555振荡电路
555振荡电路(共29张)

A2 + + (S)
G2 Q
5 kW ⑦
100 W
③ OUT
①
NE555定时器内部(nèibù)电路
第17页,共29页。
放电管
555定时器的内部电路
逻辑(luó jí)功能表
输
入
输
正跳变 触发TH
负跳变 触发TL
复位RD
放电管T
×
×
0
导通
出 输出Q
0
<2VCC/3 <VCC/3
1
截止
1
>2VCC/3 >VCC/3
号。 因为对于RC振荡电路来说,增大电阻R即可降低振荡频率。
振荡频率 f= 1/0.7(R1+2R2)C1
即:f = 1. 443/(R1+2R2)C1
第12页,共29页。
555定时器
➢ 555定时器成本低,性能可靠,计时精确度 高。
➢ 只需要外接几个电阻,电容,就可以实现多谐振 荡器,单稳态触发器和施密特触发器等脉冲产生和 变换(biànhuàn)电路。 ➢ 其输出端的供给电流大,可直接推动多种自动控 制的负载。
屏幕菜 单选择
测量辅 助设置
辅助
操作
稳定
触发
电源
开关
屏幕
Y轴
输入
调整
插座
第24页,共29页。
扫描 调整
校准
信号
示波器面板(miàn 介绍 bǎn)
局 部 面 板 图
第25页,共29页。
测量状 态
触发电平 指示
屏幕(píngmù)刻度和标注信息
显示的 信号在 存贮器 中的位 置
第一路被 测信号指 示
第16页,共29页。
555多谐振荡器波形

555多谐振荡器波形解析概述555多谐振荡器是一种基于NE555计时器芯片设计的振荡器电路,可以产生多种波形,如矩形波、三角波和正弦波等。
它具有简单、稳定、可靠的特点,被广泛应用于电子设备和通信系统中。
本文将详细介绍555多谐振荡器的工作原理和波形特性。
NE555计时器芯片NE555是一种常用的集成电路,它由内部组成元件和外部元件构成。
内部组成元件包括电压比较器、RS触发器、双稳态多谐振荡器和输出级等。
外部元件主要包括电压供应电源、电容和电阻等。
NE555的引脚功能如下:•引脚1(GND):接地引脚,连接到电路的负极。
•引脚2(TRIG):触发引脚,用于控制输出波形的起始点。
•引脚3(OUT):输出引脚,产生振荡器的波形信号。
•引脚4(RESET):复位引脚,用于停止振荡器的工作。
•引脚5(CTRL):控制电压引脚,用于调整振荡器的频率。
•引脚6(THR):比较器阈值引脚,用于设定振荡器的阈值。
•引脚7(DISCH):放电引脚,用于控制输出波形的周期。
•引脚8(VCC):电源引脚,连接到电路的正极。
555多谐振荡器原理555多谐振荡器的原理是基于NE555的多谐振荡器电路设计。
多谐振荡器是指能够产生多种频率的振荡器。
NE555的内部多谐振荡器是一个双稳态振荡器,它由电容充放电过程和比较器的输出控制过程组成。
具体原理如下:1.初始状态下,电容C1的电压为0V,稳态输出为高电平(VCC)。
2.当TRIG引脚的电压低于2/3的VCC时,比较器的输出为低电平(GND)。
3.比较器的输出经过RS触发器的反馈,再经过输出级放大,形成矩形波输出。
4.在周期的上升沿,电容充电,直到电压达到比较器的阈值(2/3的VCC)。
5.当电容电压超过2/3的VCC时,比较器的输出变为高电平(VCC)。
6.比较器的输出经过RS触发器的反馈,再经过输出级放大,形成下降沿的矩形波输出。
7.在周期的下降沿,电容放电,直到电压低于比较器的阈值(1/3的VCC)。
555最简单振荡电路

555最简单振荡电路555是一种常用的集成电路,也是最简单的振荡电路之一。
它可以产生稳定的方波信号,广泛应用于计时、频率测量、脉冲生成等领域。
本文将介绍555最简单的振荡电路,并对其原理进行详细解析。
555振荡电路的基本原理是利用一个RC电路和比较器构成的反馈环路,通过调节电阻和电容的数值,可以调整输出信号的频率和占空比。
555振荡电路的基本组成包括一个比较器,一个RS触发器,一个输出级和一个放大器。
其中,比较器用于比较输入电压与参考电压的大小关系,RS触发器用于存储输出的状态,输出级用于放大输出信号,放大器用于提供驱动能力。
555振荡电路最简单的形式是单稳态多谐振荡器,也称为单稳态触发器。
它由一个RC电路、一个比较器和一个RS触发器组成。
具体电路连接方式如下:- 将555的第2脚和第6脚连接在一起,作为电容C和电阻R的公共接地点;- 将电容C的一端连接到555的第6脚,另一端连接到电阻R的一端;- 将电阻R的另一端连接到正电源;- 将555的第4脚连接到555的第8脚,以提供电源给555芯片;- 将555的第8脚连接到正电源;- 将555的第1脚连接到电阻R的另一端,作为输出端;- 将555的第5脚连接到电阻R的另一端,作为控制端。
当输入电压低于参考电压时,比较器的输出为高电平,RS触发器的输出为低电平,555的第1脚输出低电平信号。
当输入电压高于参考电压时,比较器的输出为低电平,RS触发器的输出为高电平,555的第1脚输出高电平信号。
通过调节电阻R和电容C的数值,可以调整输出信号的频率和占空比。
当电阻R和电容C的数值较大时,输出信号的频率较低,占空比较小;当电阻R和电容C的数值较小时,输出信号的频率较高,占空比较大。
需要注意的是,555振荡电路的稳定性和精度与电阻R和电容C的数值有关。
当电阻R和电容C的数值不稳定或误差较大时,输出信号的频率和占空比会有所偏差。
555最简单的振荡电路是由一个RC电路、一个比较器和一个RS触发器组成的单稳态多谐振荡器。
555振荡电路

555振荡电路概述555振荡电路是一种常用且经典的电子电路,在电子工程和电路设计中广泛应用。
它能够产生稳定的方波、矩形波和正弦波等输出信号,并具有简单、稳定和可靠的特点。
555振荡电路原理555振荡电路主要由一个集成电路芯片 NE555 和少量的外部元器件组成。
NE555是一种著名的计时器集成电路,它内部集成了比较器、电压比较器、电流开关和放大器等功能模块,可以根据外部元器件的设置来生成不同的输出信号。
555振荡电路的基本原理可以简单地描述为,当输入电压Vcc 施加在电路上时,芯片内部的比较器比较引脚的电压大小,当比较器输出高电平时,输出引脚的电压为低电平,当比较器输出低电平时,输出引脚的电压为高电平。
通过这种状态间的切换,可以实现不同类型的振荡波形输出。
555振荡电路的工作模式555振荡电路可以通过不同的连接方法实现不同的工作模式,常见的工作模式有以下几种:1. 单稳态工作模式(Monostable Mode)在单稳态工作模式下,当输入触发脉冲信号时,输出信号会在设定的时间内(由外部元器件决定)保持高电平,然后自动恢复为低电平。
这种工作模式适用于需要在一定时间后产生一个脉冲信号的应用,如触发器、定时器等。
2. 双稳态工作模式(Astable Mode)在双稳态工作模式下,输出信号会周期性地在高电平和低电平之间切换,产生连续的方波或矩形波信号。
这种工作模式适用于需要产生连续振荡信号的应用,如钟表、定时器、频率测量器等。
3. 三角波发生器工作模式(Triangle Wave Generator Mode)在三角波发生器工作模式下,通过外部电阻和电容的组合来调整输出信号的频率和幅度,从而产生稳定的三角波形信号。
这种工作模式适用于需要产生三角波信号的应用,如音频发生器、波形调制器等。
4. 正弦波发生器工作模式(Sine Wave Generator Mode)在正弦波发生器工作模式下,通过在双稳态工作模式的基础上添加一个滤波电路,可以将方波或矩形波信号转换为平滑的正弦波信号。
555电路制作与运用大全

555电路制作与运用大全
1.555单稳态电路
555单稳态电路是一种能够在输入脉冲到来时产生一个持续一段时间
的高电平输出的电路。
它的主要应用场景包括延时开关、触发器等。
制作
方法如下:
材料:555集成电路、几个电阻、电容、开关、继电器等。
步骤:
1)将555集成电路的引脚插入面包板或焊接到电路板上。
2)连接电阻、电容等器件,具体的连线可以参考555电路的原理图。
3)连接电源,注意检查电路的极性,否则会损坏电路。
4)通过改变电阻、电容的数值来调节单稳态电路的触发时间和输出
时间。
2.555多谐振荡电路
555多谐振荡电路是一种能够产生多种频率的输出信号的电路。
它的
主要应用场景包括音乐电子琴、信号发生器等。
制作方法如下:材料:555集成电路、几个电阻、电容、开关、音频放大器等。
步骤:
1)将555集成电路的引脚插入面包板或焊接到电路板上。
2)通过改变电阻、电容的数值来调节多谐振荡电路的输出频率。
3)将输出信号接入音频放大器,通过喇叭或耳机进行放音。
3.555频率分割器
555频率分割器是一种能够将输入信号分割成多个固定频率的输出信号的电路。
它的主要应用场景包括计数器、时钟电路等。
制作方法如下:材料:555集成电路、几个电阻、电容、开关、LED等。
步骤:
1)将555集成电路的引脚插入面包板或焊接到电路板上。
2)通过改变电阻、电容的数值来调节频率分割器的输出频率。
3)将输出信号接入LED灯或其他指示器,通过亮灭来显示频率分割的结果。
总结:。
555多谐振荡电路

555多谐振荡电路介绍555多谐振荡电路是一种常用的电子电路,可以产生多种不同频率的振荡信号。
它由一个555定时器芯片以及一些外部元件组成,具有简单易用、稳定可靠的特点。
本文将详细介绍555多谐振荡电路的原理、设计方法和应用场景。
原理555多谐振荡电路基于555定时器芯片的工作原理。
555定时器芯片是一种集成电路,内部包含多个功能模块,如比较器、RS触发器和可编程电阻器等。
它能够根据外部电路的设计产生不同频率的振荡信号。
在555多谐振荡电路中,一般使用555定时器芯片的双稳态触发器模式。
这种模式下,定时器芯片在接收到触发信号后,输出高电平,经过一段固定时间后切换为低电平。
然后再经过一段时间后重新切换为高电平,如此循环。
设计方法设计555多谐振荡电路需要确定以下关键参数:电源电压、电阻和电容值、触发信号源和输出信号的频率。
下面是一个设计方法的步骤示例:1.确定电源电压:根据具体应用需求,确定电源电压的大小。
2.确定电阻和电容值:根据需要产生的振荡频率范围,选择合适的电阻和电容值。
可以使用相关公式或在线计算工具来计算所需的数值。
3.设计触发信号源:根据具体需求,设计触发信号源电路,可以是外部信号源或者是其他电路逻辑电平的转换。
4.设计输出信号电路:根据具体应用,设计输出信号电路,包括输出电平的调节、电压放大等。
5.连接电路元件:按照设计要求,连接电路元件,最好使用实验板或焊接电路板进行连接测试。
6.调试和优化:根据实际情况,对电路进行调试和优化,确保输出信号满足要求。
应用场景555多谐振荡电路广泛应用于各种电子设备中,以下是几个常见的应用场景:1. 信号发生器555多谐振荡电路可以用作简易的信号发生器,产生可调节频率的信号。
在实验室、教学和测试领域中经常用到。
2. 脉冲发生器通过调节555多谐振荡电路的参数,可以产生不同占空比的脉冲信号。
脉冲发生器在数字电路测试和电器控制中有广泛的应用。
3. 脉冲宽度调制555多谐振荡电路可以用来进行脉冲宽度调制,可以用于控制电机速度、调光等控制应用。
555电路构成多谐振荡器口诀

555电路构成多谐振荡器口诀以下是关于555电路构成多谐振荡器的十个口诀:**口诀一:555振荡起始篇**小朋友们听我说,555电路真不错。
多谐振荡它能做,就像魔法来闪烁。
第一电容先接好,充电放电它来搞。
就像小桶在装水,装满倒掉来回跑。
电阻一二排排坐,大的小的有差别。
好比道路宽和窄,电流流动有规则。
555芯片在中间,像个司令把令传。
控制整个大电路,振荡节奏它来管。
电源电压要稳定,就像饭菜要吃饱。
少了可就不工作,这点一定要记牢。
**口诀二:555电容电阻篇**555呀多谐荡,电容电阻有花样。
一个电容不能少,就像心脏在中央。
它来储存电荷量,忽多忽少很繁忙。
两个电阻来帮忙,大小不同有担当。
好比两个小伙伴,一个高来一个长。
充电电阻在前头,电流顺着它来走。
放电电阻在后面,电荷从它往外流。
电容电阻配合好,就像齿轮相咬合。
电路才能振荡起,节奏稳定有把握。
**口诀三:555芯片功能篇**555芯片不简单,多谐振荡它领衔。
一脚二脚有门道,连接电容很关键。
一脚就像小触角,感知电容的电荷。
二脚像是守门员,控制电流的开关。
三脚输出信号强,就像喇叭在播放。
高低电平交替变,振荡波形它来产。
四脚复位要记清,就像刹车不能松。
五脚控制电压值,好比调温小旋钮。
六脚七脚连电阻,电路结构很稳固。
555芯片功能全,多谐振荡乐无边。
**口诀四:555振荡周期篇**555电路振荡忙,周期计算有秘方。
电阻电容是主角,它们决定时间长。
充电时间先来看,电阻电容相乘算。
就像走路步数多,距离远近它来判。
放电时间也不难,类似算法心里安。
不过数值有差别,比例关系要明辨。
总的周期加起来,振荡频率就出现。
就像时钟滴答响,规律节奏不混乱。
理解这个很重要,电路工作能明了。
**口诀五:555电平变化篇**555振荡电平变,高低交错真好玩。
开始充电电平高,就像气球吹得饱。
电容充满电之后,电平开始往低走。
好似气球撒了气,慢慢瘪了不再鼓。
放电过程电平降,一直降到很低谷。
555多谐振荡电路

555多谐振荡电路555多谐振荡电路是一种常用的电子电路,它可以产生多种不同频率的振荡信号。
在本文中,我将详细介绍555多谐振荡电路的工作原理、电路图、元器件选择和调整方法。
一、工作原理555多谐振荡电路基于NE555集成电路,它由比较器、RS触发器和放大器组成。
其工作原理如下:1. 初始状态下,RST引脚为高电平,TRIG引脚为低电平。
2. C1通过R1和R2充放电。
当C1充满时,比较器输出翻转,并导致放大器输出高电平。
3. 放大器输出的高电平通过R3和D1反馈到TRIG引脚,使其变为高电平。
4. 当C1放电至一定程度时,比较器输出再次翻转,并导致放大器输出低电平。
5. 放大器输出的低电平通过D2反馈到TRIG引脚,使其变为低电平。
6. 重复步骤2-5形成连续的振荡。
二、555多谐振荡电路图下面是一个基本的555多谐振荡电路图示:```+--|Vcc|R1|+-+ C1| |TRIG ---|>|---| |+-+|R3|OUT -----|<|--- DIS| |GND -----+--|Gnd```三、元器件选择在设计555多谐振荡电路时,我们需要选择合适的元器件来满足我们的需求。
以下是一些常见的元器件选择建议:1. 555集成电路:可以选择NE555或其它兼容型号。
2. 电阻:根据需要选择合适的电阻值。
常用范围为几千欧姆到几兆欧姆。
3. 电容:根据需要选择合适的电容值。
常用范围为几皮法到几百微法。
4. 二极管:可以选择常见的小功率二极管,如1N4148。
四、调整方法调整555多谐振荡电路的频率可以通过改变电阻和/或电容值来实现。
以下是一些常用的调整方法:1. 改变R1和R2:增大R1或减小R2将使振荡频率降低,反之亦然。
2. 改变C1:增大C1将使振荡频率降低,反之亦然。
3. 使用可变电阻和/或可变电容:通过使用可变电阻和/或可变电容,可以在一定范围内连续调整振荡频率。
五、总结555多谐振荡电路是一种常用的电子电路,它可以产生多种不同频率的振荡信号。
555多谐振荡电路

555多谐振荡电路
555多谐振荡电路是一种经典的多谐振荡电路。
它由三个主要元件组成:555定时器、电阻和电容。
多谐振荡电路是一种非线性电路,可以产生多个频率的波形。
在此文章中,我们将详细介绍555多谐振荡
电路的原理、使用和应用。
555多谐振荡电路的原理
多谐振荡电路可以通过改变某些元件的值来产生不同的频率。
555
多谐振荡电路是一种简单而灵活的电路,它可以根据输入的电压而改
变频率。
当电压变化时,它会引起电容和电阻的变化,从而改变芯片
内部的比较器阈值。
当阈值和触发器的状态发生变化时,就会产生一
个周期性的方波输出,其振荡频率取决于电容和电阻的数值。
使用和应用
555多谐振荡电路可以用于许多不同的应用,包括音频信号发生器、模拟时钟、脉冲宽度调制和步进驱动器。
在音频信号发生器中,可以
通过调整电容和电阻的值来产生不同的频率,从而产生不同音调的声音。
在模拟时钟中,可以使用555多谐振荡电路来替代基于石英晶体
的时钟,这种电路可以产生准确的振荡信号,从而保持时间的准确度。
在脉冲宽度调制中,可以使用555多谐振荡电路来产生一个可调节的
方波输出,该方波输出的周期可以被调整以产生特定比例的宽度和占
空比。
总结
555多谐振荡电路是一种灵活且实用的电路。
它可以根据电容和电阻的不同数值而产生不同的频率。
这种电路广泛用于音频信号发生器,模拟时钟,脉冲宽度调制和步进驱动器等应用中。
除了以上应用外,
此电路还可以用作基底发生器等,所以在电路设计领域中,555多谐振荡电路是一种常用的电路。
555振荡电路

单稳态电路。6
脚接RC充放电电 路,2脚接外来 信号。
双稳态电路。
6脚和2脚同 接外来信号。
无稳态电路。
6脚和2脚同接 RC充放电电路。
+UDD
84
ui
6
2 555 3
u0
7
51
0.01μF
ui
2 3 U DD
1 3
U
DD
0
t
u0
0
t
2脚和6脚相连并和电容C相接, 7脚接在R1和R2之间
工作波形
vO
O
t
无稳态电路 多谐振荡器
2脚和6脚相连并和电容C相接, 7脚接在R1和R2之间
工作波形
vC
2 3
VCC
1 3
VCCOt NhomakorabeavOO
t tw1 tw2
tW1 0.7(R1 R2 )C tW2 0.7R2C T tW1 tW2 0.7(R1 2R2 )C
(2)电源VCC经过电阻对电容C充电,当电容电压UC上升到2∕3VCC,此时3脚 ______ A 高电平 B低电平 C维持原状态 , VD1_灭__ VD2_亮__ (3)放电三极管________ (A导通 B放大 C截止),电容通过R2和三极管放电 ,当C1放电至电源电压的1/3时,3脚再次输出高电平
555定时器构成振荡器 的工作原理
充放电电路: R1、R2及C
充 电 电 路放
电 电 路
555定时器构成闪光电路电路
频率 f=1/T 小于70,人眼可分辨
分析:
两只发光二极管交替闪烁
(1)在接通电源瞬间,电容C来不及充电,UC=0,3脚为________ ( A 高电平 B低电平 C维持原状态) VD1_亮__ VD2_灭__
555方波振荡电路

555方波振荡电路【最新版】目录1.555 方波振荡电路简介2.555 方波振荡电路的工作原理3.555 方波振荡电路的基本组成部分4.555 方波振荡电路的应用领域正文一、555 方波振荡电路简介555 方波振荡电路,是一种基于 555 定时器集成电路的方波发生器。
它可以产生一定频率和振幅的方波信号,广泛应用于各种电子设备和电路设计中。
二、555 方波振荡电路的工作原理555 方波振荡电路的工作原理主要依赖于 555 定时器集成电路。
555 定时器是一种多用途的数字模拟混合型集成电路,具有多种工作模式,如单稳态、双稳态和 astable(不稳定)模式。
在方波发生器应用中,我们通常使用 astable 模式,通过调整电阻和电容的参数,使电路产生方波信号。
三、555 方波振荡电路的基本组成部分一个基本的 555 方波振荡电路主要包括以下几个部分:1.555 定时器集成电路:作为方波发生器的核心部分,控制电路的工作状态和输出信号。
2.电阻:用于限制电流和调整电路的工作状态。
3.电容:用于储存电荷和提供电路的工作能量。
4.触发器:用于控制电路的输出状态,使电路产生方波信号。
5.放大器:用于放大电路的输出信号,以满足不同应用场景的需求。
四、555 方波振荡电路的应用领域555 方波振荡电路广泛应用于各种电子设备和电路设计中,如:1.信号发生器:产生一定频率和振幅的方波信号,用于测试和调试其他电子设备。
2.电子钟表:作为时钟信号发生器,提供准确的时间显示。
3.通信系统:作为数据传输的载波信号,实现信息的快速传递。
4.音频处理:产生不同频率的方波信号,用于音频信号的处理和调整。
总之,555 方波振荡电路作为一种简单实用的方波发生器,具有广泛的应用前景。
555定时器构成的多谐振荡器(1)

555定时器构成的多谐振荡器简介555定时器是一种常用的IC芯片,常用于实现定时器和振荡器等功能。
本文将介绍使用555定时器构成的多谐振荡器电路及其基本原理。
多谐振荡器电路图多谐振荡器是一种能够同时产生多个频率的振荡器。
使用555定时器可以构成多谐振荡器电路,其电路图如下:+---------+| || 7 |<-- C1 --+| --- | |Vin ---|1 | |\\ || | 555 | | R1 || | |/ || --- | |Vout1 ---|3 | |<-- C2 --+| |Vout2 ---|2 | || --- || | | R2| | 555 || --- || || 6 || |+---------+其中,Vin为输入电压,C1和C2为两个电容器,R1和R2为两个电阻。
Vout1和Vout2为输出电压,可以产生多个不同频率的信号。
基本原理555定时器在555定时器中,有三个引脚被定义为控制引脚,分别是引脚2(TRIG),引脚4(Reset),和引脚5(Control Voltage)。
在振荡电路中一般不用到引脚4和5,因此本文不再介绍。
当555定时器的Trigger引脚接收到低电平时,输出电压将由高电平瞬间变为低电平。
当Threshold引脚接收到高电平时,输出电压由低电平变为高电平。
当Output引脚处于高电平时,内部集成电路中的Transistor处于开启状态;当Output引脚处于低电平时,Transistor处于关闭状态。
多谐振荡器多谐振荡器是一种同时产生多个不同频率的振荡器。
在555定时器构成的多谐振荡器中,电容器C1和C2的作用是限制电阻R1和R2的充放电时间,从而产生不同频率的输出信号。
当输入电压高于一定电平时,电容器开始充电,直到Trigger引脚接收到低电平时,输出电压由高变为低。
随着时间的增加,电容器重新开始充电,直到Threshold引脚接收到高电平,输出电压又由低变为高。
555方波振荡电路

555方波振荡电路(原创实用版)目录1.555 方波振荡电路的概述2.555 方波振荡电路的工作原理3.555 方波振荡电路的应用领域4.555 方波振荡电路的优缺点分析正文【555 方波振荡电路的概述】555 方波振荡电路,是一种基于 555 定时器的方波信号发生器。
555 定时器是一种广泛应用的集成电路,它具有多种工作模式,可以实现多种功能,如定时、脉冲发生、振荡等。
在方波信号发生器中,555 定时器通常工作在 astable(不稳定)模式,输出一个频率可调的方波信号。
【555 方波振荡电路的工作原理】555 方波振荡电路的工作原理主要基于 555 定时器的 astable(不稳定)模式。
在这种模式下,555 定时器的输出电压呈方波状,且频率可以通过调整电阻、电容等元器件的数值来实现。
具体来说,555 方波振荡电路通常由两个反馈电阻(R1、R2)、两个电容(C1、C2)和一个触发电容(Ct)组成。
其中,R1 和 R2 决定了方波信号的频率,C1 和 C2 则影响了方波信号的宽度。
触发电容 Ct 则用于控制 555 定时器的输出状态。
【555 方波振荡电路的应用领域】555 方波振荡电路广泛应用于各种电子设备和系统中,主要用途如下:1.作为信号发生器,用于产生可调频率的方波信号,以进行信号分析、测试和研究。
2.用于模拟电路和数字电路的混合设计,如产生定时信号、控制信号等。
3.作为脉冲发生器,用于产生一定频率的脉冲信号,以实现数据传输、信号控制等功能。
【555 方波振荡电路的优缺点分析】555 方波振荡电路具有以下优缺点:优点:1.结构简单,只需要几个元器件即可实现,制作成本低。
2.输出信号为方波,具有较好的信号质量,适用于多种应用场景。
3.频率可调,可以根据需要调整输出信号的频率。
缺点:1.输出信号的频率受到元器件参数的影响,对于要求高稳定性的应用场景可能不太适用。
2.输出信号的幅度受到电源电压的影响,电源电压波动可能导致输出信号幅度的变化。
555定时器构成的多谐振荡器电路实验报告

555定时器构成的多谐振荡器电路实验报告实验目的:通过555定时器构成的多谐振荡器电路实验,掌握555定时器的基本原理、性能特点和应用方法,了解多谐振荡器电路的工作原理及其在实际电路中的应用。
实验原理:1. 555定时器555定时器是一种集成电路,由三个5kΩ电阻、两个比较器、一个RS触发器和一个输出级组成。
它可以产生单稳态脉冲、方波和三角波等不同形式的周期信号。
2. 多谐振荡器电路多谐振荡器电路是由多个LC谐振回路组成的,每个LC回路都有不同的共振频率。
当输入信号与其中一个LC回路的共振频率相同时,该回路将产生共振现象,并输出相应频率的信号。
实验步骤:1. 将555定时器插入面包板中,并连接上VCC和GND。
2. 将R1、R2和C1连接到555定时器引脚6、2和5上,并连接到GND。
3. 将C2连接到引脚5和GND之间,并与L1串联。
4. 将L2并联在L1上,并将它们与C3串联。
5. 连接万用表,调整电阻值和电容值,使得输出信号频率在100Hz-1kHz之间。
6. 测量输出波形的幅度和频率,并记录数据。
实验结果:通过实验,我们成功构建了一个555定时器构成的多谐振荡器电路,并成功测量了输出信号的频率和幅度。
实验数据如下:输出信号频率:500Hz输出信号幅度:3V实验分析:通过实验可以看出,555定时器构成的多谐振荡器电路可以产生不同频率的周期信号,并且具有较高的稳定性和精度。
在实际应用中,多谐振荡器电路常用于音响设备、无线电通讯、调制解调器等领域。
结论:通过本次实验,我们深入了解了555定时器的基本原理、性能特点和应用方法,并掌握了多谐振荡器电路的工作原理及其在实际电路中的应用。
同时,我们也学会了如何构建一个基于555定时器的多谐振荡器电路,并成功测量了其输出信号频率和幅度。
555振荡电路

555振荡电路-大占空比周期可调的压控振荡器
压控振荡电路如图所示。
555、R1、R2、C1~C3及VT1组成一个压控多谐振荡器,场效应管(JFET)VT,作为压控电阻,通过改变其门一源电压VGs可改变VT-的漏(D)、源(S)间的阻抗。
接在VT。
的D、S的耦合电容C1、C2,用于防止其余电路的直流电压对JFET的影响。
为不使耦合电容影响时基电路的充、放电时间,C1、C2的大小宜选为定时电容C3容值的10倍。
该电路的优点在于:通过场效应管门一源问电压VGs的变化,使VT1形成一个可调范围很大的可变电阻Rx(可大至几百kΩ),从而获得极大的占空比和周期的变化。
大占空比周期可调的压控振荡器。
555振荡电路频率计算

555振荡电路频率计算555振荡电路是一种常用的集成电路,可以产生稳定的方波信号。
它的频率可以通过一定的计算方法来确定。
555振荡电路是由几个电子元件组成的电路,其中包括三个5kΩ电阻、两个10kΩ电阻、两个0.01μF电容和一个555定时器集成电路。
通过调整电阻和电容的数值,可以改变振荡电路的频率。
为了计算555振荡电路的频率,首先需要了解555定时器的工作原理。
555定时器是一种多功能集成电路,可以用作定时器、脉冲发生器和振荡器等。
在振荡模式下,555定时器的工作原理如下:1. 在电路的控制引脚(pin5)和放电引脚(pin7)之间连接一个电阻(R1),并将该引脚接地。
2. 将一个电容(C1)连接到放电引脚(pin7)和电源引脚(pin8)之间。
3. 将一个电阻(R2)连接到电源引脚(pin8)和放电引脚(pin7)之间。
4. 将一个电容(C2)连接到放电引脚(pin7)和控制引脚(pin5)之间。
5. 将一个电阻(R3)连接到控制引脚(pin5)和放电引脚(pin7)之间。
在振荡模式下,电容C1通过电阻R1开始充电,直到电压达到2/3的电源电压。
然后,电容C1通过电阻R2开始放电,直到电压降到1/3的电源电压。
这个充放电的过程不断重复,从而形成了方波信号。
555振荡电路的频率可以通过以下公式来计算:频率 = 1.44 / ((R1 + 2 * R2) * C1)其中,R1和R2分别是电阻的阻值,C1是电容的容值。
根据上述公式,我们可以通过调整电阻和电容的数值来改变振荡电路的频率。
例如,如果我们将R1设为10kΩ,R2设为20kΩ,C1设为0.01μF,那么振荡电路的频率就可以计算为:频率= 1.44 / ((10kΩ + 2 * 20kΩ)* 0.01μF) ≈ 48.78Hz通过这种方式,我们可以根据需要来设计不同频率的555振荡电路。
这种电路在电子设备中应用广泛,例如用于产生脉冲信号、驱动LED灯等。
555方波振荡电路

555方波振荡电路摘要:一、引言二、555 方波振荡电路的工作原理1.电路结构2.工作原理简述三、555 方波振荡电路的应用1.应用领域2.具体实例四、555 方波振荡电路的优缺点1.优点2.缺点五、结论正文:【引言】555 方波振荡电路是一种基于555 定时器芯片的振荡电路,广泛应用于各种电子设备中。
本文将详细介绍555 方波振荡电路的工作原理、应用领域、优缺点等方面的内容。
【555 方波振荡电路的工作原理】555 方波振荡电路主要由555 定时器芯片、电阻和电容组成。
电路结构如下:1.电路结构- 555 定时器芯片- 两个电阻(R1、R2)- 一个电容(C1)2.工作原理简述- 555 定时器芯片的引脚1(GND)接地- 引脚8(Vcc)接电源正极- 引脚2(Trigger)与引脚6(Reset)相连并接地,形成非门输入端- 引脚3(Output)输出方波信号- 引脚4(Discharge)接电容C1 的正极- 引脚5(Threshold)接电阻R1 与R2 的串联- 引脚7(Discharge)接电阻R2 与GND当电路接通电源时,电容C1 开始充电。
当电容电压达到555 定时器芯片的触发电压时,非门输出高电平,使定时器翻转并输出低电平。
此时,电容C1 开始放电,放电过程中,电容电压逐渐降低。
当电容电压降至低于555 定时器芯片的阈值电压时,非门输出低电平,使定时器保持翻转状态,输出高电平。
电容C1 继续放电,直至电容电压降至接近0V,此时非门再次输出高电平,重新开始充电过程。
如此循环,形成稳定的方波输出。
【555 方波振荡电路的应用】1.应用领域- 通信系统- 电子测量仪器- 自动控制设备- 家电产品2.具体实例- 在通信系统中,555 方波振荡电路可作为信号发生器产生稳定的方波信号,用于调制和解调。
- 在电子测量仪器中,555 方波振荡电路可作为标准信号源提供稳定的方波信号,用于波形观测和测量。
555振荡电路经典接法

555振荡电路经典接法关键信息项:协议555振荡电路经典接法协议书协议编号:____________________________签署日期:____________________________签署地点:____________________________甲方(项目负责人):名称:____________________________地址:____________________________联系人:____________________________电话:____________________________邮箱:____________________________乙方(技术提供方):名称:____________________________地址:____________________________联系人:____________________________电话:____________________________邮箱:____________________________项目背景:项目名称:____________________________项目目的:____________________________服务内容:电路设计:____________________________电路原理:____________________________元件选择:____________________________电路图纸:____________________________测试和调试:____________________________项目周期:开始日期:____________________________结束日期:____________________________服务费用:总费用:____________________________支付方式:____________________________支付时间:____________________________双方权利与义务:甲方的权利与义务:____________________________乙方的权利与义务:____________________________数据保密与使用:保密条款:____________________________数据使用范围:____________________________协议的变更与终止:变更条件:____________________________终止条件:____________________________违约责任:违约处理:____________________________赔偿条款:____________________________争议解决:争议解决方式:____________________________管辖法院:____________________________协议的有效性:生效日期:____________________________有效期:____________________________其他约定:特别条款:____________________________附录与附件:____________________________双方签字和盖章:甲方(签字/盖章):____________________________乙方(签字/盖章):____________________________ 555振荡电路经典接法协议书协议编号:____________________________签署日期:____________________________签署地点:____________________________甲方(项目负责人):名称:____________________________地址:____________________________联系人:____________________________电话:____________________________邮箱:____________________________乙方(技术提供方):名称:____________________________地址:____________________________联系人:____________________________电话:____________________________邮箱:____________________________项目背景:为了实现555振荡电路的经典接法,甲方希望乙方提供专业的电路设计和技术服务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
555振荡电路
一、实验目的
1.熟悉集成定时器555的工作原理及功能;
2.了解555定时器的使用方法。
二、实验原理
555集成定时器是一种模拟和数字电路相混合的集成电路。
它结构简单,使用灵活,用途十分广泛,可以组成多种波形发生器、多谐振荡器、定时延时电路、双稳触发电路、报警电路、检测电路、频率变换电路等。
555定时器的电路原理图及管脚排列图分别如图27-1和27-2所示。
555含有两个比较器A 1、A 2。
A 1参考电压为CC U 32,A 2参考电压为CC U 31。
当C C TL U 3
1U >时,A 2输出为1;当C C TL U U 31<时,A 2输出为0,则使R-S 触发器置1。
当C C TH U 32U <时,A 1
输出为1;C C TH U U 32>时,A 1输出为0,使R-S 触发器置0。
5端为电压控制端,通过外接一个
参考电源,可以改变上、下触发电位值,不用时,可通过一个0.01μF 旁路电容接地。
4端为触发器复位端,不用时应接高电平。
总之,555相当于一个可用模拟电压来控制翻转的R-S 触发器。
555电路有无稳态、单稳态和双稳态三种基本工作方式。
用这三种方式中的一种或多种组合起来可以组成各种实用电子电路(用得最多的是前两种方式)。
用555定时器组成的多谐振荡器的原理图如图27-3所示。
R 1、R 2、C 是外接元件。
当u c 因
电源接通对C 充电而上升到CC U 3
2
时,比较器A 1输出为低电平,使R-S 触发器输出置0,T 导
通,电容C 通过T 放电;当u c 因电容放电而减小到略低于CC U 3
1时,比较器A 2输出为低电
图27-2 555定时器的引脚图
WR 5 6
图27-1 555定时器的原理电路
DIS TL TH
VC 复位端
高触发端 放电端
低触发端
电压控制端
电源端
平,使R-S 触发器输出置1,T 截止,电容C 继续充电直到u c 略高于CC U 32时,触发器又翻转
到0,从而完成一个周期振荡。
其振荡周期可用下式计算:
T=0.7(R 1+2R 2)C
用555定时器组成的单稳触发器的原理如图27-4所示。
R 、C 是外接元件。
u i 输入为一个负的触发脉冲信号。
负脉冲到来前u i 为高电平,其值大于CC U 31,比较器A 2输出为1,R-S 触
发器输出为0,即处在稳定状态;当负触发脉冲到来时,因u i <CC U 31,故A 2输出为0,R-S 触
发器置为1,T 截止,C 充电,进入暂稳期;脉冲结束后,A 2输出为1,但u C 继续上升,直至
略高于CC U 3
2时,故A 1输出为0,使R-S 触发器置为0,暂稳期结束进入稳态,C 通过T 放电。
此触发器由一窄脉冲触发,可得到一宽的矩形脉冲,其脉冲宽度为:
t P =RC ln3≈1.1RC
三、实验内容与要求
1.用555设计一个多谐振荡器(参考参数R 1=5.1K Ω,R 2=50K Ω,C=0.01μF ) 要求:
(1)设计一个占空比可调的多谐振荡器,选择适当的器件参数; (2)填写表27-1。
(3)改变电容C 和R 2(100K Ω),观察对振荡波形的影响。
表27-1
2.用555定时器设计一个单稳态触发电路(参考参数R=50K Ω,C=0.0μF ) 要求:
(1)设计一个单脉冲宽度可调的单稳态触发器,选择适当的器件参数;
R R
u 图27-3 555组成多谐振荡器
图27-4 555组成单稳触发器
u i
(2)填写表27-2。
(3)调整电位器R P,观察对触发脉冲宽度的影响。
提供触发脉冲可由555多谐振荡器提供。
表27-2
四、实验设备
实验室提供的设备见表27-3。
表27-3
五、实验报告要求
1.设计实验线路图;
2.填写实验要求中的数据表格。
六、注意事项
调节比较合理的脉冲宽度的信号源作为单稳态触发器的输入触发信号。
七、思考题
1.单稳态触发电路,输出脉冲宽度是否应大于触发脉冲宽度?
2.根据实验电路,估算电路的振荡频率(理论值);
3.完成下列填空:
(1)多谐振荡器产生 (三角形波,矩形波),多谐振荡周期T= ;
(2)单稳态触发器从稳态转换到暂稳态(需要,不需要)外加触发信号;从暂稳态返回到稳态 (需要,不需要)外加触发信号;
(3) 单稳态触发器的输出脉冲宽度t P。