201x届九年级数学下册 第二十六章 反比例函数练习 新人教版
人教版初三数学9年级下册 第26章(反比例函数)26.1反比例函数 课后练习
![人教版初三数学9年级下册 第26章(反比例函数)26.1反比例函数 课后练习](https://img.taocdn.com/s3/m/ed87e00cc950ad02de80d4d8d15abe23482f033c.png)
人教九下26.1反比例函数一、选择题1. 下列函数中,是反比例函数的是( )A.y=−x2B.y=−12xC.y=1x−1D.y=1x22. 已知函数y=kx,当x=1时,y=−3,那么这个函数的解析式是( )A.y=3x B.y=−3xC.y=13xD.y=−13x3. 下列函数关系中,是反比例函数的是( )A.等边三角形面积S与边长a的关系B.直角三角形两锐角A与B的关系C.长方形面积一定时,长y与宽x的关系D.等边三角形的顶角A与底角B的关系4. 若点(3,6)在反比例函数y=kx(k≠0)的图象上,那么下列各点在此图象上的是( ) A.(−3,6)B.(2,9)C.(2,−9)D.(3,−6)5. 在反比例函数y=k−1x的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是( )A.k>1B.k>0C.k≥1D.k<16. 下列反比例函数的图象一定在第一、三象限的是( )A.y=mx B.y=m+1xC.y=m2+1xD.y=−mx7. 已知函数y=kx的图象经过(2,3),下列说法正确的是( )A.y随着x增大而增大B.函数的图象只在第一象限C.当x<0时,必有y<0D.点(−2,−3)不在此函数的图象上8. 已知A(x1,y1),B(x2,y2)是反比例函数y=kx(k≠0)的图象上的两点,当x1<x2<0时,y1 >y2,那么一次函数y=kx−k的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限9. 一次函数y=kx+b(k≠0)与反比例函数y=kx(k≠0)的图象在同一平面直角坐标系中的大致图象如图所示,则k,b的取值范围是( )A.k>0,b>0B.k<0,b>0C.k<0,b<0D.k>0,b<010. 如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上,反比例函数y=kx (x>0)的图象经过顶点B,则k的值为( )A.12B.20C.24D.3211. 在反比例函数y=k(k<0)的图象上有两点A(x1,y1),B(x2,y2),且x1>x2>0,则y1−y2的x值为( )A.正数B.负数C.非正数D.非负数二、填空题12. 设三角形的底边、对应高、面积分别为a,ℎ,S.(1)当a=10时,S与ℎ的关系式为,是函数;(2)当S=18时,a与ℎ的关系式为,是函数.13. 已知变量y,x成反比例,且当x=2时,y=6,则这个函数关系是.14. 若函数y=(n−1)x n2−2是反比例函数,则n=.15. 点(1,3)在反比例函数y=k的图象上,则k=,在图象的每一支上,y随x的增大x而.16. 如图所示,某反比例函数的图象经过点(−2,1),则此反比例函数表达式为.17. 反比例函数y=2a−1的图象有一支位于第一象限,则常数a的取值范围是.x18. 已知点A(2,y1),B(4,y2)都在反比例函数y=k(k<0)的图象上,则y1y2(填“>”“<”x或“=”).19. 已知函数y=(m+1)x m2−5是反比例函数,且图象在第一、三象限内,则m=.20. 反比例函数y=k+1,点(x1,y1),(x2,y2)在其图象上,当x1<0<x2时,有y1>y2,则k x的取值范围是.图象上的概率21. 从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=12x是.三、解答题22. 已知y−1与x成反比例,当x=3时,y=5,求y与x的函数关系式.23. 作出反比例函数y=−4的图象,并结合图象回答:x(1) 当x=2时,y的值;(2) 当1<x≤4时,y的取值范围;(3) 当1≤y<4时,x的取值范围.的图象的一支位于第一象限.24. 已知反比例函数y=m−7x(1) 判断该函数图象的另一支所在的象限,并求出m的取值范围;(2) 如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.25. 如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数y=k(x>0,k≠0)的图象经过线段BC的中点D.x(1) 求k的值;(2) 若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式,并写出x的取值范围.26. 已知反比例函数的图象过点(1,−2).(1) 求这个函数的解析式,并画出图象;(2) 若点A(−5,m)在该图象上,则点A关于两坐标轴和原点的对称点是否也在图象上?27. 如图,一次函数y=kx+b的图象l分别与x轴,y轴交于点E,F,与双曲线y=−4x (x<0)交于点P(−1,n),F是PE的中点.(1) 求直线l的解析式;(2) 若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?答案一、选择题1. 【答案】B2. 【答案】B3. 【答案】C4. 【答案】B5. 【答案】A6. 【答案】C7. 【答案】C8. 【答案】B9. 【答案】D10. 【答案】D11. 【答案】A二、填空题12. 【答案】S=5ℎ;正比例;a=36;反比例ℎ13. 【答案】y=12x14. 【答案】−115. 【答案】3;减小16. 【答案】y=−2x17. 【答案】a>1218. 【答案】<19. 【答案】220. 【答案】k<−121. 【答案】16三、解答题22. 【答案】y=12+x.x23. 【答案】(1) y=−2.(2) −4<y≤−1.(3) −4≤x<−1.24. 【答案】(1) 第三象限;m−7>0,则m>7.(2) m=13.25. 【答案】(1) k=2.(2) S=2x−2,x>12−2x,0<x<1.26. 【答案】(1) y=−2,图略.x(2) m=2,点A−5,关于两坐标轴对称的点均不在函数图象上,关于原点对称的点在函数图5象上.27. 【答案】(1) y=−2x+2.(2) 当a=−2时,PA=PB(提示:过点P作PD⊥AB).。
九年级数学人教版下册第二十六章 反比例函数 26.1 反比例函数 (附答案)
![九年级数学人教版下册第二十六章 反比例函数 26.1 反比例函数 (附答案)](https://img.taocdn.com/s3/m/acb35b770029bd64793e2c33.png)
人教版数学第二十六章反比例函数 26.1 反比例函数(附答案)一、选择题1.三角形的面积一定,则它的底和高所成的函数关系是()A.正比例函数B.一次函数C.反比例函数D.不确定2.计划修建铁路l km,铺轨天数为t(d),每日铺轨量s(km/d),则在下列三个结论中,正确的是()①当l一定时,t是s的反比例函数;②当l一定时,l是s的反比例函数;③当s一定时,l是t的反比例函数.A.仅①B.仅②C.仅③D.①,②,③3.已知反比例函数y=kx ,当x=2时,y=-12,那么k等于()A. 1B.-1C.-4D.-144.若当x=3时,正比例函数y=k1x(k1≠0)与反比例函数y=k2x(k2≠0)的值相等,则k1与k2的比是()A. 9∶1B. 3∶1C. 1∶3D. 1∶95.若函数y=x2m+1为反比例函数,则m的值是()A. 1B. 0C. 0.5D.-16.下面说法正确的是()A.一个人的体重与他的年龄成正比例关系B.正方形的面积和它的边长成正比例关系C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系7.已知y=y1+y2,其中y1与1成反比例且比例系数为k1,y2与x成正比例且比例系数为k2.若x=-x1时,y=0,则k1,k2的关系为()A.k1+k2=0B.k1k2=1C.k1k2=-1D.k1=k28.函数y=m(m−3)是反比例函数,则m必须满足()xA.m≠3B.m≠0或m≠3C.m≠0D.m≠0且m≠3二、填空题9.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12 000元,首付4 000元,以后每月付y元,x个月全部付清,则y与x的关系式为________,是________函数.(2)某种灯的使用寿命为1 000小时,它的使用天数y与平均每天使用的小时数x之间的关系式________,是______函数.10.已知y与x成反比例,且当x=-3时,y=4,则当x=6时,y的值为_______..对于同一个物体,当F值保持不变时,P 11.已知压力F,压强P与受力面积S之间的关系是P=FS是S的____函数;当S=3时,P的值为180,那么当S=9时,P的值为____.三、解答题12.请判断下列问题中,哪些是反比例函数,并说明你的依据.(1)三角形的底边一定时,它的面积和这个底边上的高;(2)梯形的面积一定时,它的中位线与高;(3)当矩形的周长一定时,该矩形的长与宽.13.y是x的反比例函数,下表给出了x与y的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.14.已知y=(k2+k)x k2−k−1中,请问:k为何值,y是x的反比例函数.15.已知变量x,y满足(x-2y)2=(x+2y)2+10,问:x,y是否成反比例函数关系?如果不是,请说明理由;如果是,请求出比例系数.答案解析1.【答案】C【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.三角形的底×高=面积×2(一定),是乘积一定,它的底和高成反比例. 故选C.2.【答案】A【解析】根据工作总量=工作效率×时间,整理为反比例函数的一般形式:y =k x (k ≠0),根据k 是常数,y 是x 的反比例函数判断正确选项即可.∵l =ts ,∴t =l s ,或s =l t, ∵反比例函数解析式的一般形式y =k x(k ≠0,k 为常数), ∴当l 一定时,t 是s 的反比例函数;只有①正确,故选A.3.【答案】B【解析】∵当x =2时,y =-12,∴-12=k 2, 解得k=-1. 故选B.4.【答案】D【解析】把x=3分别代入y=k1x(k1≠0),和反比例函数y=k2x (k2≠0)得y=3k1和y=k23,根据题意,得3k1=k23,所以k1∶k2=1∶9.故选D.5.【答案】D【解析】根据反比例函数的定义.即y=kx(k≠0),只需令2m+1=-1即可.根据题意,得2m+1=-1,解得m=-1.故选D.6.【答案】C【解析】A.一个人的体重与他的年龄成正比例关系,错误;B.正方形的面积和它的边长是二次函数关系,故此选项错误;C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系,正确;D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成正比例关系,故此选项错误;故选C.7.【答案】A【解析】根据y1与1x成反比例且比例系数为k1,y2与x成正比例且比例系数为k2,可得k1的表示,k2的表示,根据y=y1+y2,若x=-1时,y=0,可得答案.k1=y1·1x,y2=k2x,y1=k1x,y =y 1+y 2,x =-1时,-k 1-k 2=0,k 1+k 2=0,故选A.8.【答案】D【解析】根据反比例函数定义:反比例函数的概念形如y =k x (k 为常数,k ≠0)的函数称为反比例函数可得m (m -3)≠0,再解即可.由题意,得m (m -3)≠0,解得m ≠0且m ≠3,故选D.9.【答案】(1)y =8000x , 反比例 (2)y =1000x 反比例【解析】(1)由题意,得y 与x 的函数关系式为y =12000−4000x =8000x , 故答案为y =8000x ,反比例;(2)由题意,得y =1000x ,故答案为y =1000x ,反比例.10.【答案】-2【解析】设反比例函数为y =k x ,当x =-3,y =4时,4=k −3,解得k =-12.反比例函数为y =−12x .当x =6时,y =−126=-2,故答案为-2. 11.【答案】反比例 60【解析】∵压力F ,压强P 与受力面积S 之间的关系是P =F S ,∴当F 值保持不变时,P 是S 的反比例函数,∵当S =3时,P 的值为180,∴F =SP =3×180=540,当S =9时,P =5409=60.故答案为反比例,60.12.【答案】解 (1)设三角形的面积为S ,底边为a ,底边上的高为h ,则S =12ah ,当a 一定,即a =2S ℎ一定,S 是h 的正比例函数;(2)设梯形的面积为S ,它的中位线与高分别为m ,h ,S =12mh 符合y =k x ,所以是反比例函数;(3)设矩形的周长C ,该矩形的长与宽分别为a ,b ,则C =2(a +b ),当矩形的周长一定时,该矩形的长与宽不成任何比例关系.【解析】根据实际问题分别列出函数关系式,然后结合反比例函数的定义得出答案. 13.【答案】解 (1)设反比例函数的表达式为y =k x,把x =-1,y =2代入,得k =-2,所以反比例函数表达式为y =-2x .(2)将y =23代入,得x =-3; 将x =-2代入,得y =1;将x =-12代入,得y =4;将x=12代入,得y=-4,将x=1代入,得y=-2;将y=-1代入,得x=2,将x=3代入,得y=-23.【解析】(1)设反比例函数的表达式为y=kx,找出函数图象上一个点的坐标,然后代入求解即可;(2)将x或y的值代入函数解析式求得对应的y或x的值即可.14.【答案】解∵y=(k2+k)x k2−k−1中,y是x的反比例函数,∴{k2+k≠0,k2−k−1=−1,解得k=0(舍去)或k=1.∴k=1时,y是x的反比例函数.【解析】根据反比例函数的定义列出关于k的不等式组,求出k的值即可.15.【答案】解∵(x-2y)2=(x+2y)2+10,∴x2-4xy+4y2=x2+4xy+4y2+10,整理得出8xy=-10,∴y=−54x,∴x,y成反比例关系,比例系数为-54.【解析】直接去括号,进而合并同类项得出y与x的函数关系式,并根据定义判定即可.。
九年级数学下册第二十六章《反比例函数》单元练习题-人教版(含答案)
![九年级数学下册第二十六章《反比例函数》单元练习题-人教版(含答案)](https://img.taocdn.com/s3/m/944c3b4a1fd9ad51f01dc281e53a580216fc50f7.png)
九年级数学下册第二十六章《反比例函数》单元练习-人教版(含答案)一、单选题1.下列函数中,图象经过点1,2的反比例函数解析式是( ) A .1y x = B .1y x -= C .2y x = D .2y x-= 2.下列式子中,表示y 是x 的反比例函数的是( )A .1xy =B .28y x =C .2x y =D .1x y x =+ 3.点(x 1,y 1)、(x 2,y 2)、(x 3,y 3)在反比例函数2y x=-的图象上,且x 1<0<x 2<x 3,则有( ) A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 1<y 3<y 2D .y 3<y 2<y 1 4.已知正比例函数x y k =中,y 的值随x 的值的增大而增大,那么它和反比例函数k y x =在同一平面直角坐标系内的大致图像可能是( )A .B .C .D .5.如图,正比例函数1y k x =与反比例函数2k y x =的图像交于(1,)A m 、B 两点,当21k k x x≤时,x 的取值范围是( )A .10x -≤<或1x ≥B .1x ≤-或01x <≤C .1x ≤-或1x ≥D .10x -≤<或01x <≤ 6.若点1,2在反比例函数k y x =(k 为常数,0k ≠)的图象上,则下列有关该函数的说法正确的是( )A .该函数的图象经过点()1,2B .该函数的图象位于第一、三象限C .y 的值随x 的增大而增大D .当1x <-时,y 的值随x 的增大而增大 7.已知一次函数y 1=k 1x +b 与反比例函数y 2=2k x上在同一直角坐标系中的图象如图所示,则当k 1x十b <2k x时,x 的取值范围是( )A .x <1成0<x <3B .﹣1<x <0或x >3C .﹣1<x <0D .x >38.两个物体A ,B 所受的压强分别为A P ,B P (都为常数).它们所受压力F 与受力面积S 的函数关系图象分别是射线A l 、B l ,已知压强F P S=,则( )A .AB P P < B .A B P P >C .A B P P =D .≤A B P P9.古希腊学者阿基米德发现了著名的“杠杆原理”:杠杆平衡时,阻力×阻力臂=动力×动力臂.几位同学玩撬石头游戏,已知阻力(石头重量)和阻力臂分别为1600N 和0.5m ,小明最多能使出500N 的力量,若要撬动这块大石头,他该选择撬棍的动力臂( )A .至多为1.6mB .至少为1.6mC .至多为0.625mD .至少为0.625m10.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流(A)I 与电阻(Ω)R 成反比例函数的图象,该图象经过点(880,0.25)P .根据图象可知,下列说法正确的是( )A .当0.25R <时,880I <B .I 与R 的函数关系式是200(0)I R R =>C .当1000R >时,0.22I >D .当8801000R <<时,I 的取值范围是0.220.25I << 二、填空题11.若y与1x成正比例关系,z与x成正比例关系,则y与z成_____________关系.12.反比例函数kyx=经过点(2,2)-,则k=_____.13.在反比例1kyx-=的图象的每一支上,y都随x的增大而减小,且整式24x kx-+是一个完全平方式,则该反比例函数的解析式为___________.14.设函数2yx=与1y x=-的图象的交点坐标为(,)a b,则11a b-的值为__________.15.如图,在平面直角坐标系中,直线33y x=-+与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线上,则a的值是__________.三、解答题16.已知反比例函数kyx=(k≠0)的图像与一次函数y ax b=+的图像交于点A(-6,2),B(2,-6),且一次函数y ax b=+图像与x轴交于点C.(1)求反比例函数与一次函数表达式;(2)求△AOB的面积.17.已知:如图,点A 在反比例函数()0k y x x =>的图像上,且点A 的横坐标为2,作AH 垂直于x 轴,垂足为点H ,3AOH S =.(1)求AH 的长;(2)求k 的值;(3)若()11,M x y 、()22,N x y 在该函数图像上,当120x x <<时,比较1y 与2y 的大小关系.18.如图,在平面直角坐标系中,一次函数()0y kx b k =+≠与反比例函数()0m y m x=≠的图像交于点()4,1A ,且过点()0,3B -.(1)求反比例函数和一次函数的表达式.(2)如果点P 是x 轴上位于直线AB 左侧的一点,且ABP 的面积是12,求点P 的坐标.19.如图,在平面直角坐标系中,点A(2,4)在反比例函数y=kx的图象上,点C的坐标是(3,0),连接OA,过C作OA的平行线,过A作x轴的平行线,交于点B,BC与双曲线y=kx的图象交于D,连接AD.(1)求D点的坐标;(2)四边形AOCD的面积.20.如图,点A(m,6),B(n,1)在反比例函数图象上,AD△x轴于点D,BC△x轴于点C,DC=5.(1)求m,n的值并写出反比例函数的表达式;(2)连结AB,在线段DC上是否存在一点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,请说明理由.21.某地上年度电价为0.8元/度,年用电量为1亿度,本年度计划将电价调至0.55~0.75元/度之间,经测算,若电价调至x元/度,则本年度新增用电量y(亿度)与(x-0.4)成反比例.又知当x=0.65时,y=0.8.(1)求y与x之间的函数解析式;(2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)]22.如图1,已知直线y=﹣12x+m与反比例函数y=kx的图象在第一象限内交于A、B两点(点A在点B的左侧),分别与x、y轴交于点C、D,AE△x轴于E.(1)若OE•CE=12,求k的值.(2)如图2,作BF△y轴于F,求证:EF△CD.(3)在(1)(2)的条件下,P是x轴正半轴上的一点,且△PAB是以P为直角顶点的等腰直角三角形,求P点的坐标.参考答案1.D2.A3.B4.B5.A6.D7.B8.B9.B10.D11.反比例12.4-13.3y x=14.−1215.216.解:(1)把点A (-6,2)代入k y x =得, △2(6)12k xy ==⨯-=-,△反比例函数的表达式为12y x =-. 把点A (-6,2),B (2,-6)代入y ax b =+得,6226a b a b -+=⎧⎨+=-⎩, 解得:14a b =-⎧⎨=-⎩, △一次函数的表达式为4y x =--;(2)△直线4y x =--与x 轴交于点C ,△C (-4,0),△OC =4 , △1142461622AOB AOC BOC S S S ∆∆∆=+=⨯⨯+⨯⨯= ,△△AOB 的面积为16.17.解:(1)△点A 的横坐标为2,△OH=2△3AOH S = △12OH·AH=3解得:AH=3(2)△OH=2,AH=3△点A 的坐标为(2,3)将点A 的坐标代入k y x=中,得 32k = 解得:k=6(3)△k=6>0△反比例函数在第一象限内,y 随x 的增大而减小△()11,M x y 、()22,N x y 在该函数图像上,且120x x <<△1y >2y .18.(1)解:反比例函数m y x=(0m ≠)的图像过点(41)A ,, 14m ∴=, 4m ∴=,∴反比例函数的表达式为4y x=, 一次函数y kx b =+的图像过点(41)A ,和(03)B -,, 413k b b +=⎧∴⎨=-⎩解得:13k b =⎧⎨=-⎩, ∴一次函数的表达式3y x =-;(2)如下图所示:设一次函数3y x =-的图像与x 轴的交点为C ,令0y =,则30x -=,3x =,∴点C 的坐标为(30),,12ABP ACP BCP S S S =+=11131222PC PC ∴⨯+⨯=, 6PC ∴=,点P 是x 轴上位于直线AB 左侧的一点,∴点P 的坐标为()3,0-.19.解:(1)△点A (2,4)在反比例函数y =k x的图象上, △k =2×4=8,△反比例函数解析式为y =8x ; 设OA 解析式为y =k'x ,则4=k'×2,△k'=2,△BC△AO ,△可设BC 的解析式为y =2x+b ,把(3,0)代入,可得0=2×3+b ,解得b =﹣6,△BC 的解析式为y =2x ﹣6,令2x ﹣6=8x,可得x =4或﹣1, △点D 在第一象限,△D (4,2);(2)△AB△OC ,AO△BC ,△四边形ABCO 是平行四边形,△AB =OC =3,△S 四边形AOCD =S 四边形ABCO ﹣S △ABD=3×4﹣12×3×(4﹣2)=12﹣3=9. 20.(1)由题意得:65m n m n =⎧⎨+=⎩,解得:16m n =⎧⎨=⎩, △A (1,6),B (6,1), 设反比例函数表达式为y k x=, 将A (1,6)代入得:k=6,则反比例表达式为y=6x; (2)存在,设E (x ,0),则DE=x ﹣1,CE=6﹣x ,△AD△x 轴,BC△x 轴,△△ADE=△BCE=90°,连结AE ,BE ,则S △ABE =S 四边形ABCD ﹣S △ADE ﹣S △BCE =12(BC+AD )•DC ﹣12DE•AD ﹣12CE•BC =12×(1+6)×5﹣12(x ﹣1)×6﹣12(6﹣x )×1 =352﹣52x=5, 解得:x=5,则E (5,0).21.(1)∵本年度新增用电是y (亿度)与(x ﹣0.4)成反比例关系,∴y 0.4k x =-.∵当每度电价为0.65元时,新增用电是0.8亿度,∴0.80.650.4k =-,解得:k =0.2,∴y 0.210.452x x ==--; (2)设当电价为x 元时,本年度电力部门的收益将比上年度增加20%,根据题意得: (0.8﹣0.3)(1+20%)=(152x +-1)(x ﹣0.3) 解得:x =0.6或x =0.5<0.55(舍去).答:当电价为0.6元时,本年度电力部门的收益将比上年度增加20%.22.(1)设OE=a ,则A (a ,﹣12a+m ), △点A 在反比例函数图象上,△a (﹣12a+m )=k ,即k=﹣12a 2+am , 由一次函数解析式可得C (2m ,0),△CE=2m ﹣a ,△OE .CE=a (2m ﹣a )=﹣a 2+2am=12, △k=12(﹣a 2+2am )=12×12=6; (2)连接AF 、BE ,过E 、F 分别作FM△AB ,EN△AB ,△FM△EN ,△AE△x 轴,BF△y 轴,△AE△BF ,S △AEF =12AE•OE=k 2, S △BEF =12BF•OF=k 2, △S △AEF =S △BEF ,△FM=EN ,△四边形EFMN 是矩形,△EF△CD ;(3)由(2)可知,5 5由直线解析式可得OD=m ,OC=2m ,△OD=4,又EF△CD ,△OE=2OF ,△OF=1,0E=2,△DF=3,△AE=DF=3,△EP=1,△P(3,0).。
第二十六章+反比例函数+同步练习+2024-2025学年人教版数学九年级下册
![第二十六章+反比例函数+同步练习+2024-2025学年人教版数学九年级下册](https://img.taocdn.com/s3/m/da97639d760bf78a6529647d27284b73f3423648.png)
第二十六章反比例函数同步练习一、选择题1.下列函数中,当x>0时,y随x增大而增大的是()A.y=−1xB.y=−x+1C.y=x2−2x D.y=−12.若点A(1,y1),B(−2,y2),C(−3,y3)都在反比例函数y=6x的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y1<y3<y23.在同一平面直角坐标系中,函数y=x−k与y=kx(k为常数,且k≠0)的图象大致( ) A.B.C.D.4.如图,在平面直角坐标系中,P是反比例函数y=kx的图像上一点,过点P作PQ⊥x轴于点Q,若△OPQ的面积为2,则k的值是( )A.-2 B.2 C.-4 D.45.如图,点A在反比例函数y=3x (x>0)的图象上,点B在反比例函数y=kx(x>0)的图象上,AB⊥x轴于点M,且AM:MB=2:3,则k的值为()A.4.5 B.−4.5C.7 D.−76.如图,抛物线y=-13(x-t)(x-t+6)与直线y=x-1有两个交点,这两个交点的纵坐标为m、n.双曲线y=mnx的两个分支分别位于第二、四象限,则t的取值范围是()A.t<0 B.0<t<6 C.1<t<7 D.t<1或t>67.如图,点A在函数y=2x (x>0)的图象上,点B在函数y=3x(x>0)的图象上,且AB∥x轴,BC⊥x轴于点C,则四边形ABCO的面积为()A.1 B.2 C.3 D.58.伟大的古希腊哲学家、数学家、物理学家阿基米德有句名言:“给我一个支点,我可以撬动地球!”这句名言道出了“杠杆原理”的意义和价值,“杠杆原理”在实际生产和生活中,有着广泛的运用,比如:小明用撬棍撬动一块大石头,运用的就是“杠杆原理”,已知阻力F1(N)和阻力臂L1(m)的函数图象如图所示,若小明想使动力F2不超过120N,则动力臂L2(单位:m)需满足()A.L2<5B.L2>5C.L2≥5D.0<L2≤5二、填空题的图象经过点(−2,3),则函数的解析式为.9.反比例函数y=kx10.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y (x<0)的图象经过菱形OABC中心E点,则k的值为.=kx的图象交于点A(−4,4),11.如图,在平面直角坐标系中,一次函数y1=kx+b的图象与反比例函数y2=mxB(n,−2).则△AOB的面积是(k≠0)的图象相交于12.如图,已知抛物线y=ax2+bx−1(a、b均不为0)与双曲线y=kx+1的解是.A(−2,m),B(−1,n),C(1,2)三点.则不等式ax2+bx<kx13.当温度不变时,某气球内的气压P(kPa)与气体体积V(m3)成反比例函数关系(其图象如图所示),已知当气球内的气压P>120kPa时,气球将爆炸,为了安全起见,气球内气体体积V应满足的条件是m3.三、解答题14.如图,一次函数y=12x−m的图象与反比例函数y=kx(k≠0)的图象交于A(a,1),B(−2,b)两点,与x轴相交于点C(2,0).(1)求反比例函数的表达式;(2)观察图象,直接写出不等式12x−m<kx的解集.15.如图,一次函数y=ax+1(a≠0)的图象与x轴交于点A,与反比例函数y=kx的图象在第一象限交于点B(1,3),过点B作BC⊥x轴于点C.(1)求一次函数和反比例函数的解析式.(2)求△ABC的面积.16.如图,直线AB:y=kx+b分别交坐标轴交于A(−1,0)、B(0,1)两点,与反比例函数y=mx(x>0)的图象交于点C(2,n).(1)求反比例函数的解析式;<0的解集;(2)在如图所示的条件下,直接写出关于x的不等式kx+b−mx(x>0)交于点P,使得S△PAC=6S△ABO.求点P的横坐标.(3)将直线AB沿y轴平移与反比例函数y=mx17.某气球内充满了一定质量的气体,当温度不变时,气球内的气压P(单位:kPa)是气体体积V(单位:m3)的反比例函数,其图象如图所示.(1)求这个反比例函数的解析式.(2)求当气球的体积是0.8m3时,气球内的气压是多少千帕?(3)当气球内的气压大于160kPa时,气球将爆炸,为了安全起见,气球的体积应不小于立方米.18.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温y(℃)与开机后用时x(min)成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温y(℃)与时间x(min)的关系如图所示:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)怡萱同学想喝高于50℃的水,请问她最多需要等待多长时间?。
人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)
![人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)](https://img.taocdn.com/s3/m/08e55f84ad02de80d5d84086.png)
人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)一、单选题1.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.1 D.62.矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A.B.C.D.3.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是().A.(6,1) B.(3,2) C.(2,3) D.(﹣3,2)4.在2017年石家庄体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )A.A B.B C.C D.D5.如图,A、B、C是反比例函数ky(k<0)x图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有A .4条B .3条C .2条D .1条6.已知点A(x 1,y 1),B( x 2,y 2)在反比例函数y =1x的图象上,若x 1<x 2,且x 1x 2>0,那么y 1与y 2的大小关系是( ) A .y 1>y 2B .y 2>y 1C .y 1<y 2D .y 2<y 17.如图,点A 在双曲线y=kx的图象上,AB ⊥x 轴于B ,且△AOB 的面积为2,则k 的值为( )A .4B .﹣4C .2D .﹣28.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 两点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <-或04x <<D .40x -<<或4x >9.若1x与y 成反比例,1y 与z 成正比例,则x 与z 所成的函数关系为( )A .正比例函数关系B .反比例函数关系C .不成比例关系D .一次函数关系 10.已知反比例函数y =k x,当﹣2≤x≤﹣1时,y 的最大值时﹣4,则当x≥8时,y 有( )A.最小值12B.最小值1 C.最大值12D.最大值111.如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=kx(k≠0)经过顶点B,若点C为AO中点,菱形ABCD的面积3,则k的值为()A.32B.3 C.4 D.9212.定义:给定关于x的函数y,若对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1>y2,称该函数为减函数,根据以上定义,则下列函数中是减函数的是()A.y=2x B.y=﹣2x+2 C.y=2xD.y=2x2+2二、填空题13.如图,点P在反比例函数kyx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为2,则k等于______.14.如图所示,点B是反比例函数y=图象上一点,过点B分别作x轴、y•轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 _____________15.反比例函数ky x=的图象经过点(2,-1),则k 的值为______. 16.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B ,若OA 2﹣AB 2=8,则k 的值为_____.17.如图,点A 在函数y=2x(x >0)的图象上,点B 在函数y=6x (x >0)的图象上,点C在x 轴上.若AB ∥x 轴,则△ABC 的面积为__.18.设函数y =2x与y =3x ﹣6的图象的交点坐标为(a ,b),则代数式13a b -的值是_____.19.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 __________.20.利用实际问题中的总量不变可建立反比例函数关系式,装货速度×装货时间=__________.三、解答题21.如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于点A ﹙−2,−4﹚、C ﹙4,n ﹚,交y 轴于点B ,交x 轴于点D . (1)求反比例函数my x=和一次函数y kx b =+的表达式;(2)连接OA、OC,求△AOC的面积;(3)写出使一次函数的值大于反比例函数的x的取值范围.22.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.23.如图,函数kyx= (x>0,k为常数)的图象经过A(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂足为D,连结AD.(1)求k的值;(2)若△ABD的面积为4,求点B的坐标;并回答当x取何值时,直线AB的图象在反比例函数kyx=图象的上方.24.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.25.已知一次函数与反比例函数的图象交于点P(-3,m),Q(1,-3).(1)求反函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?26.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P 的坐标.27.如图,直线y =﹣x+2与反比例函数ky x=(k ≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .(1)求a ,b 的值及反比例函数的解析式;(2)若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;(3)在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.28.如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.29.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(4t>)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案1.D2.C3.D.4.C5.A6.A7.B8.D9.B10.D11.D12.B13.4-14.15.-216.4. 17.2 18.-3 19.24 20.装货总量 21.(1),82y y x x==-;(2)6;(3)-2<x <0或x >4 22.(1)y =x ﹣1;(2)x <1. 23.24.(1)122y x =+;(2)-6<x <0或2<x ;(3)(-2,0)或(-6,0) 25.(1)设反函数的函数关系式为:y=kx, ∵一次函数与反比例函数的图象交于点Q (1,-3), ∴-3=1x, 解得:k=-3,∴反函数的函数关系式为:y=-3x ; (2)将点P (-3,m )代入y=-3x,解得:m=1, ∴P(-3,1), 函数图象如图:(3)观察图象可得:当x<-3或0<x<1时,一次函数的值大于反比例函数的值.26.(1)a=﹣1,b=2;(2)P的坐标为(1,0 )或(﹣1,0 ).27.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).28.(1)8yx=-;(2)P(0,6)29.(1)1600(4)w tt=>;(2)服装厂需要16天能够完成任务;(3)服装厂每天要多做60件夏凉小衫才能完成任务.。
人教版初三数学9年级下册 第26章(反比例函数)同步训练题(含答案)
![人教版初三数学9年级下册 第26章(反比例函数)同步训练题(含答案)](https://img.taocdn.com/s3/m/1199c626dcccda38376baf1ffc4ffe473268fd50.png)
第26章《反比例函数》同步训练人教版九年级数学下册一、单选题1.下列图象中是反比例函数图象的是( ).A .B .C .D .2.在第一象限内各反比例函数的图像分别如图中①②③所示,则相应各反比例函数的比例系数1k ,2k ,3k 的大小关系是( )A .123k k k <<B .132k k k <<C .321k k k <<D .213k k k <<3.下列问题情景中的两个变量成反比例函数关系的是( )A .汽车沿一条公路从A 地驶往B 地所需的时间t 与平均速度v B .圆的周长l 与圆的半径r C .圆的面积s 与圆的半径rD .在电阻不变的情况下,电流强度I 与电压U4.已知y 与x 成反比例函数,且2x =时,3y =,则该函数表达式是( )A .6y x=B .16y x=C .6y x=D .61y x =-5.已知反比例函数ky x=,当2x =时,3y =-,则k =( )236.若点()111,P x y ,()222,P x y 在反比例函数(0)ky k x=>的图像上,且12x x =-,则( )A .11y y <B .12y y =C .12y y >D .12y y =-7.如图,原点为圆心的圆与反比例函数3y x=的图像交于A 、B 、C 、D 四点,已知点A 的横坐标为1-,则点C 的横坐标为( )A .4B .3C .2D .18.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压()kPa P 是气体体积()3m V 的反比例函数,其图象如图所示,当气球内的气压大于120kPa 时,气球将爆炸,为了安全起见,气球的体积应( ).A .不小于35m4B .小于35m4C .不小于34m5D .小于34m59.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V 的反比例函数,其图象如图所示,当气球内的气压大于160 kPa 时,气球将爆炸,为了安全,气球的体积应该( )A .不大于53m 3B .小于53m 3C .不小于35m 3D .小于35m 310.如图,将质量为10kg 的铁球放在不计重力的木板OB 上的A 处,木板左端O 处可自由转动,在B 处用力F 竖直向上抬着木板,使其保持水平,已知OA 的长为1m ,OB 的长为xm ,g 取10N/kg ,则F 关于x 的函数解析式为( )A .100F x=B .90F x=C .9F x=D .10F x=二、填空题11.反比例函数3y x=的图象与坐标轴有______个交点,当0x >时,y 随x 的增大而________.12.已知A 是直线2y x =与曲线1m y x-=(m 为常数)一支的交点,过点A 作x 轴的垂线,垂足为B ,且2OB =,则m 的值为________.13.如图,(1,6)A -是双曲线(0)ky x x=<上的一点,P 为y 轴正半轴上的一点,将A 点绕P 点逆时针旋转90︒,恰好落在双曲线上的另一点B ,则点B 的坐标为__________.14.如图所示,反比例函数ky x=(0k ≠,0x >)的图像经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为8,则k 的值为________.15.如图,点A 在曲线y =3x(x >0)上,过点A 作AB ⊥x 轴,垂足为B ,OA 的垂直平分线交OB 、OA 于点C 、D ,当AB =1时,△ABC 的周长为_____.三、解答题16.已知y 与2x 成反比例,并且当3x =时,4y =.(1)写出y 关于x 的函数解析式;(2)当 1.5x =时,求y 的值;(3)当6y =时,求x 的值.17.如图,OPQ △是边长为2的等边三角形,若反比例函数的图象过点P ,求它的解析式.18.某农业大学计划修建一块面积为62210m ⨯的矩形试验田.(1)试验田的长y (单位:m )关于宽x (单位:m )的函数解析式是什么?(2)如果试验田的长与宽的比为2:1,那么试验田的长与宽分别为多少?19.已知点(3,2)P 、点(2,)Q a -都在反比例函数ky x=图象上.过点P 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为1S ;过点Q 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为2S .求a ,12,S S 的值.20.如图.正方形的中心在直角坐标系的原点,正方形的边与坐标轴平行,点()3,P a a 是正方形与反比例函数图象的一个交点,已知图中阴影部分的面积等于9,求这个反比例函数的表达式.21.某空调生产厂的装配车间计划在一段时期内组装9000台空调.(1)在这段时期内,每天组装的数量m (台/天)与组装的时间t (天)之间有怎样的函数关系?(2)原计划用2个月时间(每月按30天计算)完成这一任务,但由于气温提前升高,厂家决定这批空调提前10天完成组装,那么装配车间每天至少要组装多少台空调?比原计划多多少?22.心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课的变化而变化.经过实验分析可知,学生的注意力指标数y 随时间x (分钟)的变化规律如图所示(其中AB ,BC 分别为线段,CD 为双曲线的一部分).(1)分别求出线段AB 和曲线CD 的函数关系式;(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?23.如图,点A为双曲线2yx=(0x>)上一点,//AB x轴且交直线y x=-于点B.(1)若点B的纵坐标为2,比较线段AB和OB的大小关系;(2)当点A在双曲线图像上运动时,代数式“22AB OA-”的值会发生变化吗?请你作出判断,并说明理由.参考答案1.C 2.C 3.A 4.C 5.C 6.D 7.B 8.C 9.C 10.A 11.0 减小12.913.(3,2)-或(2,3)-14.215.416.解:(1)根据题意,设y 关于x 的函数解析式2k y x =,将3x =,4y =代入,得:243k =,解得:k =36,∴y 关于x 的函数解析式为236y x =;(2)当 1.5x =时,236=16(1.5)y =;(3)当y =6时,由2366x=得:26x =,解得:x =17.解:过点P 作PD ⊥x 轴于点D ,∵△OPQ 是边长为2的等边三角形,∴OD =12OQ =12×2=1,在Rt △OPD 中,∵OP =2,OD =1,∴PD ==∴P (1,设反比例函数为:y =kx (k ≠0),因为反比例函数的图象过点P ,所以k所以所求解析式为:y 18.解:(1) 由题意得,xy = 2×106,所以y =6210x⨯∴故试验田的长y (单位:m)关于宽x (单位:m)的函数解析式是y =6210x ⨯ (2)设试验田的宽为x m ,则长为2x m 由题意得,2x ·x = 2 ×106,解得x =±103 (负值舍去),∴试验田长与宽分别为2 ×103m 、103m .19.解:∵点P (3,2)、点Q (−2,a )都在反比例函数ky x=的图象上,∴k =3×2=−2×a ,∴k =6,a =−3,∵过点P 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为S 1;过点Q 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为S 2,∴S 1=S 2=|6|=6.20.解: 反比例函数的图象关于原点对称,∴阴影部分的面积和正好为正方形面积的14,设正方形的边长为b ,则2194b =,解得6b =,正方形的中心在原点O ,∴直线AB 的解析式为:3x =, 点(3,)P a a 在直线AB 上,如下图:33a ∴=,解得1a =,(3,1)P ∴,点P 在反比例函数(0)ky k x=>的图象上,3k ∴=,∴此反比例函数的解析式为:3y x=.21.解:(1)每天组装的台数m (单位:台/天)与生产时间t (单位:天)之间的函数关系:9000m t=;(2)当50t =时,900018050m ==.所以,这批空调提前10天上市,那么原装配车间每天至少要组装180台空调,原计划用2个月时间(每月按30天计算)完成这一任务,则每天组装150台,即比原计划多:18015030-=台.22.解:(1)设线段AB 所在直线的解析式为1120y k x =+,把点(10,40)B 代入,得12k =,∴1220y x =+;设C 、D 所在双曲线的解析式为22k y x=,把点(25,40)C 代入,得21000k =,∴21000y x=;(2)当15=x 时,1252030y =⨯+=,当230x =时,21000100303y ==,∴12y y <,∴第30分钟时注意力更集中.23.解:(1)∵点B 的纵坐标为2,//AB x 轴,∴(1,2)A ,(2,2)B -,∴3AB =,OB ==∵3>∴AB OB >;(2)代数式22AB OA -不会发生变化.理由:设(,)A a b ,∵A 为双曲线2(0)y x x=>上一点,∴2ab =,∵//AB x 轴且交直线y x =-于点B ,∴点B 纵坐标为b ,∴(,)B b b -,∴()22222()24AB OA a b a b ab -=+-+==,∴代数式“22AB OA -”的值恒定不变.。
人教版九年级下册数学第二十六章 反比例函数含答案(满分必刷)
![人教版九年级下册数学第二十六章 反比例函数含答案(满分必刷)](https://img.taocdn.com/s3/m/a9b3a453777f5acfa1c7aa00b52acfc789eb9f92.png)
人教版九年级下册数学第二十六章反比例函数含答案一、单选题(共15题,共计45分)1、在平面直角坐标系中,反比例函数的图象在其所在的每个象限内y随x的增大而减小,则k的取值范围是A. B. C. D.2、如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C分别在x轴、y轴上,反比例函数y= (k≠0,x>0)的图象与正方形的两边AB、BC分别交于点E、F,FD⊥x轴,垂足为D,连接OE,OF,EF,FD与OE相交于点G.下列结论:①OF=OE;②∠EOF=60°;③四边形AEGD与△FOG面积相等;④EF=CF+AE;⑤若∠EOF=45°, EF=4,则直线FE的函数解析式为.其中正确结论的个数是()A.2B.3C.4D.53、一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20,则y与x的函数图象大致是( )A. B. C. D.4、如图,在Rt△OAB中,∠OBA=90°,OA在x轴上,AC平分∠OAB,OD平分∠AOB,AC与OD相交于点E,且OC=,CE=,反比例函数的图象经过点E,则k的值为()A. B. C. D.5、如图,平行四边形AOBC中,对角线交于点E,双曲线y= (k>0)经过A、E两点,若平行四边形AOBC的面积为24,则k的值是()A.8B.7.5C.6D.96、在同平面直角坐标系中,函数y=x﹣1与函数y=的图象大致是()A. B. C. D.7、已知点M(-2,4)在双曲线y= 上,则下列各点一定在该双曲线上的是()A.(-2,-4)B.(4,-2)C.(2,4)D.(4,2)8、已知广州市的土地总面积约为7434 km2,人均占有的土地面积S(单位:km2/人)随全市人口n(单位:人)的变化而变化,则S与n的函数关系式为()A.S=7434nB.S=C.n=7434SD.S=9、如图,以平行四边形ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数y= 的图象交BC于D,连接AD,则四边形AOCD的面积是()A.6B.7C.9D.1010、二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A. B. C.D.11、如图,在平面直角坐标系中,双曲线y=,y=﹣与⊙O相交,以交点为顶点的八边形ABCDEFGH是正八边形,则此正八边形的面积为()A.32B.64C.16D.16+1612、若反比例函数y=的图象位于第二、四象限,则k的取值可以是( )A.0B.1C.2D.以上都不是13、已知常数k<0,b>0,则函数y=kx+b,的图象大致是下图中的()A. B. C. D.14、如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x 轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y= (x>0)的图象上,若AB=2,则k的值为()A.4B.2C.2D.15、下列各式不能确定为反比例函数关系的是()A. B. C. D.二、填空题(共10题,共计30分)16、给出以下命题:①平分弦的直径垂直于这条弦;②已知点、、均在反比例函数的图象上,则;③若关于x的不等式组无解,则;④将点向左平移3个单位到点,再将绕原点逆时针旋转90°到点,则的坐标为.其中所有真命题的序号是________.17、若反比例函数的图象经过点,则m=________.18、点(2,5)在反比例函数的图象上,那么k=________.19、双曲线y1, y2在第一象限的图象如图,已知y1=,过y1上的任意一点A作x轴的平行线交y2于点B,交y轴于点C,若S△AOB=,则y2的表达式是________.20、已知点(,),(,),(,)均在反比例函数的图象上,则,,的大小关系是________.(用“<”连接)21、若反比例函数y=的图象经过第一、三象限,则 k的取值范围是________ .22、已知反比例函数的图象具有下列特征:在所在的象限内,y随x 的增大而增大,那么m的取值范围是________.23、如图在平面直角坐标系中,周长为12的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上.点B,在反比例函数y=位于第一象限的图象上.则k的值为________.24、如图,矩形的面积为,它的对角线与双曲线相交于点,且,则________.25、如图,已知第一象限内的点A在反比例函数y= 上,第二象限的点B在反比例函数y= 上,且OA⊥OB,tanA= ,则k的值为________.三、解答题(共5题,共计25分)26、函数y=(m﹣2)x 是反比例函数,则m的值是多少?27、如图,一次函数的图象与反比例函数(x>0)的图象交于点P,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、点=27,.D,且S△DBP(1)求点D的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?28、已知函数y=(m﹣1)x|m|﹣2是反比例函数.(1)求m的值;(2)求当x=3时,y的值.29、如图,等边三角形ABC放置在平面直角坐标系中,已知A(0,0),B (4,0),反比例函数的图象经过点C.求点C的坐标及反比例函数的解析式.30、在平面直角坐标系中,反比例函数y= (k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、D5、A6、C7、B8、B9、C10、A11、A12、A13、D14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
人教版九年级下册数学第二十六章《反比例函数的图象和性质》练习题
![人教版九年级下册数学第二十六章《反比例函数的图象和性质》练习题](https://img.taocdn.com/s3/m/e07ac7ec5ff7ba0d4a7302768e9951e79b8969bd.png)
人教版九年级下册数学第二十六章《反比例函数的图象和性质》练习题一、单选题1.已知点在反比例函数的图象上,则该函数表达式为()A. B. C. D.2.下列各点中,在反比例函数y=﹣图象上的是()A. (﹣1,4)B. (1,4)C. (﹣2,﹣2)D. (2,2)3.函数y=(a为常数)的图象上有三点(x1,﹣4),(x2, 1),(x3, 3),则x1, x2, x3的大小关系是()A. x1<x2<x3B. x2<x3<x1C. x3<x2<x1D. x3<x1<x24.已知点(x1,y1)和(x2,y2)都在反比例函数y=﹣的图象上,如果x1<x2,那么y1与y2的大小关系正确的是()A. y1<y2B. y1=y2C. y1>y2D. 无法判断5.已知反比例函数y= ,当x<0时,y随x的增大而减小,则k的范围( )A. k>B. k<C. k=D. k≠6.下列各点中,不在双曲线y= 上的点是( )A. (-2,-4)B. (-2,4)C. (1,-8)D. (-4,2)7.如图:点A、B是双曲线y=上的点,分别过点A、B做x轴和y轴的垂线段,若图中阴影部分的面积为2,这两个空白矩形的面积和为()A. 12B. 10C. 9D. 88.关于反比例函数的图像,下列说法正确的是()A. 图像经过点(1,1)B. 两个分支分布在第二、四象限C. 两个分支关于x轴成轴对称D. 当x<0时,y随x的增大而减小9.在同一直角坐标系中,函数与的图象大致为()A. B. C. D.10.函数的图象经过点(-1,-2),则k的值为()A. B. - C. 2 D. -2二、填空题11.已知直线与反比例函数的图象的一个交点坐标为,则它们的另一个交点坐标为。
12.已知点A(2,3)在反比例函数的图象上,当x>-2且x≠0时,则y的取值范围是。
13.反比例函数的图象经过点,则k的值为。
人教版九年级下册第二十六章反比例函数单元练习题(含答案)
![人教版九年级下册第二十六章反比例函数单元练习题(含答案)](https://img.taocdn.com/s3/m/a04efc3559eef8c75fbfb352.png)
第二十六章反比例函数.一、选择题1.在平面直角坐标系xOy中,第一象限内的点P在反比例函数的图象上,如果点P的纵坐标是3,OP=5,那么该函数的表达式为()A.y=B.y=-C.y=D.y=-2.若反比例函数图象经过二次函数y=x2-4x+7的顶点,则这个反比例函数的解析式为() A.y=B.y=-C.y=D.y=-3.一次函数y1=k1x+b和反比例函数y2=(k1·k2≠0)的图象如图所示,若y1>y2,则x的取值范围是()A.-2<x<0或x>1B.-2<x<1C.x<-2或x>1D.x<-2或0<x<14.某厂现有300吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是()A.y=(x>0)B.y=(x≥0)C.y=300x(x≥0)D.y=300x(x>0)5.若正比例函数y=-2x与反比例函数y=的图象交于(1,-2),则另一个交点坐标为() A. (2,1)B. (-1,2)C. (-2,-1)D. (-2,1)6.下列选项中,能写成反比例关系的是()A.人的体重和身高B.正三角形的边长和面积C.速度一定,路程和时间的关系D.销售总价不变,销售单价与销售数量的关系7.如图,正比例函数y=k1x与反比例函数y=的图象相交于A、B两点,若点A的坐标为(2,1),则点B的坐标是()A. (1,2)B. (-2,1)C. (-1,-2)D. (-2,-1)8.反比例函数y=(k<0)的大致图象是()A.B.C.D.9.如图,正方形OABC的面积是4,点B在反比例函数y=(x<0)的图象上.则反比例函数的解析式是()A.y=B.y=C.y=-D.y=-10.反比例函数y=-与正比例函数y=kx的一个交点为(-1,2),则关于x的方程-=kx的解为()A.x1=-1,x2=1B.x1=-1,x2=2C.x1=-2,x2=1D.x1=-1,x2=-2二、填空题11.矩形的面积为20,则长y与宽x的函数关系式为________.12.如图,已知反比例函数y=与一次函数y=x+1的图象交于点A(a,-1)、B(1,b),则不等式≥x+1的解集为________________________.13.已知函数y=(k-3)为反比例函数,则k=__________.14.反比例函数y=(a-3)xa+1的函数值为4时,自变量x的值是_____________.15.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为________.16.在匀速直线运动中,当路程s一定时,用时间t来表示速度v的式子是______,这时v是t的________函数.17.二氧化碳的密度ρ(kg/m3)关于其体积V(m3)的函数关系式如图所示,那么函数关系式是__________.18.我校滨湖校区计划劈出一块面积为100 m2的长方形土地做花圃,请写出这个花圃的长y(m)与宽x(m)的函数关系式_____________________.19.已知某双曲线过点,则这个双曲线的解析式为____________.20.在四边形的三个顶点A(2,-1),B(4,-5),C(-3,-2),可能在反比例y=(k>0)的图象上的点是________.三、解答题21.已知,如图所示,在平面直角坐标系中,Rt△OAB的直角顶点A在反比例函数y=(x>0)图象上,∠AOB=30°,顶点B在x轴上,求此△OAB顶点A的坐标和△OAB面积.22.y是x的反比例函数,下表给出了x与y的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.23.画出反比例函数y=的图象,并指出这个函数位于哪些象限,在图象的每一支上,y随x的增大如何变化?24.一个圆锥的体积是100 cm3,求底面积S(cm2)与高h(cm)之间的函数关系式及自变量的取值范围.25.已知一个长方体的体积是100 m3,它的长是y m,宽是5 m,高为x m,试写出x、y之间的函数关系式,并注明x的取值范围.26.在同一直角坐标系上画出函数y=x+2,y=-的图象.27.如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6,(1)求函数y=和y=kx+b的解析式.(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=的图象上一点P,使得S△POC=9.28.学校食堂用1 200元购买大米,写出购买的大米质量y(kg)与单价x(元)之间的函数表达式,y是x的反比例函数吗?答案解析1.【答案】A【解析】在Rt△OPD中,过P作PD⊥x轴于D,则PD=3,∴OD==4,∴P(4,3),∴代入反比例函数y=,得3=,解得k=12,∴反比例函数的解析式为y=,故选A.2.【答案】A【解析】∵y=x2-4x+7=(x-2)2+3,∴抛物线的顶点为(2,3),设反比例函数的解析式为y=,把(2,3)代入,得k=2×3=6,∴反比例函数的解析式为y=.故选A.3.【答案】D【解析】如题图所示:若y1>y2,则x的取值范围是x<-2或0<x<1.故选D.4.【答案】A【解析】这些煤能烧的天数=煤的总吨数÷平均每天烧煤的吨数,把相关数值代入即可.∵煤的总吨数为300,平均每天烧煤的吨数为x,∴这些煤能烧的天数为y=(x>0),故选A.5.【答案】B【解析】∵正比例函数与反比例函数的图象均关于原点对称,∴两函数的交点关于原点对称,∵一个交点的坐标是(1,-2),∴另一个交点的坐标是(-1,2).故选B.6.【答案】D【解析】根据题意先对每一问题列出函数关系式,再根据反比例关系的定义判断变量间是否为反比例函数关系.A.人的体重和身高,不是反比例函数关系;B.正三角形面积S,边长为a,则S=a2,不是反比例关系;C.路程=速度×时间,速度一定,路程和时间成正比例;D.销售总价不变,销售单价与销售数量成反比例关系.故选D.7.【答案】D【解析】∵正比例函数与反比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵A的坐标为(2,1),∴B的坐标为(-2,-1).故选D.8.【答案】A【解析】∵反比例函数y=中的k<0,∴该函数图象经过第二、四象限.故选A.9.【答案】A【解析】根据题意得正方形OABC的面积=|k|=4,∴AB=BC=2,∴点B的坐标为(-2,-2)把(-2,-2)代入y=,可得k=4,∴反比例函数的解析式是y=,故选A.10.【答案】A【解析】把(-1,2)代入y=kx,得2=-k,解得k=-2,即正比例函数的解析式是y=-2x,解方程组得即两函数的交点坐标是(1,-2),(-1,2),∴关于x的方程-=kx的解是x1=-1,x2=1,故选A.11.【答案】y=【解析】由题意,得xy=20,y=.12.【答案】{x|x≤-2或0<x≤1}【解析】将A(a,-1)代入一次函数y=x+1,得-1=a+1,即a=-2,∴A(-2,-1),当≥x+1时,反比例函数值大于或等于一次函数值,根据图象可得,当x≤-2或0<x≤1时,双曲线在直线的上方,∴不等式≥x+1的解集为{x|x≤-2或0<x≤1}.13.【答案】-3【解析】∵函数y=(k-3)为反比例函数,∴8-k2=-1且k-3≠0.解得k=-3.故答案是-3.14.【答案】-【解析】根据反比例函数的定义先求出a的值,再求出自变量x的值.∵y=(a-3)xa+1是反比例函数,∴a+1=-1,解得a=-2,当a=-2时,a-3=-2-3=-5≠0,∴反比例函数解析式为y=-.故答案为y=-.从而当y=4时,当y=4时,x=-.15.【答案】4【解析】设D(x,y),∵反比例函数y=的图象经过点D,∴xy=2,∵D为AB的中点,∴B(x,2y),∴OA=x,OC=2y,∴S矩形OABC=OA·OC=x·2y=2xy=2×2=4.16.【答案】v=反比例【解析】根据等量关系“路程=速度×时间”写出函数表达式,然后再根据函数的定义判断它们的关系.根据题意,v=(s一定),所以速度v与时间t之间的函数关系是反比例函数.故答案为v=,反比例.17.【答案】ρ=【解析】由题意,得ρ与V成反比例函数的关系,设ρ=,根据图象信息,可得:当ρ=0.5时,V=19.8,∴k=ρV=19.8×0.5=9.9,即可得ρ=.18.【答案】y=【解析】根据等量关系“矩形一边长=面积÷另一边长”即可列出关系式.由题意,得y关于x的函数解析式是y=.19.【答案】y=-【解析】设双曲线的解析式为y=,∵双曲线过点,∴k=3×=-1,∴双曲线的解析式为y=-.故答案为y=-.20.【答案】C【解析】∵反比例y=(k>0),∴xy>0,∴C(-3,-2)可能在反比例y=(k>0)的图象上.21.【答案】解作AC⊥OB于C,∵∠AOB=30°,∴设OC=x,则AC=x,∴A,∵顶点A在反比例函数y=(x>0)图象上,∴x·x=4,∴x=2,∴A,∴OC=2,AC=2,∵在Rt△AOB中,AC2=OC·BC,∴BC=,∴S△AOB=××2=.【解析】作AC⊥OB于C,设OC=x,根据题意得AC=x,则A,根据k=x·x=4,进一步求得A的坐标,根据射影定理求得BC,最后根据三角形面积求得即可.22.【答案】解(1)设反比例函数的表达式为y=,把x=-1,y=2代入,得k=-2,所以反比例函数表达式为y=-.(2)将y=代入,得x=-3;将x=-2代入,得y=1;将x=-代入,得y=4;将x=代入,得y=-4,将x=1代入,得y=-2;将y=-1代入,得x=2,将x=3代入,得y=-.【解析】(1)设反比例函数的表达式为y=,找出函数图象上一个点的坐标,然后代入求解即可;(2)将x或y的值代入函数解析式求得对应的y或x的值即可.23.【答案】解(1)根据反比例函数y=知,当x=±1时,y=±4.当x=±2时,y=±2.当x=±4时,y=±1.即该双曲线经过(±1,±4),(±2,±2),(±4,±1),如图所示:由的图象知,该函数的大致图象位于第一、三象限;在每个象限内,y随x的增大而减小.【解析】用描点法画反比例函数的图象,步骤:列表---描点---连线.根据所画函数图象可以直接回答问题.24.【答案】解∵一个圆锥的体积是100 cm3,底面积为S(cm2),高为h(cm),∴Sh=100,∴S=,∵h表示圆锥的高,∴h>0.【解析】圆锥的体积=×底面积×高,把相关数值代入整理可求出底面积S(cm2)与高h(cm)之间的函数关系式,进而得到自变量的取值范围.25.【答案】解因为长方体的长是y m,宽是5 m,高为x m,由题意知,100=5xy,即y=.由于长方体的高为非负数,故自变量的取值范围是0<x<4.【解析】根据等量关系“长方体的体积=长×宽×高”,再把已知中的数据代入得出y与x之间的函数关系式即可.26.【答案】解y=x+2过点(0,2),(-2,0),y=-在第二象限内过点(-1,2)(-2,1),,图象如图:【解析】画一此函数的图象只要描两点即可,而反比例函数的图象关于原点对称,只要用列表、描点、连线画出画出第二象限内的部分,另一个分支即可画出.27.【答案】解(1)把点A(4,2)代入反比例函数y=,可得m=8,∴反比例函数解析式为y=,∵OB=6,∴B(0,-6),把点A(4,2),B(0,-6)代入一次函数y=kx+b,可得解得∴一次函数解析式为y=2x-6;(2)在y=2x-6中,令y=0,则x=3,即C(3,0),∴CO=3,设P,由S△POC=9,可得×3×=9,解得a=,∴P.【解析】(1)把点A(4,2)代入反比例函数y=,可得反比例函数解析式,把点A(4,2),B(0,-6)代入一次函数y=kx+b,可得一次函数解析式;(2)根据C(3,0),可得CO=3,设P,根据S△POC=9,可得×3×=9,解得a=,即可得到点P的坐标.28.【答案】解∵由题意,得xy=1 200,∴y=,∴y是x的反比例函数.【解析】根据题意列出函数关系式,然后利用反比例函数的定义判断即可.。
人教版九年级数学下册-- 第26章 反比例函数(共19页)--(附解析答案)
![人教版九年级数学下册-- 第26章 反比例函数(共19页)--(附解析答案)](https://img.taocdn.com/s3/m/7be7087b5727a5e9856a61ea.png)
第二十六章 反比例函数测试1 反比例函数的概念学习要求理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.课堂学习检测一、填空题1.一般的,形如____________的函数称为反比例函数,其中x 是______,y 是______.自变量x 的取值范围是______. 2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为____________,是______函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为__________________,是______函数. (3)设三角形的底边、对应高、面积分别为a 、h 、S .当a =10时,S 与h 的关系式为____________,是____________函数; 当S =18时,a 与h 的关系式为____________,是____________函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为______,是______函数.3.下列各函数①x k y =、②x k y 12+=、③x y 53=、④14+=x y 、⑤x y 21-=、⑥31-=x y 、⑦24xy =和⑧y =3x -1中,是y 关于x 的反比例函数的有:____________(填序号). 4.若函数11-=m x y (m 是常数)是反比例函数,则m =____________,解析式为____________.5.近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜片的焦距为0.25m ,则y 与x 的函数关系式为____________.二、选择题 6.已知函数xky =,当x =1时,y =-3,那么这个函数的解析式是( ). (A)x y 3=(B)xy 3-= (C)xy 31=(D)xy 31-= 7.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( ). (A)4 (B)-4 (C)3 (D)-3三、解答题8.已知y 与x 成反比例,当x =2时,y =3. (1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.综合、运用、诊断一、填空题9.若函数522)(--=kx k y (k 为常数)是反比例函数,则k 的值是______,解析式为_________________________.10.已知y 是x 的反比例函数,x 是z 的正比例函数,那么y 是z 的______函数. 二、选择题11.某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为( ).(A)y =100x(B)xy 100=(C)xy 100100-= (D)y =100-x 12.下列数表中分别给出了变量y 与变量x 之间的对应关系,其中是反比例函数关系的是( ).三、解答题13.已知圆柱的体积公式V =S ·h .(1)若圆柱体积V 一定,则圆柱的高h (cm)与底面积S (cm 2)之间是______函数关系; (2)如果S =3cm 2时,h =16cm ,求: ①h (cm)与S (cm 2)之间的函数关系式; ②S =4cm 2时h 的值以及h =4cm 时S 的值.拓展、探究、思考14.已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.15.已知函数y =y 1-y 2,且y 1为x 的反比例函数,y 2为x 的正比例函数,且23-=x 和x =1时,y 的值都是1.求y 关于x 的函数关系式.测试2 反比例函数的图象和性质(一)学习要求能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.课堂学习检测一、填空题 1.反比例函数xky =(k 为常数,k ≠0)的图象是______;当k >0时,双曲线的两支分别位于______象限,在每个象限内y 值随x 值的增大而______;当k <0时,双曲线的两支分别位于______象限,在每个象限内y 值随x 值的增大而______. 2.如果函数y =2+1的图象是双曲线,那么k =______.3.已知正比例函数y =kx ,y 随x 的增大而减小,那么反比例函数xky =,当x <0时,y 随x 的增大而______. 4.如果点(1,-2)在双曲线xky =上,那么该双曲线在第______象限. 5.如果反比例函数xk y 3-=的图象位于第二、四象限内,那么满足条件的正整数k 的值是____________. 二、选择题 6.反比例函数xy 1-=的图象大致是图中的( ).7.下列函数中,当x >0时,y 随x 的增大而减小的是( ). (A)y =x(B)xy 1=(C)xy 1-= (D)y =2x8.下列反比例函数图象一定在第一、三象限的是( ).(A)x my =(B)xm y 1+=(C)xm y 12+=(D)xmy -=9.反比例函数y =221)(2--mx m ,当x >0时,y 随x 的增大而增大,则m 的值是( ).(A)±1 (B)小于21的实数 (C)-1 (D)110.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xky =(k >0)的图象上的两点,若x 1<0<x 2,则有( ). (A)y 1<0<y 2 (B)y 2<0<y 1(C)y 1<y 2<0 (D)y 2<y 1<0三、解答题11.作出反比例函数xy 12=的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值; (2)当y =-2时,求x 的值; (3)当y >2时,求x 的范围.综合、运用、诊断一、填空题12.已知直线y =kx +b 的图象经过第一、二、四象限,则函数xkby =的图象在第______象限.13.已知一次函数y =kx +b 与反比例函数xkb y -=3的图象交于点(-1,-1),则此一次函数的解析式为____________,反比例函数的解析式为____________. 二、选择题14.若反比例函数xky =,当x >0时,y 随x 的增大而增大,则k 的取值范围是( ). (A)k <0(B)k >0(C)k ≤0(D)k ≥015.若点(-1,y 1),(2,y 2),(3,y 3)都在反比例函数xy 5=的图象上,则( ). (A)y 1<y 2<y 3 (B)y 2<y 1<y 3(C)y 3<y 2<y 1(D)y 1<y 3<y 216.对于函数xy 2-=,下列结论中,错误..的是( ). (A)当x >0时,y 随x 的增大而增大 (B)当x <0时,y 随x 的增大而减小 (C)x =1时的函数值小于x =-1时的函数值(D)在函数图象所在的每个象限内,y 随x 的增大而增大 17.一次函数y =kx +b 与反比例函数xky =的图象如图所示,则下列说法正确的是( ).(A)它们的函数值y 随着x 的增大而增大 (B)它们的函数值y 随着x 的增大而减小 (C)k <0(D)它们的自变量x 的取值为全体实数 三、解答题18.作出反比例函数xy 4-=的图象,结合图象回答: (1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围; (3)当1≤y <4时,x 的取值范围.拓展、探究、思考19.已知一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-2,1),B (1,n )两点.(1)求反比例函数的解析式和B 点的坐标;(2)在同一直角坐标系中画出这两个函数的图象的示意图,并观察图象回答:当x 为何值时,一次函数的值大于反比例函数的值? (3)直接写出将一次函数的图象向右平移1个单位长度后所得函数图象的解析式.测试3 反比例函数的图象和性质(二)学习要求会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.课堂学习检测一、填空题 1.若反比例函数xky =与一次函数y =3x +b 都经过点(1,4),则kb =______.2.反比例函数xy 6-=的图象一定经过点(-2,______). 3.若点A (7,y 1),B (5,y 2)在双曲线xy 3-=上,则y 1、y 2中较小的是______. 4.函数y 1=x (x ≥0),xy 42=(x >0)的图象如图所示,则结论:①两函数图象的交点A 的坐标为(2,2); ②当x >2时,y 2>y 1; ③当x =1时,BC =3;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小. 其中正确结论的序号是____________. 二、选择题5.当k <0时,反比例函数xky =和一次函数y =kx +2的图象大致是( ).(A)(B)(C)(D)6.如图,A 、B 是函数xy 2=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴, △ABC 的面积记为S ,则( ).(A)S =2 (B)S =4 (C)2<S <4(D)S >47.若反比例函数xy 2-=的图象经过点(a ,-a ),则a 的值为( ). (A)2 (B)2-(C)2±(D)±2三、解答题8.如图,反比例函数xky =的图象与直线y =x -2交于点A ,且A 点纵坐标为1,求该反比例函数的解析式.综合、运用、诊断一、填空题9.已知关于x 的一次函数y =-2x +m 和反比例函数xn y 1+=的图象都经过点A (-2,1),则m =______,n =______.10.直线y =2x 与双曲线xy 8=有一交点(2,4),则它们的另一交点为______. 11.点A (2,1)在反比例函数xky =的图象上,当1<x <4时,y 的取值范围是__________. 二、选择题12.已知y =(a -1)x a 是反比例函数,则它的图象在( ).(A)第一、三象限 (B)第二、四象限 (C)第一、二象限(D)第三、四象限13.在反比例函xky -=1的图象的每一条曲线上,y 都随x 的增大而增大,则k 的取值可以是( ). (A)-1(B)0(C)1(D)214.如图,点P 在反比例函数xy 1=(x >0)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点P ′.则在第一象限内,经过点P ′的反比例函数图象的解析式是( )(A))0(5>-=x xy(B))0(5>=x xy (C))0(5>-=x xy(D))0(6>=x xy 15.如图,点A 、B 是函数y =x 与xy 1=的图象的两个交点,作AC ⊥x 轴于C ,作BD ⊥x 轴于D ,则四边形ACBD 的面积为( ).(A)S >2 (B)1<S <2 (C)1(D)2三、解答题16.如图,已知一次函数y 1=x +m (m 为常数)的图象与反比例函数xky2(k 为常数,k ≠0)的图象相交于点A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值y 1≥y 2的自变量x 的取值范围.拓展、探究、思考17.已知:如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠C =90°,点D 在第一象限,OC =3,DC =4,反比例函数的图象经过OD 的中点A .(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边交于点B ,求过A 、B 两点的直线的解析式.18.已知正比例函数和反比例函数的图象都经过点A (3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA 向下平移后与反比例函数的图象交于点B (6,m ),求m 的值和这个一次函数的解析式; (3)在(2)中的一次函数图象与x 轴、y 轴分别交于C 、D ,求四边形OABC 的面积.测试4 反比例函数的图象和性质(三)学习要求进一步理解和掌握反比例函数的图象和性质;会解决与一次函数和反比例函数有关的问题.课堂学习检测一、填空题1.正比例函数y =k 1x 与反比例函数x ky 2=交于A 、B 两点,若A 点坐标是(1,2),则B 点坐标是______.2.观察函数xy 2-=的图象,当x =2时,y =______;当x <2时,y 的取值范围是______;当y ≥-1时,x 的取值范围是______. 3.如果双曲线xky =经过点)2,2(-,那么直线y =(k -1)x 一定经过点(2,______). 4.在同一坐标系中,正比例函数y =-3x 与反比例函数)0(>=k xky 的图象有______个交点.5.如果点(-t ,-2t )在双曲线xky =上,那么k ______0,双曲线在第______象限. 二、选择题6.如图,点B 、P 在函数)0(4>=x xy 的图象上,四边形COAB 是正方形,四边形FOEP 是长方形,下列说法不正确的是( ).(A)长方形BCFG 和长方形GAEP 的面积相等 (B)点B 的坐标为(4,4) (C)xy 4=的图象关于过O 、B 的直线对称 (D)长方形FOEP 和正方形COAB 面积相等 7.反比例函数xky =在第一象限的图象如图所示,则k 的值可能是( ).(A)1(B)2(C)3(D)4三、解答题8.已知点A (m ,2)、B (2,n )都在反比例函数xm y 3+=的图象上. (1)求m 、n 的值;(2)若直线y =mx -n 与x 轴交于点C ,求C 关于y 轴对称点C ′的坐标.9.在平面直角坐标系xOy 中,直线y =x 向上平移1个单位长度得到直线l .直线l 与反比例函数xky =的图象的一个交点为A (a ,2),求k 的值.综合、运用、诊断一、填空题10.如图,P 是反比例函数图象上第二象限内的一点,且矩形PEOF 的面积为3,则反比例函数的解析式是______.11.如图,在直角坐标系中,直线y =6-x 与函数)0(5>=x xy 的图象交于A ,B ,设A (x 1,y 1),那么长为x 1,宽为y 1的矩形的面积和周长分别是______.12.已知函数y =kx (k ≠0)与xy 4-=的图象交于A ,B 两点,若过点A 作AC 垂直于y 轴,垂足为点C ,则△BOC 的面积为____________.13.在同一直角坐标系中,若函数y =k 1x (k 1≠0)的图象与xky 2=)0(2≠k 的图象没有公共点,则k 1k 2______0.(填“>”、“<”或“=”)二、选择题14.若m <-1,则函数①)0(>=x xmy ,②y =-mx +1,③y =mx ,④y =(m +1)x 中,y 随x 增大而增大的是( ). (A)①④(B)②(C)①②(D)③④15.在同一坐标系中,y =(m -1)x 与xmy -=的图象的大致位置不可能的是( ).三、解答题16.如图,A 、B 两点在函数)0(>=x xmy 的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.17.如图,等腰直角△POA 的直角顶点P 在反比例函数xy 4=)0(>x 的图象上,A 点在x 轴正半轴上,求A 点坐标.拓展、探究、思考18.如图,函数xy 5=在第一象限的图象上有一点C (1,5),过点C 的直线y =-kx +b (k >0)与x 轴交于点A (a ,0).(1)写出a 关于k 的函数关系式;(2)当该直线与双曲线xy 5=在第一象限的另一交点D 的横坐标是9时,求△COA 的面积.19.如图,一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-3,1)、B (2,n )两点,直线AB 分别交x 轴、y 轴于D 、C 两点.(1)求上述反比例函数和一次函数的解析式; (2)求CDAD的值.测试5 实际问题与反比例函数(一)学习要求能写出实际问题中的反比例函数关系式,并能结合图象加深对问题的理解.课堂学习检测一、填空题1.一个水池装水12m 3,如果从水管中每小时流出x m 3的水,经过y h 可以把水放完,那么y 与x 的函数关系式是______,自变量x 的取值范围是______.2.若梯形的下底长为x ,上底长为下底长的31,高为y ,面积为60,则y 与x 的函数关系是______ (不考虑x 的取值范围). 二、选择题3.某一数学课外兴趣小组的同学每人制作一个面积为200 cm 2的矩形学具进行展示.设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形的长y (cm)与宽x (cm)之间的函数关系的图象大致是( ).4.下列各问题中两个变量之间的关系,不是反比例函数的是( ). (A)小明完成百米赛跑时,所用时间t (s)与他的平均速度v (m/s)之间的关系 (B)长方形的面积为24,它的长y 与宽x 之间的关系 (C)压力为600N 时,压强p (Pa)与受力面积S (m 2)之间的关系(D)一个容积为25L 的容器中,所盛水的质量m (kg)与所盛水的体积V (L)之间的关系 5.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:体积x /ml 100 80 60 40 20 压强y /kPa6075100150300(A)y =3000x (B)y =6000x(C)xy 3000=(D)xy 6000=综合、运用、诊断一、填空题6.甲、乙两地间的公路长为300km ,一辆汽车从甲地去乙地,汽车在途中的平均速度为v (km/h),到达时所用的时间为t (h),那么t 是v 的______函数,v 关于t 的函数关系式为______. 7.农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房(如图所示),则需要塑料布y (m 2)与半径R (m)的函数关系式是(不考虑塑料埋在土里的部分)__________________.二、选择题8.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是( ).三、解答题9.一个长方体的体积是100cm3,它的长是y(cm),宽是5cm,高是x(cm).(1)写出长y(cm)关于高x(cm)的函数关系式,以及自变量x的取值范围;(2)画出(1)中函数的图象;(3)当高是3cm时,求长.测试6 实际问题与反比例函数(二)学习要求根据条件求出函数解析式,运用学过的函数知识解决反比例函数的应用问题.课堂学习检测一、填空题1.一定质量的氧气,密度ρ是体积V的反比例函数,当V=8m3时,ρ=1.5kg/m3,则ρ与V 的函数关系式为______.2.由电学欧姆定律知,电压不变时,电流强度I与电阻R成反比例,已知电压不变,电阻R=20Ω时,电流强度I=0.25A.则(1)电压U=______V;(2)I与R的函数关系式为______;(3)当R=12.5Ω时的电流强度I=______A;(4)当I=0.5A时,电阻R=______Ω.3.如图所示的是一蓄水池每小时的排水量V/m3·h-1与排完水池中的水所用的时间t(h)之间的函数图象.(1)根据图象可知此蓄水池的蓄水量为______m3;(2)此函数的解析式为____________;(3)若要在6h内排完水池中的水,那么每小时的排水量至少应该是______m3;(4)如果每小时的排水量是5m3,那么水池中的水需要______h排完.二、解答题4.一定质量的二氧化碳,当它的体积V=4m3时,它的密度p=2.25kg/m3.(1)求V与ρ的函数关系式;(2)求当V=6m3时,二氧化碳的密度;(3)结合函数图象回答:当V≤6m3时,二氧化碳的密度有最大值还是最小值?最大(小)值是多少?综合、运用、诊断一、选择题5.下列各选项中,两个变量之间是反比例函数关系的有( ).(1)小张用10元钱去买铅笔,购买的铅笔数量y(支)与铅笔单价x(元/支)之间的关系(2)一个长方体的体积为50cm3,宽为2cm,它的长y(cm)与高x(cm)之间的关系(3)某村有耕地1000亩,该村人均占有耕地面积y(亩/人)与该村人口数量n(人)之间的关系(4)一个圆柱体,体积为100cm3,它的高h(cm)与底面半径R(cm)之间的关系(A)1个(B)2个(C)3个(D)4个二、解答题6.一个气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)写出这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?7.一个闭合电路中,当电压为6V时,回答下列问题:(1)写出电路中的电流强度I(A)与电阻R(Ω)之间的函数关系式;(2)画出该函数的图象;(3)如果一个用电器的电阻为5Ω,其最大允许通过的电流强度为1A,那么把这个用电器接在这个闭合电路中,会不会被烧?试通过计算说明理由.拓展、探究、思考三、解答题8.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释效过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x 成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?9.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第1天第2天第3天第4天第5天第6天第7天第8天售价400 250 240 200 150 125 120 x(元/千克)销售量y/千克30 40 48 60 80 96 100价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?参考答案第二十六章 反比例函数测试1 反比例函数的概念1.xky =(k 为常数,k ≠0),自变量,函数,不等于0的一切实数. 2.(1)xy 8000=,反比例; (2)xy 1000=,反比例; (3)s =5h ,正比例,ha 36=,反比例; (4)xwy =,反比例. 3.②、③和⑧. 4.2,x y 1=. 5.)0(100>⋅=x xy 6.B . 7.A . 8.(1)xy 6=; (2)x =-4. 9.-2,⋅-=xy 410.反比例. 11.B . 12.D . 13.(1)反比例; (2)①Sh 48=; ②h =12(cm), S =12(cm 2). 14.⋅-=325x y 15..23x xy -=测试2 反比例函数的图象和性质(一)1.双曲线;第一、第三,减小;第二、第四,增大. 2.-2. 3.增大. 4.二、四. 5.1,2. 6.D . 7.B . 8.C . 9.C . 10.A .11.列表:x … -6 -5 -4 -3 -2 -112 3 4 5 6 … y… -2 -2.4 -3 -4 -6 -12 126432.42…由图知,(1)y =3;(2)x =-6; (3)0<x <6.12.二、四象限. 13.y =2x +1,⋅=xy 1 14.A . 15.D 16.B 17.C 18.列表:x…-4-3-2-11234…y (1)34 2 4 -4 -2 -34-1 …(1)y =-2; (2)-4<y ≤-1; (3)-4≤x <-1.19.(1)xy 2-=, B (1,-2); (2)图略x <-2或0<x <1时; (3)y =-x .测试3 反比例函数的图象和性质(二)1.4. 2.3. 3.y 2. 4.①③④. 5.B . 6.B . 7.C . 8.xy 3=. 9.-3;-3. 10.(-2,-4). 11..221<<y . 12.B . 13.D. 14.D . 15.D . 16.(1)xy 3=,y =x +2;B (-3,-1); (2)-3≤x <0或x ≥1. 17.(1))0(3>=x x y ;(2).332+-=x y 18.(1)x y x y 9,==;(2)23=m ;;29-=x y(3)S 四边形OABC =1081. 测试4 反比例函数的图象和性质(三)1.(-1,-2). 2.-1,y <-1或y >0,x ≥2或x <0. 3..224-- 4.0. 5.>;一、三. 6.B . 7.C 8.(1)m =n =3;(2)C ′(-1,0). 9.k =2. 10.⋅-=xy 311.5,12. 12.2. 13.<. 14.C . 15.A . 16.(1)m =6,y =-x +7;(2)3个. 17.A(4,0).18.(1)解⎩⎨⎧=+-=+-0,5b ak b k 得15+=k a ;(2)先求出一次函数解析式95095+-=x y ,A (10,0),因此S △COA =25. 19.(1)2121,3--=-=x y x y ;(2).2=CD AD测试5 实际问题与反比例函数(一)1.xy 12=;x >0. 2.⋅=x y 903.A . 4.D . 5.D .6.反比例;⋅=tV 3007.y =30πR +πR 2(R >0). 8.A . 9.(1))0(20>=x x y ; (2)图象略; (3)长cm.320. 测试6 实际问题与反比例函数(二)1.).0(12>=V vρ 2.(1)5; (2)R I 5=; (3)0.4; (4)10.3.(1)48; (2))0(48>=t tV ; (3)8; (4)9.6. 4.(1))0(9>=ρρV ; (2)ρ=1.5(kg/m 3); (3)ρ有最小值1.5(kg/m 3).5.C . 6.(1)V p 96=; (2)96 kPa ; (3)体积不小于3m 3524. 7.(1))0(6>=R RI ; (2)图象略; (3)I =1.2A >1A ,电流强度超过最大限度,会被烧. 8.(1)x y 43=,0≤x ≤12;y =x108 (x >12); (2)4小时. 9.(1)xy 12000=;x 2=300;y 4=50; (2)20天。
人教版九年级数学下册第26章《实际问题与反比例函数》课时练习题(含答案)
![人教版九年级数学下册第26章《实际问题与反比例函数》课时练习题(含答案)](https://img.taocdn.com/s3/m/9308c6f648649b6648d7c1c708a1284ac85005e2.png)
人教版九年级数学下册第26章《2.实际问题与反比例函数》课时练习题(含答案)一、单选题1.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.则这个反比例函数的解析式为( )A .24I R =B .36I R =C .48I R =D .64I R= 2.港珠澳大桥桥隧全长55千米,其中主桥长29.6千米,一辆汽车从主桥通过时,汽车的平均速度 v (千米/时)与时间 t (小时)的函数关系式为( )A .55t v =B .25.4v t =C .v =29.6tD .29.6v t= 3.研究发现,近视镜的度数y (度)与镜片焦距x (米)成反比例函数关系,小明佩戴的400度近视镜片的焦距为0.25米,经过一段时间的矫正治疗加之注意用眼健康,现在镜片焦距为0.4米,则小明的近视镜度数可以调整为( )A .300度B .500度C .250度D .200度 4.在显示汽车油箱内油量的装置模拟示意图中,电压U 一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V 与电路中总电阻0R R R R =+总总()是反比例关系,电流I 与R 总也是反比例关系,则I 与V 的函数关系是( )A .反比例函数B .正比例函数C .二次函数D .以上答案都不对 5.在压力不变的情况下,某物体所受到的压强P (Pa )与它的受力面积S (2m )之间成反比例函数关系,且当S =0.1时,P =1000.下列说法中,错误..的是( ) A .P 与S 之间的函数表达式为100P S =B .当S =0.4时,P =250C .当受力面积小于20.2m 时,压强大于500PaD .该物体所受到的压强随着它的受力面积的增大而增大6.学校的自动饮水机,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降.此时水温y (℃)与通电时间(min)x 成反比例关系.当水温降至20℃时,饮水机再自动加热,若水温在20℃时接通电源,水温y 与通电时间x 之间的关系如图所示,则下列说法中正确的是( )A .水温从20℃加热到100℃,需要7minB .水温下降过程中,y 与x 的函数关系式是400y x= C .上午8点接通电源,可以保证当天9:30能喝到不超过40℃的水D .水温不低于30℃的时间为77min 37.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量()3mg /m y 与药物在空气中的持续时间(min)x 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310mg /mB .室内空气中的含药量不低于38mg /m 的持续时间达到了11minC .当室内空气中的含药量不低于35mg /m 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32mg /m 时,对人体才是安全的,所以从室内空气中的含药量达到32mg /m 开始,需经过59min 后,学生才能进入室内8.如图,点C 在反比例函数y=k x(x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A ,B ,且AB=BC ,△AOB 的面积为1,则k 的值为( )A .1B .2C .3D .4二、填空题9.列车从甲地驶往乙地.行完全程所需的时间()h t 与行驶的平均速度()km/h v 之间的反比例函数关系如图所示.若列车要在2.5h 内到达,则速度至少需要提高到__________km/h .10.如图,一块长方体大理石板的A 、B 、C 三个面上的边长如图所示,如果大理石板的A 面向下放在地上时地面所受压强为m 帕,则把大理石板B 面向下放在地上时,地面所受压强是________m 帕.11.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t (小时)与Q之间的函数表达式_____.12.对于函数2yx=,当函数值y<﹣1时,自变量x的取值范围是_______________.13.随着私家车的增加,城市的交通也越来越拥挤,通常情况下,某段高架桥上车辆的行驶速度y(千米/时)与高架桥上每百米拥有车的数量x(辆)的关系如图所示,当10x≥时,y与x成反比例函数关系,当车速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,高架桥上每百米拥有车的数量x应该满足的范围是________.三、解答题14.某市政府计划建设一项水利工程,工程需要运送的土石方总量为610立方米,某运输公司承担了运送土石方的任务.(1)设该公司平均每天运送土石方总量为y立方米,完成运送任务所需时间为t天.①求y关于t的函数表达式.②若080t<≤时,求y的取值范围.(2)若1辆卡车每天可运送土石方210立方米,工期要求在80天内完成,公司至少要安排多少辆相同型号卡车运输?15.心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)上课后的第5分钟与第30分钟相比较,_______分钟时学生的注意力更集中.(2)分别求出线段AB和双曲线CD的函数关系式.(3)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?16.为加强生态文明建设,某市环保局对一企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AC表示前3天的变化规律,第3天时硫化物的浓度降为4.5mg/L.从第3天起,所排污水中硫化物的浓度y与时间x满足下面表格中的关系:时间x(天) 3 5 6 9 ……硫化物的浓度y(mg/L) 4.5 2.7 2.25 1.5 ……(1)在整改过程中,当0≤x<3时,硫化物的浓度y与时间x的函数表达式;(2)在整改过程中,当x≥3时,硫化物的浓度y与时间x的函数表达式;(3)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1.0mg/L ?为什么?17.设函数y 1=k x ,y 2=﹣k x(k >0). (1)当2≤x ≤3时,函数y 1的最大值是a ,函数y 2的最小值是a ﹣4,求a 和k 的值.(2)设m ≠0,且m ≠﹣1,当x =m 时,y 1=p ;当x =m +1时,y 1=q .圆圆说:“p 一定大于q ”.你认为圆圆的说法正确吗?为什么?18.当下教育主管部门提倡加强高效课堂建设,要求教师课堂上要精讲,把时间、思考、课堂还给学生.通过实验发现:学生在课堂上听课注意力指标随上课时间的变化而变化,上课开始后,学生的学习兴趣递增,中间一段时间,学生的兴趣保持平稳高效状态,后阶段注意力开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段,当2045x ≤≤时,图象是反比例函数的一部分.(1)求点A 对应的指标值.(2)如果学生在课堂上的注意力指标不低于30属于学习高效阶段,请你求出学生在课堂上的学习高效时间段。
人教版初三数学9年级下册 第26章(反比例函数)26.1 反比例函数 同步练习(含答案)
![人教版初三数学9年级下册 第26章(反比例函数)26.1 反比例函数 同步练习(含答案)](https://img.taocdn.com/s3/m/41ff9864abea998fcc22bcd126fff705cc175c38.png)
反比例函数练习一、选择题1.点(−1,4)在反比例函数y =kx 的图象上,则下列各点在此函数图象上的是( )A. (4,−1)B. (−14,1)C. (−4,−1)D. (14,2)2.在同一平面直角坐标系中,函数y =−x +k 与y =kx (k 为常数,且k ≠0)的图象大致是( )A. B. C. D.3.如图,在平面直角坐标系上,△ABC 的顶点A 和C 分别在x 轴、y 轴的正半轴上,且AB//y 轴,点B(1,3),将△ABC 以点B 为旋转中心顺时针方向旋转90°得到△DBE ,恰好有一反比例函数y =kx 图象恰好过点D ,则k 的值为( )A. 6B. −6C. 9D. −94.如图,正方形ABCD 的边长为10,点A 的坐标为(0,−8),点B 在x 轴上,若反比例函数y =kx (k ≠0)的图象过点C ,则该反比例函数的表达式为( )A. y =6xB. y =−12x C. y =10xD. y =−10x5.如图,点A在双曲线y=kx的图象上,AB⊥x轴于点B,且△AOB的面积为2,则k的值为()A. 4B. −4C. 2D. −26.若点A(−1,y1),B(2,y2),C(3,y3)在反比例函数y=6x的图象上,则y1,y2,y3的大小关系是( )A. y3<y2<y1B. y2<y1<y3C. y1<y3<y2D. y1<y2<y37.如下图,点A,P在函数y=kx(x<0)的图象上,AB⊥x轴,则▵ABO的面积为()A. 1B. 2C. 3D. 48.若点A(a,m)和点B(b,n)均在反比例函数y=7x的图象上,且a<b,则()A. m>nB. m<nC. m=nD. m,n的大小无法确定9.已知反比例函数的图象经过点(2, −1),则它的解析式是()A. y=−2xB. y=2xC. y=2x D. y=−2x10.如图,在平而直角坐标系中,一次函数y=−4x+4的图象与x轴、y轴分别交于A、B两点.正方形ABCD的项点C、D在第一象限,顶点D在反比例函数y=kx(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是( )A. 2B. 3C. 4.D. 511.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=6(x>0)的图象x上,则经过点B的反比例函数解析式为( )A. y=−6xB. y=−4xC. y=−2xD. y=2x(x>0)的图象位于( )12.反比例函数y=−4xA. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(k是常数,k≠1)的图象有一支在第二象限,那么k的取13.已知反比例函数y=k−1x值范围是______.在第一象限的图象如图所示,点A在其14.已知反比例函数y=6x图象上,点B为x轴正半轴上一点,连接OA,AB,且=________.AO=AB,则S△AOB的图象有一个交点P(2,m),则正比例15.已知,正比例函数y=kx与反比例函数y=6x函数y=kx的解析式为______.上,则m2+n2的值为16.已知:点P(m,n)在直线y=−x+2上,也在双曲线y=−1x______。
人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)
![人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)](https://img.taocdn.com/s3/m/6eebb8a19a89680203d8ce2f0066f5335a8167e8.png)
第二十六章 反比例函数本章知识结构图:中考说明中对本章知识的要求:考试内容A 层次B 层次C 层次反比例函数能结合具体情境了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题主要内容:1.定义:一般地,形如)0(≠=k k x ky 是常数,且的函数,叫反比例函数. 反比例函数的解析式有三种形式:(1)xky =(k ≠0的常数);(2)k xy =(k ≠0的常数);(3)1-=kx y (k ≠0的常数).2. 反比例函数的图象及性质:(1)反比例函数的图象是双曲线;(2)当k >0时,两支曲线分别位于第一、三象限,在每一象限内,y 的值随x 值的增大而减小;当k <0时,两支曲线分别位于第二、四象限,在每一象限内,y 的值随x 值的增大而增大;(3)反比例函数图象的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y 轴相交;(4)反比例函数的图象是对称图形,反比例函数的图象既是轴对称图形又是中心对称图形:①)0(≠=k x ky 是轴对称图形,其对称轴为x y x y -==和两条直线;②)0(≠=k x ky 是中心对称图形,对称中心为原点(0,0)。
③xky x k y -==和在同一坐标系中的图像关于x 轴、y 轴成轴对称。
(5)反比例函数的几何意义:在反比例函数)0(≠=k xky 的图象上任取一点M ,从几何意义上看,从点M 向两轴作垂线,两垂线段与坐标轴所围成的矩形的面积为定值k ;(6)k 越大,双曲线越远离原点。
3.反比例函数在代数、几何及实际问题中的应用。
四、例题与习题:1.下面的函数是反比例函数的是 ( )A . 13+=x yB .x x y 22+= C . 2xy =D .xy 2=2.用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是()A .为定值,与成反比例B .为定值,与成反比例C .为定值,与成正比例D .为定值,与成正比例3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310m V =时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 34. 已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是( )B .C .D .5.某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m 2)之间的函数关系如图所示,这一函数表达式为p = .6.点在反比例函数的图象上,则 .7.点(3,-4)在反比例函数ky x=的图象上,则下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)P I R 2P I R =P I R P 2I R P I R P 2I R a h a (231)P m -,1y x=m =8.已知某反比例函数的图象经过点()m n ,,则它一定也经过点( )A .()m n -,B .()n m ,C .()m n -,D .()m n ,9.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .10.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________.11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限.12.对于反比例函数(),下列说法不正确的是( )A. 它的图象分布在第一、三象限B. 点(,)在它的图象上C. 它的图象是中心对称图形D. 每个象限内,随的增大而增大13. 一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .14.已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2(C )k ≤2(D ) k <215.若反比例函数的图象经过点,其中,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限16.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-317.若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )18.设反比例函数中,在每一象限内,随的增大而增大,则一次函数的图象不经过()xk y 2=0≠k k k y x ky x=(3)m m ,0m ≠)0(≠-=k xky y x k kx y -=A .B .C .D .(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )20.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( )A .b c>B .b c<C .b c=D .无法判断21.已知点A (3,y 1),B (-2,y 2),C (-6,y 3)分别为函数xky =(k<0)的图象上的三个点.则y 1 、y 2 、y 3的大小关系为 (用“<”连接).22.在反比例函数的图象上有两点A ,B ,当时,有,则的取值范围是( )A 、B 、C 、D 、23.若A (,)、B (,)在函数的图象上,则当、满足______________________________________时,>.24. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.25.在平面直角坐标系xoy 中,直线yx =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 .26.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0<x 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限27.在同一平面直角坐标系中,函数xy 1=与函数x y =的图象交点个数是( )A 、0个B 、1个C 、2个D 、3个28.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-12my x-=()11,x y ()22,x y 120x x <<12y y <m 0m <0m >12m <12m >1x 1y 2x 2y 12y x=1x 2x 1y 2y mx y =xky =m k xxxx.D .29.在同一坐标系中,一次函数(1)21y k x k =-++与反比例函数ky x=的图象没有交点,则常数k 的取值范围是.30.如图,直线)0(>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别为A ()11,y x ,B ()22,y x ,则1221y x y x +的值为()A . -8B .4C . -4D . 031.已知反比例函数2y x=,下列结论中,不正确的是( ) A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <32.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y > D .1y <-或0y ≥33.如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________.34.如图,正方形ABOC 的边长为2,反比例函数xky =过点A ,则K 的值是( )A .2B .-2C .4D .-435.过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______.36.如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =.37.在反比例函数4y x=的图象中,_4-1-1yx第32题图第34题图第33题图第36题图阴影部分的面积不等于4的是( )A .B .C .D .38.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上,少填或错填不给分).39.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的图象交于点A ,已知OA=23,则该函数的解析式为( )A .xy 3=B .xy 3-= C .xy 9=D .xy 9-=40.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k的值和Q 点的坐标分别为______________.ky x =1y x=(第38题图)第39题图41.当m 取什么数时,函数2)1(--=m xm y 为反比例函数式?42.已知反比例函数102)2(--=m x m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.43.平行于直线y x =的直线l 不经过第四象限,且与函数3(0)y x x=>和图象交于点A ,过点A 作AB y ⊥轴于点B ,AC x ⊥轴于点C四边形ABOC 的周长为8.求直线l 的解析式.44.已知正比例函数的图象与反比例函数(为常数,)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点,是反比例函数图象上的两点,且,试比较的大小.45.已知一次函数y kx b =+的图象与反比例函数my x=的图象相交于A (-6,-2)、B (4,3)两点.(1)求出两函数解析式;(2)画出这两个函数的图象;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?46.如图,直线y =x +1与双曲线x2y =交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标;(2)在坐标平面内,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.47.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与y kx =5ky x-=k 0k ≠11()A x y ,22()B x y ,5ky x-=12x x <12y y ,3(0)x x>(第47题)t 的函数关系式为tay =(a 为常数),如图所示.据图中提供的信息,解答下列问题: (1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?48.我们学习了利用函数图象求方程的近似解,例如:把方程的解看成函数的图象与函数的图象交点的横坐标.如图,已画出反比例函数在第一象限内的图象,请你按照上述方法,利用此图象求方程的正数解.(要求画出相应函数的图象;求出的解精确到0.1)49.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O点.训练时要求A 、B 两船始终关于O 点对称.以O 为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A 、B 两船恰好在直线上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置213x x -=-21y x =-3y x =-1y x=210x x --=x 4y x=y x=不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为 A( , )、B( ,)和C(,);(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船 的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
九年级数学下册《第二十六章 反比例函数》练习题附答案解析-人教版
![九年级数学下册《第二十六章 反比例函数》练习题附答案解析-人教版](https://img.taocdn.com/s3/m/ebfcccf9a0c7aa00b52acfc789eb172ded6399eb.png)
九年级数学下册《第二十六章 反比例函数》练习题附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.下列函数中为反比例函数的是( )A .y =13xB .y =4+1xC .y =-5x -2D .y =-23x -1 2.若点()2,6--在反比例函数k y x =上,则k 的值是( ) A .3 B .3-C .12D .12- 3.已知函数22(1)m y m x -=-是关于x 的反比例函数,则m 的值为( )A .1B .-1 CD .4.如图,反比例函数(0)k y x x =<交边长为10的等边OAB 的两边于C 、D 两点,OC =3BD ,则k 的值( )A .-B .C .-D .5.现有一水塔,水塔内装有水40m 3,如果每小时从排水管中放水x (m 3),则要经过y (h )就可以把水放完该函数的图像大致应是下图中的( )A .B .C .D .6.如图,点A 是反比例函数()20=>y x x 的图象上任意一点,AB x ∥轴交反比例函数3y x =-的图象于点B 以AB 为边作ABCD ,其中C ,D 在x 轴上,则ABCD S 为( )A.6 B.5 C.4 D.37.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产进行治污改造,其月利润y(万元)与月份x之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误的是()A.4月份的利润为50万元B.治污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有3个月的利润低于100万元D.8月份该厂利润达到200万元二、解答题8.已知:y=y1+y2,y1与x成正比例,y2与x﹣2成正比例,当x=1时,则y=0;当x=3时,则y=4.(1)求y与x之间的关系式;(2)当x=﹣1时,则求y的值.9.某种气球内充满了一定质量的气体,当温度不变时,则气球内气体的压强P(P a)与气球体积V(3m)之间成反比例关系,其图像如图所示.(1)求P 与V 之间的函数关系式;(2)当31.8m V =时,则求P 的值;(3)当气球内的气压大于40000P a 时,则气球将爆炸,为确保气球不爆炸,气球的体积应不小于多少?三、填空题10.由于天气炎热,某校根据《学校卫生工作条例》,为预防“蚊虫叮咬”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中室内空气中每立方米含药量y (毫克)与燃烧时间x (分钟)之间的关系如图所示(即图中线段OA 和双曲线在A 点及其右侧的部分),当空气中每立方米的含药量达到2毫克以上(包括2毫克)时能有效消毒,则有效消毒时间为_____________分钟.11.如果函数22k y x -=的图象是双曲线,那么k =_________.参考答案与解析1.D【分析】根据反比例函数的定义逐项分析即可.【详解】解:A . y =13x 是正比例函数,不符合题意; B . y =4+1x 不是反比例函数,不符合题意;C. y=-5x-2不是反比例函数,不符合题意;D. y=-23x-1是反比例函数,符合题意;故选:D.【点睛】本题考查了反比例函数的定义,解题的关键是掌握一般地,形如=kyx(k为常数,k≠0)的函数叫做反比例函数.2.C【分析】将点(-2,-6)代入kyx=,即可计算出k的值.【详解】∵点(-2,-6)在反比例函数kyx=上∴k=(-2)×(-6)=12故选:C.【点睛】本题考查了待定系数法求反比例函数解析式,明确函数图象上点的坐标符合函数解析式是解题关键.3.B【分析】根据反比例函数的定义确定m的值即可.【详解】解:∵函数22(1)my m x-=-是反比例函数∴22110 mm⎧-=-⎨-≠⎩解得:1m=-故选:B【点睛】本题考查了反比例函数的定义,解题的关键是根据反比例函数的定义确定m的值,难度不大.4.A【分析】过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设BD=a,则OC=3a,根据等边三角形的性质结合解含30度角的直角三角形,可找出点C、D的坐标,再利用反比例函数图象上点的坐标特征即可求出a、k的值,此题得解.【详解】解:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.设BD =a ,则OC =3a .∵△AOB 为边长为10的等边三角形∴∠COE =∠DBF =60°,OB =10.在Rt △COE 中∠COE =60°,∠CEO =90°,OC =3a∴∠OCE =30°∴OE =32a ,CE∴点C (-32a ).同理,可求出点D 的坐标为1()2a -. ∵反比例函数(0)k y x x=<的图象恰好经过点C 和点D∴31(10)22k a a =-=-. ∴a =2或a =0(舍去)∴点C (-3,.∴k =-3×故选:A .【点睛】h 本题考查了反比例函数图象上点的坐标特征、等边三角形的性质以及解含30度角的直角三角形,根据等边三角形的性质结合解含30度角的直角三角形,找出点C 、D 的坐标是解题的关键.5.C【分析】根据题意列出关于x 、y 的函数解析式,根据此函数解析式的特点作出选择即可.【详解】解:∵水塔内装有水40m 3,如果每小时从排水管中放水x (m 3),则要经过y (h )就可以把水放完∴y =40x ∴x 与y 成反比例,四个选项中只有C 是反比例函数的图象.故选:C .【点睛】此题比较简单,考查的是反比例函数的解析式及反比例函数图象的特点,即反比例函数y=kx(k≠0)的图象是双曲线,当k>0时,则函数图象在一、三象限;当k<0时,则函数图象在二、四象限.6.B【分析】设A的纵坐标是b,则B的纵坐标也是b,即可求得A、B的横坐标,则AB的长度即可求得,然后利用平行四边形的面积公式即可求解.【详解】解:设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=2x得,b=2x,则x=2b,即A的横坐标是2b;把y=b代入y=-3x得,b=-3x,则x=3b,B的横坐标是:-3b则AB=2b -(-3b)=5b.则S▱ABCD=5b×b=5.故选:B.【点睛】本题考查了是反比例函数与平行四边形的综合题,理解A、B的纵坐标是同一个值,表示出AB的长度是关键.7.D【分析】直接利用已知点求出一次函数与反比例函数的解析式进而分别分析得出答案.【详解】解:A、设反比例函数的解析式为y=k x把(1,200)代入得,k=200∴反比例函数的解析式为:y=200 x当x=4时,则y=50∴4月份的利润为50万元,故此选项正确,不合题意;B、治污改造完成后,从4月到6月,利润从50万到110万,故每月利润比前一个月增加30万元,故此选项正确,不合题意;C、当y=100时,则则100=200 x解得:x=2则只有3月,4月,5月共3个月的利润低于100万元,故此选项正确,不符合题意.D、设一次函数解析式为:y=kx+b则4506110k b k b +⎧⎨+⎩==解得:3070k b ⎧⎨-⎩==故一次函数解析式为:y =30x -70故y =200时,则200=30x -70解得:x =9则治污改造完成后的第5个月,即9月份该厂利润达到200万元,故此选项不正确,符合题意. 故选:C .【点睛】此题主要考查了一次函数与反比函数的应用,正确得出函数解析是解题关键.8.(1)22y x =-(2)4-【分析】(1)根据题意分别设出y 1,y 2,代入y =y 1+y 2,表示出y 与x 的解析式,将已知两对值代入求出k 与b 的值,确定出解析式;(2)将x =-1代入计算即可求出值.(1)设y 1=ax ,y 2=k (x ﹣2)∴y =ax +k (x ﹣2)由当x =1时,则y =0.当x =3时,则y =4可得()()0124332a k a k ⎧=+-⎪⎨=+-⎪⎩解得:11a k =⎧⎨=⎩∴y 与x 之间的关系式为:y =2x ﹣2;(2)当x =﹣1时,则()2124y ⨯-=﹣=﹣. 【点睛】本题考查了待定系数法求函数解析式,解题关键是熟练掌握待定系数法.9.(1)P =24000V(2)400003千帕(3)不少于3 5 m3【分析】(1)设出反比例函数的解析式,代入点A的坐标,即可解决;(2)由题意可得V=1.8m3,代入到解析式中即可求解;(3)为了安全起见,P≤40000kP a,列出关于V的不等式,解不等式,即可解决.(1)解:设这个函数解析式为:P=k V代入点A的坐标(1.5,16000)得,k1.5=16000∴k=24000∴这个函数的解析式为P=24000V;(2)由题可得,V=1.8m3∴P=24000400001.83(kP a)∴气球内气体的压强是400003千帕;(3)∵气球内气体的压强大于144kP a时,则气球将爆炸∴为了安全起见,P≤40000kP a∴24000V≤40000∴V≥35m3∴为了安全起见,气球的体积不少于35m3.【点睛】本题考查了反比例函数的应用,根据题意,利用待定系数法求出解析式是解决此题的突破口.10.72【分析】首先根据题意,药物释放过程中室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,将数据代入用待定系数法可得反比例函数的关系式;进一步求解可得答案.【详解】解:设反比例函数解析式为y=kx(k≠0)将(25,6)代入解析式得,k=25×6=150则函数解析式为y=150x(x≥15)当y=2时,则150x=2解得x=75.在y=150x中令y=10,则x=15则A的坐标是(15,10).设OA的解析式是y=ax把(15,10)代入,得a=23,即正比例函数的解析式是y=23x.令y=2,解得x=3.则有效消毒消毒时间为75-3=72分钟.故答案为:72.【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.11.1【分析】根据函数图象是双曲线列式解答.【详解】解:根据题意,得:k-2=-1解得k=1故答案为:1.【点睛】本题主要考查反比例函数的定义,一般地,如果两个变量x、y之间的关系可以表示成kyx=或1y kx-=(k为常数,k≠0)的形式,那么称y是x的反比例函数,其图象是双曲线.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十六章 反比例函数26.1 反比例函数 26.1.1 反比例函数基础题知识点1 在实际问题中建立反比例函数模型1.某工厂现有原材料100吨,每天平均用去x 吨,这批原材料能用y 天,则y 与x 之间的函数解析式为(B) A .y =100xB .y =100xC .y =12x +100D .y =100-x2.一司机驾驶汽车从甲地去乙地,他以80 km/h 的平均速度用了4 h 到达乙地,当他按原路匀速返回时,汽车的速度v(km/h)与时间t(h)之间的函数关系式是(B) A .v =320tB .v =320tC .v =20tD .v =20t3.已知近视眼镜的度数y(度)与镜片焦距x(m)成反比例[即y =kx(k ≠0)],若200度近视眼镜的镜片焦距为0.5 m ,则y与x 之间的函数关系式是y =100x.知识点2 反比例函数的定义4.下列函数关系式中,y 是x 的反比例函数的是(C) A .y =3x B .y =3x +1 C .y =3xD .y =3x 25.在函数y =1x 中,自变量x 的取值范围是(A)A .x ≠0B .x>0C .x <0D .一切实数6.反比例函数y =-25x 中,k 的值是(C)A .2B .-2C .-25D .-527.若y =1xn -1是y 关于x 的反比例函数关系式,则n 的值是2.知识点3 确定反比例函数解析式8.(枣庄中考)如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x 轴的负半轴上,函数y =kx (x<0)的图象经过顶点B ,则k 的值为(C)A .-12B .-27C .-32D .-369.已知y 是x 的反比例函数,并且当x =-3时,y =8. (1)写出y 关于x 的函数解析式; (2)当x =6时,求y 的值. 解:(1)设y =kx.∵当x =-3时,y =8,∴8=k -3. 解得k =-24.∴y =-24x.(2)把x =6代入y =-24x ,得y =-246=-4.中档题10.下列函数关系式中,y 是x 的反比例函数的是(C) A .y =8x +5B .y =3x +7C .xy =5D .y =2x211.某地计划修建铁路l km ,铺轨天数为t(d),每日铺轨量为s(km/d),则在下列三个结论中,正确的是(A) ①当l 一定时,t 是s 的反比例函数; ②当t 一定时,l 是s 的反比例函数; ③当s 一定时,l 是t 的反比例函数. A .仅① B .仅② C .仅③ D .①②③ 12.若y =(m -1)xm 2-2是y 关于x 的反比例函数关系式,则m =-1,此函数的解析式是y =-x.13.如果y 是z 的反比例函数,z 是x 的正比例函数,那么y 是x 的反比例函数. 14.(1)当n 取多少时,函数y =-3x n -2是正比例函数? (2)当n 取多少时,函数y =-3x n -2是反比例函数? (3)当n 取多少时,函数y =-3x n -2是二次函数? 解:(1)n =3. (2)n =1. (3)n =4.15.已知(1)(2)根据函数解析式完成上表. 解:(1)设y =kx .∵当x =-1时,y =2, ∴2=k -1.解得k =-2. ∴y =-2x .(2)如表.16.设面积为20 cm 2的平行四边形的一边长为a cm ,这条边上的高为h cm. (1)求h 关于a 的函数解析式及自变量a 的取值范围;(2)h 关于a 的函数是不是反比例函数?如果是,请说出它的比例系数; (3)当a =25时,求这条边上的高h. 解:(1)h =20a(a>0).(2)是反比例函数,它的比例系数是20. (3)当a =25时,这条边上的高h =2025=45(cm).综合题17.已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5. (1)求y 与x 之间的函数关系式; (2)当x =4时,求y 的值. 解:(1)设y 1=k 1x ,y 2=k 2x ,则y =y 1+y 2=k 1x +k 2x.∵当x =1时,y =4;当x =2时,y =5,∴⎩⎨⎧4=k 1+k 2,5=2k 1+k 22.解得⎩⎨⎧k 1=2,k 2=2.∴y =2x +2x.(2)当x =4时,y =2×4+24=812.26.1.2 反比例函数的图象和性质第1课时 反比例函数的图象和性质基础题知识点1 反比例函数y =kx (k >0)的图象和性质1.下列各点中,在函数y =6x 的图象上的是(B)A .(-2,-4)B .(2,3)C .(-1,6)D .(-12,3)2.当x <0时,下列表示函数y =1x的图象的是(D)3.(兰州中考)若P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数y =kx (k >0)的图象上,且x 1=-x 2,则(D)A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=-y 24.(新疆中考)如图,它是反比例函数y =m -5x图象的一支,根据图象可知常数m 的取值范围是m >5.5.(新疆中考)若点A(1,y 1)和点B(2,y 2)在反比例函数y =1x 图象上,则y 1与y 2的大小关系是:y 1>y 2.(填“>”“<”或“=”)6.(上海中考)如果反比例函数y =kx (k 是常数,k ≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y 的值随x 的值增大而__减小.(填“增大”或“减小”)知识点2 反比例函数y =kx(k <0)的图象和性质7.(柳州中考)下列图象中是反比例函数y =-2x图象的是(C)8.(衢州中考)若函数y =m +2x 的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是(A)A .m <-2B .m <0C .m>-2D .m>09.(苏州中考)已知点A(2,y 1)、B(4,y 2)都在反比例函数y =kx (k<0)的图象上,则y 1、y 2的大小关系为(B)A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法比较10.(徐州中考)反比例函数y =kx的图象经过点M(-2,1),则k =-2.11.已知函数y =-14x ,当x <0时,y >0,此时,其图象的相应部分在第二象限.中档题12.已知反比例函数y =(m +1)xm 2-5的图象在第二、四象限内,则m 的值是(B) A .2B .-2C .±2D .-1213.(自贡中考)若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y =-1x 图象上的点,并且y 1<0<y 2<y 3,则下列各式中正确的是(D) A .x 1<x 2<x 3 B .x 1<x 3<x 2 C .x 2<x 1<x 3D .x 2<x 3<x 114.(济宁中考)请写出一个过点(1,1),且与x 轴无交点的函数解析式:y =1x (答案不唯一).15.(眉山中考)已知反比例函数y =2x,当x <-1时,y 的取值范围为-2<y <0.16.如图是三个反比例函数图象的分支,则k 1,k 2,k 3的大小关系是k 1<k 3<k 2.17.(随州中考)如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数y =k x 的图象于点B ,AB =32.(1)求反比例函数的解析式;(2)若P(x 1,y 1),Q(x 2,y 2)是该反比例函数图象上的两点,且x 1<x 2时,y 1>y 2,指出点P ,Q 各位于哪个象限?并简要说明理由.解:(1)由题意,得A(-2,0),AB =32,AB ∥y 轴,∴B(-2,32).∵反比例函数y =kx 的图象经过点B ,∴k =-3.∴反比例函数的解析式为y =-3x.(2)点P 在第二象限,点Q 在第四象限.理由: ∵k <0,∴在每一象限内y 随x 的增大而增大. 又∵x 1<x 2,y 1>y 2, ∴x 1<0<x 2.∴点P 在第二象限,点Q 在第四象限.综合题18.(威海中考改编)已知反比例函数y =1-2mx(m 为常数)的图象在第一、三象限.(1)求m 的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD 的顶点D ,点A ,B 的坐标分别为(0,3),(-2,0),求出该反比例函数的解析式;(3)若E(x 1,y 1),F(x 2,y 2)都在该反比例函数的图象上,且x 1>x 2>0,则y 1和y 2有怎样的大小关系?解:(1)根据题意,得1-2m >0,解得m <12.(2)∵四边形ABOD 为平行四边形, ∴AD ∥OB ,AD =OB =2. ∴D 点坐标为(2,3). ∴1-2m =2×3=6.∴该反比例函数的解析式为y =6x.(3)∵x1>x2>0,∴E,F两点都在第一象限.又∵在每一个象限内,函数值y随x的增大而减小,∴y1<y2.第2课时 反比例函数的性质的综合应用基础题知识点1 用待定系数法求反比例函数的解析式1.已知反比例函数的图象过点(3,-4),则此反比例函数的解析式为y =-12x .知识点2 反比例函数中k 的几何意义2.(宜昌中考)如图,点B 在反比例函数y =2x (x >0)的图象上,过B 分别向x 轴,y 轴作垂线,垂足分别为A ,C ,则矩形OABC 的面积为(B) A .1 B .2C .3D .43.如图,A ,C 是函数y =1x 的图象上的任意两点,过A 作x 轴的垂线,垂足为B ,过C 作y 轴的垂线,垂足为D ,连接OA ,OC ,设Rt △AOB 的面积为S 1,Rt △COD 的面积为S 2,则(C) A .S 1>S 2 B .S 1<S 2 C .S 1=S 2D .S 1和S 2的大小关系不能确定4.(锦州中考)如图,点A 在双曲线y =kx上,AB ⊥x 轴于点B ,且△AOB 的面积是2,则 k 的值是-4.知识点3 反比例函数与一次函数综合5.(益阳中考)正比例函数y =6x 的图象与反比例函数y =6x 的图象的交点位于(D)A .第一象限B .第二象限C .第三象限D .第一、三象限6.(沈阳中考)在同一平面直角坐标系中,函数y =x -1与函数y =1x的图象可能是(C)7.若双曲线y =kx与直线y =2x +1的一个交点的横坐标为-1,则k 的值为(B). A .-1 B .1C .-2D .28.(广州中考)将直线y =3x +1向下平移1个单位长度,得到直线y =3x +m ,若反比例函数y =kx 的图象与直线y =3x +m 相交于点A ,且点A 的纵坐标是3. (1)求m 和k 的值;(2)结合图象求不等式3x +m>kx的解集.解:(1)∵y =3x +m 由y =3x +1向下平移1个单位长度而得, ∴m =0.∵A 点纵坐标为3且在直线y =3x +m 上, ∴A 点坐标为(1,3).∵点A 又在反比例函数图象上, ∴k =3.(2)y =3x +m 与y =kx 的图象如图所示:由图象可知3x +m >kx 时,-1<x <0或x >1.中档题9.已知点(-1,y 1)、(2,y 2)、(π,y 3)在双曲线y =-k 2+1x 上,则下列关系式正确的是(B)A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 2>y 1>y 3D .y 3>y 1>y 210.(日照中考)反比例函数y =kbx的图象如图所示,则一次函数y =kx +b(k ≠0)的图象大致是(D)A BC D11.双曲线y 1、y 2在第一象限的图象如图,y 1=4x,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C ,.若S △AOB =1,则y 2的解析式是y 2=6x.12.(菏泽中考)如图,一次函数y =kx +b 与反比例函数y =ax 的图象在第一象限交于A 、B 两点,B 点的坐标为(3,2),连接OA 、OB ,过B 作BD.⊥y 轴,垂足为D ,交OA 于C ,若OC =CA. (1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.解:(1)把点B(3,2)代入反比例函数y =ax ,得a =6.∴反比例函数的解析式为y =6x .设A(x A ,y A ),C(x C ,y C ). ∵BD ⊥y 轴,∴y C =2. ∵OC =CA ,∴y A =2y C =4. ∴x A =64=32.∴A 点的坐标为(32,4).把B(3,2),A(32,4)代入一次函数y =kx +b ,得⎩⎨⎧2=3k +b ,4=32k +b ,解得⎩⎨⎧k =-43,b =6.∴一次函数的解析式为y =-43x +6.(2)过点A 作AF ⊥x 轴于点F. ∵A 点的坐标为(32,4),∴直线OA 的解析式是y =83x.∵y C =2,∴x C =34.∴BC =3-34=94.∴S △AOB =12CB ·AF =12×94×4=92.13.(成都中考)如图,在平面直角坐标系xOy 中,已知正比例函数y =12x 的图象与反比例函数y =kx 的图象交于A(a ,-2),B 两点.(1)求反比例函数的解析式和点B 的坐标;(2)P 是第一象限内反比例函数图象上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连接PO ,若△POC 的面积为3,求点P 的坐标.解:(1)把A(a ,-2)代入y =12x ,得a =-4.∴A(-4,-2).把A(-4,-2)代入y =kx ,得k =8,∴反比例函数的解析式为y =8x .联立⎩⎪⎨⎪⎧y =8x ,y =12x ,解得⎩⎨⎧x =-4,y =-2或⎩⎨⎧x =4,y =2.∴B(4,2).(2)延长PC 交x 轴于点E ,设P(m ,8m ),∵点C 在直线AB 上,∴C(m ,12m).∴S △POC =12·m ·|12m -8m |=3.解得m =27或m =2.∴P(27,477)或P(2,4).综合题14.(鄂州中考)如图,已知直线y =k 1x +b 与x 轴、y 轴相交于P 、Q 两点,与y =k 2x 的图象相交于A(-2,m)、B(1,n)两点,连接OA 、OB.给出下列结论:①k 1k 2<0;②m +12n =0;③S △AOP =S △BOQ ;④不等式k 1x +b>k 2x 的解集是x<-2或0<x<1.其中正确结论的序号是②③④.小专题(一) 反比例函数与一次函数综合——教材P9T5的变式与应用教材母题:正比例函数y =x 的图象与反比例函数y =kx 的图象有一个交点的纵坐标是2.(1)当x =-3时,求反比例函数y =kx的值;(2)当-3<x<-1时,求反比例函数y =kx的取值范围.解:(1)∵交点的纵坐标是2,代入正比例函数解析式得:交点的横坐标为2,即交点的坐标为(2,2).将(2,2)代入y =k x 中,得k =4.∴y =4x . 当x =-3时,y =-43.(2)由(1)知,当x =-3时,y =-43.当x =-1时,y =-4. ∵-3<x<-1,∴图象都在第三象限,y 随x 的增大而减小. ∴-4<y<-43.【方法归纳】 解决反比例函数与一次函数的综合题,常用方法如下:(1)已知反比例函数和一次函数的图象经过某一点,求反比例函数和一次函数的解析式,解这类题的方法常从反比例函数入手,求出反比例函数的解析式,再求出另一个交点坐标,再利用待定系数法求一次函数解析式;(2)求反比例函数与一次函数的交点坐标,解这类题的方法是由两个函数解析式联立得方程组,求得方程组的解即为交点坐标;(3)根据函数图象确定不等式的解集,解这类题需明确谁大,则取谁的图象在上方时自变量的取值范围;谁小,则取谁的图象在下方时自变量的取值范围;(4)求函数图象中有关三角形的面积时,只需通过函数图象上点或交点的坐标确定三角形的底和高,再根据三角形的面积公式进行计算.变式训练1 利用交点坐标求函数解析式1.(常德中考改编)如图,直线AB 与坐标轴分别交于A(-2,0),B(0,1)两点,与反比例函数的图象在第一象限交于点C(4,n),求一次函数和反比例函数的解析式.解:设一次函数的解析式为y =kx +b ,反比例函数的解析式为y =mx.把A(-2,0),B(0,1)代入y =kx +b ,得 ⎩⎨⎧-2k +b =0,b =1.解得⎩⎨⎧k =12,b =1.∴一次函数的解析式为y =12x +1.把C(4,n)代入y =12x +1,得n =3,∴点C 的坐标为(4,3).把C(4,3)代入y =mx ,得m =12,∴反比例函数的解析式为y =12x .2.(自贡中考改编)如图,已知A(-4,n),B(2,-4)是一次函数y =kx +b 和反比例函数y =mx 的图象的两个交点.求一次函数和反比例函数的解析式.解:∵B(2,-4)在y =mx 上,∴m =-8.∴反比例函数的解析式为y =-8x .∵点A(-4,n)在y =-8x上,∴n =2.∴A(-4,2).∵y =kx +b 经过A(-4,2),B(2,-4),∴⎩⎨⎧-4k +b =22k +b =-4. 解得⎩⎨⎧k =-1b =-2.∴一次函数的解析式为y =-x -2.变式训练2 求三角形的面积3.如图,一次函数y =ax -1(a ≠0)的图象与反比例函数y =kx (k ≠0)的图象相交于A 、B 两点且点A 的坐标为(2,1),点B 的坐标为(-1,n).(1)分别求两个函数的解析式; (2)求△AOB 的面积.解:(1)∵一次函数y =ax -1(a ≠0)的图象与反比例函数y =kx(k ≠0)的图象相交于A 、B 两点,且点A 的坐标为(2,1),∴⎩⎨⎧2a -1=1,k 2=1.解得⎩⎨⎧a =1,k =2.∴一次函数的解析式是y =x -1,反比例函数的解析式是y =2x .(2)设AB 与y 轴交于点C ,当x =0时,y =-1,即C(0,-1).∴S △AOB =S △AOC +S △BOC=12×|-1|×2+12×|-1|×|-1| =1+12=32.4.如图,一次函数y =kx +b 与反比例函数y =6x (x>0) 的图象交于A(m ,6),B(3,n)两点.求:(1)一次函数的解析式; (2)△AOB 的面积.解:(1)∵A(m ,6),B(3,n)两点在反比例函数y =6x (x>0) 的图象上,∴ m =1,n =2,即A(1,6),B(3,2).又∵A(1,6),B(3,2)两点在一次函数y =kx +b 的图象上,∴ ⎩⎨⎧k +b =6,3k +b =2.解得⎩⎨⎧k =-2,b =8.∴一次函数的解析式为y =-2x +8.(2)设直线AB 交x 轴于点D ,分别过点A 、B 作AE ⊥x 轴,BC ⊥x 轴,垂足分别为点E 、C. 令-2x +8=0,得x =4,即D(4,0). ∵A(1,6),B(3,2), ∴AE =6,BC =2.∴S △AOB =S △AOD -S △BOD =12×4×6-12×4×2=8.变式训练3 确定自变量的取值范围5.(自贡中考)一次函数y 1=k 1x +b 和反比例函数y 2=k 2x (k 1·k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是(D )A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <16.(兰州中考)如图,反比例函数y =kx (x<0)与一次函数y =x +4的图象交于A 、B 两点的横坐标分别为-3、-1,则关于x 的不等式kx <x +4(x<0)的解集为(B)A .x<-3B .-3<x<-1C .-1<x<0D .x<-3或-1<x<07.如图,一次函数y =x +m 的图象与反比例函数y =kx 的图象交于A ,B 两点,且与x 轴交于点C ,点A 的坐标为(2,1).(1)求m 及k 的值;(2)直接写出方程x +m =kx的解;(3)求点C 的坐标,并结合图象写出不等式组0<x +m ≤kx的解集.解:(1)∵点A(2,1)在函数y =x +m 的图象上, ∴2+m =1,解得m =-1.∵A(2,1)在反比例函数y =kx 的图象上,∴k2=1.∴k =2. (2)x 1=2,x 2=-1.(3)∵一次函数的解析式为y =x -1,令y =0,得x =1. ∴点C 的坐标是(1,0).由图象可知不等式组0<x +m ≤kx 的解集为1<x ≤2.小专题(二) 反比例函数中k 的几何意义例 已知变量y 与x 成反比例,它的图象过点A(-2,3). (1)求反比例函数的解析式;(2)从A(-2,3)向x 轴和y 轴分别作垂线AB 、AC ,垂足分别为B 、C ,则矩形OBAC 的面积为6;(3)当A 点的横坐标为-4时,作AB 1、AC 1分别垂直于x 轴、y 轴,B 1、C 1为垂足,则所得矩形OB 1AC 1的面积是6; (4)将A 点在图象上任意移动到点A ′,作A ′B ′、A ′C ′分别垂直于x 轴、y 轴,B ′、C ′为垂足,则所得矩形OB ′A ′C ′的面积是6;(5)根据上述信息,你能得出什么结论? 解:(1)设反比例函数的解析式为y =kx.∵它的图象过点A(-2,3),∴3=k-2.∴k =-6.∴y =-6x.(5)结论:反比例函数图象上的点向坐标轴作垂线与坐标轴围成的矩形的面积是定值,大小为|k|.1.如图,点A 是反比例函数y =2x (x >0)图象上任意一点,AB ⊥y 轴于B ,点C 是x 轴上的动点,则△ABC 的面积为(A) A .1 B .2C .4D .不能确定2.如图,点A 是反比例函数y =kx (x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D在y 轴上.已知平行四边形ABCD 的面积为6,则k 的值为(B) A .6 B .-6 C .3D .-33.如图,在平面直角坐标系中,点P(1,4)、Q(m ,n)在函数y =kx (x>0)的图象上, 当m>1时,过点P 分别作x 轴、y 轴的垂线,垂足为点A 、B ;过点Q 分别作x 轴、 y 轴的垂线,垂足为点C 、D. QD 交PA 于点E ,随着m 的增大,四边形ACQE 的面积(B) A .减小 B .增大 C .先减小后增大 D .先增大后减小4.如图所示,反比例函数y =kx (x >0)的图象经过矩形OABC 的对角线AC 的中点D ,若矩形OABC 的面积为8,则k 的值为2.5.(枣庄中考)如图,反比例函数y =2x的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为4.6.如图,已知点P(6,3),过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N.反比例函数y =kx 的图象交PM 于点A ,交PN 于点B ,若四边形OAPB 的面积为12,则k =6.7.(兰州中考)如图,在平面直角坐标系xOy 中,直线y =-x +3交y 轴于点A ,交反比例函数y =kx (x<0)的图象于点D ,y =kx (x<0)的图象过矩形OABC 的顶点B ,矩形OABC 的面积为4,连接OD.(1)求反比例函数y =kx 的解析式;(2)求△AOD 的面积.解:(1)∵直线y =-x +3交y 轴于点A ,∴A(0,3). ∴BC =OA =3.∵矩形AOBC 的面积为4, ∴|k|=4.又∵k <0,∴k =-4.∴反比例函数的解析式为y =-4x.(2)联立⎩⎨⎧y =-4x ,y =-x +3,得⎩⎨⎧x =4,y =-1或⎩⎨⎧x =-1,y =4.∴D(-1,4)∴S △AOD =12×3×1=32.小专题(三) 反比例函数与几何图形综合1.(衢州中考)如图,在平面直角坐标系中,点A 在函数y =4x (x>0)的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数y =4x (x>0)的图象交于点D ,连接AC ,CB ,BD ,DA ,则四边形ACBD 的面积等于(C)A .2B .2 3C .4D .432.如图,等边△OAB 的边OB 在x 轴的负半轴上,双曲线y =kx 过OA 的中点C ,已知等边三角形的边长是4,则该双曲线的解析式为(B) A .y =3xB .y =-3xC .y =23xD .y =-23x3.(威海中考)如图,正方形ABCD 的边长为5,点A 的坐标为(-4,0),点B 在y 轴上,若反比例函数y =kx (k ≠0)的图象过点C ,则该反比例函数的解析式为(A) A .y =3xB .y =4xC .y =5xD .y =6x4.(咸宁中考)在平面直角坐标系中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C ′的坐标为(C)A .(32,0)B .(2,0)C .(52,0)D .(3,0)5.(绍兴中考)在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,A 点的坐标为(a ,a).如图,若曲线y =3x(x>0)与此正方形的边有交点,则a 的取值范围是3≤a ≤3+1.6.(苏州中考)如图,在△ABC 中,AC =BC ,AB ⊥x 轴,垂足为A.反比例函数y =kx (x>0)的图象经过点C ,交AB 于点D.已知AB =4,BC =52.(1)若OA =4,求k 的值;(2)连接OC ,若BD =BC ,求OC 的长.解:(1)作CE ⊥AB ,垂足为E ,∵AC =BC ,AB =4,∴AE =BE =2. 在Rt △BCE 中,BC =52,BE =2,∴CE =32.∵OA =4,∴C 点的坐标为(52,2).∵点C 在y =kx 的图象上,∴k =5.(2)设A 点的坐标为(m ,0), ∵BD =BC =52,∴AD =32.∴D(m ,32),C(m -32,2).∵点C ,D 都在y =kx 的图象上,∴32m =2(m -32).∴m =6. ∴C 点的坐标为(92,2).作CF ⊥x 轴,垂足为F ,∴OF =92,CF =2.在Rt △OFC 中,OC 2=OF 2+CF 2, ∴OC =972.周周练(26.1)(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分) 1.下列函数中是反比例函数的是(B) A .y =x2B .y =-5xC .y =x 2D .y =2x +12.反比例函数y =3x 的图象在(A)A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限3.如图,点P(-3,2)是反比例函数y =kx (k ≠0)的图象上一点,则反比例函数的解析式是(D)A .y =-3xB .y =-12xC .y =-23xD .y =-6x4.(凉山中考)以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线y =3x 经过点D ,则正方形ABCD 的面积是(C) A .10 B .11C .12D .135.在反比例函数y =1-k x 的图象的每一支曲线上,y 都随x 的增大而增大,则k 的值可以是(D)A .-1B .0C .1D .26.(潍坊中考)一次函数y =ax +b 与反比例函数y =a -bx ,其中ab<0,a 、b 为常数,它们在同一坐标系中的图象可以是(C)ABC D7.(天津中考)若点A(-1,y 1),B(1,y 2),C(3,y 3)在反比例函数y =-3x 的图象上,则y 1,y 2,y 3的大小关系是(B)A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 2<y 1<y 38.在y =1x的图象中,阴影部分面积不为1的是(B)二、填空题(每小题4分,共24分)9.(菏泽中考)已知A(-1,m)与B(2,m -3)是反比例函数y =kx 图象上的两个点,则m 的值为2.10.已知反比例函数y =5x,则当1<x ≤4时,y 的最大整数值是4.11.如图,等边△AOB 的顶点A 的坐标为(-4,0),顶点B 在反比例函数y =kx(x <0)的图象上,则k =-43.12.(义乌中考)如图,Rt △ABC 的两锐角顶点A ,B 在函数y =kx (x >0)的图象上,AC ∥x 轴,AC =2,若点A 的坐标为(2,2),则点B 的坐标为(4,1).13.(连云港中考)设函数y =3x 与y =-2x -6的图象的交点坐标为(a ,b),则1a +2b的值是-2.14.(甘南中考)如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x 上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD为矩形,则它的面积为2.三、解答题(共44分)15.(10分)已知y与x的部分取值满足下表:(1)试猜想y与x(2)简要叙述该函数的性质.解:(1)反比例函数,y =-6x.(2)①图象与x 轴、y 轴无交点;②图象是双曲线,两分支分别位于第二、四象限; ③在每一个象限内,y 随x 的增大而增大.16.(10分)已知反比例函数y =kx 的图象与一次函数y =3x +m 的图象相交于点(1,5).(1)求这两个函数的解析式;(2)求这两个函数图象的另一个交点的坐标. 解:(1)由题意,得5=k1,5=3×1+m ,解得k =5,m =2. ∴y =5x,y =3x +2.(2)联立⎩⎨⎧y =5x ,y =3x +2,解得⎩⎨⎧x =-53,y =-3或⎩⎨⎧x =1,y =5.∴这两个函数图象的另一个交点的坐标是(-53,-3).17.(12分)(江西中考)如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在x 轴,y 轴的正半轴上,函数y =2x 的图象与CB 交于点D ,函数y =kx (k 为常 数,k ≠0)的图象经过点D ,与AB 交于点E ,与函数y =2x 的图象在第三象限内交于点F ,连接AF ,EF. (1)求函数y =kx 的解析式,并直接写出E ,F 两点的坐标.(2)求△AEF 的面积.解:(1)∵正方形OABC 的边长为2, ∴点D 的纵坐标为2.将y =2代入y =2x ,得x =1. ∴点D 的坐标为(1,2).∵函数y =k x 的图象经过点D ,∴2=k1.∴k =2.∴函数y =k x 的解析式为y =2x.∴E(2,1),F(-1,-2).(2)过点F 作FG ⊥AB ,与BA 延长线交于点G. ∵E ,F 两点的坐标分别为(2,1),(-1,-2), ∴AE =1,FG =2-(-1)=3. ∴S △AEF =12AE ·FG =12×1×3=32.18.(12分)如图,已知正比例函数y =2x 和反比例函数的图象交于点A(m ,-2). (1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x 的取值范围; (3)若双曲线上点C(2,n)沿OA 方向平移 5个单位长度得到点B ,判断四边形OABC 的形状并证明你的结论.解:(1)设反比例函数的解析式为y =kx (k >0).∵A(m ,-2)在y =2x 上, ∴-2=2m ,即m =-1. ∴A(-1,-2). 又∵点A 在y =kx 上,∴k =2.∴反比例函数的解析式为y =2x .(2)-1<x <0或x >1.(3)四边形OABC 是菱形. 证明:∵A(-1,-2), ∴OA =12+22= 5.由题意知:CB ∥OA ,且CB =5, ∴CB =OA.∴四边形OABC 是平行四边形. ∵C(2,n)在y =2x 上,∴n =1.∴C(2,1),OC =22+12= 5. ∴OC =OA.∴四边形OABC 是菱形.26.2 实际问题与反比例函数基础题知识点1 实际问题中的反比例函数图象1.(台州中考)已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为I =UR .当电压为定值时,I 关于R 的函数图象是(C)A B C D 2.“科学用眼,保护视力”是青少年珍爱生命的具体表现. 科学证实:近视眼镜的度数y(度)与镜片焦距x(m)成反比例.若500度近视眼镜片的焦距为0.2 m ,则表示y 与x 函数关系的图象大致是(B)A B C D 知识点2 反比例函数的实际应用3.某户家庭用购电卡购买了2 000度电,若此户家庭平均每天的用电量为x(单位:度),这2 000度电能够使用的天数为y(单位:天),则y 与x 的函数关系式为y =2 000x.4.(青岛中考)把一个长、宽、高分别为3 cm 、2 cm 、1 cm 的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S(cm 2)与高h(cm)之间的函数关系式为S =6h.5.实验表明,当导线的长度一定时,导线的电阻与它的横截面积成反比例.一条长为100 cm 的导线的电阻R(Ω)与它的横截面积S(cm 2)的函数图象如图所示,那么,其函数关系式为R =29S,当S =2 cm 2时,R =__14.5Ω.6.如图所示是一蓄水池每小时的排水量V(m 3/h)与排完水池中的水所用时间t(h)之间的函数关系图象,若要5小时排完水池中的水,则每小时的排水量应为9.6m 3.7.(云南中考)将油箱注满k 升油后,轿车可行驶的总路程s(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系s =ka (k 是常数,k ≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程s 与平均耗油量a 之间的函数解析式;(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米? 解:(1)由题意,得a =0.1时,s =700, 代入反比例函数关系s =ka 中,解得k =sa =70,∴函数解析式为s =70a.(2)当a =0.08时,s =700.08=875.答:该轿车可以行驶875千米.8.学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y(m)与另一边x(m)之间的函数关系式如图所示.(1)绿化带面积是多少?你能写出这一函数解析式吗?(2)完成下表,并回答问题:如果该绿化带的长不得超过40 m ,那么它的宽应控制在什么范围内?x(m) 10 20 30 40 y(m)402040310解:(1)绿化带面积为10×40=400(m 2). 设该反比例函数的解析式为y =kx.∵图象经过点A(40,10),把x =40,y =10代入,得10=k40,解得k =400.∴反比例函数的解析式为y =400x.(2)如表.从图中可以看出,如果长不超过40 m ,那么它的宽应大于等于10 m.中档题9.当温度不变时,某气球内的气压p(kPa)与气体体积V(m 3)的函数关系如图所示,已知当气球内的气压p >120 kPa 时,气球将爆炸,为了安全起见,气球的体积V 应(C) A .不大于45 m 3B .大于45 m 3C .不小于45m 3D .小于45m 310.某村耕地总面积为50 公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是(D)A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y 与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷11.物理学告诉我们这样的事实:当压力F 不变时,压强p 和受力面积S 之间是反比例函数,可以表示成p =FS .一个圆台形物体的上底面积是下底面积的23,如图,如果正放在桌面上,对桌面的压强是200 Pa ,反过来放,对桌面的压强是300__Pa .12.(益阳中考)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18 ℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC 段是双曲线y =kx 的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18 ℃的时间有多少小时? (2)求k 的值;(3)当x =16时,大棚内的温度约为多少度?解:(1)恒温系统在这天保持大棚温度18 ℃的时间为10小时. (2)∵点B(12,18)在双曲线y =kx 上,∴18=k12.∴k =216.(3)当x =16时,y =21616=13.5.答:当x =16时,大棚内的温度约为13.5 ℃.综合题13.(丽水中考)丽水某公司将“丽水山耕”农副产品运往杭州市场销售.记汽车行驶时间为t 小时,平均速度为v 千米/时(v(千米/时) 75 80 85 90 95 t(小时)4.003.753.533.333.16(1)(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.解:(1)根据表中的数据,可画出v 关于t 的函数图象(如图所示), 根据图象形状,选择反比例函数模型进行尝试. 设v 与t 的函数解析式为v =kt ,∵当v =75时,t =4,∴k =4×75=300. ∴v =300t.将点(3.75,80),(3.53,85)(3.33,90),(3.16,95)的坐标代入v =300t 验证:30080=3.75,80085≈3.53,30090≈3.33,30095≈3.16, ∴v 与t 的函数解析式为v =300t (t ≥3).(2)不能.理由: ∵10-7.5=2.5,∴当t =2.5时,v =3002.5=120 >100.∴汽车上午7:30从丽水出发,不能在上午10:00之前到达杭州市场. (3)由图象或反比例函数的性质得:当3.5≤t ≤4时,75≤v ≤6007,∴平均速度的取值范围是75≤v ≤6007.章末复习(一) 反比例函数基础题知识点1 反比例函数的概念1.下列六个关系式:①x(y +1);②y =2x +2;③y =1x 2;④y =-12x ;⑤y =-x 2;⑥y =23x .其中y 是x 的反比例函数的是(D)A .①②③④⑥B .③⑤⑥C .①②④D .④⑥2.如果函数y =(k +1)xk 2-2是反比例函数,那么k =1. 知识点2 反比例函数的图象和性质3.已知点A(x 1,y 1),B(x 2,y 2)是反比例函数y =2 017x 图象上的点,若x 1>0>x 2,则(B)A .y 1>y 2>0B .y 1>0>y 2C .0>y 1>y 2D .y 2>0>y 14.已知反比例函数y =-5x ,下列结论不正确的是(B)A .图象必经过点(1,-5)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则-5<y <05.(淮安中考)若反比例函数y =-6x的图象经过点A(m ,3),则m 的值是-2.6.已知反比例函数y =k -2x ,当x <0时,y 随x 的增大而减小,那么k 的取值范围是k >2.知识点3 反比例函数与一次函数综合7.(兰州中考)在同一直角坐标系中,一次函数y =kx -k 与反比例函数y =kx(k ≠0)的图象大致是 (A)8.(宁波中考)如图,正比例函数y 1=-3x 的图象与反比例函数y 2=kx 的图象交于A 、B 两点.点C 在x 轴负半轴上,AC =AO ,△ACO 的面积为12. (1)求k 的值;。