅=+⋅=⋅+⋅,又因为空间四边形ABCD 的每条边和对角线的长都等于2,所以原式1(22cos6022cos60)14=⨯⨯⨯︒+⨯⨯︒=. 故答案为:1【点睛】本题考查了向量数量积的运算,解题过程中运用向量的加法运算进行转化,转化为空间四边形边之间的关系,然后再结合题意计算出结果,需要掌握解题方法.。
第一章空间向量与立体几何-章节综合训练
章节综合训练[文档副标题][日期]世纪金榜[公司地址]单元质量评估(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知向量a=(1,,2),b=(2,-1,k),且a与b互相垂直,则k的值是( )A.-1B.C.1D.-2.若a,b,c是空间任意三个向量,λ∈R,下列关系中,不成立的是( )A.a+b=b+aB.λ(a+b)=λa+λbC.(a+b)+c=a+(b+c)D.b=λa3如图,空间四边形ABCD中,E,F分别是BC,CD的中点,则++等于( )A. B. C. D.4.若A(1,-2,1),B(4,2,3),C(6,-1,4),则△ABC的形状是( )A.不等边锐角三角形B.直角三角形C.钝角三角形D.等边三角形5.已知平面α的一个法向量为n1=(-1,-2,-1),平面β的一个法向量n2=(2,4,2),则不重合的平面α与平面β( )A.平行B.垂直C.相交但不垂直D.不确定6.若a=e1+e2+e3,b=e1+e2-e3,c=e1-e2+e3,d=e1+2e2+3e3,d=αa+βb+γc,则α,β,γ分别为( )A.,-1,-B.,1,C.-,1,-D.,1,-7.(2013·吉安高二检测)已知直线l1的方向向量a=(2,4,x),直线l2的方向向量b=(2,y,2),若|a|=6,且a⊥b,则x+y的值是( )A.1或-3B.-1或3C.-3D.18.已知A(1,-1,2),B(2,3,-1),C(-1,0,0),则△ABC的面积是( )A. B. C. D.9.下列命题正确的是( )A.若=+,则P,A,B三点共线B.若{a,b,c}是空间的一个基底,则{a+b,b+c,a+c}构成空间的另一个基底C.(a·b)·c=|a|·|b|·|c|D.△ABC为直角三角形的充要条件是·=010.如图所示,四边形ABCD为矩形,AB=3,BC=1,EF∥BC且AE=2EB,G为BC的中点,K 为△ADF的外心.沿EF将矩形折成一个120°的二面角A-EF-B,则此时KG的长是( )A.1B.3C.D.11.如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,BB1的中点,G为棱A1B1上的一点,且A1G=λ(0≤λ≤1),则点G到平面D1EF的距离为( )A. B. C. D.12.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为( )A. B. C. D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知向量a=(λ+1,0,2λ),b=(6,2μ-1,2),若a∥b,则λ与μ的值分别是、.14.若A(0,2,),B(1,-1,),C(-2,1,)是平面α内的三点,设平面α的法向量为n=(x,y,z),则x∶y∶z= .15.平面α,β,γ两两相互垂直,且它们相交于一点O,P点到三个面的距离分别是1cm,2 cm,3cm,则PO的长为cm.16.如图,平面PAD⊥平面ABCD,四边形ABCD为正方形,∠PAD=90°,且PA=AD=2,E,F分别是线段PA,CD的中点,则异面直线EF与BD所成角的余弦值为.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5),(1)求以向量,为一组邻边的平行四边形的面积S.(2)若向量a分别与向量,垂直,且|a|=,求向量a的坐标.18.(12分)如图所示,在直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,∠ACB= 90°,侧棱AA1=2,CA=2,D是CC1的中点,试问在线段A1B上是否存在一点E(不与端点重合)使得点A1到平面AED的距离为?19.(12分)在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1.(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.20.(12分)如图所示,在棱长为1的正方体ABCD-A'B'C'D'中,E,F分别是D'D,DB的中点,G在棱CD上,CG=CD,H为C'G的中点.(1)求证:EF⊥B'C.(2)求EF,C'G所成角的余弦值.(3)求FH的长.21.(12分)如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=PA.点O,D分别是AC,PC的中点,OP⊥底面ABC.(1)求证:OD∥平面PAB.(2)求直线OD与平面PBC所成角的正弦值.22.(12分)(能力挑战题)已知四棱锥P-ABCD中,PA⊥平面ABCD,且PA=4PQ=4,底面为直角梯形,∠CDA=∠BAD=90°,AB=2,CD=1,AD=,M,N分别是PD,PB的中点.(1)求证:MQ∥平面PCB.(2)求截面MCN与底面ABCD所成二面角的大小.(3)求点A到平面MCN的距离.答案解析1.【解析】选D.a·b=2-+2k=0,∴k=-.2.【解析】选D.由向量的运算律知,A,B,C均正确,对于D,当a=0,b≠0时,不成立.3.【解析】选C.++=++=.4.【解析】选A.=(3,4,2),=(5,1,3),=(2,-3,1).由·>0,得A为锐角;由·>0,得C为锐角;由·>0,得B为锐角,且||≠||≠||,所以△ABC为不等边锐角三角形.5.【解析】选A.∵n2=-2n1,∴n2∥n1,故α∥β.6.【解析】选A.由d=αa+βb+γc=α(e1+e2+e3)+β(e1+e2-e3)+γ(e1-e2+e3)=(α+β+γ)e1+(α+β-γ)e2+(α-β+γ)e3=e1+2e2+3e3.∴解得α=,β=-1,γ=-.7.【解析】选A.根据|a|=6,可得x=±4,当x=4时,y=-3,当x=-4时,y=1,所以x+y=1或-3.8.【解析】选C.易知=(1,4,-3),=(-2,1,-2),∴||=,||=3,cos<,>==,∴sin<,>==,∴S△ABC=||·||sin<,>=.9.【解析】选B.P,A,B三点共面不一定共线,故A错误;由数量积公式知C错误;△ABC为直角三角形时可能·=0,也可能·=0,或·=0,故D错误.10.【解析】选D.由题意知K为AF的中点,取EF的中点H,连接KH,GH易证明∠KHG即为二面角A-EF-B的平面角,在△KHG中,由KH=HG=1,∠KHG=120°,可解得KG=.11.【解题指南】可以根据几何的有关性质转化为点A1到直线D1E的距离,利用三角形的面积可求;或建立空间直角坐标系,利用平面的法向量来求.【解析】选D.方法一:∵A1B1∥EF,G在A1B1上,∴G到平面D1EF的距离即为A1到平面D1EF的距离,也就是A1到D1E的距离.∵D1E=,∴由三角形面积可得h==.方法二:以AB,AD,AA的方向作为x轴,y轴,z轴的正方向建立空间直角坐标系,1则E(0,0,),F(1,0,),D1(0,1,1),G(λ,0,1),∴=(1,0,0),=(0,1,),=(-λ,1,0),设平面EFD1的一个法向量是n=(x,y,z),则解得取y=1,则n=(0,1,-2).∴点G到平面EFD1的距离是:h===.12.【解析】选 D.如图建立空间直角坐标系,则B(2,2,0),D1(0,0,1),C1(0,2,1),∴=(0,0,1),=(2,2,0),=(-2,0,1).设平面BB1D1D的一个法向量n=(x,y,z),由可得∴可取n=(1,-1,0).cos<n,>===,∴BC1与平面BB1D1D所成角的正弦值为.13.【解析】∵a∥b,∴存在实数k,使得a=k b,即(λ+1,0,2λ)=k(6,2μ-1,2),∴解得k=λ=,μ=.答案:14.【解析】=(1,-3,-),=(-2,-1,-),∵∴∴x∶y∶z=y∶y∶(-y)=2∶3∶(-4).答案:2∶3∶(-4)15.【解析】如图所示,建立空间直角坐标系,不妨设O(0,0,0),P(1,2,3),∴|OP|==(cm).答案:16.【解析】∵=-,=-++=-++,∴·= (-)·(-++)=4-2=2.||2=(-++)2=6,∴||=,||=2,∴cos<,>= ==,即异面直线EF与BD所成角的余弦值为.答案:【一题多解】如图所示,建立空间直角坐标系Axyz,∴E(0,0,1),F(1,2,0),B(2,0,0),D(0,2,0),∴=(1,2,-1),=(-2,2,0),∴cos<,>==,∴异面直线EF与BD所成角的余弦值为.17.【解析】(1)∵=(-2,-1,3),=(1,-3,2),∴cos∠BAC==,∴∠BAC=60°,∴S=||||sin 60°=7. (2)设a=(x,y,z),则a⊥⇒-2x-y+3z=0,a⊥⇒x-3y+2z=0,|a|=⇒x2+y2+z2=3,解得x=y=z=1或x=y=z=-1,∴a=(1,1,1),或a=(-1,-1,-1).18.【解析】存在.以CA,CB,CC1所在的直线为x轴,y 轴和z轴,建立如图所示的空间直角坐标系,则A(2,0,0),A1(2,0,2),D(0,0,1),B(0,2,0),设=λ,λ∈(0,1),则E(2λ,2(1-λ),2λ).又=(-2,0,1),=(2(λ-1),2(1-λ),2λ),设n=(x,y,z)为平面AED的法向量,则即取x=1,则y=,z=2,即n=(1,,2).由于d==,∴=,又λ∈(0,1),解得λ=,∴当点E为A1B的中点时,A1到平面AED的距离为.【拓展提升】探索性问题的解法在立体几何中,经常会遇到点、线、面处在什么位置时结论成立,或某一结论成立时需要具备什么条件,或某一结论在某一条件下,某个元素在某个位置时是否成立等类似的问题.这些问题都属探索性问题,解决这些问题仅凭几何手段有时会十分困难,我们借助向量将“形”转化为“数”,把点、线、面的位置数量化,通过对代数式的运算就可得出相应的结论.这样可以使许多几何问题进行类化,公式化,使问题的解决变得有“法”可依,有路可寻.19.【解析】以A为原点,,,的方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系.设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E(,1,0),B1(a,0,1),(1)=(0,1,1),=(-,1,-1),∵·=-×0+1×1+(-1)×1=0,∴B1E⊥AD1.(2)假设在棱AA1上存在一点P(0,0,z0),使得DP∥平面B1AE,此时=(0,-1,z0),又设平面B1AE的法向量为n=(x,y,z).∵n⊥平面B1AE,=(a,0,1),=(,1,0),∴n⊥,n⊥,得取x=1,得平面B1AE的一个法向量n=(1,-,-a),要使DP∥平面B1AE,只需n⊥,有-az0=0,解得:z0=.∴AP=,∴在棱AA1上存在点P,使得DP∥平面B1AE,且P为AA1的中点.20.【解题指南】要证明EF⊥B'C,只需要证明·=0;要求EF,C'G所成角的余弦值,只要求出,所成角的余弦值;要求FH的长,只要求出|即可. 【解析】(1)设=a,=b,=c,则c·b=b·a=c·a=0,|a|2=a2=1,|b|2=b2=1,|c|2=c2=1.∵=+=-c+(a-b)=(a-b-c),=-=b-c,∴·=(a-b-c)·(b-c)=(c2-b2)=×(1-1)=0.∴EF⊥B'C.(2)∵=(a-b-c),=+=-c-a,∴·=(a-b-c)·(-c-a)=(-a2+c2)=,||2=(a-b-c)2=(a2+b2+c2)=,||2=(-c-a)2=c2+a2=,∴||=,||=,cos<,>==,∴EF,C'G所成角的余弦值为.(3)∵=+++=(a-b)+b+c+=(a-b)+b+c+(-c-a)=a+b+c, ∴||2=(a+b+c)2=a2+b2+c2=,∴FH的长为.21.【解析】方法一:(1)∵O,D分别为AC,PC的中点,∴OD∥PA.又PA⊂平面PAB,OD⊄平面PAB,∴OD∥平面PAB.(2)设PA=2a,∵AB⊥BC,OA=OC,∴OA=OB=OC= a.又∵OP⊥平面ABC,∴PA=PB=PC=2a.取BC中点E,连接PE,则BC⊥平面POE.作OF⊥PE于F,连接DF,则OF⊥平面PBC.∴∠ODF是OD与平面PBC所成的角.∵PA=2a,OA=a,∴OP= a.又∵OE=,∴OF= a.在Rt△ODF中,sin∠ODF==,∴OD与平面PBC所成角的正弦值为.方法二:∵OP⊥平面ABC,OA=OC,AB=BC,∴OA⊥OB,OA⊥OP,OB⊥OP.以O为原点,建立空间直角坐标系Oxyz(如图), 设AB=a,则A(a,0,0),B(0,a,0),C(-a,0,0).设OP=h,则P(0,0,h).(1)∵D为PC的中点,∴=(-a,0,h).又=(a,0,-h),∴=-.∴∥,又PA⊂平面PAB,OD⊄平面PAB,∴OD∥平面PAB.(2)∵PA=2a,∴h=a,∴=(-a,0,a).可求得平面PBC的一个法向量n=(-1,1,), ∴cos<,n>==.设OD与平面PBC所成的角为θ,则sinθ=|cos<,n>|=.∴OD与平面PBC所成角的正弦值为.22.【解析】方法一:以A为原点,以AD,AB,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系Axyz,由AB=2,CD=1,AD=,PA=4PQ=4,M,N分别是PD,PB的中点,可得A(0,0,0),B(0,2,0),C(,1,0),D(,0,0),P(0,0,4),Q(0,0,3),M(,0,2),N(0,1,2).(1)=(,-1,0),=(0,2,-4),=(-,0,1).设平面PBC的法向量为n0=(x,y,z),则有:n0⊥⇒(x,y,z)·(,-1,0)=0⇒x-y=0,n0⊥⇒(x,y,z)·(0,2,-4)= 0⇒2y-4z=0,令z=1,则x=,y=2⇒n0=(,2,1).∴·n0=(-,0,1)·(,2,1)=0,又MQ⊄平面PCB,∴MQ∥平面PCB.(2)设平面的MCN的法向量为n=(x',y',z'),又=(-,-1,2),=(-,0,2),则有:n⊥⇒(x',y',z')·(-,-1,2)=0⇒-x'-y'+2z'=0,n⊥⇒(x',y',z')·(-,0,2)=0⇒-x'+2z'=0,令z'=1,则x'=,y'=1⇒n=(,1,1).又=(0,0,4)为平面ABCD的一个法向量.∴cos<n,>===,又截面MCN与底面ABCD所成二面角为锐二面角,∴截面MCN与底面ABCD所成二面角的大小为.(3)∵=(-,-1,0),∴所求的距离d=CAnn==.方法二:(1)取AP的中点E,连接ED,则ED∥CN,依题有Q为EP的中点,所以MQ∥ED,所以MQ∥CN,又MQ⊄平面PCB,CN⊂平面PCB,∴MQ∥平面PCB.(2)易证:平面MEN∥底面ABCD,所以截面MCN与平面MEN所成的二面角即为平面MCN与底面ABCD所成的角, 因为PA⊥平面ABCD,所以PA⊥平面MEN,过E作EF⊥MN,垂足为F,连接QF,则由三垂线定理可知QF⊥MN,由(1)可知M,C,N,Q四点共面,所以∠QFE为截面MCN与平面MEN所成的二面角的平面角.在Rt△MEN中,ME=,NE=1,MN=,故EF=,所以:tan∠QFE=,∠QFE=.即所求二面角大小为.(3)因为EP的中点为Q,且平面MCN与PA交于点Q,所以点A到平面MCN的距离是点E到平面MCN的距离的3倍,由(2)知:MN⊥平面QEF,则平面MCNQ⊥平面QEF且交线为QF,作EH⊥QF,垂足为H,则EH⊥平面MCNQ,故EH即为点E到平面MCN的距离.在Rt△EQF中,EF=,∠QFE=,故EH=,即原点A到平面MCN的距离是.关闭Word文档返回原板块。
最新人教版高中数学选修一第一单元《空间向量与立体几何》测试题(有答案解析)
一、选择题1.在棱长为1的正方体1111ABCD A B C D -中,,M N 分别为111,BD B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥,则下列说法正确的是( )A .点P 可以是棱1BB 的中点 B .线段MP 的最大值为32C .点P 的轨迹是正方形D .点P 轨迹的长度为2+52.若(),,0OA m n =,40,,OB p n ⎛⎫= ⎪⎝⎭,()0,4,0F ,1AF m =+,1BF p =+,则m p +的最小值为( )A .1B .2C .3D .63.两直线14127x y z -+==-和623511x y z +--==-的夹角的余弦是( ) A .2227-B .2227C .227D .227-4.在平行六面体ABCD A B C D ''''-中,若2AC x AB y BC z CC →→→→''=++,则x y z ++=( ) A .52B .2C .32D .1165.已知二面角l αβ--的两个半平面α与β的法向量分别为,a b ,且,a b 6π<>=,则二面角l αβ--的大小为( ) A .6π B .56π C .6π或56πD .6π或3π6.在正三棱柱(底面是正三角形的直三棱柱)111ABC A B C -中,2AB =,E ,F 分别为11A C 和11A B 的中点,当AE 和BF 所成角的余弦值为14时,AE 与平面11BCC B 所成角的正弦值为( ) A .62B .64C .104D .1027.给出下列命题:①若空间向量,a b 满足a b =,则a b =; ②空间任意两个单位向量必相等;③对于非零向量c ,由a c b c ⋅=⋅,则a b =; ④在向量的数量积运算中()()a b c a b c ⋅⋅=⋅⋅. 其中假.命题的个数是( ) A .1 B .2C .3D .48.正方形ABCD 沿对角线BD 折成直二面角,下列结论:①AD 与BC 所成的角为60︒:②AC 与BD 所成的角为90︒:③BC 与面ACD 所成角的正弦值为63:④二面角A BC D --的平面角正切值是2:其中正确结论的个数为( ) A .4B .3C .2D .19.已知在四面体ABCD 中,点M 是棱BC 上的点,且3BM MC =,点N 是棱AD 的中点,若MN x AB y AC z AD =++其中,,x y z 为实数,则x y z ++的值是( )A .12B .12-C .-2D .210.有下列四个命题:①已知1e 和2e 是两个互相垂直的单位向量,a =21e +32e ,1b ke =-42e ,且a ⊥b ,则实数k =6;②已知正四面体O ﹣ABC 的棱长为1,则(OA OB +)•(CA CB +)=1;③已知A (1,1,0),B (0,3,0),C (2,2,3),则向量AC 在AB 上正投影的数5 ④已知1a e =-223e e +,1b e =-+32e +23e ,c =-31e +72e ({1e ,2e ,3e }为空间向量的一个基底),则向量a ,b ,c 不可能共面.其中正确命题的个数为( ) A .1个B .2个C .3个D .4个11.如图在一个120︒的二面角的棱上有两点,A B ,线段,AC BD 分别在这个二面角的两个半平面内,且均与棱AB 垂直,若2AB =,1AC =,2BD =,则CD 的长为( ).A .2B .3C .23D .412.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,则()1,2,,8i AB AP i ⋅=⋅⋅⋅的不同值的个数为( )A .8B .4C .2D .113.在正方体1111ABCD A B C D -中,点E ,F 分别是AB ,1CC 的中点,则直线1A E 与平面11B D F 所成角的正弦值是( ) A .155B .1510C 5D .3010第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题14.已知直四棱柱1111ABCD A B C D -中,12AA =,底面ABCD 是直角梯形,A ∠为直角,//AB CD ,4AB =,2AD =,1DC =,则异面直线1BC 与DC 所成角的余弦值为______.15.已知正三棱柱111ABC A B C -的所有棱长都相等,则1AC 与平面11BB C C 所成角的余弦值为_________.16.在一直角坐标系中,已知()1,6A -,()3,8B -,现沿x 轴将坐标平面折成60︒的二面角,则折叠后A ,B 两点间的距离为__________.17.已知正三棱锥P ABC -的侧棱长为2020,过其底面中心O 作动平面α交线段PC 于点S ,交,PA PB 的延长线于,M N 两点,则111PS PM PN++的取值范围为__________18.设a =(1,1,0),b =(﹣1,1,0),c =(1,0,1),d =(0,0,1),,,,a b c d 存在正交基底,则四个向量中除正交基底外的向量用正交基底表示出来并写在填空处;否则在填空处写上“无正交基底”.你的答案是_____.19.设E ,F 是正方体1AC 的棱AB 和11D C 的中点,在正方体的12条面对角线中,与截面1A ECF 成60︒角的对角线的数目是______.20.已知直线l 的一个方向向量(4,3,1)d =,平面α的一个法向量(,3,5)n m =-,且//l α,则m =____21.如图所示,在空间四边形OABC 中,,,OA a OB b OC c ===,点M 在线段OA 上,且2OM MA =,N 为BC 中点,若=MN xa yb zc ++,则x y z ++=_____________22.ABC ∆的三个顶点分别是(1,1,2)A -,(5,6,2)B -,(1,3,1)C -,则AC 边上的高BD 长为__________.23.在空间直角坐标系O xyz -中,已知(1,0,2)A -,(0,1,1)B -,点,C D 分别在x 轴,y 轴上,且AD BC ⊥,那么CD →的最小值是______.24.正三棱柱ABC A B C '''-,2,22AB AA ='=,M 是直线BC 上的动点,则异面直线AB '与C M '所成角的范围为_____________.25.如图,在ABC ∆和AEF ∆中,B 是EF 的中点,2AB =,4EF =,3CA CB ==,若7AB AE AC AF ⋅+⋅=,则EF 与BC 的夹角的余弦值等于__________.26.如图,在平行六面体1111ABCD A B C D -中,以顶点A 为顶点的三条棱的长均为2,且两两所成角均为60°,则1||AC =__________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,根据MP CN ⊥,确定点P 的轨迹,在逐项判断,即可得出结果. 【详解】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系, 因为该正方体的棱长为1,,M N 分别为111,BD B C 的中点,则()0,0,0D ,111,,222M ⎛⎫ ⎪⎝⎭,1,1,12N ⎛⎫ ⎪⎝⎭,()0,1,0C , 所以1,0,12CN ⎛⎫= ⎪⎝⎭,设(),,P x y z ,则111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,因为MP CN ⊥,所以1110222x z ⎛⎫-+-= ⎪⎝⎭,2430x z +-=,当1x =时,14z =;当0x =时,34z =;取11,0,4E ⎛⎫ ⎪⎝⎭,11,1,4F ⎛⎫ ⎪⎝⎭,30,1,4G ⎛⎫ ⎪⎝⎭,30,0,4H ⎛⎫ ⎪⎝⎭, 连接EF ,FG ,GH ,HE ,则()0,1,0EF GH ==,11,0,2EH FG ⎛⎫==- ⎪⎝⎭, 所以四边形EFGH 为矩形,则0EF CN ⋅=,0EH CN ⋅=,即EF CN ⊥,EH CN ⊥, 又EFEH E =,且EF ⊂平面EFGH ,EH ⊂平面EFGH ,所以CN ⊥平面EFGH , 又111,,224EM ⎛⎫=-⎪⎝⎭,111,,224MG ⎛⎫=- ⎪⎝⎭,所以M 为EG 中点,则M ∈平面EFGH ,所以,为使MP CN ⊥,必有点P ∈平面EFGH ,又点P 在正方体的表面上运动, 所以点P 的轨迹为四边形EFGH , 因此点P 不可能是棱1BB 的中点,即A 错; 又1EF GH ==,52EH FG ==,所以EF EH ≠,则点P 的轨迹不是正方形; 且矩形EFGH的周长为2222+⨯=+C 错,D 正确; 因为点M 为EG 中点,则点M 为矩形EFGH 的对角线交点,所以点M 到点E和点G 的距离相等,且最大,所以线段MP ,故B 错. 故选:D. 【点睛】关键点点睛:求解本题的关键在于建立适当的空间直角坐标系,利用空间向量的方法,由MP CN ⊥,求出动点轨迹图形,即可求解.2.C解析:C【分析】根据空间向量模的坐标表示,由题中条件,得到11m p =+=+,推出22163282230m p n n n n-+-++=,配方整理,即可求出最小值. 【详解】因为(),,0OA m n =,40,,OB p n ⎛⎫= ⎪⎝⎭,()0,4,0F ,1AF m =+,1BF p =+,所以11m p =+=+,则()2222224214421m n m m p p p n ⎧+-=++⎪⎨⎛⎫-+=++⎪ ⎪⎝⎭⎩,即()224214421n m p n⎧-=+⎪⎨⎛⎫-=+⎪ ⎪⎝⎭⎩, 所以22221632164812261628822n n n m p n n n n n ⎛⎫⎛⎫-++-+-=++-++ ⎪ ⎪⎝⎭⎝⎭+=22444822466n n n n n n ⎛⎫⎛⎫⎛⎫=+-++=+-+≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当44n n+=,即2n =时,22m p +取得最小值3,则m p +的最小值为3. 故选:C. 【点睛】 关键点点睛:求解本题的关键在于利用空间向量模的坐标表示,用n 表示出22m p +,即22164882222n n n m n p ⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭+=,配方整理,即可求解.3.B解析:B 【分析】写出直线的方向向量,求出方向向量的夹角的余弦值,其绝对值为两直线夹角余弦. 【详解】由题意两直线的方向向量分别为(1,2,7)m =-,(5,1,1)n =-,cos ,1m n m n m n⋅<>===+∵两直线夹角为锐角或直角,∴. 故选:B . 【点睛】本题考查求空间两直线的夹角,求出两直线的方向向量,由方向向量的夹角与两直线夹角相等或互补求解.4.A解析:A 【分析】根据空间向量的线性运算,得出AB BC AC AC CC CC →→→→→→⎛⎫=+=++ ⎪⎭'''⎝,结合题意,即可求出11,2y z ==,从而得出x y z ++的值. 【详解】解:由空间向量的线性运算,得AB BC AC AC CC CC →→→→→→⎛⎫=+=++ ⎪⎭'''⎝,由题可知,2AC x AB y BC z CC →→→→''=++, 则1,1,21x y z ===,所以11,2y z ==, 151122x y z ∴++=++=. 故选:A. 【点睛】本题考查空间向量的基本定理的应用,以及空间向量的线性运算,属于基础题.5.C解析:C 【分析】由于方向量的方向性,平面的法向量有正向量或负向量;当a 、b 为异号向量,二面角为π减去两法向量夹角;当a 、b 为同号向量,二面角即为两法向量的夹角,由此即可求得二面角l αβ-- 【详解】两个半平面α与β的法向量分别为,a b ,且,a b 6π<>=由于向量的方向性,法向量与平面有两种情况 当a 、b 为异号向量,如下图示:,a b 6π<>=∴有二面角l αβ--为56π 当a 、b 为同号向量,如下图示:,a b 6π<>=∴有二面角l αβ--为6π 综上,有二面角l αβ--为6π或56π 故选:C 【点睛】本题考查了二面角与平面法向量夹角的关系,依据法向量的夹角判断平面所成二面角的大小,注意法向量的方向性,讨论在不同情况下二面角的大小6.B解析:B 【分析】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,由AE 和BF 所成角的余弦值为14,求出t 的值,由此能求出AE 与平面11BCC B 所成角的正弦值.【详解】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,则)3,1,0A,()0,0,0B , ()0,2,0C ,33,22E t ⎛⎫⎪ ⎪⎝⎭,31,22F t ⎛⎫ ⎪ ⎪⎝⎭ , 31,22AE t ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BF t ⎛⎫= ⎪ ⎪⎝⎭,因为AE 和BF BF 所成角的余弦值为14,所以1cos ,41AE BF AE BF AE BF⋅===, 解得:1t =所以1,122AE ⎛⎫=- ⎪ ⎪⎝⎭,平面11BCC B 的法向量()1,0,0n =,所以AE 与平面11BCCB 所成角的正弦值为32sin 42AE n AE nα⋅===故选:B 【点睛】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面的位置关系等基础知识,属于中档题.7.D解析:D 【分析】结合向量的性质,对四个命题逐个分析,可选出答案. 【详解】对于①,空间向量,a b 的方向不一定相同,即a b =不一定成立,故①错误; 对于②,单位向量的方向不一定相同,故②错误;对于③,取()0,0,0a =,()1,0,0b =,()0,1,0c =,满足0a c b c ⋅=⋅=,且0c ≠,但是a b ≠,故③错误;对于④,因为a b ⋅和b c ⋅都是常数,所以()a b c ⋅⋅和()a b c ⋅⋅表示两个向量,若a 和c 方向不同,则()a b c ⋅⋅和()a b c ⋅⋅不相等,故④错误. 故选:D. 【点睛】本题考查向量的概念与性质,考查向量的数量积,考查学生的推理论证能力,属于基础题.8.A解析:A 【分析】取BD 中点O ,连结AO ,CO ,以O 为原点,OC 为x 轴,OD 为y 轴,OA 为z 轴,建立空间直角坐标系,利用向量法和空间中线线、线面、面面间的位置关系逐一判断四个命题得结论.【详解】解:取BD 中点O ,连结AO ,CO , ∵正方形ABCD 沿对角线BD 折成直二面角,∴以O 为原点,OC 为x 轴,OD 为y 轴,OA 为z 轴,建立空间直角坐标系, 设1OC =,则()0,0,1A ,()0,1,0B -,()1,0,0C ,()0,1,0D ,()0,1,1AD =-,()1,1,0BC =,1cos 22AD BC AD BC AD BC⋅⋅===⋅, ∴异面直线AB 与CD 所成的角为60︒,故①正确:()1,0,1AC =-,()0,2,0BD =,∵0AC BD ⋅=,∴AC BD ⊥,故②正确: 设平面ACD 的一个法向量为(),,t x y z =,由00t AC x z t AD y z ⎧⋅=-=⎨⋅=-=⎩,取1z =,得()1,1,1t =,()1,1,0BC =,设BC 与面ACD 所成角为θ,则sin cos ,33BC t BC t BC tθ⋅====⋅③正确:平面BCD 的法向量()0,0,1n =,()0,1,1BA =,()1,1,0BC =, 设平面ABC 的法向量(),,m x y z =,则00m BA y z m BC x y ⎧⋅=+=⎨⋅=+=⎩,取1x =,得()1,1,1m =-,cos ,3m n m n m n ⋅<>==⋅, ∴6sin ,3m n <>=∴二面角A BC D --,故④正确. 故选:A.【点睛】本题考查利用空间向量法解决立体几何中的问题,属于综合题.9.B解析:B 【分析】利用向量运算得到131442MN AB AC AD =--+得到答案. 【详解】()3113142442MN MB BA AN AB AC AB AD AB AC AD =++=--+=--+ 故12x y z ++=- 故选:B 【点睛】本题考查了空间向量的运算,意在考查学生的计算能力.10.C解析:C 【分析】利用向量的基本概念逐一进行判断,即可得出结论. 【详解】 解:①a =21e +32e ,1b ke =-42e ,且a b ⊥,2212121122(23)(4)2()(38)12()2120a b e e ke e k e k e e e k ∴=+-=+--=-=,解得6k =,所以①正确.②()()OA OB CA CB OA CA OA CB OB CA OB CB ++=+++11cos6011cos9011cos9011cos60001=⨯⨯︒+⨯⨯︒+⨯⨯︒+⨯⨯︒++=,所以②正确.③(1,1,3)AC =,(1,2,0)AB =-,向量AC 在AB 上正投影2221||(1)20AC AB AB ⨯===-++③正确. ④假设向量a ,b ,c 共面,则a xb yc =+, 所以123123122(32)(37)e e e x e e e y e e -+=-+++-+, 1231232(3)(37)2e e e x y e x y e xe -+=--+++,所以13x y =--,237x y -=+,12x =, 得12x =,12y , 所以向量a ,b ,c 共面,所以④不正确. 即正确的有3个, 故选:C . 【点睛】本题考查向量的基本概念,向量垂直,共面,正投影等,属于中档题.11.B解析:B 【分析】由CD CA AB BD =++,两边平方后展开整理,即可求得2CD ,则CD 的长可求. 【详解】 解:CD CA AB BD =++,∴2222222CD CA AB BD CA AB CA BD AB BD =+++++,CA AB ⊥,BD AB ⊥,∴0CA AB =,0BD AB =,()1||||cos 1801201212CA BD CA BD =︒-︒=⨯⨯=.∴2124219CD =+++⨯=,||3CD ∴=,故选:B . 【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.12.D解析:D 【分析】根据平面向量运算法则可知2i iAB AP AB AB BP ⋅=+⋅,由线面垂直性质可知0i AB BP ⋅=,从而得到21i AB AP AB ⋅==,进而得到结果.【详解】()2i i i AB AP AB AB BP AB AB BP ⋅=⋅+=+⋅AB ⊥平面286BP P P i AB BP ∴⊥ 0i AB BP ∴⋅=21i AB AP AB ∴⋅== 则()1,2,,8i AB AP i ⋅=⋅⋅⋅的不同值的个数为1个 故选:D 【点睛】本题考查向量数量积的求解问题,关键是能够利用平面向量线性运算将所求向量数量积转化为已知模长的向量和有垂直关系向量的数量积的运算问题,考查了转化与化归的思想.13.D解析:D 【分析】设正方体棱长为2,以1,,AD AB AA 为,,x y z 轴建立空间直角坐标系,求得1(0,1,2)A E =-和平面11B D F 的一个法向量为(1,1,2)n =,利用向量的夹角公式,即可求解. 【详解】设正方体棱长为2,分别以1,,AD AB AA 为,,x y z 轴建立空间直角坐标系, 则111(0,0,2),(0,1,0),(0,2,2),(2,0,2),(2,2,1)A E B D F , 所以1111(0,1,2),(2,2,0),(2,0,1)A E B D B F =-=-=-.设平面11B D F 的法向量为(,,)n x y z =,则1110,0,n B D n B F ⎧⋅=⎪⎨⋅=⎪⎩即220,20,x y x z -=⎧⎨-=⎩令1x =,则1,2y z ==, 即平面11B D F 的一个法向量为(1,1,2)n =. 设直线1A E 与平面11B D F 所成角为θ,则1130sin 30nA E n A Eθ⋅===⋅. 故选D. 【点睛】本题主要考查了利用空间向量求解直线与平面所成的角,根据几何体的结构特征,建立适当的空间直角坐标系,求得直线的方向向量和平面的一个法向量,利用向量的夹角公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题14.【分析】本题首先可结合题意绘出空间直角坐标系然后根据空间直角坐标系得出以及最后根据即可得出结果【详解】因为四棱柱使直四棱柱为直角所以可以以为坐标原点以所在直线分别为轴轴轴建立如图所示的空间直角坐标系 解析:317【分析】本题首先可结合题意绘出空间直角坐标系,然后根据空间直角坐标系得出()0,1,0DC =以及()12,3,2BC =--,最后根据111cos ,DC BC DC BC DC BC ⋅=⋅即可得出结果.【详解】因为四棱柱1111ABCD A B C D -使直四棱柱,A ∠为直角,//AB CD ,所以可以以D 为坐标原点,以DA 、DC 、1DD 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则()0,0,0D ,()2,4,0B ,()0,1,0C ,()10,1,2C , 故()0,1,0DC =,()12,3,2BC =--, 因为1DC =,222123217BC =++=,所以1113317cos ,1717DC BC DC BC D BC C ⋅-===⋅, 故异面直线DC 与1BC 所成的角的余弦值为31717, 故答案为:31717. 【点睛】方法点睛:求空间中两条异面直线所成角的大小是立体几何中最为常见的基本题型之一.这类问题的求解一般有两条途径:其一是平移其中的一条直线或两条直线,将其转化为共面直线所成角,然后再构造三角形,通过解三角形来获得答案;其二是建立空间直角坐标系,借助空间向量的数量积公式求出两向量的夹角的大小,从而得出结果.15.【分析】取BC 的中点E 连接AE 证明面可得就是与平面所成的角解直角三角形即可【详解】如上图取BC 的中点E 连接AE 则∵正三棱柱中面面面面∴面∴就是与平面所成的角不妨设正三棱柱的所有棱长都为2则在中故答案 解析:10 【分析】取BC 的中点E ,连接1C E ,AE ,证明AE ⊥面11BB C C ,可得1E AC ∠就是1AC 与平面11BB C C 所成的角,解直角三角形1AC E 即可.【详解】如上图,取BC 的中点E ,连接1C E ,AE ,则AE BC ⊥, ∵正三棱柱111ABC A B C -中,面ABC ⊥面11BB C C ,面ABC 面11BB C C BC =,∴AE ⊥面11BB C C ,∴1E AC ∠就是1AC 与平面11BB C C 所成的角,不妨设正三棱柱111ABC A B C -的所有棱长都为2,则15C E =122AC = 在1Rt AC E ∆中,111510cos 22C E AC E AC ∠===. 10【点睛】本题考查直线与平面所成的角,考查空间想象能力和计算能力,属于常考题.16.【分析】通过用向量的数量积转化求解距离即可【详解】解:在直角坐标系中已知现沿轴将坐标平面折成的二面角后在平面上的射影为作轴交轴于点所以所以所以故答案为:【点睛】此题考查与二面角有关的立体几何综合题考 解析:217【分析】通过用向量的数量积转化求解距离即可 【详解】解:在直角坐标系中,已知()1,6A -,()3,8B -,现沿x 轴将坐标平面折成60︒的二面角后,()1,6A -在平面xOy 上的射影为C ,作BD x ⊥轴,交x 轴于点D , 所以AB AC CD DB =++,所以2222222AB AC CD DB AC CD CD DB AC DB =+++⋅+⋅+⋅2221648268682=++-⨯⨯⨯=, 所以217AB =, 故答案为:217【点睛】此题考查与二面角有关的立体几何综合题,考查了数形结合的思想,属于中档题.17.【分析】设则根据空间四点共面的条件又四点共面则即得出答案【详解】设则由为底面中心又因为四点共面所以且所以即即故答案为:【点睛】本题考查空间四点共面的条件的应用属于中档题解析:32020⎧⎫⎨⎬⎩⎭【分析】设,,PM x PN y PS z ===,则111333zPAPB PCPO PM PN PS x y =⨯⋅+⨯⋅+⨯⋅,根据空间四点共面的条件,又,,,S M N O 四点共面,则202020202020+1333zx y +=,即得出答案. 【详解】设,,PM x PN y PS z ===. 则PA PA PM x=⋅,PB PB PN y=⋅,PC PC PS z=⋅.由O 为底面ABC 中心, ()2132PO PA AO PA AB AC =+=+⨯+ ()()133PA PB PCPA PB PA PC PA ++⎡⎤=+-+-=⎣⎦ 111333z PA PB PCPM PN PS x y =⨯⋅+⨯⋅+⨯⋅ 333zPA PB PC PM PN PS x y=⋅+⋅+⋅ 又因为,,,S M N O 四点共面,所以+1333zPA PB PC xy+=且2020PA PB PC ===.所以202020202020+1333z x y +=,即1113+z 2020x y += 即11132020PS PM PN ++=. 故答案为:32020⎧⎫⎨⎬⎩⎭.【点睛】本题考查空间四点共面的条件的应用,属于中档题.18.【分析】四个向量中找出三个不共面的非零向量可以作为基底除正交基底外的向量用正交基底表示出来【详解】1100若共面则存在使得化简得:无解故不共面则为正交基底设则解得:故答案为:【点睛】本题考察了空间向 解析:1122c a bd =-+【分析】四个向量中找出三个不共面的非零向量可以作为基底,除正交基底外的向量用正交基底表示出来. 【详解】(1a =,1,0),(1b =-,1,0),(1c =,0,1),(0d =,0,1),∴0a b =,0a d =,0b d =,若,,a b d 共面,则存在,x y 使得a xb yd =+,化简得:110x x y =-⎧⎪=⎨⎪=⎩,无解,故,,a b d 不共面,则a ,b ,d 为正交基底, 设c xa yb zd =++,则101x y x y z =-⎧⎪=+⎨⎪=⎩, 解得:11,,122x y z ==-=, ∴1122c a bd =-+.故答案为:1122c a bd =-+. 【点睛】本题考察了空间向量的基本定理,正交分解坐标表示,属于基础题.19.【分析】由于平面不是特殊的平面故建系用法向量求解以为原点建系正方体三边为坐标轴求出平面的法向量求解面对角线和的夹角即可求得答案【详解】以点为原点所在直线为轴所在直线为轴所在直线为轴设正方体棱长为2如 解析:4【分析】由于平面1A ECF 不是特殊的平面,故建系用法向量求解,以D 为原点建系,正方体三边为坐标轴,求出平面1A ECF 的法向量n ,求解面对角线和n 的夹角,即可求得答案. 【详解】以点D 为原点,AD 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴设正方体棱长为2,如图:则(2,0,0),(0,0,0),(2,2,0),(0,2,0)A D B C1111(2,0,2),(2,2,2,),(0,2,2),(0,0,2)A B C D ,(2,1,0),(0,1,2)E F∴ 1(2,1,0),((0,1,2),(2,2,0)EC A E AC =-==-1(2,2,0),(2,0,2)BD BC =--=-- 11(0,2,2),(0,2,2)B A A B =--=-当面对角线与截面1A ECF 成60︒角,∴ 需保证直线与法向量的夹角为30︒,即其余弦值3± 设平面1A ECF 的法向量(,,)n x y z =100n EC n A E ⎧⋅=⎪⎨⋅=⎪⎩ 可得:2020y z x y -=⎧⎨-+=⎩ ,取2y = ∴ (1,2,1)n = ,则||6n = 33cos ,||||86n AC AC n n AC ⋅<>===≠⋅⋅ 3cos ,286BD n <>==⨯ 13cos ,286B C n <>=≠±⋅ 13cos ,86B A n <>==⋅ 13cos ,86A B n <>=≠⨯ 当两条面对角线平行时,求解其中一条与面1A ECF 的法向量n 夹角即可.平面11AA D D 中1AD 与EF 平行,故不符合题意.综上所述,符合题意的面对角线为:1111,,,BD B D AB DC 共4条.故答案为:4.【点睛】本题考查了线面角求法,根据题意画出几何图形,掌握正方体结构特征是解本题的关键.对于立体几何中角的计算问题,可以利用空间向量法,利用向量的夹角公式求解,属于基础题. 20.【分析】由题意可得根据线面平行可得则进而得到解得即可【详解】解:由题意可得则解得【点睛】本题主要考查了直线与平面的位置关系根据线面平行线面垂直的性质得到平面的法向量与平行于平面的直线垂直考查了空间向 解析:1-【分析】由题意可得,根据线面平行可得d n ⊥,则=0d n ,进而得到4950m +-=,解得即可.【详解】解:由题意可得d n ⊥,则4950m +-=解得1m =-【点睛】本题主要考查了直线与平面的位置关系,根据线面平行、线面垂直的性质得到平面的法向量与平行于平面的直线垂直,考查了空间向量垂直的坐标表示.21.【分析】用表示从而求出即可求出从而得出答案【详解】点在上且为的中点故故答案为【点睛】本题主要考查了平面向量的线性运算运用向量的加法法则来求解属于基础题 解析:13【分析】用,,a b c 表示,ON OM ,从而求出MN ,即可求出,,x y z ,从而得出答案【详解】,,,OA a OB b OC c ===点M 在OA 上,且2OM MA =,N 为BC 的中点22=33OM OA a ∴= ()111222ON OB OC b c =+=+ 112=223MN ON OM b c a ∴-=+- 211,,322x y z ∴=-== 故21113223x y z ++=-++=故答案为13【点睛】 本题主要考查了平面向量的线性运算,运用向量的加法法则来求解,属于基础题 22.5【解析】分析:设则的坐标利用求得即可得到即可求解的长度详解:设则所以因为所以解得所以所以点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加减或数乘运算(2)解析:5【解析】分析:设AD AC λ=,则,OD BD 的坐标,利用BD AC ⊥,求得45λ=-,即可得到 912(4,,)55BD =-,即可求解BD 的长度. 详解:设AD λAC =,则()()()OD OA λAC 1,1,2λ0,4,31,14λ,23λ=+=-+-=-+-,所以()BD OD OB 4,54λ,3λ=-=-+-,因为BD AC ⊥,所以()BD AC 0454λ9λ0⋅=+++=,解得4λ5=-, 所以912BD 4,,55⎛⎫=- ⎪⎝⎭,所以(22912BD 5⎫⎛⎫=-=. 点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.23.【分析】设0则由知所以由此能求出其最小值【详解】设001-即(当时取最小值)故答案为:【点睛】方法点睛:求最值常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法要根据已知【分析】设(C x ,0,0),(0D ,y ,0),则(1,,2)AD y →=-,(,1,1)BC x →=-,由20AD BC x y →→=--=,知2x y =+.所以||CD →【详解】设(C x ,0,0),(0D ,y ,0),(1A -,0,2),(0B ,1,-1),∴(1,,2)AD y →=-,(,1,1)BC x →=-, AD BC ⊥,∴20AD BC x y →→=--=,即2x y =+.(,,0)CD x y →=-,∴||CD →=2.(当1y =-时取最小值)【点睛】方法点睛:求最值常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法.要根据已知条件灵活选择方法求解. 24.【分析】建立如图所示的空间直角坐标系设由向量法求两异面直线所成角的余弦表示为的函数求出最大值和最小值后得的范围这里需引入函数用导数求出函数的最小值从而得出的最大值【详解】以为轴为轴建立如图所示的空间 解析:,62ππ⎡⎤⎢⎥⎣⎦【分析】建立如图所示的空间直角坐标系,设CM kCB =,由向量法求两异面直线所成角的余弦cos θ表示为k 的函数,求出最大值和最小值后得θ的范围.这里需引入函数()f x 用导数求出函数的最小值,从而得出cos θ的最大值.【详解】以AB 为x 轴,AA '为z 轴建立如图所示的空间直角坐标系A xyz -,则(2,0,B ',(2,0,0)B ,(1,3,0)C,(1,3,2C ',设CM kCB =,则k ∈R,(1,CB =,(0,0,(1,(,,C M C C CM k k ''=+=-+=-. 又(2,0,AB '=,设直线AB '与C M '所成角为θ, 则cos 2AB C M AB C Mθ''⋅==''=, 4k =时,min (cos )0θ=,设()f x =,则32224()(2)x f x x +'==+, 12x <-时,()0f x '<,()f x 递减,12x >-时,()0f x '>,()f x 递增,∴12x =-时,()f x 取得极小值也是最小值132f ⎛⎫-=- ⎪⎝⎭, 4x <时,()0f x <,4x >时,222(4)8162x x x x -=-+<+,212x <+,∴max ()3f x =, max 3(cos )223θ==, 即30cos θ≤≤,∴,62ππθ⎡⎤∈⎢⎥⎣⎦. 故答案为:,62ππ⎡⎤⎢⎥⎣⎦.【点睛】方法点睛:本题考查求异面直线所成的角.解题方法是空间向量法.求异面直线所成角的方法:(1)几何法(定义法):作出异面直线所成的角并证明,然后解三角形得解;(2)向量法:建立空间直角坐标系,求出两直线的方向向量的夹角余弦的绝对值得异面直线所成角的余弦值,从而得角.25.【分析】由题意可得由此求得由以及两个向量的加减法的法则及其几何意义可求得由数量积的定义即可得到结果【详解】由题意可得∴由可得∴即∴故答案为【点睛】本题主要考查两个向量的加减法的法则以及其几何意义两个解析:16【分析】由题意可得22 9()BC AC AB ==-,由此求得2AC AB ⋅=,由 7AB AE AC AF ⋅+⋅=以及两个向量的加减法的法则及其几何意义可求得 2EF BC ⋅=,由数量积的定义即可得到结果.【详解】由题意可得()229BC AC AB==- 222AC AB AC AB =+-⋅ 942AC AB =+-⋅, ∴2AC AB ⋅=.由7AB AE AC AF ⋅+⋅=,可得 ()()AB AB BE AC AB BF ⋅++⋅+ 2AB AB BE AC AB AC BF =+⋅+⋅+⋅()42AB BF AC BF =+⋅-++⋅()1662BF AC AB EF BC =+⋅-=+⋅. ∴2EF BC ⋅=,即43cos ,2EF BC ⨯⨯=, ∴1cos ,6EF BC =,故答案为16. 【点睛】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义、以及运算性质,属于中档题. 26.【分析】设且利用数量积运算即得解【详解】设故答案为:【点睛】本题考查了空间向量的模长数量积运算考查了学生空间想象数学运算能力属于中档题 解析:【分析】设1,,AB a AD b AA c===,且1|||++|AC a b c =,利用数量积运算即得解. 【详解】设1,,||||||2,,,60o AB a AD b AA c a b c a b a c c b ===∴===<>=<>=<>=, 222221|||++|||||||22224AC a b c a b c a b a c c b ==+++⋅+⋅+⋅=||26AC ∴=故答案为:【点睛】本题考查了空间向量的模长,数量积运算,考查了学生空间想象,数学运算能力,属于中档题.。
空间向量与立体几何综合练习题之二
空间向量与立体几何综合练习题之二一、选择题【共10道小题】1、若a、b、c为任意向量,m∈R,下列等式不一定成立的是()A. (a+ b) +c=a+ (b+ c)B. (a+ b) ·c=a·c+ b·cC. m(a+ b)=ma+ mbD. (a·b)c=a(b·c)参考答案与解析:D主要考察知识点:向量、向量的运算2、已知ABCD是四面体,O为△BCD内一点,则=(++)是O为△BCD的重心的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件参考答案与解析:C主要考察知识点:空间向量3、若向量a=(1,λ,2),b=(2,-1,2),a、b夹角的余弦值为,则λ等于()A.2B.-2C.-2或D.2或-参考答案与解析:C主要考察知识点:向量与向量运算的坐标表示4、在以下命题中,不正确的个数为()①|a|-|b|=|a+ b|是a、b共线的充要条件②若a∥b,则存在唯一的实数λ,使a=λ·b③对空间任意一点O和不共线的三点A、B、C,若=2-2-,则P、A、B、C四点共面④若{a, b, c}为空间的一个基底,则{a+ b, b+ c, c+ a}构成空间的另一个基底⑤|(a·b)c|=|a|·|b|·|c|A.2B.3C.4D.5参考答案与解析:B主要考察知识点:向量、向量的运算,空间向量5、设a=(x,4,3),b=(3,2,z),且a∥b,则xz等于()A.-4B.9C.-9D.参考答案与解析:B主要考察知识点:向量与向量运算的坐标表示6、在正三棱柱ABC—A1B1C1中,若AB=BB1,则AB1与C1B所成角的大小为()A.60°B.90°C.105°D.75°参考答案与解析:B主要考察知识点:空间向量7、在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,则P到BC的距离是…()A. B.4 C.3 D.2参考答案与解析:解析:如图,取BC中点D,连结AD,则AD⊥BC.∵PA⊥平面ABC,∴PA⊥AD.在Rt△ABD中,AD=4,在Rt△PAD中,PD==4.答案:B主要考察知识点:空间向量8、一条长为a的线段,夹在互相垂直的两个平面之间,它和这两个平面所成的角分别是45°和30°,由这条线段两端向两平面的交线引垂线,垂足间的距离是()A. B. C. a D. a参考答案与解析:解析:用异面直线上两点间的距离公式求解.答案:A主要考察知识点:空间向量9、空间四点A、B、C、D每两点的连线长都等于a,动点P在线段AB上,动点Q在线段CD上,则点P与Q的最小距离为()A. B. a C. a D. a参考答案与解析:解析:当P、Q为中点时,PQ为AB和CD的公垂线,此时最短,求出得PQ= a.答案:B主要考察知识点:空间向量10、如图所示,在正方体ABCD—A′B′C′D′的侧面ABB′A′内有一动点P,点P到直线A′B′的距离与到直线BC的距离相等,则动点P所在曲线的形状为()参考答案与解析:解析:P在B′B上时,应为中点.轨迹符合抛物线定义.答案:C主要考察知识点:空间向量二、填空题【共4道小题】1、A1、A2、A3是空间不共线的三点,则++=___________;类比上述性质得到一般性的结论是______________________.参考答案与解析:0++…++=0主要考察知识点:空间向量2、已知平行六面体ABCD—A1B1C1D1中,ABCD是边长为a的正方形,AA1=b,∠A1AB=∠A1AD=120°,则AC1的长=___________.参考答案与解析:主要考察知识点:空间向量3、已知a=(3,1,5),b=(1,2,-3),向量c与z轴垂直,且满足c·a=9,c·b=-4,则c=___________.参考答案与解析:解析:令c=(x,y,z),则解得∴c=(,-,0).答案:(,-,0)主要考察知识点:向量与向量运算的坐标表示4、在长方体ABCD—A1B1C1D1中,B1C和C1D与底面所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为___________.参考答案与解析:主要考察知识点:空间向量三、解答题【共6道小题】1、如图,E是正方体ABCD—A1B1C1D1的棱C1D1的中点,试求向量与所成角的余弦值.参考答案与解析:解析:设正方体棱长为a,=a,=b,=c,则|a|=|b|=|c|,a·b=b·c=a·c=0.又∵=a+b,=c+a,∴·=(a+b)·(c+a)=a2=a2.又||=a,||=a,∴cos〈,〉==.主要考察知识点:空间向量2、直三棱柱ABC—A1B1C1中,BC1⊥AB1,BC1⊥A1C,求证:AB1=A1C.参考答案与解析:证明:∵=+, =+, ·=(+)·(+)=·-2=0,∴2=·.同理,=+ ,=+, ·=·+2=0(∵=),∴·+·=0.又=,∴·(+)=0.设D为BC的中点,则+=2,∴2·=0.∴BC⊥AD.∴AB=AC.又A1A=B1B,∴A1C=AB1.主要考察知识点:空间向量3、设a1=2i-j+k,a2=i+3j-2k,a3=-2i+j-3k,a4=3i+2j+5k,试问是否存在实数λ、μ、υ,a4=λa1+μa2+υa3成立?如果存在,求出λ、μ、υ;如果不存在,请给出证明.参考答案与解析:解析:假设a4=λa1+μa2+υa3成立,∵a1=(2,-1,1),a2=(1,3,-2),a3=(-2,1,-3),a4=(3,2,5),∴(2λ+μ-2υ,-λ+3μ+υ,λ-2μ-3υ)=(3,2,5).∴解之,得故有a4=-2a1+a2-3a3.综上,知存在,且λ=-2,μ=1,υ=-3.主要考察知识点:向量与向量运算的坐标表示4、棱长为1的正方体ABCD—A1B1C1D1,E、F、G分别是DD1、BD、BB1的中点.(1)求证:EF⊥CF;(2)求与所成角的余弦值;(3)求CE的长.参考答案与解析:(1)证明:建立如图所示的空间直角坐标系O—xyz,则D(0,0,0)、E(0,0,)、C(0,1,0)、F( ,,0)、G(1,1,),∴=(,,-),=(,-,0),=(1,0,),=(0,-1,).∵·=×+×(-)+(-)×0=0,∴⊥,即EF⊥CF.(2)解析:∵·=×1+×0+(-)×()=,||==,||==,∴cos〈,〉===.(3)解析:||=.主要考察知识点:向量与向量运算的坐标表示,空间向量5、已知正四棱柱ABCD—A1B1C1D1,AB=1,AA1=2,点E为CC1中点,点F为BD1中点.(1)证明EF为BD1与CC1的公垂线;(2)求D1到平面BDE的距离.参考答案与解析:(1)证明:建立如图所示的坐标系,得B(0,1,0),D1(1,0,2),F(,,1),C1(0,0,2), E(0,0,1).∴=(,,0),=(0,0,2),=(1,-1,2).∴·=0, ·=0,即EF⊥CC1,EF⊥BD1.故是CC1与1的公垂线.(2)解析:同(1)B(0,1,0),D(1,0,0),E(0,0,1).设平面BDE的法向量n=(x,y,z),则n·=0,n·=0.∴(x,y,z)(1,-1,0)=0,(x,y,z)(-1,0,1)=0,即∴∴点D1到平面BDE的距离d====.主要考察知识点:空间向量6、如图所示,直三棱柱ABC—A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点,(1)求直线BE与A1C所成的角的余弦值.(2)在线段AA1上是否存在点F,使CF⊥平面B1DF?若存在,求出|AF|;若不存在,请说明 理由.参考答案与解析:解析:(1)以B为原点,建立如图所示的空间直角坐标系.∵AC=2a,∠ABC=90°,∴AB=BC= a.∴B(0,0,0),C(0,a,0),A(a,0,0),A1(a,0,3a),C1(0, a,3a),B1(0,0,3a).∴D(a, a,3a),E(0,a,a).∴=(a,-a,3a),=(0,a,a).∴||=a,||= a.∴·=0-a2+a2=a2.∴cosθ==.(2)假设存在点F ,要使⊥平面B1DF,只要⊥且⊥.不妨设AF=b,则F(a,0,b),=(a,-a,b), =(a,0,b-3a), =(a,a,0).∵·=a2-a2=0, ∴⊥恒成立.·=2a2+b(b-3a)=0b=a或b=2a,故当||=a或2a 时,⊥平面B1DF.。
三年高考(2016-2018)数学(理)真题分项专题25 立体几何中综合问题(含解析)
专题25 立体几何中综合问题考纲解读明方向分析解读 1.能运用共线向量、共面向量、空间向量基本定理及有关结论证明点共线、点共面、线共面及线线、线面的平行与垂直问题;会求线线角、线面角;会求点点距、点面距等距离问题,从而培养用向量法思考问题和解决问题的能力.2.会利用空间向量的坐标运算、两点间距离公式、夹角公式以及相关结论解决有关平行、垂直、长度、角、距离等问题,从而培养准确无误的运算能力.3.本节内容在高考中延续解答题的形式,以多面体为载体,求空间角的命题趋势较强,分值约为12分,属中档题.2018年高考全景展示1.【2018年理数天津卷】如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).详解:依题意,可以建立以D为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.点睛:本题主要考查空间向量的应用,线面平行的证明,二面角问题等知识,意在考查学生的转化能力和计算求解能力.2.【2018年理北京卷】如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.【答案】(1)证明见解析(2) B-CD-C1的余弦值为(3)证明过程见解析【解析】分析:(1)由等腰三角形性质得,由线面垂直性质得,由三棱柱性质可得,因此,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系E-ABF,设立各点坐标,利用方程组解得平面BCD一个法向量,根据向量数量积求得两法向量夹角,再根据二面角与法向量夹角相等或互补关系求结果,(3)根据平面BCD一个法向量与直线F G方向向量数量积不为零,可得结论. 详解:解:(Ⅰ)在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D (1,0,1),F(0,0,2),G(0,2,1).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-1,c=-4,∴平面BCD的法向量,又∵平面CDC1的法向量为,∴.由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.3.【2018年江苏卷】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【答案】(1)(2)【解析】分析:(1)先建立空间直角坐标系,设立各点坐标,根据向量数量积求得向量的夹角,再根据向量夹角与异面直线所成角的关系得结果;(2)利用平面的方向量的求法列方程组解得平面的一个法向量,再根据向量数量积得向量夹角,最后根据线面角与所求向量夹角之间的关系得结果.详解:如图,在正三棱柱ABC−A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以为基底,建立空间直角坐标系O−xyz.因为AB=AA1=2,所以.(1)因为P为A1B1的中点,所以,从而,故.因此,异面直线BP与AC1所成角的余弦值为.点睛:本题考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. 4.【2018年江苏卷】在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A 1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明. 5.【2018年理新课标I卷】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.【答案】(1)证明见解析.(2) .【解析】分析:(1)首先从题的条件中确定相应的垂直关系,即BF⊥PF,BF⊥EF,又因为,利用线面垂直的判定定理可以得出BF⊥平面PEF,又平面ABFD,利用面面垂直的判定定理证得平面PEF⊥平面ABFD.(2)结合题意,建立相应的空间直角坐标系,正确写出相应的点的坐标,求得平面ABFD的法向量,设DP与平面ABFD所成角为,利用线面角的定义,可以求得,得到结果.详解:(1)由已知可得,BF⊥PF,BF⊥EF,又,所以BF⊥平面PEF.又平面ABFD,所以平面PEF⊥平面ABFD.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的证明以及线面角的正弦值的求解,属于常规题目,在解题的过程中,需要明确面面垂直的判定定理的条件,这里需要先证明线面垂直,所以要明确线线垂直、线面垂直和面面垂直的关系,从而证得结果;对于线面角的正弦值可以借助于平面的法向量来完成,注意相对应的等量关系即可.6.【2018年全国卷Ⅲ理】如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.【答案】(1)见解析(2)【解析】分析:(1)先证平面CMD,得,再证,进而完成证明。
空间向量与立体几何(含答案)
空间向量与立体几何例1(08年)四棱锥A BCDE-中,底面BCDE为矩形,侧面ABC⊥底面BCDE,2BC=,CD=AB AC=.(Ⅰ)证明:AD CE⊥;(Ⅱ)设CE与平面ABE所成的角为45,求二面角C AD E--的余弦值.例2 (2010年)(19)如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB//DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC .(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小.CE AB例3 (2011年)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形.AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成的角的正弦值.例4(2012年大纲)1如图,四棱锥P-ABCD中,底面ABCD为菱形,P A⊥底面ABCD,AC P A=2,E是PC上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.例5 (2013大纲全国,理19)如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△P AB和△P AD都是等边三角形.(1)证明:PB⊥CD;(2)求二面角A-PD-C的余弦值.例6.[2014·北京卷] 如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P -ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H. (1)求证:AB∥FG;(2)若P A⊥底面ABCDE,且P A=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.例7.[2014·四川卷] 三棱锥A -BCD及其侧视图、俯视图如图所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A -NP -M的余弦值.例8 [2014·安徽卷] 如图,四棱柱ABCD -A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC.过A1,C,D三点的平面记为α,BB1与α的交点为Q.(1)证明:Q为BB1的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.空间向量与立体几何 参考答案例1 解:(Ⅰ)作AO ⊥BC ,垂足为O 。
空间向量立体几何(绝对经典)
例1:已知平行六面体ABCD-A 1B 1C 1D 1,化简下列向量表达式,并标出化简结果的向量。
(如图)A BCD A 1B 1C 1D 1G1)1(AA AD AB ++1111)1(AC CC AC AA AC AA AD AB =+=+=++解M 始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所示向量推论:如果 为经过已知点A且平行已知非零向量 的直线,那么对任一点O,点P在直线 上的充要条件是存在实数t,满足等式OP=OA+t 其中向量叫做直线的方向向量.ll aaOABP a若P为A,B中点,则()12=+ OP OA OB2.共面向量定理:如果两个向量 不共线,则向量 与向量 共面的充要条件是存在实数对 使, a b yx , p ,a b OM a b A B A 'Pp p xa yb =+ 推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x,y使或对空间任一点O,有=+MP xMA yMB =++ OP OM xMA yMB 注意:空间四点P 、M 、A 、B 共面⇔存在唯一实数对,,x y MP xMA yMB =+ ()使得(1)OP xOM yOA zOB x y z ⇔=++++= 其中,例1:已知m,n 是平面α内的两条相交直线,直线l 与α的交点为B ,且l ⊥m ,l ⊥n ,求证:l ⊥α。
n mg g m n αl l 证明:在α内作不与m、n重合的任一条直线g,在l、m、n、g上取非零向量l、m、n、g ,因m与n相交,得向量m、n 不平行,由共面向量定理可知,存在唯一的有序实数对(x,y),使g =x m +y n ,l ·g =x l ·m +y l ·n∵ l ·m =0,l ·n =0∴ l ·g =0∴ l⊥g∴ l⊥g这就证明了直线l垂直于平面α内的任一条直线,所以l⊥α巩固练习:利用向量知识证明三垂线定理αa A O P ().,0,,,,0,0,PA a PA a a OA a PO a PA OAy PO x PA y x OA PO OA PO a OA a OA a PO a PO PO aa ⊥⊥∴=⋅+⋅=⋅∴+==⋅∴⊥=⋅∴⊥∴⊥即使有序实数对定理可知,存在唯一的不平行,由共面向量相交,得又又而上取非零向量证明:在αPA a OAa a PA OA PA PO ⊥⊥⊂求证:且内的射影,在是的垂线,斜线,分别是平面已知:,,ααα复习:2. 向量的夹角:a bO ABabθ0a b π≤≤ ,a b ,向量 的夹角记作:a b 与a b = ||||cos ,a b a b 1.空间向量的数量积:111222(,,),(,,)a x y z b x y z == 设121212x x y y z z =++cos ||||a ba b a b =,121212222222111222++=++⋅++x x y y z z x y z x y z 5.向量的模长:2222||a a x y z ==++ (,,)a x y z = 设4.有关性质:(1)两非零向量111222(,,),(,,)a x y zb x y z == 1212120x x y y z z ++=0a b a b ⊥⇔=⇔ (2)||||||a b a b ≤ ||||,a b a b a b =⇒ 同方向||||,a b a b a b =-⇒ 反方向注意:此公式的几何意义是表示长方体的对角线的长度。
高中数学 6立体几何专题空间向量课后习题(带答案)
空间向量课后习题1.空间的一个基底{},,a b c 所确定平面的个数为( ) A.1个B.2个C.3个D.4个以上2.已知(121)A -,,关于面xOy 的对称点为B ,而B 关于x 轴的对称点为C ,则BC =( ) A.(042),, B.(042)--,, C.(040),, D.(202)-,,3.已知向量111222()()x y z x y z ==,,,,,a b ,若≠a b ,设a b -=R ,则a b -与x 轴夹角的余弦值为( ) A.12x x R- B.21x x R- C.12x x R-D.12()x x R-±4.若向量MA MB MC ,,的起点与终点M A B C ,,,互不重合且无三点共线,O 是空间任一点,则能使MA MB MC ,,成为空间一组基底的关系是( ) A.111333OM OA OB OC =++B.MA MB MC ≠+ C.1233OM OA OB OC =++D.2MA MB MC =-5.正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 是平面11ABC D 的距离是( )C.126.一条长为a 的线段,夹在互相垂直的两个平面之间,它和这两个平面所成的角分别是45°和30°,由这条线段两端向两平面的交线引垂线,垂足的距离是( )A.2a B.3a7.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( )A.2 B.4 C.6 D.128.设P 是60°的二面角l αβ--内一点,PA ⊥平面α,PB ⊥平面β,A B ,为垂足,42PA PB ==,,则AB 的长为( ) A.42B.23C.25D.279.ABCD 为正方形,P 为平面ABCD 外一点,2PD AD PD AD ⊥==,,二面角P AD C --为60°,则P 到AB 的距离为( ) A.22B.3C.2D.710.已知()()(00)x y z a b c xyz abc ==≠≠,,,,,,p q ,若有等式2222222()()()x y z a b c ax by cz ++++=++成立,则,p q 之间的关系是( )A.平行 B.垂直 C.相交 D.以上都可能11.已知平面α与β所成二面角为80°,P 为αβ,外一定点,过点P 一条直线与αβ,所成的角都是30°,则这样的直线有且仅有( ) A.1条 B.2条 C.3条 D.4条12.如图1,梯形ABCD 中,AB CD ∥,且AB ⊥平面α,224AB BC CD ===,点P 为α内一动点,且APB DPC ∠=∠,则P 点的轨迹为( )A.直线 B.圆 C.椭圆 D.双曲线二、填空题13.已知(11)(2)t t t t t =--=,,,,,a b ,则-b a 的最小值是14.在棱长为a 的正方体1111ABCD A B C D -中,向量1BA 与向量AC 所成的角为1BD =,若15.如图2,在正三棱柱111ABC A B C -中,已知1AB D =,在棱1BB 上,且AD 与平面11AAC C 所成的角为α,则sin α=16.已知m l ,是异面直线,那么: ①必存在平面α过m 且与l 平行; ②必存在平面β过m 且与l 垂直; ③必存在平面γ与m l ,都垂直; ④必存在平面δ与m l ,距离都相等. 其中正确命题的序号是三、解答题17.设空间两个不同的单位向量122(0)(0)x y x y ==,,,,,a b 与向量(111)=,,c 的夹角都等于π4.18.如图3,已知直四棱柱1111ABCD A B C D -中,12AA =,底面ABCD 是直角梯形,ADC ∠是直角,421AB CD AB AD DC ===,,,∥,求异面直线1BC 与DC 所成角的大小.19.如图4,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,问AE 等于何值时,二面角1D EC D --的大小为π4.20.如图5所示的多面体是由底面为ABCD 的长方体被截面1AEC F 所截而得到的,其中14231AB BC CC BE ====,,,. (1)求BF ;(2)求点C 到平面1AEC F 的距离.21.如图6,在三棱锥P ABC -中,AB BC ⊥,AB BC kPA ==,点O D ,分别是AC PC ,的中点,OP ⊥底面ABC .(1)求证:OD ∥平面PAB ;(2)当12k =时,求直线PA 与平面PBC 所成角的大小;(3)当k 为何值时,O 在平面PBC 内的射影恰好为PBC △的重心?22.如图7,已知向量OA OB OC ===,,a b c ,可构成空间向量的一个基底,若123()a a a =,,,a123123()()b b b c c c ==,,,,,b c ,在向量已有的运算法则的基础上,新定义一种运算233231131221()a b a b a b a b a b a b ⨯=---,,a b ,显然⨯a b 的结果仍为一向量,记作p .(1) 求证:向量p 为平面OAB 的法向量;(2) 求证:以OA OB ,为边的平行四边形OADB 的面积等于⨯a b ;(3)将四边形OADB 按向量OC =c 平移,得到一个平行六面体111OADB CA D B -,试判断平行六面体的体积V答案1.【答案】C2.【答案】B3.【答案】D4.【答案】C5.【答案】B6.【答案】A7.【答案】C8.【答案】D9.【答案】D 10.【答案】A 11.【答案】D 12.【答案】B 13.14.【答案】120°. 15.16.【答案】①④17.解:(1)由πcos 4==ac a c 11a c =+·x y ,11+=∴x y又1==a ,222111111113()2122x y x y x y x y +=++=+=∴. 1114x y =∴. (4)同理可得222214x y x y +==, 11x y ,∴是方程2104x +=的两根,同理22x y ,也是. 又≠∵a b ,1221==,∴x y x y .cos ==,·∴·a b a b a b a b 1212112212=+=+=x x y y x y x y ,60a b =,∴°.18.解:以D 为原点,1DA DC DD ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -,则1(012)(240)(010)C B A ,,,,,,,,. 1(232)BC =--,,∴,(010)CD =-,,.设1BC 与CD 所成角为θ, 则11317cos 17BC CD BC CDθ==·. θ=∴. ∴异面直线1BC 与DC 所成角的大小为19.解:设AE x =,以D 为原点,直线1DA DC DD ,,所在直线分别为x y z ,,轴建立空间直角坐标系, 则11(101)(001)(10)(100)(020)A D E x A C ,,,,,,,,,,,,,,. 11(120)(021)(001)CE x D C DD =-=-=,,,,,,,,∴.设平面1D EC 的法向量为()a b c =,,n , 由1020(2)00n n⎧=-=⎧⎪⇒⎨⎨+-==⎩⎪⎩,,,··D C b c a b x CE 令1b =,22c a x ==-,∴.(212)x =-,,∴n .依题意11π2cos 42DD DD ==⇒=n n ·.2x =∴(2x =+ 2AE =∴20.解:(1)以D 为原点,DAF DC DF ,,所在直线为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -, 1(000)(240)(200)(040)(241)(043)D B A C E C ,,,,,,,,,,,,,,,,,, 设(00)F z ,,. 由1AF EC =,得(20)(202)z -=-,,,,,2z =∴.(002)(242)F BF =--,,,,,∴.26BF =∴(2)设1n 为平面1AEC F 的法向量,1(1)x y =,,n ,由1100AE AF ⎧=⎪⎨=⎪⎩,,··n n 得410220y x +=⎧⎨-+=⎩,.114x y =⎧⎪⎨=-⎪⎩,.∴又1(003)CC =,,,设1CC 与1n 的夹角为α, 则111cos CCCC α==·n n. C ∴到平面1AEC F 的距离1cos d CC α=. 21.解:(1)证明:OP ⊥∵平面ABC OA OC AB BC ==,,, OA OB OA OP OB OP ⊥⊥⊥,,∴.以O 为原点,建立如图所示空间直角坐标系O xyz -.设AB a =,则222000000222A a B a C a ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,. 设OP h =,则(00)P h ,,.D ∵为PC 的中点,21042OD a h ⎛⎫=- ⎪ ⎪⎝⎭,,∴. 202PA a h ⎛⎫=- ⎪ ⎪⎝⎭,,,12OD PA =-∴. OD PA ∴∥,OD ∴∥平面PAB .(2)12k =,即2PA a =,72h a =∴,27022PA a a ⎛⎫=- ⎪ ⎪⎝⎭,,∴ 可求得平面PBC 的法向量1117⎛⎫=-- ⎪ ⎪⎝⎭,,n . 210cos 30PA PA PA ==,·∴n n n. 设PA 与平面PBC 所成的角为θ, 则210sin cos 30PA θ==,n . PA ∴与平面PBC 所成的角为210arcsin30. (3)PBC △的重心221663G a a h ⎛⎫- ⎪ ⎪⎝⎭,,,221663OG a a h ⎛⎫=- ⎪ ⎪⎝⎭,,∴, OG ⊥∵平面PBC ,OG PB ⊥∴.又202PB a h ⎛⎫=- ⎪ ⎪⎝⎭,,,2211063OG PB a h =-=∴·. 22h a =∴. 22PA OA h a =+=∴,即1k =.反之,当1k =时,三棱锥O PBC -为正三棱锥. O ∴在平面PBC 内的射影为PBC △的重心. (3) ()⨯·a b c 的大小. 22.解:(1)233213113212213()()()0a b a b a a b a b a a b a b a =-+-+-=p a ·,⊥p a ∴,同理⊥p b .p ∴是平面OAB 的法向量.(2)设平行四边形OADB 的面积为S ,OA 与OB 的夹角为θ,则sin θ=S OA OB =a a b =⨯.∴结论成立.(3)设C 点到平面OAB 的距离为h ,OC 与平面OAB 所成的角为α, 则=V Sh sin α=⨯a b c ,又()cos sin α⨯=⨯⨯=⨯,·a b c a b c a b c a b c , ∴V ()a b c =⨯·.空间向量课后习题1.空间的一个基底{},,a b c 所确定平面的个数为( ) A.1个B.2个C.3个D.4个以上2.已知(121)A -,,关于面xOy 的对称点为B ,而B 关于x 轴的对称点为C ,则BC =( ) A.(042),, B.(042)--,, C.(040),, D.(202)-,,3.已知向量111222()()x y z x y z ==,,,,,a b ,若≠a b ,设a b -=R ,则a b -与x 轴夹角的余弦值为( ) A.12x x R- B.21x x R- C.12x x R-D.12()x x R-±4.若向量MAMB MC ,,的起点与终点M A B C ,,,互不重合且无三点共线,O 是空间任一点,则能使MA MB MC ,,成为空间一组基底的关系是( ) A.111333OM OA OB OC =++B.MA MB MC ≠+ C.1233OM OA OB OC =++ D.2MA MB MC =-5.正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 是平面11ABC D 的距离是( )C.126.一条长为a 的线段,夹在互相垂直的两个平面之间,它和这两个平面所成的角分别是45°和30°,由这条线段两端向两平面的交线引垂线,垂足的距离是( )A.2a B.3a7.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( )A.2 B.4 C.6 D.128.设P 是60°的二面角l αβ--内一点,PA ⊥平面α,PB ⊥平面β,AB ,为垂足,42PA PB ==,,则AB 的长为( )A. B. C. D.9.ABCD 为正方形,P 为平面ABCD 外一点,2PD AD PD AD ⊥==,,二面角P AD C --为60°,则P 到AB 的距离为( )A. C.210.已知()()(00)x y z a b c xyz abc ==≠≠,,,,,,p q ,若有等式2222222()()()x y z a b c ax by cz ++++=++成立,则,p q 之间的关系是( )11.已知平面α与β所成二面角为80°,P 为αβ,外一定点,过点P 一条直线与αβ,所成的角都是30°,则这样的直线有且仅有( )A.1条 B.2条C.3条 D.4条12.如图1,梯形ABCD 中,AB CD ∥,且AB ⊥平面α,224AB BC CD ===,点P 为α内一动点,且APB DPC ∠=∠,则P 点的轨迹为( )A.直线 B.圆C.椭圆 D.双曲线二、填空题13.已知(11)(2)t t t t t =--=,,,,,a b ,则-b a 的最小值是14.在棱长为a 的正方体1111ABCD A B C D -中,向量1BA 与向量AC 所成的角为1BD =,若15.如图2,在正三棱柱111ABC A B C -中,已知1AB D =,在棱1BB 上,且AD 与平面11AAC C 所成的角为α,则sin α=16.已知m l ,是异面直线,那么:①必存在平面α过m 且与l 平行;②必存在平面β过m 且与l 垂直;③必存在平面γ与m l ,都垂直;④必存在平面δ与m l ,距离都相等.其中正确命题的序号是三、解答题17.设空间两个不同的单位向量(0)(0)x y x y ==,,,,,a b 与向量(111)=,,c 的夹角都等于π.18.如图3,已知直四棱柱1111ABCD A B C D -中,12AA =,底面ABCD 是直角梯形,ADC ∠是直角,421AB CD AB AD DC ===,,,∥,求异面直线1BC 与DC 所成角的大小.19.如图4,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,问AE 等于何值时,二面角1D EC D --的大小为π4.20.如图5所示的多面体是由底面为ABCD 的长方体被截面1AEC F 所截而得到的,其中14231AB BC CC BE ====,,,.(1)求BF ;(2)求点C 到平面1AEC F 的距离.21.如图6,在三棱锥P ABC -中,AB BC ⊥,AB BC kPA ==,点O D ,分别是AC PC ,的中点,OP ⊥底面ABC .(1)求证:OD ∥平面PAB ;(2)当12k =时,求直线PA 与平面PBC 所成角的大小; (3)当k 为何值时,O 在平面PBC 内的射影恰好为PBC △的重心?22.如图7,已知向量OA OB OC ===,,a b c ,可构成空间向量的一个基底,若123()a a a =,,,a123123()()b b b c c c ==,,,,,b c ,在向量已有的运算法则的基础上,新定义一种运算233231131221()a b a b a b a b a b a b ⨯=---,,a b ,显然⨯a b 的结果仍为一向量,记作p .(4) 求证:向量p 为平面OAB 的法向量;(5) 求证:以OA OB ,为边的平行四边形OADB 的面积等于⨯a b ;(3)将四边形OADB 按向量OC =c 平移,得到一个平行六面体111OADB CA D B -,试判断平行六面体的体积V答案1.【答案】C2.【答案】B3.【答案】D4.【答案】C5.【答案】B6.【答案】A7.【答案】C8.【答案】D9.【答案】D10.【答案】A11.【答案】D12.【答案】B13.14.【答案】120°.15.16.【答案】①④17.解:(1)由πcos 4==ac a c 11a c =+·x y ,11+=∴x y又1==a ,222111111113()2122x y x y x y x y +=++=+=∴.1114x y =∴.(4)同理可得222214x y x y +==,11x y ,∴是方程2104x +=的两根,同理22x y ,也是.又≠∵a b ,1221==,∴x y x y .cos ==,·∴·a ba b a b a b 1212112212=+=+=x x y y x y x y ,60a b =,∴°.则1(012)(240)(010)C B A ,,,,,,,,.1(232)BC =--,,∴,(010)CD =-,,.设1BC 与CD 所成角为θ, 则11317cos 17BC CDBC CDθ==·. θ=∴. ∴异面直线1BC 与DC 所成角的大小为 19.解:设AE x =,以D 为原点,直线1DA DC DD ,,所在直线分别为x y z ,,轴建立空间直角坐标系, 则11(101)(001)(10)(100)(020)A D E x A C ,,,,,,,,,,,,,,. 11(120)(021)(001)CE x D C DD =-=-=,,,,,,,,∴. 设平面1D EC 的法向量为()a b c =,,n , 由1020(2)00n n⎧=-=⎧⎪⇒⎨⎨+-==⎩⎪⎩,,,··D C b c a b x CE 令1b =,22c a x ==-,∴.(212)x =-,,∴n .依题意11π2cos 42DD DD ==⇒=n n ·.2x =∴(2x =+ 2AE =∴20.解:(1)以D 为原点,DAF DC DF ,,所在直线为x 轴, y 轴,z 轴建立空间直角坐标系D xyz -,1(000)(240)(200)(040)(241)(043)D B A C E C ,,,,,,,,,,,,,,,,,, 设(00)F z ,,.由1AF EC =,得(20)(202)z -=-,,,,, 2z =∴. (002)(242)F BF =--,,,,,∴.26BF =∴(2)设1n 为平面1AEC F 的法向量,1(1)x y =,,n ,由1100AE AF ⎧=⎪⎨=⎪⎩,,··n n 得410220y x +=⎧⎨-+=⎩,.11x y =⎧⎪⎨=-⎪,.∴又1(003)CC =,,,设1CC 与1n 的夹角为α, 则111433cos 33CC CC α==·n n . C ∴到平面1AEC F 的距离1433cos 11d CC α==. 21.解:(1)证明:OP ⊥∵平面ABC OA OC AB BC ==,,, OA OB OA OP OB OP ⊥⊥⊥,,∴. 以O 为原点,建立如图所示空间直角坐标系O xyz -. 设AB a =,则222000000222A a B a C a ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,. 设OP h =,则(00)P h ,,.D ∵为PC 的中点,21042OD a h ⎛⎫=- ⎪ ⎪⎝⎭,,∴. 202PA a h ⎛⎫=- ⎪ ⎪⎝⎭,,,12OD PA =-∴. OD PA ∴∥,OD ∴∥平面PAB . (2)12k =,即2PA a =,72h a =∴, 27022PA a a ⎛⎫=- ⎪ ⎪⎝⎭,,∴ 可求得平面PBC 的法向量1117⎛⎫=-- ⎪ ⎪⎝⎭,,n . 210cos 30PA PA PA ==,·∴nn n . 设PA 与平面PBC 所成的角为θ, 则210sin cos 30PA θ==,n . PA ∴与平面PBC 所成的角为210arcsin30. (3)PBC △的重心221663G a a h ⎛⎫- ⎪ ⎪⎝⎭,,,221663OG a a h ⎛⎫=- ⎪ ⎪⎝⎭,,∴, OG ⊥∵平面PBC ,OG PB ⊥∴.又202PB a h ⎛⎫=- ⎪ ⎪⎝⎭,,,2211063OG PB a h =-=∴·.h =∴.PA a =∴,即1k =. 反之,当1k =时,三棱锥O PBC -为正三棱锥. O ∴在平面PBC 内的射影为PBC △的重心.(6) ()⨯·a b c 的大小. 22.解:(1)233213113212213()()()0a b a b a a b a b a a b a b a =-+-+-=p a ·, ⊥p a ∴,同理⊥p b .p ∴是平面OAB 的法向量.(2)设平行四边形OADB 的面积为S ,OA 与OB 的夹角为θ,则sin θ=S OA OB =a a b =⨯. ∴结论成立.(3)设C 点到平面OAB 的距离为h ,OC 与平面OAB 所成的角为α, 则=V Sh sin α=⨯a b c , 又()cos sin α⨯=⨯⨯=⨯,·a b c a b c a b c a b c , ∴V ()a b c =⨯·.。
高中数学《空间向量与立体几何》练习题(含答案解析)
高中数学《空间向量与立体几何》练习题(含答案解析)一、单选题1.在空间直角坐标系Oxyz 中,与点()1,2,1-关于平面xOz 对称的点为( )A .()1,2,1--B .()1,2,1-C .()1,2,1---D .()1,2,1--2.在空间直角坐标系内,平面α经过三点(1,0,2),(0,1,0),(2,1,1)A B C -,向量(1,,)n λμ=是平面α的一个法向量,则λμ+=( )A .7-B .5-C .5D .73.已知点()3,1,0A -,若向量()2,5,3AB =-,则点B 的坐标是( ).A .()1,6,3-B .()5,4,3-C .()1,6,3--D .()2,5,3-4.如图,O A B '''△是水平放置的OAB 的直观图,6A O ''=,2''=B O ,则OAB 的面积是( )A .6B .12C .D .5.平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-,则平面α与平面β的关系是( )A .平行B .重合C .平行或重合D .垂直6.已知某圆柱的内切球半径为92,则该圆柱的侧面积为( ) A .492π B .49π C .812π D .81π7.O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,则下列说法正确的是( ) A .OA 、OB 、OC 共线B .OA 、OB 共线C .OB 、OC 共线D .O 、A 、B 、C 四点共面8.在正方体1111ABCD A B C D -中,E 为线段11A B 的中点,则异面直线1D E 与1BC 所成角的余弦值为( )A B C D9.已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 10.在正方体1111ABCD A B C D -中,P ,Q 分别为AB ,CD 的中点,则( )A .1AB ⊥平面11A BCB .异面直线1AB 与11AC 所成的角为30° C .平面11ABD ∥平面1BC Q D .平面1B CD ⊥平面1B DP二、填空题11.已知角α和角β的两边分别平行且一组边方向相同,另一组边的方向相反,若α=45°,则β=________. 12.若直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,且直线l ⊥平面α,则实数x 的值是______.13.词语“堑堵”、“阳马”、“鳖臑”等出现自中国数学名著《九章算术・商功》,是古代人对一些特殊锥体的称呼.在《九章算术・商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体P ABC ,其中PA ⊥平面ABC ,2PA AC ==,BC =则四面体P ABC 的外接球的表面积为______.14.设空间向量,,i j k 是一组单位正交基底,若空间向量a 满足对任意的,,x y a xi y j --的最小值是2,则3a k +的最小值是_________.三、解答题15.如图,在三棱柱111ABC A B C 中,点D 是AB 的中点.(1)求证:1AC △平面1CDB .(2)若1AA ⊥平面ABC ,AC BC =,求证:CD ⊥平面11ABB A .16.如图,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:(1)EH △平面BCD ;(2)BD △平面EFGH .17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是正方形,AC 与BD 交于点O ,E 为PB 的中点.(1)求证:EO平面PDC ;(2)求证:平面PAC ⊥平面PBD .18.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.参考答案与解析1.A【分析】根据空间直角坐标系的对称点坐标特点直接求解即可.【详解】解:因为点()1,2,1-,则其关于平面xOz 对称的点为()1,2,1--.故选:A.2.D【解析】求出(1,1,2)AB =--,(2,0,1)BC =-,利用与(1,,)n λμ=数量积为0,求解即可.【详解】(1,1,2)AB =--,(2,0,1)BC =-120n AB λμ⋅=-+-=20n BC μ⋅=-+=可得2μ=,5λ=,7λμ+=故选:D3.B【分析】利用空间向量的坐标运算求得B 的坐标.【详解】设O 为空间坐标原点,()()()3,1,02,5,35,4,3OB OA AB =+=-+-=-.故选:B4.B【分析】由直观图和原图的之间的关系,和直观图画法规则,还原OAB 是一个直角三角形,其中直角边6,4OA OB ==,直接求解其面积即可.【详解】解:由直观图画法规则,可得OAB 是一个直角三角形,其中直角边6,4OA OB ==, △11641222OAB S OA OB =⋅=⨯⨯=. 故选:B .5.C【分析】由题设知6m n =-,根据空间向量共线定理,即可判断平面α与平面β的位置关系. 【详解】平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-, ∴6m n =-,∴平面α与平面β的关系是平行或重合.故选:C .6.D 【分析】由题意可得该圆柱底面圆的半径为92,圆柱的高为9,从而可求出其侧面积 【详解】由题意得,该圆柱底面圆的半径为92,圆柱的高为9, 所以该圆柱的侧面积为929812ππ⨯⨯=. 故选:D7.D【解析】根据向量OA 、OB 、OC 不能构成空间的一个基底知向量共面,即可得出结论.【详解】因为O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,所以OA 、OB 、OC 共面,所以O 、A 、B 、C 四点共面,故选:D8.B【分析】连接1AD ,AE ,得到11//AD BC ,把异面直线1D E 与1BC 所成角转化为直线1D E 与1AD 所成角,取1AD 的中点F ,在直角1D EF 中,即可求解.【详解】在正方体1111ABCD A B C D -中,连接1AD ,AE ,可得11//AD BC ,所以异面直线1D E 与1BC 所成角即为直线1D E 与1AD 所成角,即1AD E ∠为异面直线1D E 与1BC 所成角,不妨设12AA =,则1AD =1D E AE =取1AD 的中点F ,因为1D E AE =,所以1EF AD ⊥,在直角1D EF中,可得111cos D F AD E D E ∠==. 故选:B.9.C【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d =【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d =.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.10.D【分析】A 项反证法可得;B 项由平移法计算异面直线所成角;C 项由面面平行的判断和性质可得结果;D 项建立空间直角坐标系可得结果.【详解】对于选项A ,假设1AB ⊥面11A BC ,则111AB AC ⊥,这与已知1AB 与11A C 不垂直相矛盾,所以假设不成立.故选项A 错误; 对于选项B ,连接1DC ,1DA ,因为11AB DC ∥,所以11DC A ∠为异面直线1AB 与11A C 所成的角或补角,又因为△11AC D 为等边三角形,所以1160DC A ∠=︒,故选项B 错误;对于选项C ,因为11B D BD ∥,11AD BC ∥,由面面平行的判定定理可得平面11AB D ∥平面1BDC ,而平面1BQC 与平面1BDC 相交,所以平面11AB D 与平面1BC Q 也相交,故选项C 错误;对于选项D ,以D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,设正方体的棱长为1,则()0,0,0D ,()11,1,1B ,()0,1,0C ,11,,02P ⎛⎫ ⎪⎝⎭,可得()11,1,1DB =,()0,1,0DC =,11,,02DP ⎛⎫= ⎪⎝⎭,设平面1B CD 的法向量为()1,,n x y z =, 则11100n DB x y z n DC y ⎧⋅=++=⎪⎨⋅==⎪⎩,可取1x =,则0y =,1z =-,即()11,0,1n =-, 设平面1B DP 的法向量为()2,,b c n a =,则2120102n DB a b c n DP a b ⎧⋅=++=⎪⎨⋅=+=⎪⎩, 可取1a =,则2b =-,1c =,可得平面1B DP 的一个法向量为()21,2,1n =-,由121010n n ⋅=+-=,所以12n n ⊥,即平面1B CD ⊥平面1B DP ,故选项D 正确. 故选:D.11.135°【分析】首先根据题意将图画出,然后根据α=45°,AB △CD ,可得180BCD α︒∠=-,进而得出结论.【详解】解:如图,由题意知α=45°,AB △CD ,180135BCD α︒︒∴∠=-=,即135β︒=.故答案为:135°.【点睛】本题考查了平行线的性质,结合图会使问题变得简单,属于基础题.12.-1【分析】利用法向量的定义和向量共线的定理即可.【详解】直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,直线l ⊥平面α, 必有//m n ,即向量m 与向量n 共线,m n λ∴= ,△11222x -==--,解得=1x -; 故答案为:-1.13.16π 【分析】确定外接球球心求得球半径后可得表面积.【详解】由于PA ⊥平面ABC ,因此PA 与底面上的直线,,AC AB BC 都垂直,从而AC 与AB 不可能垂直,否则PBC 是锐角三角形,由于<AC BC ,因此有AC BC ⊥, 而PA 与AC 是平面PAC 内两相交直线,则BC ⊥平面PAC ,PC ⊂平面PAC ,所以BC PC ⊥, 所以PB 的中点O 到,,,P A B C 四个点的距离相等,即为四面体P ABC 的外接球球心.2222222222216PB PA AB PA AC BC =+=++=++=,4PB =, 所以所求表面积为224()42162PB S πππ=⨯=⨯=. 故答案为:16π.14.1【分析】以,i j 方向为,x y 轴,垂直于,i j 方向为z 轴建立空间直角坐标系,根据条件求得a 坐标,由3a k +的表达式即可求得最小值.【详解】以,,i j k 方向为,,x y z 轴建立空间直角坐标系,则()1,0,0i =,()0,1,0j =,()0,0,1k = 设(),,a r s t = 则(a xi y j r x --=-当,r x s y ==时a xi y j --的最小值是2,2t ∴=±取(),,2a x y = 则()3,,5a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是5.取(),,2a x y =- 则()3,,1a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是1.故答案为:1.15.(1)证明见解析;(2)证明见解析.【分析】(1)连接1BC ,交1B C 于点E ,连接ED ,用中位线证明1ED AC ∥即可;(2)证明CD △AB ,CD △1AA 即可.【详解】(1)连接1BC ,交1B C 于点E ,连接.ED△111ABC A B C 是三棱柱,△四边形11BCC B 为平行四边形,△E 是1BC 的中点.△点D 是AB 的中点,△ED 是1ABC 的中位线,△1ED AC ∥,又ED ⊂平面1CDB ,1AC ⊄平面1CDB ,△1AC △平面1CDB .(2)△1AA ⊥平面ABC ,AB ⊂平面ABC ,△1AA AB ⊥,△AC BC =,AD BD =,△CD AB ⊥,△1AA AB A =,1,AA AB ⊂平面11ABB A ,△CD ⊥平面11ABB A .16.(1)见解析(2)见解析【分析】(1)推导出EH △BD ,由此能证明EH △平面BCD ;(2)由BD △EH ,由此能证明BD △平面EFGH .【详解】(1)△EH 为△ABD 的中位线,△EH △BD .△EH △平面BCD ,BD △平面BCD ,△EH △平面BCD ;(2)△FG 为△CBD 的中位线,△FG △BD ,△FG △EH ,△E 、F 、G 、H 四点共面,△BD △EH ,BD △平面EFGH ,EH △平面EFGH ,△BD △平面EFGH .【点睛】本题考查线面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查化归与转化思想,是中档题.17.(1)证明见解析(2)证明见解析【详解】(1)证明:△四边形ABCD 为正方形,△O 为BD 的中点,△E 为PB 的中点,△OE PD ∥,又△OE ⊄平面,PDC PD ⊂平面PDC ,△OE 平面PDC ;(2)证明:△四边形ABCD 为正方形,△AC BD ⊥,△PD ⊥平面ABCD ,且AC ⊂平面ABCD ,所以PD AC ⊥,又△,PD BD ⊂平面PBD ,且PD BD D ⋂=,△AC ⊥平面PBD ,又△AC ⊂平面PAC ,△平面PAC ⊥平面PDB .18.(1)证明见解析; 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥,因为OA ⊂平面ABD ,平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD .因为CD ⊂平面BCD ,所以OA CD ⊥.(2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=, 设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--. 又平面BCD 的一个法向量为()0,0,OA m =,所以cos ,n OA ==1m =. 又点C 到平面ABD 112132A BCD C ABD V V --==⨯⨯⨯=, 所以三棱锥A BCD - [方法二]【最优解】:作出二面角的平面角如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG ∠为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =.由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCD BOC V S O S OA A -==⨯⨯=⨯⨯⨯⨯⨯=. [方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒,记二面角E BC D --为θ.据题意,得45θ=︒.对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.△使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.△ 将△△两式平方后相加,可得223cos 2sin 14αα+=, 由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=, 根据三角形相似知,点G 为OD 的三等分点,即可得43BG =,结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD - 【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.。
2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)
A .B .223.若直线的方向向量为,平面l bA .()(1,0,0,2,0,0b n ==-()(0,2,1,1,0,1b n ==--A .B .5136.如图,在平行六面体ABCDA.1122a b c -++C.1122a b c --+7.如图,在四面体OABC中,1-16.已知四棱锥P ABCDPC棱上运动,当平面1.C【分析】根据已知结合向量的坐标运算可得出,且.然后根据向量的数量积a b a +=- 14a = 运算求解,即可得出答案.【详解】由已知可得,且.()1,2,3a b a+=---=-14a =又,()7a b c +⋅= 所以,即有,7a c -⋅= cos ,14cos ,7a c a c a c -⋅=-=所以,.1cos ,2a c =-又,所以.0,180a c ≤≤ ,120a c =︒ 故选:C.2.C【分析】利用中点坐标公式求出中点的坐标,根据空间两点间的距离公式即可得出中线BC 长.【详解】由图可知:,,,(0,0,1)A (2,0,0)B (0,2,0)C 由中点坐标公式可得的中点坐标为,BC (1,1,0)根据空间两点间距离公式得边上的中线的长为.BC 22211(1)3++-=故选:C 3.D【分析】若直线与平面平行,则直线的方向向量与平面的法向量垂直,利用向量数量积检验.【详解】直线的方向向量为,平面的法向量为,l bαn 若可能,则,即.//l αb n ⊥r r 0b n ⋅=r r A 选项,;()1220b n =⨯-⋅=-≠B 选项,;11305160b n =⨯⨯⋅+⨯+=≠C 选项,;()()01201110b n =⨯-+⨯+⨯-⋅=-≠D 选项,;()1013310b n =⨯+-⨯=⋅+⨯因为,,3AB =4BC =2PA =所以()()(0,0,2,3,0,0,0,0,1P B Q 设平面的法向量为BQD (m x =()(),,3,0,1m BQ x y z ⎧设,2AB AD AS ===则()()()0,0,0,0,0,2,2,2,0,A S C P 设,()0,,2M t t -(1,1,2OM t =--所以1120OM AP t t ⊥=-+-+-=点到平面与平面的距离和为为定值,D 选项正确.M ABCD SAB 22t t -+=,,()2,0,0B ()()2,0,2,0,2,0SB BC =-=设平面的法向量为,SBC (),,n x y z =则,故可设,22020n SB x z n BC y ⎧⋅=-=⎪⎨⋅==⎪⎩()1,0,1n = 要使平面,又平面,//OM SBC OM ⊄SBC 则,()()1,1,21,0,11210OM n t t t t ⋅=---⋅=-+-=-=解得,所以存在点,使平面,B 选项正确.1t =M //OM SBC 若直线与直线所成角为,又,OM AB 30︒()2,0,0AB =则,()()222213cos3022661122OM ABOM ABt t t t ⋅-︒====⋅-++-+-⨯ 整理得,无解,所以C 选项错误.23970,8143730t t -+=∆=-⨯⨯=-<故选:ABD.10.BCD【分析】根据向量的多边形法则可知A 正确;根据向量的三角不等式等号成立条件可知,B 错误;根据共线向量的定义可知,C 错误;根据空间向量基本定理的推论可知,D 错误.【详解】对A ,四点恰好围成一封闭图形,根据向量的多边形法则可知,正确;对B ,根据向量的三角不等式等号成立条件可知,同向时,应有,即必要,a b a b a b+=+ 性不成立,错误;对C ,根据共线向量的定义可知,所在直线可能重合,错误;,a b对D ,根据空间向量基本定理的推论可知,需满足x +y +z =1,才有P 、A 、B 、C 四点共面,错误.故选:BCD .11.AB【分析】以,,作为空间的一组基底,利用空间向量判断A ,C ,利用空间向量法ABAD AA 可得面,再用向量法表示,即可判断B ,利用割补法判断D ;1AC ⊥PMN AH【详解】依题意以,,作为空间的一组基底,ABAD AA 则,,11AC AB AD AA =++ ()1122MN BD AD AB ==-因为棱长均为2,,11π3A AD A AB ∠=∠=所以,,224AB AD == 11π22cos 23AA AD AA AB ⋅=⋅=⨯⨯= 所以()()1112D A A C MN AD A A B AA B++⋅⋅=- ,()2211102AB AD AB AD AB AD AA AD AA AB ⋅-+-⋅+==⋅+⋅故,即,故A 正确;1AC MN ⊥1AC MN ⊥同理可证,,面,面,PN AC ⊥MN PN N ⋂=MN ⊂PMN PN ⊂PMN 所以面,即面,即为正三棱锥的高,1AC ⊥PMN AH ⊥PMN AH A PMN -所以()()1133AH AN NH AN NP NM AN AP AN AM AN=+=++=+-+- ,()13AP AM AN =++又,,分别是,,的中点,,P M N 1AA AB AD π3PAM PAN MAN ∠=∠=∠=所以,则三棱锥是正四面体,1PA AM AN PM MN PN ======P AMN -所以()11111133222AH AP AM AN AA AB AD ⎛⎫=++=⨯++ ⎪⎝⎭ ,()111166AA AB AD AC =++=所以,故B 正确;116AH AC =因为()211AC AB AD AA =++ ()()()222111222AB ADAA AB AD AB AA AD AA =+++⋅+⋅+⋅ ,2426==()21111111=AC AA AB AD AA AA AB AA AD AA AA ⋅=++⋅⋅+⋅+ ,11222222=822=⨯⨯+⨯⨯+⨯设直线和直线所成的角为,1AC 1BB θ则,故C 错误;1111111186cos cos ,cos ,3262AC AA AC BB AC AA AC AA θ⋅=====⨯ ,11111111111111A B D C ABCD A B C D A B D A C B D A B ABC D ADCV V V V V V ------=----其中,1111111111116ABCD A B C D A B D A C B D C B ABC D ADC V V V V V -----====所以,故D 错误.1111113A B D C ABCD A B C D V V --=故选:AB.关键点睛:本题解决的关键点是利用空间向量的基底法表示出所需向量,利用空间向量的数量积运算即可得解.12.AC【分析】对于A ,根据即可算出的值;对于B ,根据计算;对于C ,根据||2a = m a b ⊥ m 计算即可;对于D ,根据求出,从而可计算出.a b λ= 1a b ⋅=- m a b + 【详解】对于A ,因为,所以,解得,故A 正确;||2a = 2221(1)2m +-+=2m =±对于B ,因为,所以,所以,故B 错误;a b ⊥ 2120m m -+-+=1m =对于C ,假设,则,a b λ= (1,1,)(2,1,2)m m λ-=--所以,该方程组无解,故C 正确;()12112m m λλλ=-⎧⎪-=-⎨⎪=⎩对于D ,因为,所以,解得,1a b ⋅=- 2121m m -+-+=-0m =所以,,所以,故D 错误.(1,1,0)a =- (2,1,2)b =-- (1,2,2)+=-- a b 故选:AC.13.15【分析】根据线面垂直,可得直线的方向向量和平面的法向量共线,由此列式计算,即得答案.【详解】∵,∴,∴,解得,l α⊥u n ∥ 3123a b ==6,9a b ==∴,15a b +=故1514.2【分析】根据垂直得到,得到方程,求出.()0a a b λ⋅-= 2λ=【详解】,()()()2,1,31,2,12,12,3a b λλλλλ-=---=--- 因为,所以,()a a b λ⊥- ()0a a b λ⋅-= 即,()()2,12,3241293702,1,134λλλλλλλ----=-++-+-=+⋅-=解得.2λ=故215.17【分析】利用向量的加法,转化为,直接求模长即可.CD CA AB BD =++ 【详解】因为.CD CA AB BD =++ 所以()22CD CA AB BD =++ 222222CA CA AB AB AB BD BD CA BD=+⋅++⋅++⋅ 222132022042342⎛⎫=+⨯++⨯++⨯⨯⨯- ⎪⎝⎭17=所以.17CD = 故答案为.1716.33【分析】首先建立空间直角坐标系,分别求平面和平面的法向量,利用法向量垂MBD PCD 直求点的位置,并利用向量法求异面直线所成角的余弦值,即可求解正弦值.M 【详解】如图,以点为原点,以向量为轴的正方向,建立空间直角坐标A ,,AB AD AP ,,x y z 系,设,2AD AP ==,,,,()2,0,0B ()0,2,0D ()002P ,,()2,2,0C 设,()()()0,2,22,2,22,22,22DM DP PM DP PC λλλλλ=+=+=-+-=-- ,,,()2,2,0BD =-u u u r ()2,0,0DC =u u u r ()0,2,2DP =- 设平面的法向量为,MBD ()111,,m x y z =r ,()()11111222220220DM m x y z DM m x y λλλ⎧⋅=+-+-=⎪⎨⋅=-+=⎪⎩33故。
第三章空间向量与立体几何综合测试题(含详解新人教A版选修2-1)
第三章空间向量与立体几何综合测试题(含详解新人教A版选修2-1)x第三章空间向量与立体几何综合测试题(含详解新人教A版选修2-1)(时间:100分钟;满分:120分)一、选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a=(λ+1,0,2λ),b=(6,2μ-1,2),若a∥b,则λ与μ的值分别为()A.15,12B.5,2C.-15,-12D.-5,-2解析:选A.a∥b,则存在m∈R,使得a=mb,又a=(λ+1,0,2λ),b=(6,2μ-1,2),则有λ+1=6m,0=-,2λ=2m,可得λ=15,μ=12.2.已知A(1,-2,11),B(4,2,3),C(6,-1,4)三点,则△ABC是() A.直角三角形B.钝角三角形C.锐角三角形D.等腰三角形解析:选A.AB→=(3,4,-8),BC→=(2,-3,1),CA→=(-5,-1,7),∴BC→•CA→=-10+3+7=0.∴BC⊥CA.∴△ABC是直角三角形.3.已知在空间四边形OABC中,OA→=a,OB→=b,OC→=c,点M 在OA上,且OM=2MA,N为BC中点,则MN→等于()A.12a-23b+12cB.-23a+12b+12cC.12a+12b-12cD.23a+23b-12c解析:选B.因MN→=ON→-OM→=12(OB→+OC→)-23OA→=12b +12c-23a.4.已知a=(1,0,1),b=(-2,-1,1),c=(3,1,0),则|a-b+2c|等于() A.310B.210C.10D.5解析:选A.|a-b+2c|=-b+,∵a-b+2c=(1,0,1)-(-2,-1,1)+2(3,1,0)=(9,3,0),∴|a-b+2c|=92+32+0=310.5.给出下列命题:①已知a⊥b,则a•(b+c)+c•(b-a)=b•c;②A、B、M、N为空间四点,若BA→、BM→、BN→不能构成空间的一个基底,则A、B、M、N四点共面;③已知a⊥b,则a,b与任何向量都不能构成空间的一个基底;④已知{a,b,c}是空间的一个基底,则基向量a,b可以与向量m=a +c构成空间另一个基底.其中正确命题的个数是()A.1B.2C.3D.4解析:选C.当a⊥b时,a•b=0,a•(b+c)+c•(b-a)=a•b+a•c+c•b -c•a=c•b=b•c,故①正确;当向量BA→、BM→、BN→不能构成空间的一个基底时,BA→、BM→、BN→共面,从而A、B、M、N四点共面,故②正确;当a⊥b时,a,b不共线,任意一个与a,b不共面的向量都可以与a,b构成空间的一个基底,故③错误;当{a,b,c}是空间的一个基底时,a,b,c不共面,所以a,b,m也不共面,故a,b,m可构成空间的另一个基底,故④正确.6.在下列条件中,使M与A、B、C一定共面的是()A.OM→=2OA→-OB→-OC→B.OM→=15OA→+13OB→+12OC→C.MA→+MB→+MC→=0D.OM→+OA→+OB→+OC→=0解析:选C.空间的四点M、A、B、C共面只需满足OM→=xOA→+yOB→+zOC→,且x+y+z=1,或存在实数x,y使得MC→=xMA→+yMB→. 7.在空间直角坐标系Oxyz中,i,j,k分别是x轴、y轴、z轴的方向向量,设a为非零向量,且〈a,i〉=45°,〈a,j〉=60°,则〈a,k〉=()A.30°B.45°C.60°D.90°解析:选C.如图所示,设|a|=m(m>0),a=OP→,PA⊥平面xOy,则在Rt△PBO中,|PB|=|OP→|•cos〈a,i〉=22m,在Rt△PCO中,|OC|=|OP→|•cos〈a,j〉=m2,∴|AB|=m2,在Rt△PAB中,|PA|=|PB|2-|AB|2=24m2-m24=m2,∴|OD|=m2,在Rt△PDO中,cos〈a,k〉=|OD||OP|=12,又0°≤〈a,k〉≤180°,∴〈a,k〉=60°.8.已知点A(-3,4,3),O为坐标原点,则OA与坐标平面yOz所成角的正切值为()A.34B.35C.53D.1解析:选B.A点在面yOz上的射影为B(0,4,3)且|OB|=5,所以OA与平面yOz所成角θ满足tanθ=|AB||OB|=35.9.如图所示,在正方体ABCD-A1B1C1D1中,以D为原点建立空间直角坐标系,E为BB1的中点,F为A1D1的中点,则下列向量中能作为平面AEF的法向量的是()A.(1,-2,4)B.(-4,1,-2)C.(2,-2,1)D.(1,2,-2)解析:选B.设平面AEF的法向量为n=(x,y,z),正方体ABCD-A1B1C1D1的棱长为1,则A(1,0,0),E(1,1,12),F(12,0,1).故AE→=(0,1,12),AF→=(-12,0,1).由AE→•n=0,AF→•n=0,即y+12z=0,-12x+z=0,所以y=-12z,x=2z.当z=-2时,n=(-4,1,-2),故选B.10.正方体ABCD-A1B1C1D1中,二面角A-BD1-B1的大小为() A.90°B.60°C.120°D.45°解析:选C.如图,以C为原点建立空间直角坐标系Cxyz,设正方体的边长为a,则A(a,a,0),B(a,0,0),D1(0,a,a),B1(a,0,a),于是BA→=(0,a,0),BD1→=(-a,a,a),BB1→=(0,0,a).设平面ABD1的法向量为n=(x,y,z),则n•BA→=(x,y,z)•(0,a,0)=ay=0,n•BD1→=(x,y,z)•(-a,a,a)=-ax+ay+az=0.∵a≠0,∴y=0,x=z.令x=z=1,则n=(1,0,1),同理,平面B1BD1的法向量m=(-1,-1,0).由于cos〈n,m〉=n•m|n||m|=-12,而二面角A-BD1-B1为钝角,故为120°.二、填空题(本大题共5小题,把答案填在题中横线上)11.已知a=(2,-1,0),b=(k,0,1),若〈a,b〉=120°,则k=________. 解析:∵cos〈a,b〉=a•b|a||b|=2k5•k2+1=-12<0,∴k<0,且k2=511.∴k=-5511.答案:-551112.若a=(2,3,-1),b=(-2,1,3),则以a,b为邻边的平行四边形的面积为________.解析:cos〈a,b〉=a•b|a||b|=-27,得sin〈a,b〉=357,由公式S=|a||b|sin〈a,b〉可得结果.答案:6513.如图,空间四边形OABC,点M,N分别为OA,BC的中点,且OA→=a,OB→=b,OC→=c,用a,b,c表示MN→,则MN→=________. 解析:MN→=ON→-OM→=12(OB→+OC→)-12OA→=-12a+12b+12c.答案:-12a+12b+12c14.点P是棱长为1的正方体ABCD-A1B1C1D1内一点,且满足AP→=34AB→+12AD→+23AA1→,则点P到棱AB的距离为__________.解析:如图所示,过P作PQ⊥平面ABCD于Q,过Q作QE⊥AB于E,连接PE.∵AP→=34AB→+12AD→+23AA1→,∴PQ=23,EQ=12,∴点P到棱AB的距离为PE=PQ2+EQ2=56.答案:5615.如图所示,在棱长为4的正方体ABCD-A1B1C1D1中,点E是棱CC1的中点,则异面直线D1E与AC所成的角的余弦值是________.解析:如图,建立空间直角坐标系,则A(4,0,0),C(0,4,0),D1(0,0,4),E(0,4,2),AC→=(-4,4,0),D1E→=(0,4,-2).cos〈AC→,D1E→〉=1632×20=105.∴异面直线D1E与AC所成角的余弦值为105.答案:105三、解答题(本题共5小题,解答写出文字说明、证明过程或演算步骤)16.如图,在平行六面体ABCD-A1B1C1D1中,CM=2MA,A1N=2ND,且AB→=a,AD→=b,AA1→=c,试用a,b,c表示向量MN→.解:∵MN→=MA→+AA1→+A1N→=-13AC→+AA1→+23A1D→=-13(AB→+AD→)+AA1→+23(A1A→+A1D1→)=-13AB→-13AD→+13AA1→+23AD→=-13a+13b+13c,∴MN→=-13a+13b+13c.17.在正方体ABCD-A1B1C1D1中,P为DD1的中点,M为四边形ABCD 的中心.求证:对A1B1上任一点N,都有MN⊥AP.证明:建立如图所示的空间直角坐标系Dxyz,设正方体的棱长为1,则A(1,0,0),P0,0,12,M12,12,0,N(1,y,1).∴AP→=-1,0,12,MN→=12,y-12,1.∴AP→•MN→=(-1)×12+0×y-12+12×1=0,∴AP→⊥MN→,即A1B1上任意一点N都有MN⊥AP.18.如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,AB=1,BM⊥PD于点M.(1)求证:AM⊥PD;(2)求直线CD与平面ACM所成角的余弦值.解:(1)证明:∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB.∵AB⊥AD,AD∩PA=A,∴AB⊥平面PAD.∵PD⊂平面PAD,∴AB⊥PD,又∵BM⊥PD,AB∩BM=B,∴PD⊥平面ABM.∵AM⊂平面ABM,∴AM⊥PD.(2)如图所示,以点A为坐标原点,建立空间直角坐标系Axyz,则A(0,0,0),P(0,0,2),B(1,0,0),C(1,2,0),D(0,2,0).∵AM⊥PD,PA=AD,∴M为PD的中点,∴M的坐标为(0,1,1).∴AC→=(1,2,0),AM→=(0,1,1),CD→=(-1,0,0).设平面ACM的一个法向量为n=(x,y,z),由n⊥AC→,n⊥AM→可得x+2y=0y+z=0,令z=1,得x=2,y=-1.∴n=(2,-1,1).设直线CD与平面ACM所成的角为α,则sinα=|CD→•n||CD→|•|n|=63.∴cosα=33,即直线CD与平面ACM所成角的余弦值为33.19.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A-PB-C的余弦值.解:(1)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=3AD,从而BD2+AD2=AB2,故BD⊥AD.又因为PD⊥底面ABCD,可得BD⊥PD.又因为AD∩PD=D,所以BD⊥平面PAD,故PA⊥BD.(2)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系Dxyz,则A(1,0,0),B(0,3,0),C(-1,3,0),P(0,0,1),AB→=(-1,3,0),PB→=(0,3,-1),BC→=(-1,0,0).设平面PAB的法向量为n=(x,y,z),则n•AB→=0,n•PB→=0,即-x+3y=0,3y-z=0,因此可取n=(3,1,3).设平面PBC的法向量为m,则m•PB→=0,m•BC→=0,可取m=(0,-1,-3),〈m,n〉等于二面角A-PB-C的平面角,cos 〈m,n〉=-427=-277.故二面角A-PB-C的余弦值为-277.20.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(1)求证:PO⊥平面ABCD;(2)求异面直线PB与CD所成角的余弦值;(3)求点A到平面PCD的距离.解:(1)证明:如图所示,以O为坐标原点,OC→、OD→、OP→的方向分别为x轴,y轴,z轴的正方向,建立空间直角坐标系Oxyz.则A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1).所以OP→=(0,0,1),AD→=(0,2,0),OP→•AD→=0,所以,PO⊥AD,又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,所以PO⊥平面ABCD.(2)CD→=(-1,1,0),PB→=(1,-1,-1),所以cos〈PB→,CD→〉=PB→•CD→|PB→||CD→|=-1-13×2=-63,所以异面直线PB与CD 所成的角的余弦值为63.(3)设平面PCD的法向量为n=(x0,y0,z0),CP→=(-1,0,1),CD→=(-1,1,0),由n•CP→=0n•CD→=0,得-x0+z0=0-x0+y0=0,即x0=y0=z0,取x0=1,得平面PCD的一个法向量为n=(1,1,1).又AC→=(1,1,0),从而点A到平面PCD的距离d=|AC→•n||n|=23=233.。
空间向量解立体几何(含综合题习题)
空间向量解立体几何(含综合题习题)利用空间向量解立体几何问题一、基础知识1.刻画直线与平面方向的向量直线的方向向量可由直线上的两个点来确定。
例如,若有点A(2,4,6)和点B(3,0,2),则直线AB的方向向量为AB=(1,-4,-4)。
平面的法向量来刻画平面的倾斜程度。
法线的方向向量就是平面的法向量。
要求出指定平面的法向量,需要平面上的两条不平行的直线。
设平面的法向量为n=(x,y,z),若平面上所选两条直线的方向向量分别为a=(x1,y1,z1)和b=(x2,y2,z2),则可列出方程组:x1x+y1y+z1z=0和x2x+y2y+z2z=0,解出x,y,z的比值即可。
例如,若a=(1,2,0)和b=(2,1,3),求a,b所在平面的法向量,则设n=(x,y,z),有方程组:x+2y=0,2x+y+3z=0,解得:x:y:z=-2:1:1,故n=(-2,1,1)。
2.空间向量可解决的立体几何问题1)判定类线面平行:a∥b当且仅当a∥b。
线面垂直:a⊥XXX且仅当a⊥b。
面面平行:α∥β当且仅当m∥n。
面面垂直:α⊥β当且仅当m⊥n。
2)计算类两直线所成角:cosθ=cos(a,b)=(a·b)/(|a||b|)。
线面角:sinθ=sin(a,m)=(a·m)/(|a||m|)。
二面角:cosθ=cos(m,n)(法向量夹角关系而定)或cosθ=-cos(m,n)。
点到平面距离:设A为平面α外一点,P为平面α上任意一点,则A到平面α的距离为d=|AP·n|/|n|,即AP在法向量n上投影的绝对值。
3)点的存在性问题在立体几何解答题中,最后一问往往涉及点的存在性问题,即是否在某条线上存在一点,使之满足某个条件。
解决该问题时,可以先设出所求点的坐标(x,y,z),再想办法利用条件求出坐标。
为底面,以AD为高,构造平面ADE,可知平面ADE与平面ABCD- A1垂直,且平面ADE与平面EF所成角为所求角,故EF与平面ADE垂直。
2015年空间向量与立体几何综合练习(含解析)
空间向量与立体几何综合练习题一、选择题:1.在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=,11D A =,A A 1=.则下列向量中与M B 1相等的向量是( )A .1122a b c -++B .1122a b c ++C .1122a b c -+D .1122a b c --+2.在下列条件中,使M与A 、B 、C一定共面的是( )A .--=2B .111532OM OA OB OC =++C .=++MC MB MA 0D .=+++OC OB OA OM 03.已知平行六面体''''ABCD A B C D -中,AB=4,AD=3,'5AA =,090BAD ∠=,''060BAA DAA ∠=∠=,则'AC 等于( )A .85 BC. D .504.与向量(1,3,2)a =-平行的一个向量的坐标是( ) A .(31,1,1)B .(-1,-3,2)C .(-21,23,-1)D .(2,-3,-22)5.已知A (-1,-2,6),B (1,2,-6)O 为坐标原点,则向量,OA OB 与的夹角是( )A .0B .2πC .πD .32π 6.已知空间四边形ABCD 中,===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则=( )A .c b a 213221+-B .c b a 212132++-C .212121-+D .213232-+7.设A 、B 、C 、D 是空间不共面的四点,且满000=∙=∙=∙AD AB ,AD AC ,AC AB ,则∆BCD 是 ( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定8.空间四边形OABC 中,OB=OC ,∠AOB=∠AOC=600,则= ()A .21B .22 C .-21 D .09.已知A (1,1,1)、B (2,2,2)、C (3,2,4),则∆ABC 的面积为( )A .3B .32C .6D .2610. 已知),,2(),,1,1(t t t t t =--=,则||-的最小值为( )A .55 B .555 C .553 D .511 二、填空题:11.若)1,3,2(-=a ,)3,1,2(-=b ,则b a ,为邻边的平行四边形的面积为 .12.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC的中点,点G 在线段MN 上,且2=,现用基组{},,表示向量,有=x z y ++,则x 、y 、z 的值分别为 .13.已知点A(1,-2,11)、B(4,2,3),C(6,-1,4),则∆ABC 的形状是 .14.已知向量)0,3,2(-=,)3,0,(k =,若,成1200的角,则k= . 三、解答题:解答应写出文字说明、证明过程或演算步骤15.如图,在梯形ABCD 中,AB//CD ,AD=DC=CB=a ,60ABC ∠=,平面ACFE ⊥平面ABCD ,四边形ACFE 是矩形,AE=a.(1)求证:BC ⊥平面ACFE ;(2)求二面角B —EF —D 的平面角的余弦值.16.如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD,PD ⊥底面ABCD.(1)证明:PA ⊥BD ;(2)若PD=AD ,求二面角A-PB-C 的余弦值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用空间向量解立体几何问题一、基础知识(一)刻画直线与平面方向的向量1、直线:用直线的方向向量刻画直线的方向问题,而方向向量可由直线上的两个点来确定例如:()()2,4,6,3,0,2A B ,则直线AB 的方向向量为()1,4,4AB =--2、平面:用平面的法向量来刻画平面的倾斜程度,何为法向量?与平面α垂直的直线称为平面α的法线,法线的方向向量就是平面α的法向量,如何求出指定平面的法向量呢?(1)所需条件:平面上的两条不平行的直线(2)求法:(先设再求)设平面α的法向量为(),,n x y z =,若平面上所选两条直线的方向向量分别为()()111222,,,,,a x y z b x y z ==,则可列出方程组:1112220x y z x y x y z x y z z ++=⎧⎨++=⎩ 解出,,x y z 的比值即可 例如:()()1,2,0,2,1,3a b ==,求,a b 所在平面的法向量解:设(),,n x y z =,则有20230x y x y z +=⎧⎨++=⎩ ,解得:2x yz y =-⎧⎨=⎩::2:1:1x y z ∴=- ()2,1,1n ∴=-(二)空间向量可解决的立体几何问题(用,a b 表示直线,a b 的方向向量,用,m n 表示平面,αβ的法向量) 1、判定类(1)线面平行:a b a b ⇔∥∥ (2)线面垂直:a b a b ⊥⇔⊥(3)面面平行:m n αβ⇔∥∥ (4)面面垂直:m n αβ⊥⇔⊥ 2、计算类:(1)两直线所成角:cos cos ,a b a b a bθ⋅==(2)线面角:cos ,sin a m a m a m θ⋅==(3)二面角:cos cos ,m n m n m nθ⋅==或cos cos ,m n m n m nθ⋅=-=-(视平面角与法向量夹角关系而定)(4)点到平面距离:设A 为平面α外一点,P 为平面α上任意一点,则A 到平面α的距离为A AP n d nα-⋅=,即AP 在法向量n 上投影的绝对值。
(三)点的存在性问题:在立体几何解答题中,最后一问往往涉及点的存在性问题,即是否在某条线上存在一点,使之满足某个条件,本讲主要介绍使用空间向量解决该问题时的方法与技巧1、理念:先设再求——先设出所求点的坐标(),,x y z ,再想办法利用条件求出坐标2、解题关键:减少变量数量——(),,x y z 可表示空间中的任一点,但题目中所求点往往是确定在某条线或者某个平面上的,所以使用三个变量比较“浪费”(变量多,条件少,无法求解),要考虑减少变量的个数,最终所使用变量的个数可根据如下条件判断:(1)直线(一维)上的点:用一个变量就可以表示出所求点的坐标 (2)平面(二维)上的点:用两个变量可以表示所求点坐标 规律:维度=所用变量个数 3、如何减少变量:(1)直线上的点(重点):平面向量共线定理——若,a b R λ⇒∃∈∥使得a b λ= 例:已知()()1,3,4,0,2,1A P ,那么直线AP 上的某点(),,M x y z 坐标可用一个变量表示,方法如下:()()1,3,4,1,1,3AM x y z AP =---=---——三点中取两点构成两个向量因为M 在AP 上,所以AM AP AM AP λ⇒=∥ ——共线定理的应用(关键)11334343x x y y z z λλλλλλ-=-=-⎧⎧⎪⎪∴-=-⇒=-⎨⎨⎪⎪-=-=-⎩⎩,即()1,3,43M λλλ---——仅用一个变量λ表示 (2)平面上的点:平面向量基本定理——若,a b 不共线,则平面上任意一个向量c ,均存在,R λβ∈,使得:c a b λβ=+例:已知()()()1,3,4,0,2,1,2,4,0A P Q ,则平面APQ 上的某点(),,M x y z 坐标可用两个变量表示,方法如下:()()()1,3,4,1,1,3,2,2,1AM x y z AP PQ =---=---=-,故AM AP PQ λβ=+,即121232324343x x y y z z λβλβλβλβλβλβ-=-+=-+⎧⎧⎪⎪∴-=-+⇒=-+⎨⎨⎪⎪-=--=--⎩⎩二、典型例题例1:(2010 天津)在长方体1111ABCD A B C D -中,,E F 分别是棱1,BC CC 上的点,(3)求二面角1A ED F --正弦值解:由长方体1111ABCD A B C D -得:1,,AA AB AD 两两垂直∴ 以1,,AA AB AD 为轴建立空间直角坐标系(1)()()()131,,0,1,2,1,0,0,4,0,2,02E F A D ⎛⎫⎪⎝⎭()110,,1,0,2,42EF A D ⎛⎫∴==- ⎪⎝⎭1113cos ,55EF A D EF A D EF A D⋅∴===-⋅3cos 5θ∴=(2)()1,2,1AF =,设平面1A ED 的法向量为(),,n x y z =()110,2,4,1,,02A D DE ⎛⎫=-=- ⎪⎝⎭240::1:2:1102y z x y z x y -=⎧⎪∴⇒=⎨-=⎪⎩ ()1,2,1n ∴= AF n ∴∥ AF ∴⊥平面1A ED(3)设平面EDF 的法向量(),,m x y z =()11,,0,1,0,12DE DF ⎛⎫=-= ⎪⎝⎭()10::1:2:120x y x y z x z ⎧-=⎪∴⇒=-⎨⎪+=⎩ ()1,2,1m ∴=- ()1,2,1n=42cos ,63m n m n m n⋅∴=== sin 3θ∴=例2:如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =,若MN 分别为棱,PD PC 上的点,O 为AC 中点,且22AC OM ON == (1)求证:平面ABM ⊥平面PCD(2)求直线CD 与平面ACM 所成角的正弦值(3)求点N 到平面ACM 的距离 解:PA ⊥平面ABCD,PA AB PA AD ∴⊥⊥ 矩形ABCD AB AD ∴⊥ 故,,PA AB AD 两两垂直以,,PA AB AD 为轴建立空间直角坐标系()()()()()0,0,4,2,0,0,2,4,0,0,4,0,1,2,0P B C D O22AC OM ON ==,且,OM ON 分别为,AMC ANC,AN PC AM PD ∴⊥⊥设点(),,M x y z ,因为,,P M D 三点共线PM PD λ∴= 而()(),,4,0,4,4PM x y z PD =-=-()0,4,4PD λλλ∴=- 0444x y z λλ=⎧⎪∴=⎨⎪-=-⎩()0,4,44M λλ∴- 而0AM PD AM PD ⊥⇒⋅=∴ ()11644402λλλ--=⇒=()0,2,2M ∴同理,设点(),,N x y z ,因为,,P N C 三点共线PN PC μ∴= 而()(),,4,2,4,4PN x y z PC =-=-()2,4,4PD μμμμ∴=- 2444x y z μμμ=⎧⎪∴=⎨⎪-=-⎩()2,4,44N μμμ∴- 而0AN PC AN PC ⊥⇒⋅=∴ ()44+1644409μμμμ--=⇒=81620,,999N ⎛⎫∴ ⎪⎝⎭(1)设平面ABM 的法向量为()1,,n x y z = ()()2,0,0,0,2,2AB AM ==()1200,1,1220x n y z =⎧∴⇒=-⎨+=⎩ 设平面PCD 的法向量为()2,,n x y z = ()()2,4,4,2,0,0PC DC =-=()224400,1,120x y z n x +-=⎧∴⇒=⎨=⎩ 120n n ∴⋅= 12n n ∴⊥∴ 平面ABM ⊥平面PCD(2)设平面ACM 的法向量为(),,n x y z()()2,4,0,0,2,2AC AM == ()2402,1,1220x y n y z +=⎧∴⇒=-⎨+=⎩而()2,0,0CD =-∴设直线CD 与平面AC 所成角为θ,则sin cos ,32CD n CD n CD nθ⋅====⋅⋅(3)829N ACMAN n d n-⋅⋅===平面 例3:已知在四棱锥P ABCD -中,底面ABCD 是矩形,且2,1,AD AB PA ==⊥平面 ABCD ,,E F 分别是线段,AB BC 的中点 (1)求证:PF FD ⊥(2)在线段PA 上是否存在点G ,使得EG ∥平面PFD ,若存在,确定点G 的位置;若不存在,请说明理由(3)若PB 与平面ABCD 所成的角为45,求二面角A PD F --的余弦值解:因为PA ⊥平面ABCD ,且四边形ABCD 是矩形∴ 以,,PA AD AB 为轴建立空间直角坐标系,设PA h =()()()()()10,0,,1,0,0,0,2,0,1,2,0,1,1,0,,0,02P h B D C F E ⎛⎫∴ ⎪⎝⎭(1)()()1,1,,1,1,0PF h FD ∴=-=- 0P F F D ∴⋅=PF FD ∴⊥(2)设()0,0,G a 1,0,2E G a ⎛⎫∴=- ⎪⎝⎭设平面PFD 的法向量为(),,n x y z = ()()1,1,,1,1,0P F h F D =-=- 002x hx y zh y h x y z =⎧+-=⎧⎪∴⇒=⎨⎨-+=⎩⎪=⎩(),,2n h h ∴=EG ∥平面PFD E G n∴⊥ 1202EG n h a ∴⋅=-+=解得14a h =∴ 存在点G ,为AP 的四等分点(靠近A )(3)PA ⊥底面ABCD PB ∴在底面ABCD 的投影为BAPBA ∴∠为PB 与平面ABCD 所成的角,即45PBA ∠= PBA ∴为等腰直角三角形 1A P A B ∴==即1h = ∴平面PFD 的法向量为()1,1,2n =平面APD 为yOz 平面,所以平面APD 的法向量为()0,1,0m = 设二面角A PD F --的平面角为θ,可知θ为锐角cos cos ,6m n θ∴=== 例4:四棱锥P ABCD -中,平面PAB ⊥平面A B C ,,90,3,AD BC ABC PA PB ∠===∥1,2,3,BC AB AD O ===是AB 中点(1)求证:CD ⊥平面POC(2)求二面角C PD O --的平面角的余弦值 (3)在侧棱PC 上是否存在点M ,使得BM ∥平面POD ,若存在,求出CMPC的值;若不存在,请说明理由解:过O 在平面ABCD 作AB 的垂线交CD 于Q,PA PB O =为AB 中点PO AB ∴⊥平面PAB ⊥平面ABCDPO ∴⊥平面ABCD,PO OB PO OQ ∴⊥⊥ OQ AB ⊥∴以,,PO OB OQ 为轴建立空间直角坐标系PO ==(()()()(),1,0,0,1,0,0,1,1,0,1,3,0P B A C D ∴--(1)()2,2,0CD =- 设平面POC 的法向量为(),,n x y z =()()0,0,22,1,1,0OP OC ==0000OP n x y OC n ⎧⎧⋅==⎪⎪∴⇒⎨⎨+=⎪⋅=⎪⎩⎩ ()1,1,0n ∴=- CD n ∴∥ ∴CD ⊥平面POC(2)设平面PCD 的法向量为()1,,n x y z =()()1,1,22,2,2,0PC CD =-=-11002200PC n x y x y CD n ⎧⎧⋅=+-=⎪⎪∴⇒⎨⎨-+=⎪⋅=⎪⎩⎩()12,,1n ∴=设平面PDO 的法向量为()2,,n x y z =()()0,0,22,1,3,0OP OD ==-2200300OP n x y OD n ⎧⎧⋅==⎪⎪∴⇒⎨⎨-+=⎪⋅=⎪⎩⎩()23,1,0n ∴= 1212124cos ,5n n n n n n ⋅∴==⋅ 所以二面角C PD O --的平面角的余弦值为45(3)设(),,M x y z C M C P λ=()(1,1,,1,CM x y z CP =--=--()111,1x y M z λλλλ⎧-=-⎪∴-=-⇒--⎨⎪=⎩ (),1BM λλ∴=-- 而平面PDO 的法向量为()23,1,0n =BM ∥平面POD 20310B M n λλ∴⋅=⇒-+-= 14λ∴=14CM PC ∴= 例5:已知四棱锥P ABCD -中,PA ⊥平面ABCD120BAD ∠=,PA b =(1)求证:平面PBD ⊥平面PAC(2)设AC 与BD 交于点O ,M 为OC O PM D --的正切值是,求:a b 的值建系思路一:由PA 与底面垂直,从而以PA 作为z 轴,以AB 为x 轴,由120的菱形性质可得取CD 中点T ,连结AT 则有AT AB ⊥,从而建立空间直角坐标系解:取CD 中点T ,连结AT ,可得AT CD ⊥AB AT ∴⊥ PA ⊥平面ABCD∴以,,PA AB AT 为轴建立空间直角坐标系可得:()()11,0,0,,,0,,,0,0,0,2222B a C a a D a P b ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭(1)设平面PBD 的法向量为(),,m x y z =()3,0,,,022PB a b BD a a ⎛⎫=-=- ⎪⎝⎭3022x b ax bz y ax z a=⎧-=⎧⎪⎪∴⇒=⎨⎨-+=⎪⎪=⎩⎩ (),m b a ∴= 设平面PAC 的法向量为(),,n x y z =()10,0,,,,022AP b AC a ⎛⎫== ⎪⎝⎭110022x z y ax ay z ⎧==⎧⎪⎪∴⇒=⎨⎨+=⎪⎪=⎩⎩ ()3,1,0n ∴=-0m n ∴⋅= ∴ 平面PBD ⊥平面PAC(2)13,0,,048O a M a ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭设平面O P 的法向量为()1,,n x y z =131,,,,048OP a a b OMa ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭1044110088x ax ay bz y z ax ay ⎧⎧=--+=⎪⎪⎪∴⇒=⎨⎨⎪⎪=+=⎩⎪⎩ ()13,1,n ∴=- 设平面PMD 的法向量为()2,,n x y z =137,,,,028PD a a bMD a ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭102277088x ax bz y b ax z⎧⎧=-+-=⎪⎪⎪∴⇒=⎨⎨⎪⎪-+==⎩⎪⎩()23,73n b a ∴=设二面角O PM D--的平面角为θ,则tan θ=1cos 5θ=121cos cos ,5n n θ∴=== 222101005227b b b a =⇒=+224816279a b ∴== 4:3a b∴= 建系思路二:由思路一可发现尽管建系思路简单,但是所涉及的点的坐标过于复杂,而导致后面的计算繁杂。