高频电子线路实验报告 - 3

合集下载

高频电子线路实验报告3

高频电子线路实验报告3

高频电子线路第三次实验报告通信二班黄欣雅 201208030210实验五低电平调制5.1 实验目的1、掌握低电平调制电路组成与基本工作原理。

2、熟悉低电平调制种类。

3、掌握各种低电平调制电路各项主要技术指标意义及测试技能。

5.2 实验内容5.2.1 二极管平衡电路调制1、 观察电路的特点,V1,V2中哪一个是载波,哪一个是调制信号? 答:V3是载波,V1(V2)调制信号。

2、 通过示波器观察电路波形,并计算电路的调幅系数m 。

图5.1 二极管平衡调制电路5.2.2 模拟乘法器调制电路1、 通过示波器观察电路波形,并计算电路的调幅系数m 。

图5.2 模拟乘法器调制电路2、乘法器原则上只能实现DSB调制,该电路为什么可以实现AM调制?答:该电路的两个输入信号的量级差别不大,调制信号和载波信号能够同时输出。

实验六高电平调制6.1 实验目的1、掌握集电极、基级调幅电路的组成与基本工作原理。

2、熟悉集电极、基级调幅电路的测试方法。

3、掌握集电极、基级调幅电路调幅系数的计算方法。

6.2 实验内容6.2.1 集电极调幅电路图6.1 集电极调幅电路1)完成电路的搭建、示波器的连接。

2)通过示波器观察电路波形,并计算电路的调幅系数ma。

3)将电路中的V4去掉,R1=30Ω,再通过示波器观察输出波形,通过瞬态分析,观察集电极电流波形说明此时电路是什么工作状态?(注意:在设置输出变量时,选择vv3#branch即可)答:工作在过电压状态。

6.2.2 基极调幅电路图6.2 基极调幅电路1)完成电路的搭建、示波器的连接。

、2)通过示波器观察电路波形,并计算电路的调幅系数ma。

3)将电路中的V4去掉,R1=30Ω,再通过示波器观察输出波形,通过瞬态分析,观察集电极电流波形说明此时电路是什么工作状态?答:工作在欠电压状态。

高频电路实验报告

高频电路实验报告

深圳大学实验报告课程名称:高频电路实验项目名称:高频谐振功率放大器学院:信息工程专业:电子信息工程指导教师:***报告人:学号:班级:实验时间:2014年4月2日实验报告提交时间:教务部制一、实验目的:1.熟悉电子元器件和高频电子线路实验系统。

2.熟悉高频谐振功率放大器的基本工作原理,三种工作状态,功率、效率计算。

3.了解集电极电源电压VCC与集电极负载变化对谐振功率放大器工作的影响。

二、实验仪器:实验板2(丙类高频功率放大电路单元)双踪示波器AS1637函数信号发生器(用作为高频信号源)万用表三、实验原理:1.高频谐振功率放大器原理高频谐振功率放大器原理电路如图3-1所示。

图中,L2、L3是扼流圈,分别提供晶体管基极回路、集电极回路的直流通路。

R10、C9产生射极自偏压,并经由扼流圈L2加到基极上,使基射极间形成负偏压,从而放大器工作于丙类。

C10是隔直流电容,L4、C11组成了放大器谐振回路负载,它们与其他参数一起,对信号中心频率谐振。

L1、C8与其他参数一起,对信号中心频率构成串联谐振,使输入信号能顺利加入,并滤除高次谐波。

C8还起隔直流作用。

R12是放大器集电极负载。

丙类功率放大器原理电路2.高频谐振功率放大器电路高频谐振功率放大器电路如图3-2所示,其第3级部分与图3-1相同。

BG1、BG2是两级前置放大器,C2、C6用以调谐,A、B点用作为这两级的输出测试点。

BG3为末级丙类功率放大器,当K4断开时可在C、D间串入万用表(直流电流档),以监测IC0值。

同时,E点可近似作为集电极电流iC波形的测试点(R10=10Ω,C9=100pF,因而C9并未对R10构成充分的旁路)。

K1~K3用以改变集电极负载电阻。

四、实验步骤:1.实验准备⑴在箱体右下方插上实验板2(丙类高频功率放大电路单元)。

接通实验箱上电源开关,此时箱体上12V、5V电源指示灯点亮。

⑵把实验板2右上方的电源开关(K5)拨到上面的ON位置,就接通了+12V电源(相应指示灯亮),即可开始实验。

高频电子线路实验

高频电子线路实验

4、将AM调制的输出端(J3)连到集成线性宽带功率放大器 的输入端J7,从TH9处可以观察到放大的波形。 5、将已经放大的高频调制信号连到模块10的天线发射端TX1, 并按下开关J2,这样就将高频调制信号从天线发射出去了, 观察10号板上TH3处波形。 6、将AM中波收音机放在发射天线附近,按下开关J2接收发 射出来的音乐或语音信号。
高频电子线路实验
(二)
实验三 变容二极管直接调频
一、实验目的 二、实验内容
三、实验原理
四、实验பைடு நூலகம்骤
一、实验目的
1.掌握变容二极管调频电路的原理。
2.了解调频调制特性及测量方法。
3.观察寄生调幅现象,了解其产生及消除 的方法。
二、实验内容
1.测试变容二极管的静态调制特性。 2.观察调频波波形。 3.观察调制信号振幅时对频偏的影响。
f
1 2 LC
调频特性曲线
Δf = f - fc
d ( f ) SF du u
O
图6.2.3 调频特性

0
四、实验步骤--静态调制特性测量
将电路接成LC压控振荡器(按电路板右上角提示连 接),J2端不接音频信号,将频率计接于TH1处,调 节电位器W1给出不同的偏置电压,从TP2测量并记下 变容二极管D1、D2两端电压和对应输出频率,并记 于下表中。 VD1(V)
4.观察寄生调幅现象。
实验电路介绍
缓冲与放大器
三点式振荡器
三点式振荡器交流等效图
S2控制工作于LC(VCO)和 晶体两种振荡模式
S1控制变容二极管 接入系数
三、实验原理-二极管调频获得线性调制的条件
调频即为载波的瞬时频率受调制信号的控制。其 频率的变化量与调制信号成线性关系。常用变容二 极管实现调频。 设回路电感为L,回路的电容是变容二极管的电容C (暂时不考虑杂散电容及其它与变容二极管相串联 或并联电容的影响),则振荡频率为

高频电子线路实验报告材料实验三

高频电子线路实验报告材料实验三

高频电子线路第二次实验报告实验三正反应LC振荡器3.1 实验目的1、掌握正反应LC振荡器的电路组成与根本工作原理。

2、熟悉正反应振荡器的判断方法。

3、掌握正反应LC振荡器各项主要技术指标意义与测试技能。

3.2 实验容3.2.1 电感三端式振荡器1、在Multisim中搭建测试总电路。

2、通过示波器观察其输出波形,并说明该电路的不足。

不足:振荡器的输出功率很低,输出信号是非常微小的值,未达到振幅起振条件3.2.2 电容三端式振荡器图3.2 电容三端式振荡器1、画出其等效交流电路图。

2、在Multisim中搭建测试总电路图。

3、通过示波器观察输出波形,与电感三端式振荡器比拟。

3.2.3 克拉泼振荡器1、在Multisim 中搭建测试总电路。

图3.3 克拉泼振荡器2、通过示波器观察输出。

3、在该电路的根底上,将其修改为西勒振荡器,并通过示波器观察波形。

R210kΩR31kΩR468kΩKey=A 50%L1500nHL222uHC1470pFC21nFC320pFC410nFC510nF C610nFL3100uH V112 VQ12N2222AR5560Ω7R15.1kΩ416530XSC1A BExt Trig++__+_2C7100pF Key=A50%80图3.4 席勒振荡器实验四晶体振荡器4.1 实验目的1、掌握晶体振荡器的电路组成与根本工作原理。

2、熟悉晶体振荡器的串并联型的判断方法。

3、掌握晶体振荡器各项主要技术指标意义与测试技能。

4.2 实验容〔A〕图4.1、上图分别是什么形式的振荡器?〔a〕是并联型型晶体振荡器,〔b〕是串联型单管晶体振荡器电路。

2、通过示波器观察波形,电路的振荡频率是多少?(a)的波形〔b〕的波形2、振荡器的电路特点?电路组成?答:振荡器的电路特点:不需要输入信号控制就能自动的将直流电源转变为特定频率和振幅的正弦交变能量的电路。

电路由振荡回路和直流信号源以与晶体管引入正反应网络组成。

高频电子线路实验报告

高频电子线路实验报告

南京信息工程大学高频电子线路实验报告实验一高频小信号放大器 (3)一、实验原理 (3)二、实验内容 (4)实验二振幅调制实验 (6)一、实验原理 (6)二:实验结果: (7)实验三调幅信号的解调 (9)一、实验原理 (9)二.实验内容 (12)实验四混频器 (14)一、实验原理 (14)二、实验内容 (15)实验一 高频小信号放大器一、实验原理高频小信号放大器的作用就是放大无线电设备中的高频小信号, 以便作进一步变换或处理。

所谓“小信号”,主要是强调放大器应工作在线性范围。

高频与低频小信号放大器的基 本构成相同,都包括有源器件(晶体管、集成放大器等)和负载电路,但有源器件的性能及负载电路的形式有很大差异。

高频小信号放大器的基本类型是以各种选频网络作负载的频带 放大器,在某些场合,也采用无选频作用的负载电路,构成宽带放大器。

频带放大器最典型的单元电路如图 1-1 所示, 由单调谐回路做法在构成晶体管调谐放大器。

图 1-1 电路中,晶体管直流偏置电路与低频放大器电路相同,由于工作频率高,旁路电 容C b.、C e 可远小于低频放大器中旁路电容值。

调谐回路的作用主要有两个:图 1-1 晶体管单调谐回路调谐放大器第一、选频作用,选择放大0f f =的信号频率,抑制其它频率信号。

第二、提供晶体管集电极所需的负载电阻,同时进行阻抗匹配变换。

高频小信号频带放大器的主要性能指标有:(1)中心频率 0f :指放大器的工作频率。

它是设计放大电路时,选择有源器件、计算谐振回路元件参数的依据。

(2)增益:指放大器对有用信号的放大能力。

通常表示为在中心频率上的电压增益和 功率增益。

电压增益 /VO O i A V V = (1—1)功率增益 /PO O i A P P = (1—2)式中 O V 、i V 分别为放大器中心频率上的输出、输入电压幅度, O P 、i P 分别为放大器中心频率上的输出、输入功率。

增益通常用分贝表示。

高频电子线路_小信号调谐放大器和高频功放_实验报告

高频电子线路_小信号调谐放大器和高频功放_实验报告

1-3 小信号调谐放大器一 .实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。

二 . 实验内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。

三 .实验步骤1.实验准备在实验箱主板上插装好无线接收与小信号放大模块,插好鼠标接通实验箱上电源开关,此时模块上电源指示灯和运行指示灯闪亮。

2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。

扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。

点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。

(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。

利用本实验箱上的扫频仪测试的方法是:用鼠标点击显示屏,选择扫频仪,将显示屏下方的高频信号源(此时为扫频信号源)接入小信号放大的输入端(1P1), 将显示屏下方的“扫频仪”与小信号放大的输出(1P8) 相连。

按动无线接收与小信号放大模块上的编码器(1SS1),选择1K2指示灯闪亮,并旋转编码器(1SS1) 使1K2指示灯长亮,此时小信号放大为单调谐。

显示屏上显示的曲线即为单调谐幅频特性曲线,调整1W1、1W2曲线会有变化。

用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-5 扫频仪测量的幅频特性(2)点测法,其步骤如下:① 通过鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“小信号调谐放大电路实验”,通过选择“小信号调谐放大”后,显示屏上显示小信号调谐放大器原理电路图。

高频实验报告

高频实验报告

电子通信工程系《高频电子线路》实验报告专业: 电子信息工程__学号: XXXXXX .姓名: XXXX .指导教师: XXXX .2011年11月27日实验3 电容三点式LC振荡器一、实验准备1.做本实验时应具备的知识点:●三点式LC振荡器●西勒和克拉泼电路●电源电压、耦合电容、反馈系数、等效Q值对振荡器工作的影响2.做本实验时所用到的仪器:●LC振荡器模块●双踪示波器●万用表二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握电容三点式LC振荡电路的基本原理,熟悉其各元件功能;3.熟悉静态工作点、耦合电容、反馈系数、等效Q值对振荡器振荡幅度和频率的影响;4.熟悉负载变化对振荡器振荡幅度的影响。

三、实验电路基本原理1.概述LC振荡器实质上是满足振荡条件的正反馈放大器。

LC振荡器是指振荡回路是由LC元件组成的。

从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。

如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。

在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ~GHZ。

2.LC振荡器的起振条件一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振平衡条件和相位平衡条件。

3.LC振荡器的频率稳定度频率稳定度表示:在一定时间或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:Δf0/f0来表示(f0为所选择的测试频率;Δf0为振荡频率的频率误差,Δf0=f02-f01;f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。

由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高Q值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。

高频实验3报告

高频实验3报告

高频电子线路实验报告学院计算机与电子信息学院专业班级姓名学号指导教师谢胜实验报告评分:_______正弦波振荡器仿真实验一、实验目的1、进一步熟悉正弦波振荡器的组成原理;2、观察输出波形,分析影响振荡器起振、稳定的条件;3、比较改进型正弦波振荡器与克拉泼振荡器的性能,分析电路结构及元件参数的变化对振荡器性能的影响。

4、了解晶体振荡器的工作原理及特点 ,掌握晶体振荡器的设计方法。

二、实验仪器设备三极管,示波器,电容,电感,晶体三、实验电路(1)电容三点式振荡器(又称考毕兹振荡器):观察振荡波形,测量振荡频率,并与理论计算频率比较;测量的频率值:计算的频率值:MHZf C C L 1.7501021)//(211010126212≈⨯⨯⨯==--ππ通过计算理论值跟测量值存在一定的误差,但是在误差允许的范围内,测量值还是比较准确的。

用实时监控法测量信号频率, 计算结果与测试结果对照,有一定的差异,这是测试误差所致,应属正常 。

(2)电容三点式改进型“克拉泼振荡器”: 克拉泼振荡器的频率LC f 1221π=(C1>>C3,C2>>C3)电路中 C3 为可变电容,调整之即可在一定范围内调整其振荡频率 。

输出信号的幅值、频率等用实时监测法测试,观察记录信号波形调整C2(C2=80%)观测振荡信号的波形和频率变化。

调整C2(C2=20%)观测振荡信号的波形和频率变化。

(1)改变克拉泼振荡器中C3、C4 的值,观察信号波形的变化(包括信号波形、频率、信号幅度等参数);(2)改变振荡器的负载,再次观察信号波形的变化。

(3)电容三点式的改进型“西勒振荡器”:振荡器的频率)(21821C C L f +=π(C1>>C6 , C2>>C6)输出信号的幅值、频率等用实时监测法测试,调整 C6、C3 观测振荡信号的波形和频率变化。

(1)改变 西勒振荡器中 C3、C24的值,观察信号波形的变化(包括信号波形、频率、信号幅度等参数);(2)(3)改变振荡器的负载,再次观察信号波形的变化;(4)分别调整C2、C8,再次观测波形的变化。

高频电子的实验报告

高频电子的实验报告

一、实验名称:高频电子线路实验二、实验目的:1. 掌握高频电子线路的基本原理和实验方法。

2. 熟悉高频电子线路中常用元件的性能和特点。

3. 培养实验操作技能,提高分析问题和解决问题的能力。

三、实验原理:高频电子线路是指频率在1MHz以上的电子线路,其设计原理与低频电子线路有所不同。

本实验主要研究高频放大器、振荡器和调制解调器等基本电路。

四、实验器材:1. 高频信号发生器2. 双踪示波器3. 万用表4. 高频电路实验板5. 高频电子元件(如晶体管、电容、电感等)五、实验步骤:1. 高频放大器实验:(1)搭建高频放大器电路,包括输入、输出匹配网络和晶体管放大电路。

(2)调节输入信号幅度和频率,观察输出信号的变化,分析放大器的频率响应和增益。

(3)测量放大器的输入输出阻抗,分析匹配网络的设计。

2. 振荡器实验:(1)搭建LC振荡器电路,包括LC谐振回路和晶体管振荡电路。

(2)调节LC回路参数,观察振荡频率的变化,分析振荡器的工作原理。

(3)测量振荡器的输出波形,分析振荡器的频率稳定性和幅度稳定性。

3. 调制解调器实验:(1)搭建AM调制器和解调器电路,包括调制信号源、调制电路、解调电路和滤波器。

(2)调节调制信号幅度和频率,观察调制信号的波形,分析调制和解调过程。

(3)测量调制信号的频率、幅度和相位,分析调制和解调效果。

六、实验结果及分析:1. 高频放大器实验:(1)通过调节输入信号幅度和频率,观察到输出信号随输入信号的变化而变化,说明放大器具有放大作用。

(2)测量放大器的输入输出阻抗,发现匹配网络对放大器的性能有重要影响。

(3)分析放大器的频率响应和增益,发现放大器的增益随着频率的升高而降低。

2. 振荡器实验:(1)通过调节LC回路参数,观察到振荡频率随LC回路参数的变化而变化,说明振荡器的工作原理。

(2)测量振荡器的输出波形,发现振荡器的频率稳定性和幅度稳定性较好。

(3)分析振荡器的频率稳定性和幅度稳定性,发现晶体管的静态工作点对振荡器的性能有重要影响。

南昌大学高频电子线路实验报告

南昌大学高频电子线路实验报告

南昌大学高频电子线路实验报告篇一:高频电子线路实验报告实验报告实验课程:高频电子线路学生姓名:学号:专业班级:指导教师:目录实验一、仪器的操作使用………………………………………实验二、高频小信号调谐放大器………………………………实验三、功率放大器设计………………………………………实验四、LC正弦波振荡器………………………………………实验五、晶体振荡器设计………………………………………实验六、集成模拟乘法器混频…………………………………实验七、二极管双平衡混频器…………………………………实验八、集电极调幅……………………………………………实验九、基极调幅电路…………………………………………实验十、模拟乘法器调幅(AM,DSB,SSB )……………………实验一仪器的操作使用一、实验目的1.学会高频实验室基本仪器的使用与操作,并能够运用仪器进行简单的实验;2.运用仪器调出相应要求的信号,并进行测试。

二、实验仪器示波器,信号发生器,频率特性测试仪三、实验内容1.用信号发生器产生所需要的信号,通过示波器的信号输入线加入到示波器,按一下AUTO SET键,示波器自动识别,显示出信号波形,在按一下Measure键,示波器出现信号频率、幅度等参数。

2.设置高频正弦波信号的频率为10.8MHz,按照表格分别设置信号的幅度,测出对应的输出信号的峰峰值。

3.按调幅键键,进行调幅波信号的产生和观测。

四、实验数据实验误差:接负载:(1)×1档 100mv 22.1 % 150mv 19% 200mv 16% 250mv 15.3%(2)×10档 100mv 1.4% 150mv 1.9%200mv 1.6%250mv 1.8%空载:(1)×1档 100mv 6.0 % 150mv 15.4% 200mv 14.1% 250mv 12.2%(2)×10档 100mv:7150mv 9.1% 200mv 8.1%250mv 6.3%实验二高频小信号调谐放大器实验五、实验目的1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。

高频电子实验报告

高频电子实验报告

一、实验目的1. 了解高频电子线路的基本原理和实验方法。

2. 掌握高频电子线路中LC振荡器、高频小信号放大器等电路的原理和设计方法。

3. 培养实验操作技能和数据分析能力。

二、实验原理1. LC振荡器:利用LC谐振电路产生正弦波信号,其振荡频率由LC电路的元件参数决定。

2. 高频小信号放大器:利用晶体管等电子元件,对高频信号进行放大,提高信号的幅度。

三、实验仪器1. 高频信号发生器:产生所需频率和幅度的高频信号。

2. 示波器:观察和分析实验信号。

3. 万用表:测量电压、电流等参数。

4. 高频电路实验板:进行实验操作。

四、实验步骤1. LC振荡器实验:(1)搭建LC振荡电路,根据元件参数计算振荡频率。

(2)用示波器观察振荡波形,分析波形特点。

(3)调整元件参数,观察振荡频率和波形的变化。

2. 高频小信号放大器实验:(1)搭建高频小信号放大电路,根据元件参数计算放大倍数。

(2)用示波器观察输入、输出信号波形,分析放大效果。

(3)调整元件参数,观察放大倍数和波形的变化。

五、实验数据与分析1. LC振荡器实验:(1)根据元件参数计算振荡频率,实际测量值与理论计算值基本一致。

(2)观察振荡波形,为正弦波,波形稳定。

2. 高频小信号放大器实验:(1)根据元件参数计算放大倍数,实际测量值与理论计算值基本一致。

(2)观察输入、输出信号波形,放大效果良好。

六、实验结论1. 通过实验,掌握了高频电子线路的基本原理和实验方法。

2. 培养了实验操作技能和数据分析能力。

3. 熟悉了LC振荡器、高频小信号放大器等电路的设计方法。

七、注意事项1. 实验过程中,注意安全操作,防止触电和火灾。

2. 实验数据要准确记录,便于分析。

3. 实验过程中,发现问题要及时解决,确保实验顺利进行。

八、实验报告评分标准1. 实验原理理解(20分)2. 实验步骤操作(20分)3. 实验数据与分析(40分)4. 实验结论与总结(20分)本实验报告得分:______分。

高频电子电路实习报告

高频电子电路实习报告

高频电子电路实习报告高频电子电路实习报告一:实习目的1、学习焊接电路板的有关学问,娴熟焊接的详细操作。

2、看懂收音机的原理电路图,了解收音机的基本原理,学会动手组装和焊接收音机。

3、学会调试收音机,能够清楚的收到电台。

4、学习使用protel电路设计软件,动手绘制电路图。

二:焊接的技巧或留意事项焊接是安装电路的基础,我们必需重视他的技巧和留意事项。

1、焊锡之前应当先插上电烙铁的插头,给电烙铁加热。

2、焊接时,焊锡与电路板、电烙铁与电路板的夹角最好成45度,这样焊锡与电烙铁夹角成90度。

3、焊接时,焊锡与电烙铁接触时间不要太长,以免焊锡过多或是造成漏锡;也不要过短,以免造成虚焊。

4、元件的腿尽量要直,而且不要伸出太长,以1毫米为好,多余的可以剪掉。

5、焊完时,焊锡最好呈圆滑的圆锥状,而且还要有金属光泽。

三:收音机的原理本收音机由输入回路高放混频级、一级中放、二级中放、前置低放兼检波级、低放级和功放级等部分组成接收频率范围为535千赫—1065千赫的中段。

安装工艺要求:动手焊接前用万用表将各元件测量一下,做到心中有数,安装时先安装低矮和耐热元件(如电阻),然后再装大一点的元件(如中周、变压器),最终装怕热的元件(如三极管)。

电阻的安装:将电阻的阻值选择好后依据两孔的距离弯曲电阻脚可采纳卧式紧贴电路板安装,也可以采纳立式安装,高度要统一。

瓷片电容和三极管的脚剪的长短要适中,它们不要超过中周的高度。

电解电容紧贴线路板立式焊接,太高会影响后盖的安装。

棒线圈的四根引线头可直接用电烙铁协作松香焊锡丝来回摩擦几次即可自动上锡,四个线头对应的焊在线路板的铜泊面。

由于调谐用的双联拨盘安装时离电路板很进,所以在它的圆周内的高出部分的元件脚在焊锡前先用斜口钳剪去,以免安装或调协时有障碍,影响拨盘调谐的元件有T2和T4的引脚及接地焊片、双联的三个引出脚、电位器的开关脚和一个引脚脚。

耳机插座的安装:先将插座靠尾部下面一个焊片往下从根部弯曲90度插在电路板上,然后用剪下来的一个引脚一端插在靠尾部上端的孔内,另一端插在电路板对应的J孔内,焊接时速度要快一点以免烫坏插座的塑料部分。

高频电子线路实验报告

高频电子线路实验报告

《高频电子线路》课程实验报告学院: 信息学院专业: 电子信息科学与技术班级:姓名学号:指导教师:实验一高频(单级、两级)小信号(单、双)调谐放大器一、实验目的1.掌握高频小信号调谐放大器的工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。

二、实验内容1.测量各放大器的电压增益;2.测量放大器的通频带与矩形系数(选做);3.测试放大器的频率特性曲线(选做)。

放大器:V i1p-p(V)0.4 2.54 4 32.5 16 18单级双调谐放大器高频小信号放大器的主要技术指标有那些?主要有谐振频率, 谐振增益, 通频带, 增益带宽积, 矩形系数.实验二场效应管谐振放大器一、实验目的1.了解双栅场效应管放大器的工作原理;2.了解场效应管调谐放大器与三极管放大器的优缺点。

二、实验内容1.观察场效应管调谐放大器的输出波形;2.测量场效应管放大器的电压增益。

三、实验结果数据和截图V ip-p(V)V op-p(V)电压增益(dB)0.5 5.92 21讨论场效应管调谐放大器与晶体管放大器的优缺点。

场效应晶体管放大器是电压控制器件, 具有输入阻抗高、噪声低、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽、热稳定性好等优点,的优点, 被广泛应用在电子电路中。

场效应管可应用于放大, 由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。

场效应管可以用作电子开关, 场效应管很高的输入阻抗非常适合作阻抗变换, 常用于多级放大器的输入级作阻抗变换。

场效应管可以用作可变电阻,场效应管可以方便地用作恒流源.调谐放大器以电容器和电感器组成的回路为负载, 增益和负载阻抗随频率而变的放大电路。

这种回路通常被调谐到待放大信号的中心频率上。

由于调谐回路的并联谐振阻抗在谐振频率附近的数值很大, 放大器可得到很大的电压增益。

而在偏离谐振点较远的频率上, 回路阻抗下降很快, 使放大器增益迅速减小;因而调谐放大器通常是一种增益高和频率选择性好的窄带放大器。

高频电子线路实验报告(总10页)

高频电子线路实验报告(总10页)

高频电子线路实验报告(总10页)摘要高频电子线路是指在高频范围内运作的电子设备和电路,具有良好的信号传输和处理能力。

本实验以微带衰减器为例,研究了高频电路的设计和制作方法,并测试了衰减器的性能指标。

实验结果表明,在合理的设计和制作条件下,微带衰减器能够实现准确的信号衰减和频率响应。

关键词:高频电子线路;微带衰减器;设计;制作;测试AbstractHigh frequency electronic circuit refers to electronic devices and circuits that operate in the high frequency range and have good signal transmission and processing capabilities. In this experiment, a microstrip attenuator was taken as an example to study the design and manufacturing methods of high frequency circuits, and the performance indicators of the attenuator were tested. The experimental results show that under reasonable design and manufacturing conditions, microstrip attenuators can achieve accurate signal attenuation and frequency response.Keywords: high frequency electronic circuit; microstrip attenuator; design; manufacturing; testing1.实验目的通过设计和制作微带衰减器,学习高频电子线路的设计原理和制作方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告课程:高频电子线路学院:电子与信息工程学院专业:电子与信息工程班级:电信17-1 班姓名:XXX XXX XXX学号:XX XX指导教师:李海军实验项目名称: LC 正弦波振荡电路实验 实验日期: 11月12日实验概述:【实验目的及实验设备】 1、实验目的:(1)进一步学习掌握正弦波振荡电路的相关理论;(2)掌握电容三点式LC 振荡电路的基本原理,熟悉其各元件功能,熟悉静态工作点、耦合电容、反馈系数等对振荡幅度和频率的影响。

2、实验设备及仪器名称:(1)LC 、晶体正弦波振荡电路实验板 (2)20MH 双踪示波器 (3)万用表3、实验原理LC振荡器实质上是满足振荡条件的正反馈放大器。

LC振荡器是指振荡回路是由LC元件组成的。

从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。

如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。

在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ~GHZ。

普通电容三点式振荡器的振荡频率不仅与谐振回路的LC 元件的值有关,而且还与晶体管的输入电容i C 以及输出电容o C 有关。

当工作环境改变或更换管子时,振荡频率及其稳定性就要受到影响。

为减小i C 、o C 的影响,提高振荡器的频率稳定度,提出了改进型电容三点式振荡电路——串联改进型克拉泼电路、并联改进型西勒电路,分别如图4-1和4-2所示。

串联改进型电容三点式振荡电路——克拉泼电路振荡频率为:∑=LC 10ω其中∑C 由下式决定io C C C C C C ++++=∑211111 选C C >>1,C C >>2时,C C -∑~,振荡频率0ω可近似写成 LC10≈ω这就使0ω几乎与o C 和i C 值无关,提高了频率稳定度。

振荡幅度取决于折合到晶体管ce 端的电阻'R ,可以推出:213021240021LC QC L LQ R n 'R ⋅=≅=ωωω 由上式看出,1C 、2C 过大时,R '变得很小,放大器电压增益降低,振幅下降。

还可看出,R '同振荡器0ω的三次方成反比,当减小C 以提高频率0ω时,R '的值急剧下降,振荡幅度显著下降,甚至会停振。

另外,用作频率可调的振荡器时,振荡幅度随频率增加而下降,在波段范围内幅度不平稳,因此,频率覆盖系数(在频率可调的振荡器中,高端频率和低端频率之比称为频率覆盖系数)不大,约为3.1~2.1。

并联改进型电容三点式振荡电路——西勒电路回路谐振频率0ω为∑=LC 10ω其中,回路总电容∑C 为图4-1克拉泼振荡电路E CR CR b1R b2C bC 1C 2L CR eE CRR bR bC b C 1C 2LCR eC 图4-2西勒振荡电路3211111C C C C C C C i o +++++=∑选C C >>1,C C >>2时,3C C C +≅∑,这就使0ω值几乎与o C 和i C 无关,提高了频率稳定度。

折合到晶体管输出端的谐振电阻R '是L Q n R n R 022'ω==其中接入系数n 和C 无关,当改变C 时,n 、L 、Q 都是常数,则R '仅随0ω一次方增长,易于起振,振荡幅度增加,使在波段范围内幅度比较平稳,频率覆盖系数较大,可达1.6~1.8。

另外,西勒电路频率稳定性好,振荡频率可以较高。

4.实验电路LC 、晶体正弦波振荡电路实验电路如图4-3。

断开J1、连接J2、J3构成LC 西勒电路振荡电路;断开J2、连接J1、J3构成并联型晶体正弦波振荡电路。

图4-3 LC 、晶体正弦波振荡电路实验电路实验内容及步骤:1、实验内容1.LC 振荡器频率与峰峰值与静态工作点关系测试。

2.荡器频率范围的测量3.LC 振荡器反馈系数对振荡频率与峰峰值的影响。

4.频率稳定度的观察。

2、实验步骤R2 R4R3R1T1C11RW1J1C4C1C3C5C6J3J4J5J2C2JZCV1CV2LC7R5R6R7T2C8TP2C9C10R9LED+12KLC 、晶体正弦波振荡电路OUTTP1A5-0808在实验箱主板上插上LC、晶体正弦波振荡电路实验模块。

接通实验箱上电源开关电源指标灯点亮。

断开J1、连接J2、J3构成LC西勒振荡电路。

(1)测试静态工作点变化对振荡器工作状态的影响调整RW1,由TP1测试T1发射极电流,观测发射极电流改变对振荡频率和幅度的影响。

(R4=1K)。

I EQ(mA)=V(TP1)/R4表4-1静态工作点变化对振荡器工作的影响I EQ(mA) 1.402 1.603 2.001 2.567 2.868f(MHz) 12.592 12.593 12.599 12.602 12.604V p-p(V) 0.593 0.661 0.773 0.972 1.141(2)振荡器频率范围的测量用小起子调整微调电容CV1值(2/25p),同时用频率计在OUT端测量输出振荡信号的频率值,观测振荡频率的改变。

(注意微调电容表面扇形镀银部分,从相对另一引出脚最近到最远,每转动180度即完成容量最大到最小的全过程,多旋动是没有意义的,只会加速元件的磨损)表4-2 振荡器频率范围的测量f(MHz) V p-p(V)Cmin 12.6241 1500Cmax 11.2986 1200(3)反馈系数对振荡器工作状态的影响J3、J4、J5不同组合可构成多种反馈系数,观测反馈系数对振荡器工作状态的影响。

表4-3 反馈系数对振荡器工作状态的影响F0.5 0.3 0.2 0.25f(MHz) 12.405 12.251 12.205 12.231V p-p(V) 2.185 1.347 0.855 1.131( 注 C1:100p C4:100p C5:200p C6:200p)(4)频率稳定度的测量(a)短期频率稳定度的测量用频率计在OUT端测量振荡频率,观察1分钟左右振荡频率f0的变化情况,并记录两个频率值f01(开始值),f02(最大变化值)。

计算LC振荡器的短期频率稳定度Δf0/f0表4-4短期频率稳定度的测量f01(开始值MHz)f02(最大变化值MHz)短期频率稳定度Δf0/f012.429886 12.430688 5.928515*10-5【实验结果】(实验波形)【解答思考题】1、LC反馈型振荡器的起振条件、振荡平衡条件和平衡稳定条件?起振条件:A0F>1;φA+φF=2nп,n=0,1,2,3…)振荡平衡条件:AF=1;φA+φF=2nп,n=0,1,2,3…)平衡稳定条件:2、写出电容反馈型振荡器的相位和振幅起振条件?3、LC反馈型振荡器相位平衡条件的判断准则?当回路原件的电阻很小,可以忽略其影响,同时也忽略三极管的输入阻抗与输出阻抗的影响,则电路要振荡必须满足条件:X cb+X ce+X be=0【小结】(碰到的问题,如何解决,有何体会,改进建议等)通过实验,我们掌握了电容三点式LC振荡电路的基本原理,熟悉其各元件功能,熟悉静态工作点、耦合电容、反馈系数等对振荡幅度和频率的影响,理解记忆了起振条件、振荡平衡条件和平衡稳定条件实验成绩:实验项目名称: 乘法器幅度调制实验 实验日期: 11月26日实验概述:【实验目的及实验设备】 1、实验目的:(1)通过实验了解集成乘法器幅度调制的工作原理,验证普通调幅波(AM )和抑制载波双边带调幅波(AM SC DSB -/)的相关理论。

(2)掌握用集成模拟乘法器MC1496实现AM 和DSB-SC 的方法,并研究调制信号、载波信号与已调波之间的关系。

(3)掌握在示波器上测量与调整调幅波特性的方法。

2、实验设备及仪器名称:(1)集成乘法调幅实验板 (2)20MH 双踪示波器 (3)万用表(4)低频信号源(可选)3、实验原理(一) 普通调幅波(AM )(表达式、波形)(1).普通调幅波(AM )的表达式、波形设调制信号为单一频率的余弦波: t U u m Ω=ΩΩcos ,载波信号为 :t U u c cm c ωcos = 普通调幅波(AM )的表达式为AM u )cos 1(t m U a cm Ω+=t c ωcos 式中,a m 称为调幅系数或调幅度。

由于调幅系数a m 与调制电压的振幅成正比,即m U Ω越大,a m 越大,调幅波幅度变化越大, 一般a m 小于或等于1。

如果a m >1,调幅波产生失真,这种情况称为过调幅。

未调制状态调制状态m a Ucmω0Ω图1-1 调幅波的波形(二) 抑制载波双边带调幅(AM SC DSB -/)(1).抑制载波双边带调幅(AM SC DSB -/)的表达式、波形由于载波不携带信息,因此,为了节省发射功率,可以只发射含有信息的上、下两个边带,而不发射载波,这种调制方式称为抑制载波的双边带调幅,简称双边带调幅,用DSB 表示。

可将调制信号Ωu 和载波信号c u 直接加到乘法器或平衡调幅器电路得到。

双边带调幅信号写成:t tU AU u Au u c cm m C DSB ωcos cos Ω==ΩΩ ])cos()[cos(21t t U AU c c cm m Ω-+Ω+=Ωωω A 为由调幅电路决定的系数;t U AU cm m ΩΩcos 是双边带高频信号的振幅,它与调制信号成正比。

双边带调幅的调制信号、调幅波形如图1-2所示。

双边带调幅波的包络已不再反映调制信号的变化规律。

图1-3为AM SC DSB -/频谱图。

由以上讨论可以看出AM SC DSB -/调制信号有如下的特点:图1-2 双边带调幅的调制信号、调幅波 图1-3 AM SC DSB -/频谱图(a )AM SC DSB -/信号的幅值仍随调制信号而变化,但与普通调幅波不同,AM SC DSB -/的包络不再反映调制信号的形状,仍保持调幅波频谱搬移的特征。

(b )在调制信号的正负半周,载波的相位反相,即高频振荡的相位在0)(=t f 瞬间有0180的突变。

(2)AM SC DSB -/调制,信号仍集中在载频0ω附近,所占频带为max 2F B DSB =由于AM SC DSB -/调制抑制了载波,输出功率是有用信号,它比普通调幅经济。

但在频带利用率上没有什么改进。

4.实验电路说明:当进行集成乘法器调幅实验时,把J1、J3、J5上的跳线块置于1-2位置,将J2、J8、J9上的跳线块置于2-3位置,(J4、J6、J7不插跳块);IN2、IN3分别输入1KHz 正弦波基带调制信号与10.7MHz 高频正弦载波,IN1空闲。

相关文档
最新文档