正交矩阵

合集下载

判断正交矩阵的方法

判断正交矩阵的方法

判断正交矩阵的方法
正交矩阵是一个方阵,其列向量是一个标准正交基,即互相垂直且长度为1。

判断一个矩阵是否为正交矩阵的方法如下:
1. 求矩阵的逆矩阵,如果它的转置矩阵和逆矩阵相等,则该矩阵为正交矩阵。

2. 求矩阵的列向量的内积,如果每个向量的内积都等于0,且每个向量的长度等于1,则该矩阵为正交矩阵。

3. 判断矩阵的行向量是否满足互相垂直且长度为1的条件,如果满足则该矩阵为正交矩阵。

4. 对于实对称矩阵而言,如果其特征值都为实数且正交,则该矩阵为正交矩阵。

需要注意的是,正交矩阵的行列式值为1或-1,其特征值的模长均为1。

在实际应用中,正交矩阵被广泛用于线性代数、数值计算和图像处理等领域,具有重要的理论和实际意义。

正交矩阵

正交矩阵
1.逆也是正交阵;
2.积也是正交阵;
3.行列式的值为正1或负1。
任何正交矩阵的行列式是+1或−1。这可从关于行列式的如下基本事实得出:(注:反过来不是真的;有+1行 列式不保证正交性,即使带有正交列,可由下列反例证实。)
对于置换矩阵,行列式是+1还是−1匹配置换是偶还是奇的标志,行列式是行的交替函数。 比行列式限制更强的是正交矩阵总可以是在复数上可对角化来展示特征值的完全的集合,它们全都必须有(复 数)绝对值1 。
正交矩阵的最基本置换是换位(transposition),通过交换单位矩阵的两行得到。任何n×n置换矩阵都可以 构造为最多n−1次换位的积。构造自非零向量v的Householder反射,这里的分子是对称矩阵,而分母是v的平方 量的一个数。这是在垂直于v的超平面上的反射(取负平行于v任何向量分量)。如果v是单位向量,则Q=I−2vv就 足够了。Householder反射典型的用于同时置零一列的较低部分。任何n×n正交矩阵都可以构造为最多n次这种反 射的积。
置换是很多算法成功的根本,包括有局部定支点(partialpivoting)的运算繁重的高斯消去法(这里的置换 用来定支点)。但是它们很少明显作为矩阵出现;它们的特殊形式允许更有限的表示,比如n个索引的列表。
同样的,使用Householder和Givens矩阵的算法典型的使用特殊方法的乘法和存储。例如,Givens旋转只影 响它所乘的矩阵的两行,替代完全的n次的矩阵乘法为更有效的n次运算。在使用这些反射和旋转向矩阵介入零的 时候,腾出的空间足够存储充足的数据来重生成这个变换 。
正交矩阵的逆是正交的,两个正交矩阵的积是正交的。事实上,所有n×n正交矩阵的集合满足群的所有公理。 它是n(n−1)/2维的紧致李群,叫做正交群并指示为O(n)。

线性代数中的正交矩阵与正交变换

线性代数中的正交矩阵与正交变换

线性代数中的正交矩阵与正交变换线性代数是现代数学的基础理论之一,它在各个领域中起到了重要的作用。

其中,正交矩阵和正交变换是线性代数中的重要概念之一。

本文将深入探讨正交矩阵和正交变换的定义、性质以及在实际问题中的应用。

一、正交矩阵的定义与性质首先,我们来了解正交矩阵的定义。

在线性代数中,一个方阵A称为正交矩阵,当且仅当满足以下条件:1. A的转置矩阵A^T等于它的逆矩阵A^(-1)。

2. A的所有列向量互为正交向量。

3. A的所有列向量的模长都等于1。

基于上述定义,我们可以推导出正交矩阵的一些重要性质。

1. 正交矩阵的行向量以及列向量都是单位向量,即长度为1的向量。

2. 正交矩阵的行向量两两正交,列向量两两正交。

3. 正交矩阵的转置矩阵就是它的逆矩阵。

二、正交变换的概念与性质正交变换是指保持向量的长度和夹角不变的线性变换。

在线性代数中,我们可以通过正交矩阵进行正交变换。

具体而言,设A是一个正交矩阵,x是一个向量,那么正交变换可以表示为Ax。

正交变换具有以下重要性质:1. 正交变换可以将一个向量映射为另一个向量,同时保持向量的长度和夹角不变。

2. 正交变换的矩阵一定是正交矩阵,即正交矩阵其实就是表示正交变换的矩阵。

3. 正交变换是线性变换的一种特殊情况,其满足线性变换的加法和数乘运算。

三、正交矩阵与正交变换在实际问题中的应用正交矩阵与正交变换在实际问题中有广泛的应用。

以下举例说明:1. 三维图形的旋转在三维计算机图形学中,我们经常需要对三维图形进行旋转操作。

而正交矩阵正好可以用来表示三维空间中的旋转。

通过构造一个特定的正交矩阵,我们可以实现对三维图形的旋转变换。

2. 傅里叶变换傅里叶变换是一种在信号处理和图像处理中广泛应用的方法。

正交矩阵在傅里叶变换中起到了重要作用,通过将输入信号与正交矩阵相乘,可以实现频域上的变换,提取信号的频谱信息。

3. 数据压缩与图像处理正交矩阵和正交变换也被广泛应用于数据压缩和图像处理领域。

正交矩阵——精选推荐

正交矩阵——精选推荐

第五章 二次型除特别指明外,本章都是在实数域内进行的讨论.§5.1 正交矩阵一、向量的内积1.定义:① 设有n 维行向量α = (a 1, a 2, ……, a n ) ,β = (b 1,b 2, ……, b n ) ,定义α与β的内积为: α βT = a 1 b 1 + a 2 b 2 + …… + a n b n . ② α 与 β 正交: α βT = 0 .注:非零向量正交一定线性无关(反之不成立).③ 对n 维列向量 α = (a 1, a 2, ……, a n )T ,β = (b 1,b 2, ……, b n )T , α与β的内积为: α T β = a 1 b 1 + a 2 b 2 + …… + a n b n , α与β正交,则: α T β = 0 .说明:①.我们采用符号<α,β>统一表示n 维向量α和β的内积.②.在大家熟知的三维普通空间,建立笛卡儿坐标系后,矢量(也称向量)k a j a i a a r r r r321++= 和 kb j b i b b r r r r 321++=可以作为特例.不过用行(或列)矩阵[即行(或列)向量]表示内积(亦称点积、数量积)b a rr ⋅时,必须写成[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⋅321321b b b a a a b a rr . 2.性质:① 对称: α βT = β αT ;( <α,β> = <β,α> ) ② 数乘(齐次):( λ α ) βT = α ( λ βT ) = λ ( α βT ) ; ③ 分配(可加):( α + β) γT = α γT + β γT ;④ 自身相乘非负: α αT ≥ 0 ;仅当 α = 0 时, α αT = 0 . 3.向量的长度(或模): 22221Tn a a a +++==L ααα ,为非负的实数.性质:① 非负:α≥ 0 ;仅当 α = 0 时, α αT = 0 ; ② 数乘(齐次): ααk k = ;③ 单位向量及非零向量单位化:若1=α,则α为n 维单位向量.对非零向量α ,都可单位化:ααβ= . ④ 三角不等式: βαβα+≤+ ; ⑤ 柯西-施瓦茨不等式:222T )(βαβα≤ .二、向量正交化1.正交向量组定义:若向量组α1,α2,……,αs 中的向量两两正交,则称该向量组是一个正交向量组. 重要的n 维正交向量组:)0,,0,1(1L =e ,)0,,1,0(2L =e ,……,),,0,0(n n L =e .2.向量组正交化方法(Schmidt 正交化方法):有一线性无关的向量组α1,α2,……,α r ,但不是正交向量组,用施密特(Schmidt )正交化方法可以将其转化为一组正交且单位化的向量组. ① 正交化:令 11αβ= 1111222,,ββββααβ><><−= 222231111333,,,,ββββαββββααβ><><−><><−= ……111122221111,,,,,,−−−−><><−−><><−><><−=r r r r r r r r r ββββαββββαββββααβL ② 单位化:令111ββγ=,222ββγ=,……,rr r ββγ=.(课后看教材P.156之例6和例7.) 三、正交矩阵1.定义:设A 为n 阶实方阵,若A T A = I ,则称A 为n 阶正交方阵.2.性质:① 若A A T = I ,则A 为正交矩阵; ② 若A T = A -1 ,则A 为正交矩阵; ③ 若A 为正交矩阵,则行列式1±=A ;④ n 阶实方阵A 为正交矩阵的充分必要条件是A 的列向量为一个相互正交的单位向量组;(用定义A T A = I 说明)⑤ n 阶实方阵A 为正交矩阵的充分必要条件是A 的行向量为一个相互正交的向量组;⑥ 若A ,B 为n 阶正交矩阵,则AB ,BA 也是n 阶正交矩阵;因 ( AB )T ( AB ) = B T A T AB = B T B = I . ⑦ 正交矩阵的特征值的模等于1 .(证明略) 四、向量的正交变换:1.定义:设A 为n 阶正交矩阵,X 为任意一个n 维向量,则称Y = A X为正交变换.2.重要性质:向量X 经正交变换后长度(模)不变.因 X X X AX A X AX AX Y Y Y =====T T T T T )()( .3.推论:两个向量做相同正交变换后,内积不变,几何图形的形状不变. 五、实对称矩阵1. n 阶实对称矩阵A 的性质:[ 简单性质:A A A A A A ===T T )(,,]① 特征值都是实数;② 不同特征值对应的特征向量正交;证明: A T = A , AX 1 = λ1X 1 , AX 2 = λ 2 X 2 , λ1 ≠ λ 2 ;( AX 1 ) T = ( λ1X 1 ) T , ( X 1 ) T A T = λ1 ( X 1 ) T ;( X 1 ) T A = λ1 ( X 1 ) T , ( X 1 ) T A X 2 = λ1 ( X 1 ) T X 2 ;λ 2 ( X 1 ) T X 2 = λ1 ( X 1 ) T X 2 , ( λ 2 - λ1)[ ( X 1 ) T X 2 ] = 0 ;( X 1 ) T X 2 = 0 .③ 有n 个线性无关的实特征向量;④ 必有正交矩阵P ,使得P -1AP = P T AP = D = diag( λ1, λ2,…, λn )其中λ1, λ2,…, λn 恰为A 的n 个特征值(重根按重数依次计入);(证明:略)2.把n 阶实对称矩阵A 用正交矩阵对角化的步骤: ① 求出A 的相异特征值λ1, λ2,…, λ 5 ;② 对每个特征值λ i ,求出( λ i I – A ) X = 0 的一个基础解系,然后再正交化、单位化;③ 将求得的n 个相互正交的单位特征向量X 1, X 2, ……, X n 作为列向量排成矩阵P (就是所求的正交矩阵);④ 计算),,,,,diag(11s i i T λλλλ==−L L AP P AP P ,即为所求(n 个对角元素的值可能有重复). 六、例题(P.162例9亦P.132例4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=122212221A ,求正交矩阵P ,使P T AP 为对角矩阵.解:① 由A 的特征方程0=−λA I ,求其特征值λ:1221105551222122210−λ−−−λ−+λ−λ−λ−λ=−λ−−−−λ−−−−λ=−λ=A I 2)1)(5(10211005+λ−λ=+λ−−λ−+λ−λ=解得51=λ,132−=λ=λ;② 求对应51=λ的特征向量,解齐次线性方程组 0X A I =−)5( ;由 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−−−=−000110112330330112422242224)5(A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→000110101 ,得同解方程组 ⎩⎨⎧=−=−003231x x x x ,令 33~x x = , 则 3132~,~x x x x == ,得特征向量 []T1111=X ;单位化: T1313131⎥⎦⎤⎢⎣⎡=P ; ③ 求对应132−=λ=λ的特征向量,由 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−−−−−−=−−000000111222222222)(A I ,得同解方程组 0321=++x x x ,令 3322~,~x x x x == ,得特征向量 []T2011−=X , []T3101−=X ; [与书不同,都对]正交化:[]T22011−==X α ,[][]TTT 22223331212101121101,,⎥⎦⎤⎢⎣⎡−−=−−−=><><−=αααααX X ;单位化: T22202121⎥⎦⎤⎢⎣⎡−==ααP , T333626161⎦⎤⎢⎣⎡−==ααP ; [与书不同] ④ 所求正交矩阵为[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−==62031612131612131221P P P P . [与书不同]本题附:① 可以验证 P T AP = diag ( 5, -1, -1 ).⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−=6203161213161213112221222162616102121313131T AP P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−=1000100056203561213561213562616102121313131 . ② 用书上的P ,同样也可以验证 P T AP = diag ( 5, -1, -1 ).作业(P.162):1; 6.(1); 8;附录:关于复矩阵的共轭问题① 复矩阵的共轭矩阵 —— 每一矩阵元都取共轭;即复矩阵A = (ai j )的共轭矩阵为)(j ia=A.② 复向量的共轭向量 —— 每一元素都取共轭.。

正交矩阵的判断方法

正交矩阵的判断方法

正交矩阵的判断方法正交矩阵是一个非常重要的概念,在数学和工程学科中都有广泛应用。

正交矩阵的性质包括不改变向量的长度和角度,因此在许多应用中有着重要的作用。

在本文中,我们将介绍判断矩阵是否是正交矩阵的方法。

一、正交矩阵定义及性质在线性代数中,矩阵的转置和逆是非常重要的概念,而正交矩阵可以看作是一种比较特殊的矩阵,它的定义和性质包括:1. 定义:一个矩阵A被称为正交矩阵,当且仅当满足AA^T=A^TA=I,其中I表示单位矩阵。

2. 性质:正交矩阵有很多重要的性质,其中最重要的包括:(1)行向量互相正交,列向量也互相正交。

(2)行向量和列向量的范数都等于1。

(3)行列式的值为1或-1。

(4)矩阵的转置就是它的逆,即A^{-1}=A^T。

(5)正交矩阵的逆也是正交矩阵。

二、正交矩阵的判断方法判断矩阵是否是正交矩阵,通常需要用到正交矩阵的定义和性质。

下面我们将介绍一种比较常用的判断方法,包括以下几个环节:1. 矩阵是否是方阵:正交矩阵必须是一个方阵,因此首先需要判断矩阵是否是方阵。

2. 判断矩阵是否满足AA^T=A^TA=I:这是判断矩阵是否是正交矩阵的核心方法,需要将矩阵自身乘以它的转置,并且将转置乘以矩阵自身,判断是否等于单位矩阵,即AA^T=A^TA=I。

3. 判断行向量和列向量是否互相正交:如果矩阵满足条件1和条件2,那么可以进一步判断行向量和列向量是否互相正交。

具体方法是计算每一行与每一列的点积,如果结果都等于0,则说明行向量和列向量互相正交。

4. 判断行向量和列向量是否归一化:如果矩阵满足条件1和条件2,那么还需要判断行向量和列向量是否归一化,即是否满足每一行和每一列的范数都等于1。

5. 判断矩阵的行列式是否为1或-1:如果矩阵满足条件1和条件2,那么它的行列式值必须为1或-1。

如果行列式的值不是1或-1,则说明矩阵不是正交矩阵。

三、具体实现方法下面我们将详细介绍上述几个环节的具体实现方法。

1. 判断矩阵是否是方阵:在 Python 中,可以使用 NumPy 库的 shape 函数来获取矩阵的形状,如果矩阵的行数和列数相等,则说明矩阵是方阵,具体实现代码如下:``` pythonimport numpy as npdef is_square_matrix(matrix):shape = np.shape(matrix)return shape[0] == shape[1]```2. 判断矩阵是否满足AA^T=A^TA=I:在 Python 中,可以使用 NumPy 库的 dot 函数和 transpose 函数求解矩阵乘积和矩阵转置,具体实现代码如下:``` pythonimport numpy as npdef is_orthogonal_matrix(matrix):if not is_square_matrix(matrix):return FalseAAt = np.dot(matrix, matrix.T)AtA = np.dot(matrix.T, matrix)return np.allclose(AAt, np.eye(matrix.shape[0])) and np.allclose(AtA,np.eye(matrix.shape[1]))```其中 np.allclose 函数用于判断两个数组是否相等,可以通过设置 rtol 和 atol参数来控制误差容限。

标准正交矩阵

标准正交矩阵

标准正交矩阵在线性代数中,正交矩阵是一种非常重要的概念。

它不仅在数学理论中有着重要的地位,而且在物理、工程等应用领域也有着广泛的应用。

本文将对标准正交矩阵进行详细的介绍,包括定义、性质、应用等方面的内容。

首先,我们来看一下标准正交矩阵的定义。

一个n阶实矩阵A称为正交矩阵,如果它满足下面的条件,A的转置矩阵A^T等于A的逆矩阵A^(-1),即A^T·A=I,其中I是n阶单位矩阵。

另外,如果A的每一列都是单位向量,并且两两正交(即内积为0),那么A也被称为标准正交矩阵。

标准正交矩阵具有一些重要的性质。

首先,它的行列式的值为1或-1,这是因为A^T·A=I,所以|A^T|·|A|=|I|=1,因此|A|^2=1,所以|A|=1或-1。

其次,标准正交矩阵的逆矩阵就是它的转置矩阵,即A^(-1)=A^T。

另外,标准正交矩阵的行(或列)向量构成一个标准正交基,这对于解决线性方程组、求解特征值等问题非常有用。

标准正交矩阵在实际中有着广泛的应用。

在几何学中,标准正交矩阵可以表示旋转、反射等刚体运动,它可以保持向量的长度和夹角不变。

在信号处理中,标准正交矩阵可以用来进行正交变换,如傅里叶变换、离散余弦变换等。

在密码学中,标准正交矩阵也有着重要的应用,如Hadamard矩阵就是一种特殊的标准正交矩阵,它被广泛应用于分组密码算法中。

总之,标准正交矩阵是线性代数中的重要概念,它具有许多重要的性质和应用。

通过对标准正交矩阵的深入理解,可以帮助我们更好地理解线性代数的知识,同时也可以为我们在实际问题中的应用提供有力的工具。

希望本文对读者对标准正交矩阵有所帮助,也希望读者能够进一步深入学习和探讨这一重要的数学概念。

正交矩阵几何含义

正交矩阵几何含义

正交矩阵几何含义
正交矩阵是一种特殊的方块矩阵,其行向量和列向量皆为正交的单位向量。

这意味着任意两个行向量或两个列向量都是正交的,即它们的点积为0。

由于这些向量是单位向量,所以它们的长度为1。

当我们用这种矩阵对向量进行变换时,得到的新向量仍然保持原始向量的长度和夹角不变。

因此,正交矩阵经常被用来描述旋转、镜像等几何变换,因为这些变换不会改变物体的大小和方向。

另外,从数学的角度来说,如果一个n阶实矩阵A满足AAT=E或ATA=E,那么这个矩阵A就被称为正交矩阵。

这里的E表示单位矩阵。

这个定义不仅适用于实数矩阵,还可以用于元素来自任何域的矩阵。

4.3正交矩阵

4.3正交矩阵
其基础解系为
1 1 2 1 , 3 0 0 1

P 1 2
1 1 1 3 1 1 0 1 0 1

6 4 1 1 1 1 A PP P 3 P 1 4 1 1 1 4 3
2 i iT aii 1, i 1,2,, n,
即 aii 1,
i 1,2,, n,
2 实对称矩阵的特征值与特征向量
实对称矩阵的特征值全是实数
实对称矩阵不同特征值所对应的实特征向量
正交
对于 n 阶实对称矩阵 A , 存在正交矩阵 Q s.t.
Q AQ Q AQ
AT A1 A*
即 aij Aij
i, j 1,2,, n(n 3) A 是正交矩阵, 且 | A | 1 (| A | 1)

n ( n > 2) 阶矩阵 A 是 行列式为 1 ( - 1) 的 正交矩阵
A 是非零实矩阵, 且
aij Aij , (aij Aij ) i, j 1,2,, n(n 3)
对 1 2 3 3, (3E A) X 0 的基础解系 为 1 1 1 1 , 0 , 0 0 1 0 0 0 1
正交化单位化得
1 1 1 1 1 1 1 1 1 , , 2 0 6 2 2 3 1 0 0 3 对 4 5, (5E A) X 0 的基础解系经
T T T 1 1 1 2 1 n T T T 21 2 2 2 n

正交矩阵

正交矩阵

a11 a21
an1
a12 a22 an2
a1n a2n
a11 a12
ann
a1n
a21 a22 a2n
an1 an2
ann
1 0
0
0 1 0
0 0
1
ai12 ai22 ain2 1(i 1,2, , n)
ai1a j1 ai2a j2 ain a jn 0 (i j)

2
1
2
2
2
n
……………
… n1
n
2
n
n
0 0
1 0
0
0 1
E
故A是正交矩阵
【例(补)】设A为n阶方阵,n为奇数,且A为 正交阵,A 1。证明:E-A不可逆
证明:因为A为正交阵,有 AA E
E A AA A (A E)A
(A E) A (A E)
(A E) A E (1)(E A) (1)n E A EA 2 E A 0 ,即E A 0 所以,E-A不可逆
问x为何值时,A为正交矩阵
解:要使A为正交矩阵,必须 A 1
2x 0
0
A 0
0
cos 123
sin 123
sin 123
cos 123
2xcos2 sin2 2x
123
123
x1 2
2x
A 0
0
0 cos
123 sin
123
0
sin
123
cos 123
即要证:
i , j
0
1
i j i j
由 1 2 n 1 2 n E
即 1 2 n 1 2 n

正交矩阵

正交矩阵

正交矩阵的作用引言正交矩阵是一类重要的实方阵,由于它的一些特殊的性质,使得它在不同的领域都有着广泛的作用,也推动了其它学科的发展.本文从正交矩阵的最主要的性质入手,来讨论它的四点作用.首先,我们来了解一下正交矩阵的定义. 一.正交矩阵的定义及性质 (一)正交矩阵的定义定义1 n 阶实矩阵A ,若满足A A E '=,则称A 为正交矩阵. 定义2 n 阶实矩阵A ,若满足AA E '=,则称A 为正交矩阵. 定义3 n 阶实矩阵A ,若满足1A A -'=,则称A 为正交矩阵. 定义4 n 阶实矩阵A 的n 个行(列)向量是两两正交 的单位向量,则称A 为正交矩阵. 以上四个定义是等价定义. (二)正交矩阵的性质设A 为正交矩阵,它有如下的主要性质. <1>∣A ∣=±1,A -1存在,并且A -1也为正交矩阵; <2>A ′,A *也是正交矩阵;当∣A ∣=1时,*A A '=,即ij ij a A =;当∣A ∣=-1时,*A A '=-,即ij ij a A =-.<3>若B 也是正交矩阵,则11,,,,AB A B AB A B AB --''都为正交 矩阵.证明 <1>显然 1A =±()1111()()A A A ----''== 所以1A -也是正交矩阵.<2>1A A -'=,显然A '为正交矩阵.由 1A =±,*1A A A A-'==当 1A =时,*A A '=,即ij ij a A = 当 1A =-时,*A A '=-,即ij ij a A =- 所以*A 为正交矩阵. <3>由1A A -'= ,1B B -'= 可知111()()AB B A B A AB ---'''===故AB 为正交矩阵.由<1>,<2>推知11,,,A B AB A B AB --''均为正交矩阵.正交矩阵的性质主要有以上几点,还有例如它的特征值的模为1,且属于不同特征值的特征向量相互正交;如果λ是它的特征值,那么1λ也是它的特征值等,这些性质这里就不再证明了.运用这些性质,我们来讨论一下它在以下四方面的一些作用.二.正交矩阵的作用(一)正交矩阵在线性代数中的作用在正交矩阵中,有一类初等旋转矩阵,我们也称它为Givens 矩阵.这里,我们将利用正交矩阵可以表示成若干初等旋转矩阵的乘积,给出化欧氏空间的一组基为标准正交基的另一种方法.设向量12(,,,)n W w w w '= ,令)s j i =>, ,jiw w c d s s==,则称n 阶矩阵11ij c d i T d c j i j ⎛⎫⎪⎪ ⎪ ⎪= ⎪ ⎪- ⎪⎪⎪⎝⎭行行列列为初等旋转矩阵.初等旋转矩阵ij T ,是由向量W 的第,i j 两个元素定义的,与单位矩阵只在第,i j 行和第,i j 列相应的四个元素上有差别.设ij T 是由向量W 定义的初等旋转矩阵()j i >,则有如下的性质: 〈1〉ij T 是正交矩阵; 〈2〉设12(,,,)ij n T W u u u '= 则有 ,0,(,)i j k k u s u u w k i j ===≠;〈3〉用ij T 左乘任一矩阵A ,ij T A 只改变A 的第i 行和j 行元 素(用ij T 右乘任一矩阵A ,A ij T 只改变A 的第i 列和j 列元素).证明 〈1〉22222()1i j w w c d s++== ,故ij ij T T E '=,ij T 是正交矩阵.〈2〉由ij T 的定义知,用ij T 左乘向量W ,只改变W 的第,i j 两个元素,且0j ii jj i j w w w w u dw cw ss =-+=-+=所以ij T 左乘W ,使ij T W 的第i 个分量非负,第j 个分量为0,其余分量不变.〈3〉根据〈2〉及矩阵乘法立即可以得出此结论.引理1 任何n 阶实非奇异矩阵()ij n n A a ⨯=,可通过左连乘 初等旋转矩阵化为上三角矩阵,且其对角线元素除最后一个外都是正的.定理1 设P 是n 阶正交矩阵〉〈1若1P =,则P 可表示成若干个初等旋转矩阵的乘积,即12r P PP P = ;2若1P =-,则P 可以表示成若干个初等旋转矩阵的乘积再右乘以矩阵n E -,即12r P PP P = n E -,其中i P (i =1,2,…r )是初等旋转矩22ji i i j w w u cw dw ss s =+=+=阵.nE -1111n n⨯⎛⎫ ⎪⎪⎪= ⎪⎪⎪-⎝⎭证明 由于P 是n 阶正交矩阵,根据引理1知存在初等旋转矩阵r S S S ,,21使R P S S S S r r =-121 这里R 是n 阶上三角阵,而且R 的对角线上的元素除最后一个外都是正的,所以有12r P S S S R '''= (1) 由P 是正交矩阵和(1)式得E R S S S S R P P r r ='''=' 11 即 E R R =' (2)设 R =11121222n n nn r r r r r r ⎛⎫⎪⎪ ⎪ ⎪ ⎪⎝⎭ 其ii r >0(i =1,2,…n -1)则R R '=11122212nnnn r r r r r r ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭11121222n n nn r r r r r r ⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ =111⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 由上式得⎪⎪⎩⎪⎪⎨⎧-===-===-==≠=11111,,2,1,,1,0P n j i P n j i n j i j i j i r ij 且且所以1,1nE P R E P -⎧=⎪=⎨=-⎪⎩,当当 (3)于是由(1)(3)式得<1>当1=P 时,12r P S S S '''= ;<2>当1-=P 时, 12r P S S S '''= n E -. 记(1,2,,)i i P S i r '== ,i P 是初等旋转矩阵,故定理1结论成立.引理2 设()ij n m R A a A m A P O⨯⎛⎫=== ⎪⎝⎭,秩(),则其中P 是n 阶正交矩阵,R 是m 阶上三角阵,O 是m m n ⨯-)(零矩阵.利用以上的结论可得:定理2 设()ij n m A a A m ⨯==,秩(),则A 可以通过左连乘初 等旋转矩阵,把A '变为⎪⎪⎭⎫⎝⎛O R 的形式,其中R 是m 阶上三角阵,O 是m m n ⨯-)(矩阵.证明 由引理2知1R A P O⎛⎫= ⎪⎝⎭,其中P 是n 阶正交矩阵,1R 是m 阶上三角阵,又根据定理1知:11,1,1r r n P P P P P P E P -⎧=⎪=⎨=-⎪⎩ 其中),(r i P i ,21= 是初等旋转矩阵.<1>当1=P 时,11211 r r R R A PP P R R P P A O O⎛⎫⎛⎫''=== ⎪ ⎪⎝⎭⎝⎭令,<2>当1-=P 时,112r n R A PP P E O -⎛⎫= ⎪⎝⎭于是有 11r n R R P P A E O O -⎛⎫⎛⎫''== ⎪ ⎪⎝⎭⎝⎭显然,R 是m 阶上三角阵,当n m =时R 与1R 除最后一行对应元 素绝对值相等、符号相反外,其余元素对应相等.当时n m >时,1R R =,所以由<1>、<2>知本定理的结论成立.设112111n a a a α⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ ,122222n a a a α⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,……,12m mm nm a a a α⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭是欧氏空间n R 的子空间m V 的一组基,记11121212221212()m m m n n nm a a a a a a A aa a ααα⎛⎫⎪⎪==⎪⎪⎪⎝⎭是秩m 为的n m ⨯的矩阵.若()ij n m A a ⨯=满足定理2的条件,则存在初等旋转矩阵12,,,rP P P ,使1r R P P A O ⎛⎫''= ⎪⎝⎭(4) 且),,,(21r P P P P P E ='=21(,,,)r P P P '''12121r r r P P P P E P P PP -''''''''∴== (5) 由(4)(5)两式知,对A 、E 做同样的旋转变换,在把A 化为⎪⎪⎭⎫ ⎝⎛O R 的同时,就将E 化成了P ',而P 的前m 个列向量属于子空间m V .综上所述可得化欧氏空间的子空间m V 的一组基:12,,,m ααα ()12(,,,),1,2,,i i i ni a a a i m α'== 为一组标准正交基的方法为:<1>由已知基12,,,m ααα 为列向量构成矩阵()ij n m A a ⨯=;<2>对矩阵)(E A 施行初等旋转变换,化A 为⎪⎪⎭⎫⎝⎛O R ,同时E 就被化为正交矩阵P ',这里R 是m 阶上三角阵;<3>取P 的前m 个列向量便可得m V 的一组标准正交基. 显然,上述方法是求子空间m V 的一组标准正交基的另一种方法.下面,我们通过实例说明此方法的应用.例 求以向量1(1,1,0,0)α'=-,2(1,0,1,0)α'=-,)1,0,0,1(3'-=α为基的向量空间3V 的一组标准正交基.解 矩阵123111100()010001A ααα---⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭对分块矩阵)(E A 依次左乘12T ,23T ,34T12T=0022002200100001⎛⎫- ⎪⎪⎪-- ⎪ ⎪ ⎪ ⎪⎝⎭,23T=100000000001⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭34T=10000100121002⎛⎫ ⎪ -⎪ ⎪ -⎪⎝⎭得 34T 23T 12T )(E A=0000002311110002222⎫⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪---- ⎪⎝⎭则00011112222P ⎛⎫⎪ ⎪⎪ ⎪'= ⎪ ⎪---- ⎪⎝⎭,121210210022P ⎛⎫- ⎪ ⎪ ⎪- ⎪⎪= ⎪- ⎪⎪ ⎪- ⎪⎝⎭取100P ⎛ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,20P ⎛ = ⎪ ⎪ ⎪ ⎪⎝⎭,3P ⎛ = ⎪ ⎪⎝⎭则321,,P P P 就是由,,,,32ααα得到的3V 的一组标准正交基. (二)正交矩阵在拓扑和近世代数中的作用全体n 阶正交矩阵作成的集合,记为()n O ,从代数和拓扑的角度来看,我们可以证明它构成一拓扑群,并且进一步证明它是不连通的紧致lie 群. (1)()n O 构成拓扑群在证明()n O 构成拓扑群之前,先介绍一下相关的概念.定义5 设G 是任一集合,ℜ是G 的子集构成的子集族,且满足:1o 集合G 与空集Φ属于ℜ; 2o ℜ中任意个集的并集属于ℜ; 3o ℜ中任意有穷个集的交集属于ℜ;称ℜ是G 上的一个拓扑,集合G 上定义了拓扑ℜ,称G 是一个拓扑空间.定义6 设(,)G 是一个代数体系,若满足:1o ,,,()()a b c G a b c a b c ∀∈= ; 2o st G e G a ,,∈∃∈∀e a a e a == ;3o st G a G a ,,1∈∃∈∀-11a a a a e --== ; 则称G 是一个群.定义7 如果G 是一个拓扑空间,并赋予群的机构,使得群的 乘法运算 u : G ⨯G →G ; 求逆运算 v : G →G ; 是连续映射,就称G 为拓扑群.根据上面的定义,我们分三步来实现证明全体n 阶正交矩阵作成的集合()n O 构成拓扑群.〈1〉 全体n 阶正交矩阵作成的集合()n O 构成一拓扑空间. 〈2〉 全体n 阶正交矩阵作成的集合()n O 构成一群. 〈3〉 全体n 阶正交矩阵作成的集合()n O 构成一拓扑群. 证明 〈1〉设M 表示所有具有实元素的n 阶矩阵作成的集合,以A =()ij a 表示M 的一个代表元素.我们可以把M 等同于n 2维欧氏空间2n E,也就是将A =()ij a 对应于2n E的点111212122(,,,,,,,,,,)n n n na a a a a a a a .ℜ是点集2n E 的子集族,则2nE 和Φ都属于ℜ,ℜ中任意个集的并集属于ℜ,ℜ中有穷个集的交集也属于ℜ,可以验证2n E 构成一拓扑空间,从而M 成为一个拓扑空间.()n O 是所有具有实元素的n 阶正交矩阵,所以是M 的子集合,于是由M 的拓扑可以诱导出这个子集合的拓扑,从而()n O 构成M 的一个子拓扑空间.〈2〉1o )(,,n O C B A ∈∀ 由于矩阵的乘法满足结合律,所以)()(BC A C AB =2o st O E n n ,)(∈∃ A AE A E O A n n n ==∈∀,)(3o st A A O A n ,,1)('=∃∈∀- E A A AA A A A A ='=='=--11所以正交矩阵作成的集合 )(n O 对于乘法运算可构成一群.〈3〉对于〈1〉中的拓扑空间M 的拓扑,定义矩阵乘法m :M M M ⨯→设(),()ij ij A a B b ∀==,则乘积m (A ,B )的第ij 个元素是1nik kj k a b =∑.现在M具有乘积空间1112(E E E n ⨯⨯⨯ 个因子)的拓扑,对于任何满足1,i j n ≤≤的,i j ,我们有投影映射1:ij M E π→,将矩阵A 映为它的第ij 个元素.合成映射1:ij m M M M E π⨯→→,将A 和B 的乘积m (A ,B )映为它的第ij 个元素.现在1(,)nij ik kj k m A B a b π==∑是A 与B 的元素的多项式,因此ij m π连续,投影映射ij π是连续的,从而证明映射m 是连续的.因为()n O 具有M 的子空间拓扑,是M 的一个子拓扑空间,且由正交矩阵的性质〈3〉及上面的讨论知,映射()()():n n n m O O O ⨯→也是连续的.()n O 中的矩阵可逆,定义求逆映射()():n n f O O →,1()()n A O f A A -∀∈=.由于合成映射1()():ij n n f O O E π→→,将()n A O ∀∈映为1A -的第ij 个元素,即A '的第ij 个元素,由正交矩阵的性质〈2〉,*A A A '=,所以ji ji A a A =,即()ji ij A f A Aπ=,A 的行列式及A 的代数余子式都是A 内元素的多项式,且0A ≠,所以ij f π为连续的,而投影映射ij π为连续的,所以求逆映射()():n n f O O →为连续的.至此,()n O 又是一个拓扑空间,并且构成群,对群的乘法与求逆运算都是拓扑空间的连续映射,因而所有n 阶正交矩阵作成的集合()n O 构成一拓扑群,称它为正交群. (2)()n O 是紧致lie 群在证明之前我们知道一下有关的定义和定理.定义8 设G 为拓扑群,G 的拓扑为n 维实(或复)解析流形,且映射11212(,)g g g g -→ 12,g g G ∀∈ 为解析流形G G ⨯到G 上的解析映射,则称G 为n 维lie 群.定理3 欧氏空间内的有界闭集是紧致子集.证明 A M ∀∈(所有具有实元素的n 阶矩阵作成的集合),A 对应2n 维欧氏空间2n E 的点1112121231(,,,,,,)n n nn a a a a a a a α ,M 可作为2n 维欧氏空间.A 的行列式det A 为元素1112121231,,,,,,n n nn a a a a a a a 的解析函数,{}det 0A M A ∈=为M的闭子集,因此{}*\det 0M M A M A =∈=为M 中的开子集.这时,按诱导拓扑可以知道*M 为解析流形,且关于矩阵的乘法和求逆运算均解析,故*M 为2n 维lie 群.()n O 为*M 的闭子集,按诱导拓扑为子流形,()n O 为lie 群. 为了证明()n O 紧致,根据定理内容,只要证明M 等同于2n E 时,()n O 相当于2n E 内的有界闭集.设 ()n A O ∀∈,由于AA E '=有1nij kjik j a bδ==∑ 1,i k n ≤≤对于任意的 ,i k ,定义映射1:ik f M E → A M ∀∈ 1()nik ij kj j f A a b ==∑则()n O 为下列各集合的交集 1(0)ik f - 1,i k n ≤≤ i k ≠ 1(1)ii f - 1i n ≤≤由于(1,)ik f i k n ≤≤都是连续映射,所以上述每个集合都是闭集.因此()n O 是M 的闭集.由于11nij ij j a b ==∑,因此()n O 是M 的有界闭集,这就证明了()n O 的紧致性.在拓扑结构上是紧致的lie 群,我们称为紧lie 群,所以()n O 为紧lie 群.(3)()n O 是不连通的定义9 设X 是一个拓扑空间,X 中存在着两个非空的闭子集A 和B ,使A B X = 和A B =Φ 成立,则称X 是不连通的.证明 我们再设()n SO 是所有行列式为1的正交矩阵构成的集合,S 为所有行列式为-1的正交矩阵构成集合.因为det :1()n SO E →是连续映射,而我们知道单点集{}1是1E 的闭集,1()det (1)n SO -=,在连续映射下,任何一个闭集的原象也是闭集,所以()n SO 也为闭集.()n SO 为()n O 的闭集,同理,我们也可以证明S 是闭集.因为()()n n SO S O = , ()n SO S =Φ ,而()n SO 和S 是闭集,有不连通的定义我们可以直接证明()n O 是不连通的. (三)正交矩阵在化学中的作用在结构化学原子轨道杂化理论中,原子中能级相近的几个原子轨道可以相互混合,从而产生新的原子轨道.杂化过程的数学表达式为1nk ki i i c φφ==∑1,2,;1,2,i n k == ,k φ为新的杂化轨道,i φ为参加杂化的旧轨道,ki c 为第k 个杂化轨道中的第i 个参加杂化轨道的组合系数.在杂化过程中,轨道数是守恒的,并且杂化轨道理论有三条基本原则:〈1〉杂化轨道的归一性杂化轨道(1,2,)k k n φ= 满足1k k d τφφ=⎰.〈2〉 杂化轨道的正交性0()k ld k l τφφ=≠⎰.〈3〉 单位轨道贡献每个参加杂化的单位轨道,在所有的新杂化轨道中该轨道成分之和必须为一个单位,即2222121nki i i ni k c c c c ==+++∑ =1.由杂化轨道原理,原子轨道的杂化,实际是由一组相互正交的单位基向量,通过线性变换转化成为另一组相互正交的单位基向量.在线性代数中由一组标准正交基到另一组标准正交基的过渡矩阵是正交矩阵,那么原子轨道的杂化,就可以转化为求出正交矩阵,作线性替换的过程. (1)3sp 杂化轨道.以甲烷分子的结构为例,激发态碳原子的电子组态为:21111*(1)(2)(2)(2)(2)x y z c s s p p p ,这样在形成4CH 分子时,激发态碳原子的一个2s 原子轨道和3个2p 原子轨道进行杂化形成4个等同的3sp 杂化轨道.设在激发态碳原子中四个能量相近的原子轨道2s φ、2xp φ、2yp φ、2zp φ是一组相互正交的基向量,再通过线性变换将它们转化成另一组相互正交的基向量a φ、b φ、c φ、d φ,那么线性变换系数矩阵A 必为正交矩阵.211121314221222324231323334414243442x yz s a p b p c d p a a a a a a a a a a a a a a a a φφφφφφφφ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ = 2222xy zs p p p A φφφφ⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎝⎭A 为正交矩阵,111213142144,,,,,,a a a a a a 分别是a φ、b φ、c φ、d φ在四个坐标轴上的分量.在等性杂化中,四个基向量a φ、b φ、c φ、d φ在四个坐标轴上的分量是相等的,即由四个能量相近的原子轨道2s φ、2xp φ、2yp φ、2zp φ进行杂化时形成四个等同的3sp 杂化轨道,在四个杂化轨道上,原子轨道s 和p 成份完全相同.根据这些理论,我们来求正交矩阵A .2222111213141a a a a +++= 11121314a a a a ===11241a =∴ 11121314a a a a ====12(取正值) 因为是等性杂化轨道.222211213141a a a a === 222211121314a a a a +++=1∴ 11213141a a a a ====12(取正值)∴ 22232432333442434411112222121212a a a A a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭22232411111022222a a a ⨯+++= 22222223241()12a a a +++= 222324a a a ==∴ 取符合条件的 2212a =,2312a =,2412a = 32333411111022222a a a ⨯+++= 22322333243411022a a a a a a ⨯+++= 即 32333412a a a ++=-32333412a a a --=-3212a ∴=- 3334a a =-取 3312a =,3412a =-42434411111022222a a a ⨯+++= 42434411111022222a a a ⨯+--= 42434411111022222a a a ⨯-+-= 4212a ∴=- 4312a =- 4412a =-11112222111122221111222211112222A ⎛⎫ ⎪ ⎪ ⎪--⎪∴= ⎪ ⎪-- ⎪ ⎪--⎪ ⎝⎭可以写出四个3sp 杂化轨道的杂化轨道式为:22221()2x y za s p p p φφφφφ=+++22221()2x y z b s p p p φφφφφ=+--22221()2x y z c s p p p φφφφφ=-+-22221()2x y z d s p p p φφφφφ=--+(2)sp 杂化轨道一个2s 和一个2p 原子轨道杂化形成两个sp 杂化轨道.同样,线性变换211112222122x s p aa a a φφφφ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的系数矩阵11122122a a A a a ⎛⎫=⎪⎝⎭是正交矩阵. 根据等性杂化理论 2211211a a += ,1121a a =1121a a ∴==221112121,a a a +=∴=(取正值)22220,a a =∴=A ⎫⎪⎪∴= sp ∴杂化轨道式为:122)x s p φφφ=+222)x s p φφφ=- (四)正交矩阵在物理中的作用任意刚体运动都对应一个正交矩阵,三维空间一条曲线经过刚体运动,其曲率和挠率是不变的,称它们为运动不变量.下面,我们来考察曲线作刚体运动时的量.设曲线}{1111()()()()r t x t y t z t →=与曲线()r t →}{()()()x t y t z t =只差一个运动,从曲线1()r t →到曲线1()r t →的变换为111213x x b y A y b z z b ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1) 其中111213212223313233a a a A a a a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭是三阶正交矩阵,1,23,,b b b 是常数. 对(1)两边求 n 阶导数得()()1()()1()()1n n n n n n x x y A y z z ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭从而有 111121312122233132331x x a x a y a z y A y a x a y a z a x a y a z z z ⎛⎫⎛⎫'''''''''''''''++⎛⎫⎪ ⎪ ⎪ ⎪ ⎪'''''''''''''''==++ ⎪ ⎪ ⎪ ⎪'''''''''++'''''' ⎪ ⎪⎝⎭⎝⎭⎝⎭(2) 因为A 是正交矩阵,所以亦有1()()r t r t ''= (3)另一方面,由一阶,二阶,三阶导数,可作成矩阵TA z y x z y x z y x z y x z y x z y x ⎪⎪⎪⎭⎫⎝⎛''''''''''''''''''=⎪⎪⎪⎭⎫ ⎝⎛''''''''''''''''''111111111 两边取行列式,由det 1A =±得z y x z y x z y x A z y x z y x z y x z y x z y x z y x T ''''''''''''''''''±=''''''''''''''''''=''''''''''''''''''111111111现在取(1()r t ' 1()r t '' 1()r t ''')=(()r t ' ()r t '' ()r t ''' ) 来讨论, 而(1()r t ' 1()r t '' 1()r t ''')=-(()r t ' ()r t '' ()r t ''' )可类似地讨论.因为111111111111111111111111y y x x z x x z z y z y z y x z y x z y x z y x '''''''''+'''''''''+'''''''''='''''''''''''''''' (4)y y x x z x x z z y z z y y x z y x z y x z y x '''''''''+'''''''''+'''''''''='''''''''''''''''' (5)(2)代入(4)的右边得111111121321222311111131333311()()()y z z x a x a y a z a x a y a z y z z x x y a x a y a z z y ''''''''''''''''''''''++++++'''''''''''''''''''++'''')()()(111133111123111113111132111122111112111131111121111111y y x x z a x x z z z a z z y y z a y y x x y a x x z z y a z z y y y a y y x x x a x x z z x a z z y y x a '''''''''+'''''''''+'''''''''+'''''''''+'''''''''+'''''''''+'''''''''+'''''''''+'''''''''= (6) 因(4)与(5)右边相等,有(5)右边与(6)式右边相等得111131111121111111y y x x a x x z z a z z y y a z z y y ''''''+''''''+''''''='''''' 111132111122111112y y x x ax z x z a z z y y a x x z z ''''''+''''''+''''''='''''' 111133111123111113y y x x a x x z z a z z y y a y y x x ''''''+''''''+''''''=''''''由正交矩阵的性质〈2〉知,ij ij a A =且由 1(,1,2,3)nji kj jk i A A j k δ===∑将上面三式左右分别平方相加222y z z x x y y z z x x y ''''''++''''''''''''=21122211121311()y z AAA y z ''++''''+21122221222311()z x AAA z x ''++''''+21122231323311()x y A A A x y ''++''''=222111111111111z x x y y z z x x y y z ''''''++''''''''''''写成矢函数,即得11()()()()r t r t r t r t →→→→''''''⨯=⨯于是我们可以推得: 111331()()()()()()r t r t r t r t K K r t r t →→→→→→''''''⨯⨯===''11112211(()()())(()()())(()())(()())r t r t r t r t r t r t r t r t r t r t ττ→→→→→→→→→→''''''''''''===''''''⨯⨯ 这里的11,;,K K ττ分别是曲线1(),()r t r t →→的曲率与挠率.参考文献[1]张凯院 徐仲等编 《矩阵论》 西北工业大学出版社 2001.3 160~164页[2]赵成大等 《物质结构》 人民教育出版社 1982.9 219~226页[3]熊金城编《点集拓扑讲义》高等教育出版社1998.5 110~111,193~195页[4]严志达等《lie群及其lie代数》高等教育出版社1985.10 11,16~17页[5]丘维声《有限群和紧群的表示论》北京大学出版社1997.12 271~273,276~277页[6]戴立辉等《正交矩阵的若干性质》华东地质学院学报2002.9 第25卷第31期267~268页[7]刘钊南《正交矩阵的作用》湘潭师范学院学报1987 11~16页[8]刘国志《欧氏空间子空间的标准正交基的全新方法—Givens变换法》抚顺石油学院学报1996.3 16卷1期78~ 81页[9]张焕玲等《一种求欧氏空间子空间的标准正交基的新方法》山东科学1996.3 9卷1期14~16页[10]陈少白《空间曲线的刚体运动基不变量》武汉科技大学学报2003.12 26卷4期424~426页致谢本论文是在我的指导教师任艳丽副教授的亲切关怀和悉心指导下完成的.从论文的选材到定稿,任老师给予我亲切的关怀和指导,从任老师那里我不仅学到了专业知识,更重要的是学到了严谨的治学态度,独立研究的工作作风和不断进取的精神,在此,我谨向我的指导教师任艳丽老师表示最衷心的感谢.我要向所有教过我的老师和帮助过我的同学致以深深的感谢,是他们的孜孜不倦的教诲和无私的帮助才使我今天的工作得以顺利进行.我特别感谢我的同学和朋友,给我关怀和鼓励.我还要感谢数学系002班大学四年共同奋斗过的所有同学.。

正交矩阵的计算公式

正交矩阵的计算公式

正交矩阵的计算公式
正交矩阵是指行列式为1且各行(列)向量互相正交的矩阵。

对于一个n阶正交矩阵A,其满足A^T * A = I,即其转置矩阵和自身的乘积为单位矩阵。

因此,可以通过求解A^T = A^-1来计算正交矩阵A的逆矩阵。

此外,正交矩阵的转置矩阵也是正交矩阵,即A^T也是正交矩阵。

因此,只需在矩阵A的列向量上施加Gram-Schmidt正交化过程,就可以得到一个正交矩阵。

具体地,假设矩阵A的列向量为
a1, a2, ..., an,那么可以通过以下步骤得到一个正交矩阵Q:
1. 令q1 = a1 / ||a1||,即将a1单位化作为第一列向量。

2. 对于每一个i(2 <= i <= n),令vi = ai - proj(q1, ai) - proj(q2, ai) - ... - proj(q(i-1), ai),其中proj(q, a)为
向量a在向量q上的投影向量。

3. 令qi = vi / ||vi||,即将vi单位化作为第i列向量。

4. 最终得到正交矩阵Q = [q1, q2, ..., qn]。

这是一个计算正交矩阵的基本公式,可以通过这个公式计算出任何大小的正交矩阵。

- 1 -。

正交矩阵

正交矩阵

6 2
1 7

3 2
6 3
2

是正交矩阵。
6
令 1 6 3 2 2 2 6 3
3 3 2 6
A

1 7
1
2
3
[1,2 ] 0,[1,2 ] 0,[2,3] 0
1 2 3 1
a1n xn amn xn
n
或 yi aij x j i 1, , m. j 1
定理 正交变换不改变向量的内积,从而不改变向量的模、 夹角和距离。
例3.12 验证平面旋转变换 y xsin ycos x xcos ysin
是正交变换。
解 其系数矩阵为
a是正交矩阵方阵a的列向量构成标准正交组方阵a的行向量构成标准正交组是正交矩阵推论2交换正交矩阵的诸列或诸行仍得到正交矩阵
4.2.2 正交矩阵
如果方阵A满足 AA E , 则 称A为正交矩阵 正交矩阵的性质
1. A A1
2. A 1
(这一条是显然的)
AA E AA A A A 2 E 1 A 1
cos A= sin
sin
cos

由于
ATA= cos sin
sin cos
cos

sin
sin
cos

=
1 0
0 1
所以A为正交矩阵,即平面旋转变换为正交变换。
1 3
(x

2
y

2z)

0
x
4 18
yz 1 18

1 (y z) 0
2
x2 y2 z2 1

正交矩阵与正交变换

正交矩阵与正交变换

正交矩阵与正交变换正交矩阵是线性代数中一个重要的概念,它与正交变换密不可分。

正交矩阵是一个方阵,其列向量是单位正交的,即彼此正交且模长为1。

正交变换是指将空间中的向量通过某种线性变换映射到另一个向量空间,并保持向量间的角度和长度关系不变。

正交矩阵正交矩阵是一个方阵,满足以下条件: 1. 矩阵的每一列都是单位正交的,即列向量之间两两正交,且每个列向量的模长为1。

2. 矩阵的每一行也是单位正交的,即行向量之间两两正交,且每个行向量的模长为1。

3. 矩阵的转置等于其逆,即A T=A−1。

正交矩阵的性质:1. 正交矩阵的行列式的值为1或-1。

2. 正交矩阵是可逆的,其逆矩阵也是正交的。

3. 正交矩阵的转置也是正交矩阵。

4. 两个正交矩阵的乘积仍然是正交矩阵。

正交矩阵在许多领域中有重要的应用,如图像处理、信号处理、几何变换等。

通过正交矩阵,我们可以实现旋转、镜像、投影等线性变换,从而处理和分析各种数据。

正交变换正交变换是指保持向量间的长度和夹角关系不变的线性变换。

在几何学中,正交变换是保持欧几里德空间中距离和内积不变的变换。

常见的正交变换包括旋转、镜像和投影等。

正交变换的特点: 1. 正交变换是保长度性的,即向量的长度在变换前后保持不变。

2. 正交变换是保角度性的,即向量之间的夹角在变换前后保持不变。

正交变换在图形学、物理学、工程学等领域有广泛的应用。

通过正交变换,我们可以实现坐标系之间的转换、数据的降维和压缩等操作,为数据处理和分析提供了便利。

总结正交矩阵与正交变换是线性代数和几何学中重要的概念,它们在数据处理、图像处理、物理学等领域有着广泛的应用。

正交矩阵具有列向量和行向量单位正交的特性,而正交变换是保持向量长度和夹角不变的线性变换。

通过深入了解正交矩阵与正交变换,我们可以更好地理解和应用线性代数的知识,为问题求解和数据处理提供更多可能性。

正交矩阵概念

正交矩阵概念

正交矩阵概念正交矩阵概念正交矩阵是线性代数中的一个重要概念,它具有许多重要的性质和应用。

本文将从定义、性质、构造和应用四个方面详细介绍正交矩阵的概念。

一、定义1.1 矩阵的定义在线性代数中,矩阵是由一组数排成若干行若干列的表格形式表示的数学对象。

一个$m\times n$的矩阵$A$可以写成如下形式:$$A=\begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n}\\a_{21} & a_{22} & \cdots & a_{2n}\\\vdots & \vdots & \ddots & \vdots\\a_{m1} & a_{m2} & \cdots & a_{mn}\end{bmatrix}$$其中$a_{ij}$表示第$i$行第$j$列元素。

1.2 正交矩阵的定义正交矩阵是指满足以下条件的方阵:(1) 所有列向量互相垂直;(2) 所有列向量模长为1。

即对于一个$n\times n$的矩阵$Q$,满足以下条件:$$Q^TQ=QQ^T=I_n$$其中$I_n$表示$n$阶单位矩阵。

二、性质2.1 正交矩阵的性质正交矩阵具有以下性质:(1) 正交矩阵的行向量和列向量都是单位向量,并且互相垂直;(2) 正交矩阵的逆矩阵等于它的转置矩阵;(3) 正交矩阵的行列式为$\pm 1$,即$\det(Q)=\pm 1$;(4) 正交矩阵保持向量长度和角度不变,即对于任意向量$x$,有$\|Qx\|=\|x\|$且$\angle(Qx,Qy)=\angle(x,y)$。

2.2 正交矩阵的乘积仍是正交矩阵如果$Q_1$和$Q_2$都是正交矩阵,则它们的乘积$Q=Q_1Q_2$也是正交矩阵。

证明:由于$Q_1$和$Q_2$都是正交矩阵,所以有:$$Q^T=Q_2^TQ_1^T=(QQ)^T=I_n$$因此,乘积$Q=Q_1Q_2$也是正交矩阵。

正交矩阵

正交矩阵

正交矩阵
如果:A A T =E,或A T A=E,则n阶实矩阵A称为正交矩阵,若A为单位正交阵,则满足以下条件:
1) A T是正交矩阵
2)(E为单位矩阵)
3) A的各行是单位向量且两两正交
4) A的各列是单位向量且两两正交
5) (Ax,Ay)=(x,y) x,y∈R
6) |A| = 1或-1
7)逆也是正交阵;
任何正交矩阵的行列式是+1 或−1。

反过来不是真的
定理
1. 方阵A正交的充要条件是A的行(列) 向量组是单位正交向量组;
2. 方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标
准正交基;
3. A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;
4. A的列向量组也是正交单位向量组。

5. 正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。

在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵,如果正交矩阵的行列式为+1,则我们称之为特殊正交矩阵。

02-1.2 正交矩阵

02-1.2 正交矩阵
《多元统计分析》MO O C
1.2 正交矩阵
王学民
两个向量正交
❖ a和b正交:
b1
ab
a1, a2 ,, a p
b 2Leabharlann b pa1b1 a2b2 a pbp 0
1
正交矩阵
❖ A为正交矩阵:A为方阵,满足AA′=I。 ❖ 正交矩阵的三个等价定义:
AA I A A 1 AA I
❖ 正交阵的行列式非1即−1,这两种情形在统计学中所起的作用是一样 的。为简单起见,本课程只涉及|A|=1时的情形。
❖ |A|=1时的正交变换y=Ax几何上意味着对原p维坐标系作一刚性旋转( 或称正交旋转)。
➢ 如果某点在旧坐标系下的坐标为x,则经上述旋转后该点在新坐标系下 的坐标为y(=Ax)。
4
等式两边取行列式 可得: |A|=1或|A|=−1。
2
❖ 当p=2时,
正交矩阵A的几何意义
y
y1 y
2
cos sin
sin x1 cosx
2
Ax
3
❖ 当p=3时,坐标系(刚性)旋转后新旧坐标的变换可表达为
y1 * * * x1
y
y2 y3
* *
* *
**
x2 x3
Ax
A一定为正交矩阵。
❖ 结论 设A为p阶正交阵,分别按列向量和行向量分块
a1
A
a1,a 2 ,,a p
a
2
a
p
证明可见书中 的例1.2.2

A为正交阵 a1,a2 ,,a p是一组正交单位(列)向量 a1, a2,, ap是一组正交单位(行)向量
5

正交矩阵

正交矩阵

正交矩阵正交矩阵是实数特殊化的酉矩阵,因此总是正规矩阵。

尽管我们在这里只考虑实数矩阵,这个定义可用于其元素来自任何域的矩阵。

正交矩阵毕竟是从内积自然引出的,对于复数的矩阵这导致了归一要求。

目录定义 1n阶实矩阵 A称为正交矩阵,如果:A×A′=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”。

)若A为正交阵,则下列诸条件是等价的:1) A 是正交矩阵2) A×A′=E(E为单位矩阵)3) A′是正交矩阵4) A的各行是单位向量且两两正交5) A的各列是单位向量且两两正交6) (Ax,Ay)=(x,y) x,y∈R正交矩阵通常用字母Q表示。

举例:A=[r11 r12 r13;r21 r22 r23;r31 r32 r33]下面是一些小正交矩阵的例子和可能的解释。

恒等变换。

旋转16.26°。

针对x轴反射。

旋转反演(rotoinversion): 轴 (0,-3/5,4/5),角度90°。

置换坐标轴。

编辑本段基本构造低维度最简单的正交矩阵是1×1 矩阵 [1] 和 [−1],它们可分别解释为恒等和实数线针对原点的反射。

如下形式的2×2 矩阵它的正交性要求满足三个方程矩阵性质实数方块矩阵是正交的,当且仅当它的列形成了带有普通欧几里得点积的欧几里得空间R的正交规范基,它为真当且仅当它的行形成R的正交基。

假设带有正交(非正交规范)列的矩阵叫正交矩阵可能是诱人的,但是这种矩阵没有特殊价值而没有特殊名字;他们只是MM = D,D是对角矩阵。

任何正交矩阵的行列式是 +1 或−1。

这可从关于行列式的如下基本事实得出:反过来不是真的;有 +1 行列式不保证正交性,即使带有正交列,可由下列反例证实。

对于置换矩阵,行列式是 +1 还是−1 匹配置换是偶还是奇的标志,行列式是行的交替函数。

比行列式限制更强的是正交矩阵总可以是在复数上可对角化来展示特征值的完全的集合,它们全都必须有(复数)绝对值 1。

正交矩阵和标准正交矩阵

正交矩阵和标准正交矩阵

正交矩阵和标准正交矩阵正交矩阵和标准正交矩阵是线性代数中重要的概念。

它们在许多数学和工程领域中都有广泛的应用。

本文将介绍正交矩阵和标准正交矩阵的定义、性质以及它们的应用。

首先,我们来定义正交矩阵。

一个n×n的实矩阵A被称为正交矩阵,如果它满足下列条件:1. A的每一列都是单位向量;2. A的每一行都是单位向量;3. A的每一列都与其他列正交(即内积为0);4. A的每一行都与其他行正交。

接下来,我们来定义标准正交矩阵。

一个n×n的实矩阵Q被称为标准正交矩阵,如果它满足下列条件:1. Q的每一列都是单位向量;2. Q的每一列都与其他列正交。

可以看出,标准正交矩阵是正交矩阵的一种特殊情况。

标准正交矩阵的特点是其转置矩阵等于其逆矩阵,即Q^T = Q^(-1)。

正交矩阵和标准正交矩阵有许多重要的性质。

首先,正交矩阵的行列式的绝对值为1,即|det(A)| = 1。

这意味着正交矩阵的行列式不为0,因此它是可逆的。

其次,正交矩阵的转置矩阵等于其逆矩阵,即A^T= A^(-1)。

这个性质使得正交矩阵在求解线性方程组和矩阵的逆等问题中非常有用。

标准正交矩阵的性质更加简洁明了。

首先,标准正交矩阵的转置矩阵等于其逆矩阵,即Q^T = Q^(-1)。

这个性质使得标准正交矩阵在求解线性方程组和矩阵的逆等问题中非常方便。

其次,标准正交矩阵的每一列都是单位向量,因此它们可以用来构造坐标系。

在计算机图形学和机器学习等领域中,标准正交矩阵常常用于旋转和变换操作。

正交矩阵和标准正交矩阵在许多数学和工程领域中都有广泛的应用。

在物理学中,正交矩阵常用于描述旋转和对称性。

在信号处理中,正交矩阵常用于正交变换,如傅里叶变换和离散余弦变换。

在计算机科学中,正交矩阵和标准正交矩阵常用于图像处理、数据压缩和机器学习等领域。

总结起来,正交矩阵和标准正交矩阵是线性代数中重要的概念。

它们具有许多重要的性质,可以用于求解线性方程组、矩阵的逆以及旋转和变换操作等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正交矩阵是满足AA=E的方阵,具有A=A1和A=±1的性质。一个方阵为正交矩阵的充分必要条件是其列向量或行向量构成标准正交组,这意味着这些向量之间是正交的且每个向量的模为1。交换正交矩阵的列或行,仍得到正交矩阵。通过具体例子,可以验证一个矩阵是否为正交矩阵,方法是检查其列向量是否满足标准正交组的条件。此外,标准正交组可以扩展,通过求解线性方程组可以找到与给定正交向量正交的向量,从而构成一个完整的正交矩阵。正交变换是由正交矩阵定义换中具有重要意义。例如,平面旋转变换就是一种正交变换,其系数矩阵是正交矩阵。
相关文档
最新文档