矩阵的计算

合集下载

2.2矩阵的运算

2.2矩阵的运算

2). 矩阵乘法不满足消去律
AB = AC ⇒ B = C
1 0 0 0 0 0 如 A= , B = 0 1 , C = 0 0 . AB = AC , 但B ≠ C 0 0
3).两个非零矩阵相乘的结果可能是零矩阵 3).两个非零矩阵相乘的结果可能是零矩阵 AB=0时 一般不能得出A 若 AB=0时,一般不能得出A、B中至少有一个为零矩阵的 结论. 结论.
b1 b2 例 3 设矩阵 A = (a1 , a 2 , L,a n ) , B = , 求AB,BA . M b n
解 A1×n Bn×1 = a1b1 + a2b2 + L anbn = ∑ ai bi
n
Bn×1 A1× n
b1a1 b2 a1 = M b a n 1
k =1 i =1 i =1 k =1 i =1
n
n
n
n
n
故 AB 与 BA 的主对角线上的元素之 和相等 .
例6 用矩阵方程表示下式线性方程组
a11 x1 + a12 x2 + L + a1n xn = b1 a21 x1 + a22 x2 + L + a2 n xn = b2 LLLLLLLLLLLLL am1 x1 + am1 x2 + L + amn xn = bm
(1)
( 3)
(λ µ ) A = λ ( µ A)
λ ( A + B) = λ A + λ B
矩阵相加与数乘矩阵合 起来 ,统称为矩阵的线性运算 . 统称为矩阵的线性运算
二 、矩阵与矩阵的乘法

矩阵的运算及其运算规则

矩阵的运算及其运算规则

矩阵的运算及其运算规则在数学和众多科学领域中,矩阵是一种非常重要的工具,它有着广泛的应用。

要深入理解和运用矩阵,就必须掌握矩阵的运算及其运算规则。

矩阵的加法是一种基础运算。

两个矩阵相加,只有当它们的行数和列数分别相等时才能进行。

具体来说,就是将对应位置的元素相加。

比如,有矩阵 A = a₁₁ a₁₂; a₂₁ a₂₂和矩阵 B = b₁₁ b₁₂;b₂₁ b₂₂,那么它们相加的结果矩阵 C 就是 C = a₁₁+ b₁₁ a₁₂+ b₁₂; a₂₁+ b₂₁ a₂₂+ b₂₂。

矩阵的数乘也较为常见。

用一个数乘以矩阵,就是将这个数与矩阵中的每个元素相乘。

假如有矩阵 A = a₁₁ a₁₂; a₂₁ a₂₂,k 是一个数,那么数乘的结果就是 kA = k×a₁₁ k×a₁₂; k×a₂₁ k×a₂₂。

接下来谈谈矩阵的乘法。

矩阵乘法相对复杂一些,但在实际应用中却非常重要。

当矩阵 A 的列数等于矩阵 B 的行数时,这两个矩阵才能相乘。

假设矩阵 A 是 m×n 的矩阵,矩阵 B 是 n×p 的矩阵,那么它们相乘得到的矩阵 C 是 m×p 的矩阵。

具体计算时,矩阵 C 中第 i 行第 j 列的元素 cij 等于矩阵 A 的第 i 行元素与矩阵 B 的第 j 列对应元素乘积的和。

例如,A = a₁₁ a₁₂; a₂₁ a₂₂,B = b₁₁ b₁₂; b₂₁ b₂₂,那么它们相乘得到的矩阵 C 中的 c₁₁= a₁₁×b₁₁+ a₁₂×b₂₁,c₁₂= a₁₁×b₁₂+ a₁₂×b₂₂,c₂₁= a₂₁×b₁₁+ a₂₂×b₂₁,c₂₂= a₂₁×b₁₂+ a₂₂×b₂₂。

矩阵乘法不满足交换律,也就是说一般情况下AB ≠ BA。

但它满足结合律,即(AB)C = A(BC),还满足分配律,即 A(B + C) = AB +AC。

矩阵的乘法运算

矩阵的乘法运算

矩阵的乘法运算矩阵是线性代数中重要的概念,乘法运算是矩阵操作中的核心。

本文将介绍矩阵的乘法运算并详细解析其计算方法。

一、基本概念矩阵是一个由数字构成的矩形阵列。

在描述矩阵时,我们用m行n列的格式表示,即一个m×n的矩阵。

其中,m代表矩阵的行数,n代表列数。

例如,一个2×3的矩阵由2行3列的数字构成,如下所示:```a b cd e f```在矩阵乘法运算中,我们需要注意两个矩阵的尺寸要满足乘法规则:第一个矩阵的列数必须等于第二个矩阵的行数。

二、乘法运算步骤矩阵乘法运算的结果是一个新的矩阵,其行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。

具体的计算步骤如下所示:1. 确定结果矩阵的行数和列数:结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。

2. 计算元素的值:将第一个矩阵的第i行和第二个矩阵的第j列对应元素相乘,然后将结果累加,得到结果矩阵中的元素值。

通过以上步骤,我们可以进行矩阵的乘法运算。

下面通过一个实例进行具体讲解。

三、实例演示假设有两个矩阵A和B,分别为3×2和2×4的矩阵:```A = a1 a2a3 a4a5 a6B = b1 b2 b3 b4b5 b6 b7 b8```根据乘法规则,我们可以得到结果矩阵C,其尺寸为3×4:```C = c1 c2 c3 c4c5 c6 c7 c8c9 c10 c11 c12```根据乘法运算步骤,我们可以逐个元素地计算矩阵C的值。

C的第一个元素c1的值为a1×b1 + a2×b5,通过类似的计算,我们可以得到C的所有元素值。

通过以上实例演示,我们可以清晰地了解矩阵的乘法运算及其计算步骤。

四、乘法运算的性质矩阵的乘法运算具有一些重要的性质,包括结合律、分配律等。

这些性质使得矩阵乘法在实际中有广泛的应用。

1. 结合律:对于任意的三个矩阵A、B和C,满足(A×B)×C =A×(B×C)。

矩阵的运算及其运算规则

矩阵的运算及其运算规则

矩阵的运算及其运算规则矩阵是代数中一种重要的数学工具,它由数个数按照规定的行列顺序排列而成。

矩阵的运算包括加法、减法、数乘、乘法以及转置等,这些运算规则在代数中有着重要的应用。

一、矩阵的加法和减法矩阵的加法和减法规则相同,对应位置的元素进行相加或相减。

具体来说,如果有两个m×n(m行n列)的矩阵A和B,它们的和为C,则A和B之间的加法运算可以表示为:C = A + B。

其中,C的元素cij就是A和B相对应位置元素之和。

同样,矩阵的减法也是对应位置的元素进行相减操作。

例如,对于如下两个矩阵:A=[[1,2],[3,4]]B=[[5,6],[7,8]]则A和B的和、差分别为:A+B=[[1+5,2+6],[3+7,4+8]]=[[6,8],[10,12]]A-B=[[1-5,2-6],[3-7,4-8]]=[[-4,-4],[-4,-4]]二、矩阵的数乘矩阵的数乘是指将矩阵的每个元素都与一个常数k相乘。

具体来说,如果有一个m×n的矩阵A和一个实数k,则矩阵A乘以k的结果为B,可表示为:B = kA。

其中,B的元素bij等于k与A相对应位置元素的乘积。

例如,对于如下矩阵:A=[[1,2],[3,4]]k=2则A乘以k的结果为:B=kA=2A=[[2,4],[6,8]]三、矩阵的乘法矩阵的乘法是指给定两个矩阵A和B,如果A的列数等于B的行数,则可以将它们相乘得到一个新的矩阵C。

具体来说,如果A是一个m×n 的矩阵,B是一个n×p的矩阵,则矩阵C的大小为m×p。

C的元素cij 可以通过计算A的第i行与B的第j列对应位置元素的乘积之和得到。

例如,对于如下两个矩阵:A=[[1,2],[3,4]]B=[[5,6],[7,8]]则A和B的乘积为:C=AB=[[1×5+2×7,1×6+2×8],[3×5+4×7,3×6+4×8]]=[[19,22], [43,50]]注意,在矩阵乘法中,矩阵的位置很重要,即AB一般不等于BA。

矩阵的运算

矩阵的运算

§2 矩阵的运算一、矩阵的相等、加、减、数乘、乘法、转置与共轭(A +B )=A +B (kA )=kA (k 为任意复数) (AB )τ=BA (反序定律)(A 1A 2...A s )=τττ12...A A A s(A k )=(A )k (k 为整数)二、 矩阵的初等变换与初等矩阵设I =⎥⎥⎥⎥⎤⎢⎢⎢⎢⎡10101,称为单位矩阵.用数k(0)乘矩阵的第i 列(或行)初等变换具有性质:1° 任何矩阵(a ij )都可经过有限次初等变换化为对角矩阵(a ij )⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡0001012° 初等变换不改变矩阵的秩.三、 矩阵的微积分假设矩阵A 的元素a ij 都是参数t 的函数,那末1° 矩阵A 的导数定义为⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡==t a t a ta t a t a tat a t a t a A tA mn m m n n d d ...d d d d ............d d ...d d d d d d ...d d d d d d 212222111211同样可定义矩阵的高阶导数. 2° 矩阵A 的积分定义为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰t a t a ta t at at a t a t a ta t A mn m m n nd ...d d ............d ...d d d ...d d d 212222111211同样可定义矩阵的多重积分.四、 特殊矩阵[零矩阵与零因子] 元素a ij 全为零的矩阵称为零矩阵,记作O =(0)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0...00............0 (00)0 (00)零矩阵具有性质:O +A =A +O =A OA =AO =OA +(-A )=O ,-A 称为A 的负矩阵若A ,B 为非零矩阵,即A ≠O ,B ≠O ,而AB =O ,则称矩阵A 为矩阵B 的左零因子,矩阵B 为矩阵A 的右零因子,例如A =⎥⎦⎤⎢⎣⎡--1111,B =⎥⎦⎤⎢⎣⎡--1111 AB =⎥⎦⎤⎢⎣⎡--1111⎥⎦⎤⎢⎣⎡--1111=⎥⎦⎤⎢⎣⎡0000=O[对角矩阵] 主对角线以外的元素都是零(d ij =0,i ≠j )的方阵称为对角矩阵,记作D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0...021=diag(d 1,d 2,...,d n )=[ d 1 d 2 ... d n ] 对角矩阵具有性质: 1° 左乘BDB =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0021⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b .....................212222111211=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n n n n b d b d b d b d b d b d b d b d b d ............... (2)12222221211121111 =)(ij i b d 2° 右乘BBD =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b (2)12112111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0021=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n n n n b d bd b d b d b d bd b d b d b d (2211222)22111122111 3° 两个对角矩阵的和、差、积仍为对角矩阵.[数量矩阵] d i =d (i =1,2,...,n )的对角矩阵称为数量矩阵,记作D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡d d d00 =[d d... d ]显然DB =BD =dB .[单位矩阵] d =1的数量矩阵称为单位矩阵,记作 I =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10101 =「1 1 ... 1」显然IB =BI =B .[对称矩阵] 满足条件a ij =a ji (i ,j =1,2,...,n )的方阵A =(a ij )称为对称矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--423261315 是对称矩阵.对称矩阵具有性质: 若A ,B 都是对称矩阵,则A A=τ,且A -1(使A -1=A -1A =I 的矩阵.详见本节,六),A m (m 为正整数),A +B 仍是对称矩阵.[实对称矩阵]实对称矩阵按其特征值(本节,七)可分为正定矩阵,半正定矩阵、负定矩阵、半负定矩阵和不定矩阵,它们的定义与充分必要条件如下[反对称矩阵] 满足条件⎩⎨⎧-=jiij a a 0 )()(j i j i ≠= (i ,j =1,2,...,n )的方阵A =(a ij )称为反对称矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---023201310 是反对称矩阵.反对称矩阵具有性质:1° 若A ,B 都是反对称矩阵,则A τ=-A ,且A -1, A +B 仍是反对称矩阵,A m 为⎩⎨⎧反对称矩阵对称矩阵)()(为奇数为偶数m m2° 任意方阵A 都可分解为一个对称矩阵B =(b ij )与一个反对称矩阵C =(c ij )之和,即A =B +C只需取b ij =21 (a ij +a ji ),c ij =21(a ij -a ji )(i ,j =1,2,...n )[埃尔米特矩阵] 满足条件A τ=A的方阵A 称为埃尔米特矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++-4232231212215i i i i i i 是埃尔米特矩阵.埃尔米特矩阵具有性质:若A ,B 都是埃尔米特矩阵,则1-A ,A +B 仍是埃尔米特矩阵.若A 又是实方阵(即a ij 全为实数),则A 就是对称矩阵.[反埃尔米特矩阵] 满足条件A τ=A -的方阵A 称为反埃尔米特矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--+-05250212210i i i i i i 是反埃尔米特矩阵.反埃尔米特矩阵具有性质: 若A ,B 都是反埃尔米特矩阵,则1-A , A +B 仍是反埃尔米特矩阵.若A 又是实方阵,则A 就是反对称矩阵.[正交矩阵] 满足条件A τ=1-A的方阵A 称为正交矩阵.例如 A =⎥⎦⎤⎢⎣⎡-θθθθcos sin sin cos 是正交矩阵.正交矩阵具有性质:若A =(a ij )和B 都是正交矩阵,则 1° 1-A , AB 仍是正交矩阵. 2° det A =±1.3° ⎩⎨⎧=∑=011n k jk ik a a )()(j i j i ≠=⎩⎨⎧=∑=011n k kj ki a a )()(j i j i ≠=[酉(U )矩阵] 满足条件1-=A A τ的方阵A 称为酉(U )矩阵.例如:A =⎥⎦⎤⎢⎣⎡00i i 是酉矩阵.酉矩阵具有性质:若A =(a ij )和B 都是酉矩阵,则 1° A -1,AB 仍是酉矩阵. 2° det A ∙det A =1.3° 若A 又是实方阵,则A 是正交矩阵.[带型矩阵] 满足条件a ij =0 )(m j i >-的方阵A =(a ij )称为带型矩阵.2m +1称为带宽.一般形式为A =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--++++nn mn n n m n n n n m a a a a a a a,,1,11,11,11100[三角矩阵] 满足条件a ij =0 (i >j )的方阵A =(a ij )称为上三角形矩阵,一般形式为A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n a a a a a a 022211211 满足条件()j i b ij <=0的方阵()ij b B =称为下三角形矩阵,一般形式为B =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n b b b b b b 212221110 三角形矩阵具有性质:1° 任何秩为r 的方阵C 的前r 个顺序的主子式不为0时,C 可表为一个上三角形矩阵A与一个下三角形矩阵B 的乘积,即C =AB2° 上(或下)三角形矩阵的和、差、积及数乘仍是上(或下)三角形矩阵.[分块矩阵] 用水平和垂直虚线将矩阵A 中的元素的阵列分成小块(称为子阵),A 就成为分块矩阵.例如A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a =⎥⎦⎤⎢⎣⎡22211211B B B B 式中B 11=⎥⎦⎤⎢⎣⎡22211211a a a a,B 12=⎥⎦⎤⎢⎣⎡2313a a B 21=[]3231a a , B 22=[]33a 它们都是A 的子阵. 进行分块矩阵的运算时,可将子阵当作通常矩阵的元素看待.这些运算指加、减、乘法、数乘、转置与共轭等.[分块对角矩阵] 主对角线上的子阵都是方阵,其余子阵都是零矩阵的分块矩阵称为分块对角矩阵.一般形式为A =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡kkB O B O O O B 2211 分块对角矩阵A 的逆矩阵A -1和A 的行列式可以用下面简单公式求出A -1=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---1122111KK B OB O Bdet A =det B 11·det B 22·...·det B kk注意,一般分块矩阵的行列式不能用把子阵当作通常矩阵的元素的方法来计算,例如把四阶方阵化为分块矩阵A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡44434241343332312423222114131211...........................a a a a a a a a a a a a a a a a =⎥⎦⎤⎢⎣⎡22211211B B B B 一般det A =det B 11·det B 22-det B 21·det B 12不成立(参见§1,二,3中的四阶行列式).五、 相似变换[相似变换] 如果有一非奇异矩阵X (即det X ≠0)使得B =1-X AX那末称矩阵A 与矩阵B 相似,也称A 经相似变换化为B ,记作A ~B .它具有下列性质: 1° A ~A ,AA .2° 若A ~B ,则BA .3° 若A ~C ,B ~C ,则A ~B .4° 1-X (A 1+ A 2+...+ A m )X =1-X A 1X + 1-X A 2X + ...+ 1-X A m X 5° 1-X (A 1 A 2 ...A m )X =1-X A 1 X ·1-X A 2 X ·... ·1-X A m X 6° 1-X A m X =( 1-X AX )m7° 若)(A f 为矩阵A 的多项式,则1-X )(A f X =)(1AX X f -8° 若A ~B ,则A 与B 的秩相同,即rank A =rank B . A 与B 的行列式相同,即det A =det B .A 与B 的迹(定义见本节,七)相同,即tr A =tr B . A 与B 具有相同的特征多项式和特征值(本节,七).[正交变换] 若Q 为正交矩阵(即1-Q =Q τ),则称Q τAQ 为矩阵A 的正交变换,其性质与相似变换类似.特别还有性质: 对称矩阵A 经正交变换后仍是对称矩阵.[旋转变换] 取正交矩阵U 为)(p)(qU pq =(u ij )=)()(11cos sin 11sin cos 11q p ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡θθ-θθ 即u pp =u qq =θcosu pq =-u qp =θsin u ii =1 (i ≠p,q )u ij =0 (i,j ≠p,q;i ≠j ) 这时称B =pq pq AU U τ为A 的旋转变换,称为旋转角,如果A 是对称矩阵,那末B 的元素b ij 与A 的元素a ij 有 如下对应关系:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=θ+θ=θ-θ=θ-θ+θθ-==θ+θθ+θ=θ+θθ-θ=ijijqj pj qj qj pj pj pq qq pp qp pqqq pq pp qq qq pq pp pp a b a a b a a b a a a b b a a a b a a a b cos sin sin cos )sin (cos cos sin )(cos cos sin 2sin sin cos sin 2cos 222222)其他元素(),(),(q p j q p j ≠≠同时有性质:∑=nj i ija1,2=∑=nj i ij b 1,2∑=ni iia 12∑=≤ni ii b 12 若取旋转角pqpp qq a a a 2cot arc 21-=θ则旋转变换使0==qp pq b b六、 逆矩阵[逆矩阵及其性质] 若方阵A ,B 满足等式AB=BA=I (I 为单位矩阵)则称A 为B 的逆矩阵,或称B 为A 的逆矩阵,记作A=1-B 或B=1-A这时A,B 都称为可逆矩阵(或非奇异矩阵,或满秩矩阵).否则称为不可逆矩阵(或奇异矩阵,或降秩矩阵).可逆矩阵具有性质:1° 若A,B 为可逆矩阵,则AB 仍为可逆矩阵,且111)(---=A B AB (反序定律)一般地,若A 1 ,A 2 ,…,A s 为可逆矩阵,则=-121)(s A A A 11121---A A A s2° 矩阵A 可逆的充分必要条件是:det A ≠0.3° 若矩阵A 可逆,则det 1-A ≠0 且 det 1-A =(det 1)-A11)(--A =A , 111)(---=A a aA (a ≠0)1)(-τA =(1-A )τ,()()11--=A A4° 矩阵A 可逆的充分必要条件是:矩阵A 的特征值全不为零.[伴随矩阵与逆矩阵表达式] 设A ij 为矩阵A =(a ij )的第i 行第j 列元素a ij 的代数余子式,则矩阵A *=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (2122212)12111称为矩阵A 的伴随矩阵.若A 为非奇异矩阵,即det A ≠0,则A 的逆矩阵表达式为AA A det *1=-注意,A *的第i 行第j 列元素是A 的第j 行第i 列元素的代数余子式.[对角矩阵的逆矩阵] 对角矩阵D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0...021, d i ≠0 (i =1,2,...,n )的逆矩阵为D -1=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---112110...0n d d d 显然对角矩阵的逆矩阵仍是对角矩阵.[三角形矩阵的逆矩阵] 三角形矩阵L =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n l l l l l l ...............0...0...21222111, 00=≠ij ii l l )(),...,2,1(i j n i >= 的逆矩阵为1-L =P =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n p p p p pp ...............0...0 (02)1222111 式中iiii l p 1=(i =1,2,...,n )∑-=-=11i jk kj ikiiij p ll p⎪⎪⎭⎫ ⎝⎛+=-=n j i n j ,...,11,...,2,1 0=ij p)(i j >显然非奇异下(上)三角形矩阵的逆矩阵仍是下(上)三角形矩阵.[正定矩阵的逆矩阵] 1° 高斯—若当法正定矩阵A =(a ij )的逆A -1=(b ij )可由下列递推公式求出:)1(11)(1-=k k nnaa, )1(11)1(1)(1,----=k k jk j n aa a, )1(11)1(1)(,1---=k k i k ni a a a)1(11)1(1)1(1)1()(1,1-------=k k jk i k ij k j i aa a a a )2,...,1,,(-=n n j i ij n ij a a =)((k=1,2,...,n )最后得到)(n ijij a b = 式中n 为该正定矩阵A 的阶. 2° 三角阵法 其步骤如下:(1) 把正定矩阵A =(a ij )表示为A =ΛD Λτ式中D 为实的非奇异对角矩阵D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0021为实的非奇异下三角矩阵.Λ=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡λλλλ-1111,2121n n n n是的转置矩阵.d i (i =1,2,...,n )与λij (i =2,...,n;j=1,…,n )由下面递推公式算出:0=ij λ)(i j > 1=λii ),...,2,1(n i =∑-=-=11j k jk ik ij ij x a x λ)1,...,2,1;,...,2(-==i j n ijij ij d x =λ)1,...,2,1;,...,2(-==i j n i∑-=-=11i k ik ik ii i x a d λ),...,2,1(n i =(2)求出D 的逆矩阵1-D =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡n d d d 11121(3)求出Λ的逆矩阵1-Λ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1112121 n n ρρρ 式中⎪⎩⎪⎨⎧=-=∑-=11ii i jk kjik ij ρρλρ ),...,2,1(),...,2,1;1,...,2,1(n i n j j i n j =++=-=(4)求出A 的逆矩阵1-A =(ΛD 1)-τΛ=(1-Λ)τ1-D 1-Λ =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n βββββββββ212222112111式中∑==nik kkjki ij d ρρβ ),,2,1;,,2,1(n i i j ==注意,这种方法的好处是避免了求平方根的运算.[分块矩阵的逆矩阵] 设非奇异矩阵A 的分块矩阵为A =⎥⎦⎤⎢⎣⎡22211211B B B B 式中B 11,B 22为方子阵,那末A 的逆矩阵A -1=⎥⎦⎤⎢⎣⎡22211211C C C C由下面公式求出111211211111111212221221211112112111212222)(-------=-=-=-=B B C B C B B C C C B B C B B B B C[初等变换法求逆矩阵] 设1-A =1212222111211...........................-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b 212222111211=B 对矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100010001212222111211 nn n n n n a a a a a a a a a 作一系列行的初等变换,使虚线左边一块矩阵化为单位矩阵,而右边一块单位矩阵就变为A 的逆矩阵B =A -1,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b212222111211100010001[逆矩阵的近似求法] 设10-A 为矩阵A 的初始近似逆矩阵,可由下列迭代公式求出更精确的逆矩阵:)2(1111---+-=n n n AA I A A (n=0,1,2,...)式中I 为与A 同阶的单位矩阵.[计算机求逆程序的检验矩阵] 用下列n 阶非奇异矩阵及其逆矩阵,来检验大矩阵求逆的计算程序.A =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡++-+------+-++222210221211210002112100002112122100021222n n n n n n1-A =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------n n n n n n n n n n n n n13211432341223111221七、 特征值与特征矢量[特征值与特征矢量] 对n 阶方阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211 和n 维非零列矢量α=(a 1,a 2,...,a n )τ如果有一个数λ,使得A α=λα则称λ为矩阵A 的特征值(特征根),α为矩阵A 的特征值λ所对应的特征矢量. 矩阵A 的所有特征值中绝对值最大的一个称为A 的第一特征值.[特征矩阵特征多项式特征方程] n 阶方阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211 的特征矩阵定义为=-I A λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---λλλnn n n n n a a a a a aa a a212222111211 式中I 为n 阶单位矩阵.行列式|A -λI |称为矩阵A 的特征多项式,记作()=|-A λI |方程()=0称为矩阵A 的特征方程.[矩阵的迹与谱] n 阶方阵A 的主对角线上各元素之和称为A 的迹,记作∑==ni ii a A 1tr特征方程()=0的n 个根1,2,...,n 就是矩阵A 的n 个特征值.集合{1,2,...,n }称为矩阵A 的谱,记作ch A .线性齐次方程组0)(=-αλI A i的非零解便是矩阵A 的特征值i 所对应的特征矢量.[特征值与特征矢量的性质]1° 设1,2,...,n 为n 阶方阵A 的n 个特征值,则A k 的特征值为k n k k λλλ,,,21 (k 为正整数). A 的逆矩阵A -1的特征值为11211,,,---n λλλ .A 的伴随矩阵A *的特征值为A A A n 11211,,,---λλλ .2° n 阶方阵A 的n 个特征值之和等于A 的迹,矩阵A 的n 个特征值之积等于A 的行列式,即1+2+...+n =a 11+a 22+...+a nn12...n =A由此可以推出矩阵可逆的另一充分必要条件是:A 的所有特征值都不为零. 3° 若i 是特征方程的k 重根,则对应于i 的线性无关的特征矢量的个数不大于k .当i 为单根时,对应于i 的线性无关特征矢量只有一个.4° 矩阵A 的不同特征值所对应的特征矢量线性无关.若n 阶方阵A 对应于特征值1,2,...,s 的线性无关的特征矢量分别有k 1,k 2,...,k s个,则这∑=s i i k 1个特征矢量线性无关,且n k si i ≤∑=1.5° 实对称矩阵的特征值都是实数,并且有 n 个线性无关(而且是正交)的特征矢量. 6° 矩阵的特征值在相似变换下保持不变,特别,A τ与A 具有相同的特征值.[求第一特征值的迭代法] 在实际问题中,往往不要求算出矩阵A 的全部特征值,只需算出第一特征值,用迭代法计算如下:⎩⎨⎧=λ=α++b αα)0()1()1(1)(k k k A )2,1,0( =k 假定当ε<-+)1()(m m αα时,可以认为(k ) ≈(m +1),那末迭代到m k =即可.这时)1(1+m λ为矩阵A 的第一特征值的近似值,(m +1)为所对应的特征矢量.[求实对称矩阵的雅可比法] 设n 阶实对称矩阵A =(a ij )的特征值是1,2,...,n ,则必存在一正交矩阵Q ,使得Q τAQ =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡λλλn 0021为对角矩阵.正交矩阵Q 可用一系列旋转矩阵的积来逼近:Q =∏pq U式中)()(11cos sin 11sin cos 11)()()(q p u U q p ij pq⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-==θθθθ取pqpp qq a a a 2cot arc 21-=θ因为在这种旋转变换下,消去了矩阵中位于第p 行第q 列(p ≠q )交点上的元素(见本节,五),而矩阵所有元素的平方和保持不变,而且对角线上的元素的平方和增大,因而非对角线元素的平方和随之减小,因此,当旋转次数足够大时,可使非对角线元素的绝对值足够小.对于预先给定的精度>0,如果|a ij |<(i ≠j ),则可认为a ij ≈0.于是得到求矩阵A 的特征值与特征矢量的具体迭代方法.1° 按以下递推公式求特征值1,2,...,n :⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧+=θ=⎪⎪⎩⎪⎪⎨⎧<+->-+=θ=⎪⎩⎪⎨⎧<ςς++ς-≥ςς++ς=θ=-=θ=ς--2221212)()()(1sin )0(11)0(112tan )0()1()0()1(tan 22cot k k k k k k k k k kk k k k k k k k pq k pp k qq k t t s t t t t t t v t a a a⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===≠≠=≠-+=≠+-=+=-=+++++),2,1(),,2,1,(),,,()()()()()1()1()()()()1()()()()1()()()1()()()1( k n j i a a q p j q p i a a q j a a s a a p j a a s a a a t a a a t a a ij ij kijk ijk qj k k pj k k qj k qj k pj k k qj k k pj k pj k pqk k qq k qq k pqk k pp k pp υυ假定当)()(j i a m ij ≠<ε时,可以认为0)(≈m ij a ,则迭代到1-=m k 即可.而取)(m iia 作为i的近似值:),,2,1(n i a miii =≈λ2° 求特征矢量 从1°有m m m m U U AU U U U 1111-- τττ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ0021记P m =U 1…U m-1U m则AP m = P m ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ0021所以P m 为特征矢量矩阵.P m 由下列递推公式算出:)1,,2,1(),,2,1,(),,2,1(),()()()1()()1()()()()1()()()()1(-=⎪⎪⎪⎩⎪⎪⎪⎨⎧===≠=-+=+-=+++m k n j i u u n i q p j u u u u s u u u u s u u ijij k ijk ij k iq k k ip k k iq k iq k ip k k iq k k ip k ip υυ最后得到 )()(m ij m u P =即 τ),,,()()(2)(1)(m ni m i m i m i u u u u =为对应于特征值i 的特征矢量的近似值.[求对称三对角矩阵特征值的方法]1° 相似变换法 设A 为n 阶对称三对角矩阵:A =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--n n n d e e d e e d e e d 113222111(1)经过相似变换1211211)(U U U I t A U U U A n k k n k --+-=τττ式中I 为单位矩阵,t k 为适当选定的常数,U i 为雅可比旋转矩阵:)1()(1111)1()(+⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-=+i i c s s c U i i ii i iiτi U 为U i 的转置矩阵.又A 1=A ,A k +1与k k t A -I 相似,且A m 与∑-=-111m j j I t A 相似.因此,若A m 的特征值为),,2,1()(n i m i =λ,则A 1的特征值i (i=1,2,...,n )为∑-=+=11)(m j j m ii t λλ(i =1,2,…,n )假定当),,2,1()(n i e m i =<ε时,可认为0)(≈m i e ,那末可适当选择s i ,c i ,使得当m 充分大时,A m 在该精度下化为对角线矩阵;其特征值),,2,1()()(n i d m i m i =≈λ.)(m i d (i=1,2,...,n )可由下列递推公式算出:()())1,,2,1;1,2,,2,1(,)]([)(//g ])()[(0,,)(1)(1)1(1)(1)(1)1(1)(1)(1)1(1)()()(1)()()(1)1(1)(1)()()()()(1)()()(1)(1)()(1)(1(k)1)()(1(k)1212)(2)(1)(1)()(-=--=⎪⎩⎪⎨⎧===-++=--=====+==-=+++++++++++++++++++++m k n n i q s e q c d r s e t d s g c s h d g s t d c q r e s r q c q c h e c c q rs c t d q k k k k k k k i k i k i k k i k i k i k i k i k i k i k i k i k k i k i k i k i k i k i k i k i k i k i k i i k i k i i k ik i k i k nk n k k n k nt k 的选择对收敛速度影响较大,取t k 为二阶矩阵⎥⎦⎤⎢⎣⎡)(2)(1)(1)(1k k k k d e e d 的接近于)(1k d 的那个特征值,即t k =⎪⎩⎪⎨⎧≥ββ++β-<ββ+-β-)0()1/()0()1/(2)(1)(12)(1)(1k k k k e d e d式中 )(1)(1)(22k k k e d d -=β 2° 二分法 设A 为n 阶对称三对角矩阵(如(1)式),对任意,设序列q 1()=d 1-q i ()=),,2()()(121n i q e d i i i =----λλ中q i ()<0的个数为N ()(在这些关系式中,对于某些i ,如果q i -1()=0,则只需用适当小的数代替即可),则N ()等于矩阵A 的小于的特征值的个数.假定矩阵A 的第k 个特征值k (1≤2≤… ≤k ≤…≤n )在区间[u ,υ]中,令21υ+=u r ,当N (r 1)≥k 时,则k ∈[u , r 1];当N (r 1)<k 时,则k ∈[ r 1,v ];…依此类推,m步之后,k 包含在宽度为mu2-υ的区间中.m 充分大时,便可得到所求的特征值.八、 矩阵多项式与最小多项式[矩阵多项式] 设i a (i=1,2,...,n )为某一数域(实数域或复数域)中的数,A 为这个数域上的n 阶方阵,则表示式f (A )=a 0I+a 1A+...+a n A n称为矩阵A 的多项式,式中I 为n 阶单位矩阵.如果矩阵A 使得f (A )=O那末称A为多项式f(λ)=a0λ+ a1λ+ ...+a nλn的根.[哈密顿-凯莱定理] 任一方阵都是它的特征多项式的根.[最小多项式及其性质] 以矩阵A为根的非零多项式f(λ)中,存在首项系数为1次数最低的多项式(λ),它就称为矩阵A的最小多项式.最小多项式具有性质:1°任一方阵仅有一个最小多项式;2°任一以A为根的多项式f(λ)都可被A的最小多项式(λ)所整除.特别,任一方阵的最小多项式可整除其特征多项式;3°方阵A的特征多项式的根都是A的最小多项式的根:4°相似矩阵具有相同的特征多项式和最小多项式.。

矩阵运算的基本方法

矩阵运算的基本方法

矩阵运算的基本方法矩阵是线性代数中重要的概念之一,被广泛应用于科学、工程、计算机等领域。

矩阵的运算是矩阵在各种应用中的基础,下面将阐述矩阵的基本运算方法。

一、矩阵的定义矩阵是一个由m行n列元素组成的数表,常用大写字母加方括号表示:A=[a_ij]_(m×n),(i=1,2,...,m;j=1,2,...,n)其中a_ij是第i行第j列的元素,称为矩阵A的(i,j)元素。

二、矩阵的基本运算1. 矩阵加法设有两个m×n的矩阵A=[a_ij]和B=[b_ij],则它们的和C=A+B=[c_ij]也是一个m×n的矩阵,其中:c_ij=a_ij+b_ij(i=1,2,...,m;j=1,2,...,n)两个矩阵相加时,要求它们的行数和列数相同。

2. 矩阵数乘设有一个m×n的矩阵A=[a_ij]和一个常数k,则它们的积kA=[ka_ij]也是一个m×n的矩阵,其中:ka_ij=k×a_ij(i=1,2,...,m;j=1,2,...,n)3. 矩阵乘法设有一个m×n的矩阵A=[a_ij]和一个n×p的矩阵B=[b_ij],则它们的积C=A×B=[c_ij]是一个m×p的矩阵,其中:c_ij=∑(k=1)(n)a_ik×b_kj(i=1,2,...,m;j=1,2,...,p)两个矩阵相乘时,要求前一个矩阵的列数等于后一个矩阵的行数,才能进行乘法运算。

4. 矩阵转置设有一个m×n的矩阵A=[a_ij],则它的转置矩阵AT=[a_ji]是一个n×m的矩阵,其中AT的(i,j)元素是A的(j,i)元素。

三、矩阵运算的性质1. 矩阵加法和数乘具有交换律和结合律。

2. 矩阵乘法不满足交换律,但满足结合律。

3. 对于任意矩阵A和B,下列运算都是成立的:a. (A+B)T=AT+BTb. (kA)T=kATc. (AB)T=BTAT四、应用举例1. 矩阵求逆矩阵求逆是线性代数中的重要问题之一,可以用于解线性方程组等应用中。

矩阵的运算及其运算规则

矩阵的运算及其运算规则

矩阵的运算及其运算规则一、矩阵的加法与减法1、运算规则设矩阵,,则简言之,两个矩阵相加减,即它们相同位置的元素相加减!注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的.2、运算性质(假设运算都是可行的)满足交换律和结合律交换律;结合律.二、矩阵与数的乘法1、运算规则数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵.2、运算性质满足结合律和分配律结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA.分配律:λ(A+B)=λA+λB.典型例题例已知两个矩阵满足矩阵方程,求未知矩阵.解由已知条件知三、矩阵与矩阵的乘法1、运算规则设,,则A与B的乘积是这样一个矩阵:(1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即.(2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.典型例题例设矩阵计算解是的矩阵.设它为想一想:设列矩阵,行矩阵,和的行数和列数分别是多少呢是3×3的矩阵,是1×1的矩阵,即只有一个元素.课堂练习1、设,,求.2、在第1道练习题中,两个矩阵相乘的顺序是A在左边,B在右边,称为A左乘B或B右乘A.如果交换顺序,让B在左边,A在右边,即A右乘B,运算还能进行吗?请算算试试看.并由此思考:两个矩阵应当满足什么条件,才能够做乘法运算.3、设列矩阵,行矩阵,求和,比较两个计算结果,能得出什么结论吗?4、设三阶方阵,三阶单位阵为,试求和,并将计算结果与A比较,看有什么样的结论.解:第1题.第2题对于,.求是有意义的,而是无意义的.结论1只有在下列情况下,两个矩阵的乘法才有意义,或说乘法运算是可行的:左矩阵的列数=右矩阵的行数.第3题是矩阵,是的矩阵..结论2在矩阵的乘法中,必须注意相乘的顺序.即使在与均有意义时,也未必有=成立.可见矩阵乘法不满足交换律.第4题计算得:.结论3方阵A和它同阶的单位阵作乘积,结果仍为A,即.单位阵在矩阵乘法中的作用相当于数1在我们普通乘法中的作用.典型例题例设,试计算和.解.结论4两个非零矩阵的乘积可以是零矩阵.由此若,不能得出或的结论.例利用矩阵的乘法,三元线性方程组可以写成矩阵的形式=若记系数、未知量和常数项构成的三个矩阵分别为,,,则线性方程组又可以简写为矩阵方程的形式:.2、运算性质(假设运算都是可行的)(1) 结合律.(2) 分配律(左分配律);(右分配律).(3) .3、方阵的幂定义:设A是方阵,是一个正整数,规定,显然,记号表示个A的连乘积.四、矩阵的转置1、定义定义:将矩阵A的行换成同序号的列所得到的新矩阵称为矩阵A的转置矩阵,记作或.例如,矩阵的转置矩阵为.2、运算性质(假设运算都是可行的)(1) (2) (3)(4) ,是常数.典型例题例利用矩阵验证运算性质:解;而所以.定义:如果方阵满足,即,则称A为对称矩阵.对称矩阵的特点是:它的元素以主对角线为对称轴对应相等.五、方阵的行列式1、定义定义:由方阵A的元素所构成的行列式(各元素的位置不变),称为方阵A的行列式,记作或.2、运算性质(1) (行列式的性质)(2) ,特别地:(3) (是常数,A的阶数为n)思考:设A为阶方阵,那么的行列式与A的行列式之间的关系为什么不是,而是?不妨自行设计一个二阶方阵,计算一下和.例如,则.于是,而.思考:设,有几种方法可以求?解方法一:先求矩阵乘法,得到一个二阶方阵,再求其行列式.方法二:先分别求行列式,再取它们的乘积.。

矩阵和行列式的运算法则

矩阵和行列式的运算法则

矩阵和行列式的运算法则【矩阵和行列式的运算法则】一. 矩阵的加法和减法运算法则矩阵的加法运算法则:设A和B是两个m×n矩阵,C是它们的和,即C = A + B。

则C的第i 行第j列元素是A的第i行第j列元素与B的第i行第j列元素之和,即cij = aij + bij。

矩阵的减法运算法则:设A和B是两个m×n矩阵,C是它们的差,即C = A - B。

则C的第i 行第j列元素是A的第i行第j列元素与B的第i行第j列元素之差,即cij = aij - bij。

二. 矩阵的数乘运算法则矩阵的数乘运算法则:设k是一个实数,A是一个m×n矩阵,则kA是一个m×n矩阵,其中每个元素都是k与A相应位置上的元素的乘积,即(kA)ij = k·aij。

三. 矩阵的乘法运算法则矩阵的乘法运算法则:设A是一个m×n矩阵,B是一个n×p矩阵,C是它们的乘积,即C = A·B。

则C的第i行第j列元素等于A的第i行与B的第j列对应元素的乘积之和,即cij = a1i·b1j + a2i·b2j + ... + ani·bnj。

注:两个矩阵能够相乘的充分必要条件是第一个矩阵的列数等于第二个矩阵的行数。

四. 矩阵的转置运算法则矩阵的转置运算法则:设A是一个m×n矩阵,其转置记作AT,即A的转置是这样一个n×m矩阵,其第i行第j列元素是A的第j行第i列元素,即(AT)ij = aji。

五. 矩阵的幂运算法则矩阵的幂运算法则:设A是一个n×n矩阵,k是一个正整数,则A的k次幂记作Ak,其中A^1 = A,A^2 = A·A,...,A^k = A·A·...·A。

六. 矩阵的行列式运算法则矩阵的行列式运算法则:设A是一个n×n矩阵,则它的行列式记作A 或det(A)。

矩阵的基本运算

矩阵的基本运算

矩阵的基本运算矩阵是数学中非常重要的一个概念,它在各个领域都有着广泛的应用。

矩阵的基本运算包括矩阵的加法、减法、数乘和矩阵的乘法等。

本文将围绕这些基本运算展开讨论。

首先,我们来讲解矩阵的加法。

如果两个矩阵A和B的维数相同,即都是m行n列的矩阵,那么它们可以相加。

矩阵的加法运算是将对应位置的元素相加得到新的矩阵。

即若A=(a_{ij}),B=(b_{ij}),则A+B=(a_{ij}+b_{ij})。

例如,给定两个矩阵A和B如下:A = [1 2 3][4 5 6]B = [7 8 9][10 11 12]则A与B的和C为:C = [1+7 2+8 3+9][4+10 5+11 6+12]简化运算后,C的结果为:C = [8 10 12][14 16 18]接下来我们讨论矩阵的减法。

矩阵的减法运算与加法类似,也是将对应位置的元素相减得到新的矩阵,即若A=(a_{ij}),B=(b_{ij}),则A-B=(a_{ij}-b_{ij})。

例如,给定两个矩阵A和B如下:A = [1 2 3][4 5 6]B = [7 8 9][10 11 12]则A与B的差D为:D = [1-7 2-8 3-9][4-10 5-11 6-12]简化运算后,D的结果为:D = [-6 -6 -6][-6 -6 -6]矩阵的数乘是指将一个矩阵的每个元素都乘以一个实数。

即若A=(a_{ij})是一个m行n列的矩阵,k是一个实数,那么kA=(ka_{ij})。

例如,给定一个矩阵A和一个实数k如下:A = [1 2 3][4 5 6]k = 2则kA的结果为:kA = [2*1 2*2 2*3][2*4 2*5 2*6]简化运算后,kA的结果为:kA = [2 4 6][8 10 12]最后我们来讨论矩阵的乘法。

矩阵的乘法运算是指矩阵与矩阵之间进行乘法运算,得到一个新的矩阵。

矩阵的乘法有一定的规则,即若A是一个m行n列的矩阵,B是一个n行p列的矩阵,那么它们可以相乘,得到一个m行p列的矩阵C。

矩阵的运算

矩阵的运算



2 −5 −3 2 A= 1 0 , B = 4 −5 , −3 7 3 9
9 5 C = 4 −3.
(1) 问三个矩阵中哪些能进行加法运算 并求 问三个矩阵中哪些能进行加法运算, 其和, 哪些不能进行加法运算, 说明原因; 其和 哪些不能进行加法运算 说明原因 (2) 求 C 的负矩阵 的负矩阵.
3. 运算规律
(1) Ok×mAm×p=Ok×p , Am×pOp×n=Om×n ; × × × × × × (2) 设 A 是 m × n 矩阵 Em 是 m 阶的单位矩 矩阵, 阶的单位矩阵, 阵, En 是 n 阶的单位矩阵 则 EmA = A, AEn = A ;
(3) (AB)C = A(BC); (4) A(B + C) = AB + AC, (B + C)A = BA + CA; (5) k(AB) = (kA)B = A(kB).
注意: 注意:
二个矩阵(右矩阵)的行数时,两个矩阵才能相乘. 二个矩阵(右矩阵)的行数时,两个矩阵才能相乘.
例 利用下列模型计算两个矩阵的乘积 利用下列模型计算两个矩阵的乘积.
:A2 × 2 × B2 × 2
: A2 × 3 × B3 × 3 : A3 × 3 × B3 × 3
例 利用下列模型验证单位矩阵的性质 利用下列模型验证单位矩阵的性质.
第二节
主要内容
矩阵的加法 数与矩阵相乘 矩阵的乘法 方阵的幂
矩阵的运算
矩阵矩阵乘积的意义 矩阵的转置 方阵的行列式 共轭矩阵
一、矩阵的加法
1. 定义 定义 2 设 A= (aij)m×n 与 B= (bij)m×n 是
两个同型矩阵,称 m×n 矩阵 C = (aij + bij)m×n 为 两个同型矩阵,

2.2矩阵的运算

2.2矩阵的运算

b1n c11
b2n
bsn
c21
cm1
c12 c22
c1n c2n
cm2
cmn
其中:
b1 j
cij ai1
ai 2
ais
b2 j
ai1b1 j ai2b2 j aisbsj
s
bsj aikbkj (i 1,2,m; j 1,2,n)
B可交换,简称A与B可换。
a11
例:已知 A a21
a12 a22
a13 1 0 a23 I 0 1
0 0
,求AI和IA。
a31
a32
a33
0 0 1
特别地:Em Amn Amn 简写成:EA=A
Amn En Amn
AE=A
注:单位矩阵E在矩阵的乘法中的作用类似于数1。Leabharlann (5)矩阵乘法一般不满足消去律
AC 10 3210 10 10 10 但 AB
BC 10
0 4
10
10 10
10
四、矩阵的转置
1、定义5:把矩阵A的行换成同序数的列得到的新矩阵,
a11
A
a21
am1
称为A的转置矩阵,记为AT或A/。
a12 a22
a1n a2n
am2
amn
a11
AT
a12
a1n
矩阵相加与矩阵的数 乘这两种运算统称为 矩阵的线性运算。
三、矩阵与矩阵相乘
1.引例:设甲乙两厂生产产品日产量如表一,这些
产品的单位价格和单位利润如表二,求甲乙两厂的
日总收入、总利润。
表一 单位:台
表二 单位:千元
产品 厂家

矩阵的概念和计算

矩阵的概念和计算

矩阵的概念和计算矩阵是线性代数中一种重要的数学工具,广泛应用于各个领域,包括物理、工程、计算机科学等。

本文将详细介绍矩阵的概念,以及矩阵的基本运算和计算方法。

一、矩阵的概念矩阵是由数个数按一定的规律排列成的长方形阵列。

矩阵由m行n列元素组成,可以表示成一个m×n的形式。

其中,m表示矩阵的行数,n表示矩阵的列数。

每个元素在矩阵中由其所在的行号和列号来确定。

例如,一个3×2的矩阵可以表示为:A = [a11, a12;a21, a22;a31, a32]其中,a11, a12, a21, a22, a31, a32分别表示矩阵A中的元素。

二、矩阵的基本运算1. 矩阵的加法矩阵的加法是指对应元素相加,要求两个矩阵具有相同的行数和列数。

例如,对于两个3×2的矩阵A和B,其加法可以表示为:C = A + B = [a11 + b11, a12 + b12;a21 + b21, a22 + b22;a31 + b31, a32 + b32]2. 矩阵的减法矩阵的减法是指对应元素相减,同样需要两个矩阵具有相同的行数和列数。

例如,对于两个3×2的矩阵A和B,其减法可以表示为:C = A - B = [a11 - b11, a12 - b12;a21 - b21, a22 - b22;a31 - b31, a32 - b32]3. 矩阵的数乘矩阵的数乘是指矩阵中的每个元素都乘以一个常数。

例如,对于一个3×2的矩阵A和一个常数k,其数乘可以表示为:B = kA = [ka11, ka12;ka21, ka22;ka31, ka32]4. 矩阵的乘法矩阵的乘法是指满足前一个矩阵的列数等于后一个矩阵的行数的情况下,将相应的元素相乘再相加得到新的矩阵。

例如,对于一个m×n 的矩阵A和一个n×p的矩阵B,其乘法可以表示为:C = AB = [c11, c12, ..., c1p;c21, c22, ..., c2p;...cm1, cm2, ..., cmp]其中,cij表示矩阵C中第i行第j列的元素,其计算方法为:cij = a[i1]b[1j] + a[i2]b[2j] + ... + a[in]b[nj]三、矩阵的计算方法1. 矩阵的转置矩阵的转置指的是将矩阵的行和列互换得到的新矩阵。

矩阵的运算

矩阵的运算

矩阵的运算第三节矩阵的基本运算§ 3.1加和减§ 3.2矩阵乘法§ 3.2.1矩阵的普通乘法§ 3.2.2 矩阵的Kronecker乘法§ 3.3矩阵除法§ 3.4矩阵乘方§ 3.5矩阵的超越函数§ 3.6数组运算§ 3.6.1数组的加和减§ 3.6.2数组的乘和除§ 3.6.3数组乘方§ 3.7矩阵函数§ 3.7.1三角分解§ 3.7.2正交变换§ 3.7.3奇异值分解§ 3.7.4特征值分解§ 3.7.5 秩§ 3.1加和减如矩阵A和B的维数相同,则A+B与A-B表示矩阵A与B的和与差•如果矩阵A和B的维数不匹配,Matlab 会给出相应的错误提示信息•如:A= B=1 2 3 1 4 74 5 6 2 5 87 8 0 3 6 0C =A+B返回: C =2 6 106 10 1410 14 0如果运算对象是个标量(即1X 1矩阵),可和其它矩阵进行加减运算.例如:x= -1 y=x-1= -20 -12 1 「書二§ 3.2矩阵乘法Matlab中的矩阵乘法有通常意义上的矩阵乘法,也有Kronecker乘法,以下分别介绍.mo § 3.2.1矩阵的普通乘法矩阵乘法用“ * ”符号表示,当A矩阵列数与B 矩阵的行数相等时,二者可以进行乘法运算,否则是错误的.计算方法和线性代数中所介绍的完全相同.如:A=[1 2 ; 3 4]; B=[5 6 ; 7 8]; C=A*B ,结果为1 2 5 6 1 5 2 7 1 6 2 8 19 22C= 3 4x7 8 = 3 5 4 7 3 6 4 8 = 43 50 即Matlab 返C =19 2243 50如果A 或B 是标量,则A*B 返回标量A (或 B )乘上矩阵B (或A )的每一个元素所得的矩 阵. 「二口 \§ 322矩阵的Kronecker 乘法对n X m 阶矩阵A 和p X q 阶矩阵B , A 和B 的Kronecher 乘法运算可定义为:a 〔[B a^B .・・ a ^m Ba21B a 22B... a 2m BCABan1B an2B... a nm B由上面的式子可以看出,Kronecker 乘积 A B 表示矩阵A 的所有元素与B 之间的乘积组 合而成的较大的矩阵,B A 则完全类似.A B 和B A 均为叩X mq 矩阵,但一般情况下 ABBA.和普通矩阵的乘法不同,Kronecker 乘法并不要求两个被乘矩阵满足任何维数匹配 方面的要求.Kronecker 乘法的 Matlab 命令为C=kron (A,B ),例如给定两个矩阵A 和B :1 2 1 3 2积C :A=[12;34];B=[1 3 2; 24 6]; C=kro n(A,B)C =13 2 2 6 424 6 4 8 123 9 64 12 86 1218816242 4 6A 和B 的 Kronecker 乘A= B=则由以下命令可以求出作为比较,可以计算 B 和 A 的Kronecker 乘积D,可以看出C、D是不同的:A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; D=kro n(B,A)D =1 2 3 6 2 43 4 9 12 6 82 4 4 8 6 126 8 12 16 18 24§ 3.3矩阵除法在Matlab中有两种矩阵除法符号:"\"即左除和“/”即右除•如果A矩阵是非奇异方阵,贝V A\B 是A的逆矩阵乘B,即inv(A)*B ;而B/A是B乘A的逆矩阵,即B*inv(A) •具体计算时可不用逆矩阵而直接计算.通常:x=A\B就是A*x=B的解;x=B/A就是x*A=B的解.当B与A矩阵行数相等可进行左除•如果 A 是方阵,用高斯消元法分解因数.解方程:A*x(:, j)=B(:, j),式中的(:,j)表示B矩阵的第j列,返回的结果x 具有与B矩阵相同的阶数,如果 A 是奇异矩阵将给出警告信息.如果A矩阵不是方阵,可由以列为基准的Householder正交分解法分解,这种分解法可以解决在最小二乘法中的欠定方程或超定方程,结果是m x n的x矩阵.m是A矩阵的列数,n是B矩阵的列数.每个矩阵的列向量最多有k个非零元素,k 是A的有效秩.右除B/A可由B/A=(A'\B')'左除来实现•二^§ 3.4矩阵乘方A A P意思是A的P次方.如果A是一个方阵,P是一个大于1的整数,则A A P表示A的P次幂,即A自乘P次•如果P不是整数,计算涉及到特征值和特征向量的问题,如已经求得:[V,D]=eig(A),则:A A P=V*D.A P/V (注:这里的八表示数组乘方,或点乘方,参见后面的有关介绍)如果B是方阵,a是标量,aAB就是一个按特征值与特征向量的升幂排列的B次方程§ 3.5矩阵的超越函数在Matlab中解释exp(A)和sqrt(A)时曾涉及到级数运算,此运算定义在A的单个元素上.Matlab可以计算矩阵的超越函数,如矩阵指数、矩阵对数等. 一个超越函数可以作为矩阵函数来解释,例如将“ m ”加在函数名的后边而成expm(A)和sqrtm(A),当Matlab运行时,有下列三种函数定义:expm logm sqrtm 矩阵指数矩阵对数矩阵开方阵.如果a和B都是矩阵,则「以凹、aAB是错误所列各项可以加在多种m文件中或使用funm •请见应用库中sqrtm.m , logm.m, f unm.m 文件和命令手册.§ 3.6数组运算数组运算由线性代数的矩阵运算符“ * ”、“/”、”、“八”前加一点来表示,即为“.* ”、“./”、”、“八”・注意没有“ .+ ”、“.-”运算・§ 3.6.1数组的加和减对于数组的加和减运算与矩阵运算相同,所以“+ ”、“ - ”既可被矩阵接受又可被数组接§ 3.6.2数组的乘和除数组的乘用符号.*表示,如果A与B矩阵具有相同阶数,则A.*B表示A和B单个元素之间的对应相乘•例如x=[1 2 3]; y=[ 4 5 6];计算z=x.*y结果z=4 10 18数组的左除()与数组的右除(./),由读者自行举例加以体会.§ 3.6.3数组乘方数组乘方用符号八表示.例如:键入:x=[ 1 2 3]y=[ 4 5 6]贝V z=x.A y=[1A4 2八5 3A6]=[1 32 729]⑴如指数是个标量,例如x.A2 , x同上,则:z=x.A2=[1A2 22 3八2]=[ 1 4 9](2)如底是标量,例如2 .A[x y] , x、y同上,则:z=2 .A[x y]=[2A1 2A2 2A3 2八4 2八5 2八6]=[2 4 816 32 64]从此例可以看出Matlab算法的微妙特性,虽然看上去与其它乘方没什么不同,但在2和“・” 之间的空格很重要,如果不这样做,解释程序会把“・”看成是2的小数点.Matlab看到符号“ A”时,就会当做矩阵的幂来运算,这种情况就会出错,因为指数矩阵不是方阵. 二二§ 3.7矩阵函数Matlab的数学能力大部分是从它的矩阵函数派生出来的,其中一部分装入Matlab本身处理中,它从外部的Matlab建立的M文件库中得到,还有一些由个别的用户为其自己的特殊的用途加进去的.其它功能函数在求助程序或命令手册中都可找到.手册中备有为Matlab提供数学基础的LINPACK和EISPACK软件包,提供了下面四种情况的分解函数或变换函数:(1)三角分解;(2)正交变换;(3)特征值变换;(4)奇异值分解.§ 3.7.1三角分解最基本的分解为“ LU ”分解,矩阵分解为两个基本三角矩阵形成的方阵,三角矩阵有上三角矩阵和下三角矩阵•计算算法用高斯变量消去法.从lu函数中可以得到分解出的上三角与下三角矩阵,函数inv得到矩阵的逆矩阵,det得到矩阵的行列式•解线性方程组的结果由方阵的“ ”和“/”矩阵除法来得到.例如:A=[ 1 2 34 5 67 8 0]LU分解,用Matlab的多重赋值语句[L,U]=lu(A) 得出0.1429 1.0000 00.5714 0.5000 1.00001.0000 0 07.0000 8.0000 00 0.8571 3.00000 0 4.5000注:L是下三角矩阵的置换,U是上三角矩阵的正交变换,分解作如下运算,检测计算结果只需计算L*U即可.求逆由下式给出:x=i nv(A)x =从LU分解得到的行列式的值是精确的,d=det(U)*det(L)的值可由下式给出:d=det(A)d =27直接由三角分解计算行列式:d=det(L)*det(U) d =27.0000为什么两种d的显示格式不一样呢?当Matlab做det(A)运算时,所有A的元素都是整数,所以结果为整数.但是用LU分解计算d时,L、U的元素是实数,所以Matlab产生的d也是实数.例如:线性联立方程取b=[ 135]解Ax=b方程,用Matlab矩阵除得到x=A\b结果x=0.3333 0.3333 0.0000由于A=L*U ,所以x 也可以有以下两个式子 计算:y=L\b ,x=U\y .得到相同的x 值,中间值 y 为:y = 5.0000 0.2857 0.0000Matlab 中与此相关的函数还有 rcond 、chol 和rref .其基本算法与LU 分解密切相关.chol 函数对正定矩阵进行Cholesky 分解,产生一个 上三角矩阵,以使R'*R=X .rref 用具有部分主 元的高斯一约当消去法产生矩阵 A 的化简梯形 形式.虽然计算量很少,但它是很有趣的理论线 性代数.为了教学的要求,也包括在 Matlab 中.C J ZED§ 3.7.2正交变换“QR ”分解用于矩阵的正交一三角分解.它 将矩阵分解为实正交矩阵或复酉矩阵与上三角 矩阵的积,对方阵和长方阵都很有用. 例如A=[ 4 7 10是一个降秩矩阵,中间列是其它二列的平均,1 5 8 112 36 9我们对它进行QR分解:QR]=qr(A)Q =R =-12.8841 -14.5916 -16.29920 -1.0413 -2.08260 0 0.00000 0 0可以验证Q*R就是原来的A矩阵.由R的下三角都给出0,并且R(3,3)=0.0000,说明矩阵R 与原来矩阵A 都不是满秩的.下面尝试利用QR分解来求超定和降秩的线性方程组的解.例如:b=[ 1357]讨论线性方程组Ax=b,我们可以知道方程组是超定的,采用最小二乘法的最好结果是计算x=A\b . 结果为:Warning: Rank deficient, rank = 2 tol=1.4594e-014x =0.5000 00.1667我们得到了缺秩的警告.用QR分解法计算此方程组分二个步骤:y=Q'*b x=R\y求出的y值为y 二—-9.1586-0.34710.00000.0000x的结果为Warning: Rank deficient, rank = 2 tol=1.4594e-014x =0.50000.1667用A*x来验证计算结果,我们会发现在允许的误差范围内结果等于b •这告诉我们虽然联立方程Ax=b是超定和降秩的,但两种求解方法的结果是一致的•显然x向量的解有无穷多个,而“ QR ”分解仅仅找出了其中之一. =§ 3.7.3奇异值分解在Matlab中三重赋值语句[U,S,V]=svd(A)在奇异值分解中产生三个因数:A=U*S*V 'U矩阵和V矩阵是正交矩阵,S矩阵是对角矩阵,svd(A)函数恰好返回S的对角元素,而且就是A 的奇异值(其定义为:矩阵A'*A的特征值的算术平方根)•注意到A矩阵可以不是方的矩阵.奇异值分解可被其它几种函数使用,包括广义逆矩阵pinv(A)、秩rank(A)、欧几里德矩阵范数norm(A,2)和条件数cond(A) • •§ 3.7.4特征值分解如果A是n X n矩阵,若满足Ax= x,则称为A的特征值,x为相应的特征向量.函数eig(A)返回特征值列向量,如果A是实对称的,特征值为实数•特征值也可能为复数,例如:A=[ 0 1-1 0]eig(A)产生结果ans =0 + I.OOOOi0 -I.OOOOi如果还要求求出特征向量,则可以用eig(A)函数的第二个返回值得到:[x,D]=eig(A)D的对角元素是特征值.x的列是相应的特征向量,以使A*x=x*D .计算特征值的中间结果有两种形式:Hessenberg 形式为hess(A), Schur 形式为schur(A). schur形式用来计算矩阵的超越函数,诸如sqrtm(A)和logm(A).如果A和B是方阵,函数eig(A,B)返回一个包含一般特征值的向量来解方程Ax= Bx双赋值获得特征向量[X,D]=eig(A,B)产生特征值为对角矩阵D •满秩矩阵X的列相应于特征向量,使A*X=B*X*D ,中间结果由qz(A,B)提供. 「以凹一】§ 3.7.5 秩Matlab计算矩阵A的秩的函数为rank(A),与秩的计算相关的函数还有:rref(A)、orth(A)、null(A)和广义逆矩阵pinv(A)等.利用rref(A) , A的秩为非0行的个数.rref 方法是几个定秩算法中最快的一个,但结果上并不可靠和完善.pinv(A)是基于奇异值的算法.该算法消耗时间多,但比较可靠.其它函数的详细用法可利用Help求助.上一页回目录下一页。

矩阵的运算

矩阵的运算

a11x1 a12 x2 a1n xn b1,
a21
x1 a22 x2 a2n xn
b2
,
am1x1 am2 x2 amn xn bm .

a11
A
a 21
a m1
a12 a 22
a m1
a1n
a2n
a mn
,
x1
X
x2
xn
,
b1
称矩阵C是A与B的乘积,记作C=AB.
注意:只有当左乘矩阵A的列数等于 右乘矩阵B的行数时,乘积AB才有意义.

乘积矩阵AB的行数等于左乘矩阵A的行 , 数,AB的列数等于右乘矩阵B的列数.
例2.2.2 设
1 2 3
1 1

ቤተ መጻሕፍቲ ባይዱ
A 1 1 5 , B 2 2
1
2 1
0 1
, 计算AB.
a2b2
a1bn a2bn
an
anb1 anb2 anbn
a1
BA b1 ,
b2 ,
,
bn
a2
an
b1 a1
b2 a2
bn an
n
bt at .
t 1

注意: 在这个例子中,AB是n阶矩阵,

而BA则是1阶矩阵.
例2.2.4 设
A
1 1
11,
B
1 1
11,
: :::
:
:::
, | A || B | an1 an2 ... ann a b nk k1 a b nk k 2 ... a b nk kn .
1 0 ... 0
0

矩阵计算方法

矩阵计算方法

矩阵计算方法
矩阵计算法是一种经典的计算方法,它把线性代数中的向量和矩阵当作最基本的计算单位。

矩阵计算法可以用来解决多个变量之间的相互关系、最小化成本、求解优化问题等。

矩阵计算法的最基本原理是利用矩阵乘法运算,将拥有多个变量的问题表示成一个矩阵乘法的形式,使用矩阵乘法的特性,从而进行计算。

矩阵计算法的步骤主要有:
1. 确定矩阵:根据问题的具体情况,确定所需的矩阵,并用数字填充矩阵的元素。

2. 计算矩阵乘积:计算矩阵A和矩阵B的乘积矩阵C,即C=AB。

3. 求解:根据乘积矩阵C中的元素值,求出满足问题要求的解。

矩阵的运算

矩阵的运算

§2.2 矩阵的运算一、矩阵的加法定义1⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++++++=+mn mn m m m m n n n n b a b a b a b a b a b a b a b a b a B A 221122222221211112121111设有两个矩阵那么矩阵与的和记作,规定为n m ⨯()(),,ij ij b B a A ==A B B A +说明:只有当两个矩阵是同型矩阵时,才能进行加法运算.把矩阵中各元素变号得到的矩阵,称为A 的负矩阵,记作–A ,即n m ij )(a A ⨯=nm ij )a (A ⨯−=−矩阵加法的运算规律()A;B B A 1+=+()()().C B A C B A 2++=++()0.A A (4)=−+矩阵的减法可定义为A−B =A+ (−B )A 0A (3)=+矩阵0在矩阵加法运算中与数0在数的加法运算中有同样的性质。

定义2.ka ka ka ka ka ka ka ka ka kA mn m1m12n 22211n 1211⎪⎪⎪⎪⎪⎭⎫⎝⎛= 规定为的乘积记作与矩阵数,kA A k nm ij n m ij n m )(ka )k(a kA ⨯⨯⨯==二、数与矩阵相乘()()();1A A μλλμ=()();2A A A μλμλ+=+()().3B A B A λλλ+=+数乘矩阵的运算规律矩阵加法与数乘矩阵合起来,统称为矩阵的线性运算.(设为矩阵,为数)μλ,n m ⨯B A 、数乘关于数因子的结合律数乘关于数的加法的分配律数乘关于矩阵加法的分配律A1A =(4)三、矩阵与矩阵相乘例 根据下面的学生成绩表计算每个同学的总评成绩。

姓 名 平时(占35%) 期中测验(占25%) 期末考试(占40%) 总评刘 涛 79 85 88李 红 91 87 90叶 军 93 95 97计算总评成绩的公式是:总评成绩 = 平时35.0⨯+期中25.0⨯+期末40.0⨯.根据成绩表填写下面括号中的数字,计算以后就可 以得到:刘涛的总评成绩= ( 79 )×0.35 + ( 85 )×0.25 + ( 88 )×0.40 = 84.1 .( 79 )×0.35 + ( 85 )×0.25 + ( 88 )×0.40 ( 91 )×0.35 + ( 87 )×0.25 + ( 90 )×0.40( 93 )×0.35 + ( 95 )×0.25 + ( 97 )×0.40能不能用矩阵把它们表示出来?怎样表示?以上各式中的数,一部分是同学们的成绩,取出来可以得到矩阵A ,⎪⎪⎪⎭⎫⎝⎛=979593908791888579A另一部分是各种成绩所占百分比,取出来可以得到矩⎪⎪⎪⎭⎫⎝⎛=0.400.250.35B .例题中总评成绩算法格式相同,算式如下:以上算法可以总结为:用矩阵A 每一行的各个数分别和矩阵B 的各个数对应相乘再相加。

矩阵的运算法则

矩阵的运算法则

矩阵的运算法则矩阵是线性代数中一个重要的概念,它在各个领域中都有广泛的应用。

在进行矩阵运算时,我们需要遵循一些基本的法则,以确保运算的正确性和有效性。

本文将介绍矩阵的基本运算法则,包括矩阵的加法、减法、乘法以及转置运算。

矩阵的加法法则两个矩阵进行加法运算的法则如下:对应位置上的元素相加,得到一个新的矩阵,也称为元素级别(element-wise)的加法。

例如,给定两个矩阵A和B,它们的加法运算可以表示为:A = [[a11, a12], [a21, a22]]B = [[b11, b12], [b21, b22]]A +B = [[a11+b11, a12+b12], [a21+b21, a22+b22]]矩阵的减法法则两个矩阵进行减法运算的法则与加法相似,也是对应位置上的元素相减,得到一个新的矩阵,即元素级别的减法。

例如,给定两个矩阵A和B,它们的减法运算可以表示为:A = [[a11, a12], [a21, a22]]B = [[b11, b12], [b21, b22]]A -B = [[a11-b11, a12-b12], [a21-b21, a22-b22]]矩阵的乘法法则矩阵的乘法是矩阵运算中的一个重要操作,它的法则较为复杂。

矩阵乘法符合结合律,但不满足交换律,即两个矩阵的乘法的顺序会影响结果。

给定两个矩阵A和B,它们的乘法运算可以表示为:A = [[a11, a12], [a21, a22]]B = [[b11, b12], [b21, b22]]A *B = [[(a11*b11+a12*b21), (a11*b12+a12*b22)], [(a21*b11+a22*b21), (a 21*b12+a22*b22)]]需要注意的是,只有当矩阵A的列数与矩阵B的行数相等时,乘法运算才是可行的。

矩阵的转置运算矩阵的转置是指将矩阵的行变为列,列变为行,得到一个新的矩阵。

转置运算可以表示为A^T,其中A为原始矩阵。

矩阵的计算方法

矩阵的计算方法

矩阵的计算方法
矩阵概念,是数学中一个非常重要的概念,它是由多行多列的数字组成的两个或多个方阵组成,可以用来描述和分析许多实际问题。

现今,矩阵技术越来越普及,各行各业已经开始采用矩阵技术来解决问题,而计算矩阵的方法也是实施矩阵技术的基础。

矩阵的计算方法主要有两种:分治法和矩阵乘法。

分治法(Divide and Conquer)是将大的矩阵分解成若干较小的矩阵,对每个较小的
矩阵进行递归计算,最终合并计算结果。

矩阵乘法(Matrix Multiplication),即将两个矩阵相乘,获得一个新的矩阵。

通过这
种方法,可以解决很多复杂的问题,比如求解线性方程组,求解特征值和特征向量等。

矩阵乘法的实现方法十分简单,首先,将两个矩阵按指定的规则重新排列,使得行和列的数量能够完全匹配,然后,分别乘以行和列的元素,将乘积累加到新矩阵中,最后,计算完成的新矩阵就是指定的乘积矩阵。

此外,对于大的矩阵,我们可以采用分治法来计算,即将大的矩阵划分为四个较小的矩阵,并分别计算出每个较小矩阵的乘积,然后把这四个较小矩阵的乘积相加,就可以得到最终的结果。

矩阵计算方法在几何、物理学及信号处理等多个领域都有广泛应用,可以很大程度上提高计算效率,大大节省计算时间。

因此,管理者们应该积极地学习矩阵计算的技术,有效的运用到实际的管理中去,以提高管理效率。

总之,矩阵计算方法在解决一系列管理问题中具有十分重要的作用,熟练掌握矩阵计算方法,对于我们提高管理水平具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵的计算
矩阵的基本运算公式有加法,减法,数乘,转置,共轭和共轭转置。

1.加法运算A+B=C、数乘运算k*A=B、乘法运算A*B=C,加法运算和数乘运算合称线性运算,由加法运算和数乘运算可以得到减法运算A+(-1)*B=A-B,矩阵没有除法运算,两个矩阵之间是不能相除的,但是当矩阵可逆的时候,可以对矩阵求逆。

2.矩阵的秩计算公式是A=aij m×n。

矩阵的秩是线性代数中的一个概念。

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。

3.行列式和他的转置行列式相等,变换一个行列式的两行,行列式改变符号即变为之前的相反数,如果一个行列式有两行完全相同,那么这个行列式等于零,一个行列式中的某一行,所有元素的公因子可以提到行列式符号的外面,如果一个行列式中有一行,的元素全部是零,那么这个行列式等于零。

相关文档
最新文档