2020年初二(下)第三学月考试数学试卷

合集下载

2020年八年级数学下期末试卷含答案

2020年八年级数学下期末试卷含答案

2020年八年级数学下期末试卷含答案一、选择题1.若63n 是整数,则正整数n 的最小值是( )A .4B .5C .6D .72.若代数式11x x +-有意义,则x 的取值范围是( ) A .x >﹣1且x≠1B .x≥﹣1C .x≠1D .x≥﹣1且x≠13.下列命题中,真命题是( ) A .两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形 C .两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形4.如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A .3B .4C .5D .2.55.某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )A .1.95元B .2.15元C .2.25元D .2.75元6.如图2,四边形ABCD 的对角线AC 、BD 互相垂直,则下列条件能判定四边形ABCD为菱形的是( )A .BA =BCB .AC 、BD 互相平分 C .AC =BD D .AB ∥CD7.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表: 尺码(厘米)25 25.5 26 26.5 27购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为()A.25.5厘米,26厘米B.26厘米,25.5厘米C.25.5厘米,25.5厘米D.26厘米,26厘米8.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B.89C.8D.419.下列各组数,可以作为直角三角形的三边长的是( )A.2,3,4B.7,24,25C.8,12,20D.5,13,15AB=,10.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB的中点C'上.若6 BC=,则BF的长为( )9A.4B.32C.4.5D.511.下列运算正确的是()A.235+=B.32﹣2=3C.236⨯=D.632÷=12.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C .76D .80二、填空题13.已知一次函数y =kx +b(k≠0)经过(2,-1),(-3,4)两点,则其图象不经过第________象限.14.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE//BD ,DE//AC ,若AD=5,则四边形CODE 的周长______.15.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为_____.16.在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 17.若二次根式2019x -在实数范围内有意义,则x 的取值范围是_____. 18.已知一次函数y=kx+b 的图象如图,则关于x 的不等式kx+b >0的解集是______.19.一组数据1,2,3,x ,5的平均数是3,则该组数据的方差是_____.20.如图,直线1y kx b =+过点A(0,2),且与直线2y mx =交于点P(1,m),则不等式组mx > +kx b > mx -2的解集是_________三、解答题Y的对角线相交于点O,直线EF过点O分别交BC,AD于点E、F,21.如图,ABCDG、H分别为OB、OD的中点,求证:四边形GEHF是平行四边形.22.2019年4月23日世界读书日这天,滨江初二年级的学生会,就2018年寒假读课外书数量(单位:本)做了调查,他们随机调查了甲、乙两个班的10名同学,调查过程如下收集数据甲、乙两班被调查者读课外书数量(单位:本)统计如下:甲:1,9,7,4,2,3,3,2,7,2乙:2,6,6,3,1,6,5,2,5,4整理、描述数据绘制统计表如下,请补全下表:班级平均数众数中位数方差甲43乙6 3.2分析数据、推断结论(1)该校初二乙班共有40名同学,你估计读6本书的同学大概有_____人;(2)你认为哪个班同学寒假读书情况更好,写出理由.23.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.()1求每套队服和每个足球的价格是多少?()2若城区四校联合购买100套队服和a(a10)>个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;()3在()2的条件下,若a60=,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?24.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:×(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.=.25.已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE DF求证:四边形AECF是菱形.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】63n63n2⨯7n7n是完全平方数,满足条件的最小73n正整数n为7.【详解】∴7n是完全平方数;∴n的最小正整数值为7.故选:D.【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.==.解题关键是分解成一个完全平方数和一个代数式的积的形式.2.D解析:D【解析】【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【详解】依题意,得x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.D解析:D【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.4.D解析:D【解析】【分析】由▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,易证得△ABE,△CDE是等腰三角形,△BEC是直角三角形,则可求得BC的长,继而求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠CBE,∠DEC=∠BCE,∠ABC+∠DCB=90°,∵BE,CE分别是∠ABC和∠BCD的平分线,∴∠ABE=∠CBE=12∠ABC,∠DCE=∠BCE=12∠DCB,∴∠ABE=∠AEB,∠DCE=∠DEC,∠EBC+∠ECB=90°,∴AB=AE,CD=DE,∴AD=BC=2AB,∵BE=4,CE=3,∴5==,∴AB=12BC=2.5.故选D.【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE,△CDE是等腰三角形,△BEC是直角三角形是关键.5.C解析:C【解析】【分析】根据加权平均数的定义列式计算可得.【详解】解:这天销售的矿泉水的平均单价是510%315%255%120% 2.25⨯+⨯+⨯+⨯=(元),故选:C.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.6.B解析:B【解析】【分析】【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC、BD互相垂直,则需添加条件:AC、BD互相平分故选:B7.D解析:D【解析】【分析】【详解】试题分析:众数是26cm,出现了3次,次数最多;在这10个数中按从小到大来排列最中间的两个数是26,26;它们的中位书为26cm考点:众数和中位数点评:本题考查众数和中位数,解本题的关键是熟悉众数和中位数的概念8.B解析:B【解析】【分析】当t=5时,点P到达A处,根据图象可知AB=5;当s=40时,点P到达点D处,根据三角形BCD的面积可求出BC的长,再利用勾股定理即可求解.【详解】解:当t=5时,点P到达A处,根据图象可知AB=5,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=12 CD,当s=40时,点P到达点D处,则S=12CD•BC=12(2AB)•BC=5×BC=40,∴BC=8,∴AD=AC22225889AB BC++=故选B.【点睛】本题以动态的形式考查了函数、等腰三角形的性质、勾股定理等知识.准确分析图象,并结合三角形的面积求出BC的长是解题的关键.9.B解析:B试题解析:A、∵22+32≠42,∴不能构成直角三角形;B、∵72+242=252,∴能构成直角三角形;C、∵82+122≠202,∴不能构成直角三角形;D、∵52+132≠152,∴不能构成直角三角形.故选B.10.A解析:A【解析】【分析】【详解】∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9-BF)2,解得,BF=4,故选A.11.C解析:C【解析】【分析】根据二次根式得加减法法则及乘除法法则逐一计算即可得答案.【详解】B.,故该选项计算错误,,故该选项计算正确,,故该选项计算错误.故选:C.【点睛】本题考查二次根式得运算,熟练掌握运算法则是解题关键.12.C解析:C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10==∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=76. 故选C. 考点:勾股定理.二、填空题13.三【解析】设y=kx+b 得方程组-1=2k+b4=-3k+b 解得:k=-1b=1故一次函数为y=-x+1根据一次函数的性质易得图象经过一二四象限故不经过第三象限故答案:三解析:三 【解析】设y=kx+b ,得方程组解得:k=-1,b=1,故一次函数为y=-x+1,根据一次函数的性质,易得,图象经过一、二、四象限,故不经过第三象限. 故答案:三.14.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD 是等边三角形即可求出OD 的长度再通过证明四边形CODE 是菱形即可求解四边形C ODE 的周长【详解】∵四边形ABCD 是矩形∴∵∠解析:20 【解析】 【分析】通过矩形的性质可得OD OA OB OC ===,再根据∠AOB=120°,可证△AOD 是等边三角形,即可求出OD 的长度,再通过证明四边形CODE 是菱形,即可求解四边形CODE 的周长. 【详解】∵四边形ABCD 是矩形 ∴OD OA OB OC === ∵∠AOB=120°∴18060AOD AOB =︒-=︒∠∠ ∴△AOD 是等边三角形 ∵5AD = ∴5OD OA == ∴5OD OC == ∵CE//BD ,DE//AC∴四边形CODE 是平行四边形 ∵5OD OC == ∴四边形CODE 是菱形 ∴5OD OC DE CE ====∴四边形CODE 的周长20OD OC DE CE =+++=故答案为:20. 【点睛】本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.15.x >1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断试题解析:由图知:当直线y=x+b 的图象在直线y=ax+3的上方时不等式x+b >ax+3成立;由于两直线的交点横坐标为:x=1观解析:x >1 【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断.试题解析:由图知:当直线y=x+b 的图象在直线y=ax+3的上方时,不等式x+b >ax+3成立;由于两直线的交点横坐标为:x=1, 观察图象可知,当x >1时,x+b >ax+3; 考点:一次函数与一元一次不等式.16.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB 边的高即可得到答案【详解】如图作出AB 边上的高CD ∵AC=BC=13AB=10∴△ABC 是等腰三角形∴AD=BD=5根据勾股定理C解析:60 【解析】 【分析】根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案. 【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10, ∴△ABC 是等腰三角形, ∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2, 22135-,12ABC S CD AB =⋅V =112102⨯⨯=60,故答案为:60.此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.17.x>2019【解析】【分析】根据二次根式的定义进行解答【详解】在实数范围内有意义即x-20190所以x的取值范围是x2019【点睛】本题考查了二次根式的定义熟练掌握二次根式的定义是本题解题关键解析:x>2019【解析】【分析】根据二次根式的定义进行解答.【详解】x-在实数范围内有意义,即x-2019≥ 0,所以x的取值范围是x≥ 2019.2019【点睛】本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.18.【解析】【分析】直接利用一次函数图象结合式kx+b>0时则y的值>0时对应x的取值范围进而得出答案【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2故答案为:x<2【点睛】此题主要考查了一x<解析:2【解析】【分析】直接利用一次函数图象,结合式kx+b>0时,则y的值>0时对应x的取值范围,进而得出答案.【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2.故答案为:x<2.【点睛】此题主要考查了一次函数与一元一次不等式,正确利用数形结合是解题关键.19.2【解析】【分析】先用平均数是3可得x的值再结合方差公式计算即可【详解】平均数是3(1+2+3+x+5)解得:x=4∴方差是S2(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)21解析:2【解析】先用平均数是3可得x 的值,再结合方差公式计算即可. 【详解】 平均数是315=(1+2+3+x +5),解得:x =4, ∴方差是S 215=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]15=⨯10=2. 故答案为2. 【点睛】本题考查了平均数和方差的概念,解题的关键是牢记方差的计算公式,难度不大.20.【解析】【分析】【详解】解:由于直线过点A (02)P (1m )则解得故所求不等式组可化为:mx >(m-2)x+2>mx-20>-2x+2>-2解得:1<x <2 解析:12x <<【解析】 【分析】 【详解】 解:由于直线过点A (0,2),P (1,m ),则2k b m b +=⎧⎨=⎩,解得22k m b =-⎧⎨=⎩,1(2)2y m x ∴=-+,故所求不等式组可化为: mx >(m-2)x+2>mx-2, 0>-2x+2>-2, 解得:1<x <2,三、解答题21.见解析. 【解析】 【分析】通过证明△EOB ≌△FOD 得出EO =FO ,结合G 、H 分别为OB 、OD 的中点,可利用对角线互相平分的四边形是平行四边形进行证明. 【详解】证明:∵四边形ABCD 为平行四边形, ∴BO =DO ,AD =BC 且AD ∥BC . ∴∠ADO =∠CBO . 又∵∠EOB =∠FOD , ∴△EOB ≌△FOD (ASA ). ∴EO =FO .又∵G 、H 分别为OB 、OD 的中点, ∴GO =HO .∴四边形GEHF 为平行四边形. 【点睛】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.22.统计图补全见解析 (1)12 (2)乙班,理由见解析 【解析】 【分析】根据平均数、众数、中位数、方差的概念填表(1)根据样本求出读6本书的学生的占比,再用初二乙班总人数乘以占比即可求解; (2)根据方差的性质进行判断即可. 【详解】甲组的众数是2,乙组中位数是454.52+= 乙组的平均数:()2663165254104+++++++++÷= 甲组的方差:()()()()()()()()()()222222222214947444243434247424 6.610-+-+-+-+-+-+-+-+-+-=补全统计表如下:403012⨯=%(人)故估计读6本书的同学大概有12人;(2)乙班,乙班的方差较小,说明乙班学生普遍有阅读意识,而甲班方差较大,说明甲班虽然存在一部分读书意识较强的同学,但也存在一部分读书意识淡薄的同学. 【点睛】本题考查了统计图的问题,掌握平均数、众数、中位数、方差的概念以及性质是解题的关键.23.(1) 每套队服150元,每个足球100元;(2) 购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算. 【解析】试题分析:(1)设每个足球的定价是x 元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可; (2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解. 解:(1)设每个足球的定价是x 元,则每套队服是(x+50)元,根据题意得 2(x+50)=3x , 解得x=100, x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a ﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元); (3)当在两家商场购买一样合算时,100a+14000=80a+15000, 解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算; 购买的足球数多于50个时,则到乙商场购买合算; 购买的足球数少于50个时,则到甲商场购买合算 考点:一元一次方程的应用.24.(1)20,3;(2)25人;(3)男生比女生的波动幅度大. 【解析】 【分析】(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.(3)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差. 【详解】(1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是3. 故答案为20,3.(2)由题意:该班女生对“两会”新闻的“关注指数”为1320=65%,所以,男生对“两会”新闻的“关注指数”为60%.设该班的男生有x 人,则136x x -++()=60%,解得:x =25. 答:该班级男生有25人.(3)该班级女生收看“两会”新闻次数的平均数为122536455220⨯+⨯+⨯+⨯+⨯=3,女生收看“两会”新闻次数的方差为:2222223153263353423520⨯-+⨯-+⨯-+-+-()()()()()=1310.∵2>1310,∴男生比女生的波动幅度大.【点睛】本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.25.见解析【解析】【分析】连接AC,交BD于O,由正方形的性质可得OA=OC,OB=OD,AC⊥BD根据BE=DF可得OE=OF,由对角线互相垂直平分的四边形是菱形即可判定,【详解】∵四边形ABCD是正方形,∴OD=OB,OA=OC,BD⊥AC,∵BE=DF,∴DE=BF,∴OE=OF,∵OA=OC,AC⊥EF,OE=OF,∴四边形AECF为菱形.【点睛】本题考查了正方形对角线互相垂直平分的性质,考查了菱形的判定,对角线互相垂直且互相平分的四边形是菱形,熟练掌握菱形的判定方法是解题关键.。

2020年北京市丰台区初二第二学期期末数学试卷及答案

2020年北京市丰台区初二第二学期期末数学试卷及答案

心有多大,舞台就有多大丰台区2019—2020学年第二学期期末练习初二数学评分标准及参考答案一、选择题(本题共30分,每小题3分)题号12345678910答案A C C DBCD B C D 二、填空题(本题共16分,每小题2分)11.50°12.1y x =-+(答案不唯一)13.>14.615. 6.316.8;717.1218.2x >-;<三、解答题(本题共54分,19题4分,20-24题每小题5分,25-27题每小题6分,28题7分)19.解:16 5.a b c ==-=,,2(6)41516.∆=--⨯⨯=····1分664=.212x =±±=⨯·········3分125 1.x x ==,·················4分20.解:(1)根据题意得,3+=1k b k b +=⎧⎨-⎩.······················1分解得12k b =⎧⎨=⎩.·····················3分∴一次函数的解析式为2y x =+.(2)令y =0,得x =-2,∴点A 的坐标为(-2,0).令x =0,得y =2,∴点B 的坐标为(0,2).······································································4分∴1122222OAB S OA OB ∆=⨯⨯=⨯⨯=.····························································································5分21.证明:∵□ABCD 的对角线AC ,BD 相交于点O ,∴AO =CO ,AD ∥BC ,·····································································2分∴∠EAO =∠FCO ,·········································································3分在△AOE 和△COF 中EAO FCO AO CO AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOE ≌△COF ····················································∴AE =CF ·································································22.解:(1)根据题意,得240b ac ∆=-≥·························································即44(4)0k --≥,····················································∴5k ≤.······························································(2)当4k =时,方程为x 2+2x =0.∴x 1=-2,x 2=0.·····················································说明:k 值不唯一,其他解法请参照示例相应步骤给分.23.解:(1)补全的图形如图所示.··········································(2)AF ,BE ;·························································一组对边平行且相等的四边形是平行四边形.····································································一组邻边相等的平行四边形是菱形.·························24.解:(1)73.5.·································································(2)七.························································································3分(3)从平均数上看,七、八年级的平均分相等,成绩平均水平相同;但从中位数上看,八年级成绩的中位数大于七年级成绩的中位数,八年级得分高的人数相对较多;从方差上看,八年级成绩的方差小,成绩相对整齐些.综上所述,八年级的总体水平较好.··································································································5分25.解:设小华添加的边框的宽度应是x 分米.·····················································1分根据题意,得(32)(22)223x x ++=⨯⨯···························3分解这个方程,得12132x x ==-,(不合题意,舍去)···································································································5分答:小华添加的边框的宽度应是12分米.···································································································6分26.解:(1)全体实数.···································································1分①m =2.·············································································3分②函数图象如下图 (5)分(2)当1x <-时,y 随x 的增大而减小,当1x >-时,y 随x 的增大而增大.····························································································6分27.解:(1)①∵直线AB 与直线12y x =平行,且经过点A (2,2)∴1222k k b ⎧=⎪⎨⎪+=⎩解得121k b ⎧=⎪⎨⎪=⎩.······························································∴直线AB 的解析式为112y x =+.令y =0,得x =-2,∴点B 坐标为(-2,0).············································②区域W 内恰有1个整点.·········································(2)1a ≥.·······························································28.解:(1)正确.证明:在AB 上取一点H ,使AH =EC ,连接EH .····································································∵四边形ABCD 是正方形,∴AB =BC ,∠B =∠DCB =90°.∴BH =BE.∴∠BHE =45°.∴∠AHE =135°.∵CF 为正方形外角的平分线,∴∠DCF =45°.∴∠ECF =135°.∴∠AHE =∠ECF .·····················································∵∠AEF =90°,∴∠AEB +∠CEF =90°.又∵∠AEB +∠HAE =90°,∴∠HAE =∠CEF .·····················································∴△AHE ≌△ECF .∴AE =EF.································································(2)是.···································································(3)E (13,0).·······················································一饭千金帮助汉高祖打平天下的大将韩信,在未得志时,境况很是困苦。

重庆市巴蜀中学2018-2019年2020届八年级(下)学期(4月)周练(三)数学试卷(无答案)

重庆市巴蜀中学2018-2019年2020届八年级(下)学期(4月)周练(三)数学试卷(无答案)

巴蜀中学初2020届八年级(下)学期 数学周练习(三)命题人:周园园 审题人:朱晓昀 (满分:100 时间:80分钟) 2019.4姓名:一、选择题(每题3分,共30分)1.下列命题是假命题的是( )A.四个角都相等的四边形是矩形B.四个角都相等的四边形是菱形C.对角线相互垂直的四边形是菱形D.对角线相等的四边形是矩形2.如图,矩形ABCD 中,AC 、BD 相交于点O ,下列结论不正确的是( )A.∠ABC=90°B.AC=BDC.∠OBC=∠OCBD.AO ⊥BD3.如图,在菱形ABCD 中,∠BAD=50°,EF 垂直平分AB ,则∠CDP 的值为( )4.如图,矩形ABCD 的两条对角线相交于O ,AE ⊥BD 于点E ,且∠BAE=25°,则两对角线所夹锐角∠AOB=( )A.40°B.45°C.50°D.55°5.如图,在矩形ABCD 中,AD=10,AB=6,E 为BC 上一点,DE 平分∠AEC ,则CE 的长为( )A. 1B. 2C.3D. 46.如图,菱形ABCD 中,AC 交BD 于O ,ED ⊥BC 于E ,连接OE ,∠ABC=140°,则( )A.15°B.20°C.30°D.35°7.如图,在正方形ABCD 中,把边BC 绕点B 逆时针旋转30°得到线段BP ,连接AP 并延长交CD 于点E ,连接PC ,则∠CPE 的度数为( )A.30°B.40°C.45°D.60°8.如图,正方形纸片ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点 G 处,已知BE=1,则EF 的长为( ) A.23 B.25 C.49 D.39.如图,在正方形ABCD 中,对角线AC 、BD 相交于O 点,AB=2,E 是BC 中点,点P 在对角线AC 上滑动,则BP+EP 的最小值是( ) A.5 B.2 C.3 D.210.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE ,交BF 于点O,则下列结论中正确的有( )①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC-CF=2HE ;⑤AB=HF.A.2个B.3个C.4个D.5个二、填空题(每题3分,共30分)11.如果正方形的对角线长2cm ,那么它的面积为 2cm . 12.菱形ABCD 中,∠A=60°,BD=32,则菱形ABCD 的周长为 . 13. 如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=5,BC=12,则EF 的长为14.如图,已知菱形ABCD 的对角线AC 、DB 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是 cm 15. 如图,在平面直角坐标系中,矩形PBCD 的顶点C (-3,4),则BD= 16.如图,矩形ABCD 中,M 是BC 的中点,且AM ⊥MD ,已知矩形ABCD 的周长为48cm ,则该矩形的面积为 17. 如图,延长矩形ABCD 的边BC 至点E ,使CE=BD ,连接AE ,如果∠ADB=30°,则∠E= °.18. 如图为矩形ABCD ,点E 是CB 的延长线上一点,连接DE 交AB 于点F ,∠AED=2∠CED ,点G 是DF 的中点,若BE=1,AG=4,则AB 的长为 。

2020-2021学年广东省广州市天河区八年级(下)期末数学试卷及答案解析

2020-2021学年广东省广州市天河区八年级(下)期末数学试卷及答案解析

2020-2021学年广东省广州市天河区八年级(下)期末数学试卷一、选择题(本题有10个小题,每小题3分,满分30分,每小题给出的四个选项中,只有一个是正确的。

)1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤4C.x≥﹣4D.x≥42.(3分)下列选项中,属于最简二次根式的是()A.B.C.D.3.(3分)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的众数是()A.6B.7C.8D.94.(3分)在△ABC中,D,E分别是AB,AC的中点,若BC=10,AB=12,则DE的长为()A.4B.5C.6D.75.(3分)如图,每个小正方形的边长都是1,A,B,C分别在格点上,则∠ABC的度数为()A.30°B.45°C.50°D.60°6.(3分)甲、乙、丙三人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是S甲2=0.55,S乙2=0.65,S丙2=0.50,则成绩最稳定的是()A.甲B.乙C.丙D.无法确定7.(3分)小明向东走80m后,沿方向A又走了60m,再沿方向B走了100m回到原地,则方向A是()A.南向或北向B.东向或西向C.南向D.北向8.(3分)若函数y=﹣3x+m的图象如图所示,则函数y=mx+1的大致图象是()A.B.C.D.9.(3分)如图,将边长分别是4,8的矩形纸片ABCD折叠,使点C与点A重合,则BF 的长是()A.2B.3C.D.410.(3分)已知矩形的对角线为1,面积为m,则矩形的周长为()A.B.C.2D.2二、填空题(本题有6个小题,每小题3分,共18分。

)11.(3分)在▱ABCD中,∠A=50°,则∠C=°.12.(3分)“若a>0,b>0,则ab>0.”的逆命题为(填“真”或“假”)命题.13.(3分)如图,在△ABC中,∠ABC=90°,AD=DC,BD=4,则AC=.14.(3分)如图,已知直线y1=k1x+b1与直线y2=k2x+b2相交于点A(1,2),若y1<y2,则x的取值范围为.15.(3分)一组数据4,2,x,6,3的平均数是4,则这组数据的中位数是.16.(3分)观察3个式子:,,.猜想第四个式子得:=;依此类推,按照每个等式反映的规律,第n个二次根式的计算结果是.三、解答题(本大题有8小题,共72分,解答要求写出文字说明,证明过程或计算步骤。

天津市和平区2020-2021学年八年级下学期期中考试数学试卷(word版 含答案)

天津市和平区2020-2021学年八年级下学期期中考试数学试卷(word版 含答案)

2020-2021学年天津市和平区八年级(下)期中数学试卷一.选择题(共12小题)1.在实数范围内有意义,则x的取值范围是()A.x≥3B.x>3C.x≤3D.x<32.计算:+=()A.8B.C.8a D.153.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,234.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A.∠B=∠BCF B.∠B=∠F C.AC=CF D.AD=CF5.如图,在矩形ABCD中,对角线AC、BD相交于点O,若OA=2,则BD的长为()A.4B.3C.2D.16.如图,池塘边有两点A、B,点C是与BA方向成直角的AC方向上一点,测得CB=60m,AC=20m,则A,B两点间的距离是()A.200m B.20m C.40m D.50m7.已知菱形ABCD,AC=6,面积等于24,则菱形ABCD的周长等于()A.20B.25C.20D.15308.利用勾股定理,可以作出长为无理数的线段.如图,在数轴上找到点A,使OA=5,过点A作直线l垂直于OA,在1上取点B,使AB=2,以原点O为圆心,以OB长为半径作弧,弧与数轴的交点为C,那么点C表示的无理数是()A.B.C.7D.299.下列二次根式的运算正确的是()A.=﹣5B.C.D.10.如图,△ABC中,AD⊥BC于D,AB=5,BD=4,DC=2,则AC等于()A.13B.C.D.511.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=6,则图中阴影部分的面积为()A.10B.12C.16D.1812.如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP 的最小值是()A.1.2B.1.5C.2.4D.2.5二.填空题(共6小题)13.直角三角形的两个直角边分别为3和5,这个直角三角形的斜边长为.14.计算(﹣2)×(+2)的结果是.15.依次连接矩形中点得到的四边形一定是.16.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于.17.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是.18.如图,O为矩形ABCD对角线AC,BD的交点,AB=6,M,N是直线BC上的动点,且MN=2,则OM+ON的最小值是.三.解答题(共5小题)19.计算:(﹣)÷+.20.如图,在三角形纸片ABC中,∠ACB=90°,BC=5,AB=13,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,点A与BC延长线上的点D重合,求CE的长.21.如图,BE是△ABC的中线,BD∥AC,且BD=AC,连接AD、DE.(1)求证:BC=DE;(2)当∠ABC=90°时,判断四边形ADBE的形状,并说明理由.22.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.23.如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.(Ⅰ)若点A′落在矩形的对角线OB上时,OA′的长=;(Ⅱ)若点A′落在边AB的垂直平分线上时,求点D的坐标;(Ⅲ)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).2020-2021学年天津市和平区八年级(下)期中数学试卷参考答案与试题解析一.选择题(共12小题)1.在实数范围内有意义,则x的取值范围是()A.x≥3B.x>3C.x≤3D.x<3【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:3﹣x≥0解得:x≤3.故选:C.2.计算:+=()A.8B.C.8a D.15【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=3+5=8.故选:A.3.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.4.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A.∠B=∠BCF B.∠B=∠F C.AC=CF D.AD=CF【分析】利用三角形中位线定理得到DE∥AC,DE=AC,结合平行四边形的判定定理对各个选项进行判断即可.【解答】解:∵D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE∥AC,DE=AC,A、∵∠B=∠BCF,∴CF∥AB,即CF∥AD,∴四边形ADFC为平行四边形,故本选项符合题意;B、根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;C、根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;D、根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项不符合题意;故选:A.5.如图,在矩形ABCD中,对角线AC、BD相交于点O,若OA=2,则BD的长为()A.4B.3C.2D.1【分析】因为矩形的对角线相等且互相平分,已知OA=2,则AC=2OA=4,又BD=AC,故可求.【解答】解:∵ABCD是矩形∴OC=OA,BD=AC又∵OA=2,∴AC=OA+OC=2OA=4∴BD=AC=4故选:A.6.如图,池塘边有两点A、B,点C是与BA方向成直角的AC方向上一点,测得CB=60m,AC=20m,则A,B两点间的距离是()A.200m B.20m C.40m D.50m【分析】在直角三角形中已知直角边和斜边的长,利用勾股定理求得另外一条直角边的长即可.【解答】解:∵CB=60m,AC=20m,AC⊥AB,∴AB==40(m).故选:C.7.已知菱形ABCD,AC=6,面积等于24,则菱形ABCD的周长等于()A.20B.25C.20D.1530【分析】先利用菱形的面积公式计算出BD=8,然后根据菱形的性质和勾股定理可计算出菱形的边长=10,从而得到菱形的周长.【解答】解:∵菱形ABCD的面积是24,即×AC×BD=24,∴BD==8,∴菱形的边长==5,∴菱形ABCD的周长=4×5=20.故选:A.8.利用勾股定理,可以作出长为无理数的线段.如图,在数轴上找到点A,使OA=5,过点A作直线l垂直于OA,在1上取点B,使AB=2,以原点O为圆心,以OB长为半径作弧,弧与数轴的交点为C,那么点C表示的无理数是()A.B.C.7D.29【分析】利用勾股定理列式求出OB判断即可.【解答】解:由勾股定理得,OB==,∴点C表示的无理数是.故选:B.9.下列二次根式的运算正确的是()A.=﹣5B.C.D.【分析】根据二次根式的性质对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的乘法法则对D进行判断.【解答】解:A、原式=5,所以A选项错误;B、原式==,所以B选项正确;C、原式=4,所以C选项错误;D、原式=10×3=30,所以D选项错误.故选:B.10.如图,△ABC中,AD⊥BC于D,AB=5,BD=4,DC=2,则AC等于()A.13B.C.D.5【分析】在Rt△ABD中,由勾股定理可求得AD,则在Rt△ACD中,由勾股定理可求得AC.【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,由勾股定理可得AD===3,在Rt△ACD中,由勾股定理可得AC===,故选:B.11.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=6,则图中阴影部分的面积为()A.10B.12C.16D.18【分析】由矩形的性质可证明S△PEB=S△PFD,即可求解.【解答】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∵MP=AE=2∴S△DFP=S△PBE=×2×6=6,∴S阴=6+6=12,故选:B.12.如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP 的最小值是()A.1.2B.1.5C.2.4D.2.5【分析】先由勾股定理求出AB=5,再证四边形CEMF是矩形,得EF=CM,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,然后由三角形面积求出CM=2.4,即可得出答案.【解答】解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=AB×CM=AC×BC,∴CM===2.4,∴CP=EF=CM=1.2,故选:A.二.填空题(共6小题)13.直角三角形的两个直角边分别为3和5,这个直角三角形的斜边长为.【分析】直接利用勾股定理计算即可.【解答】解:∵直角三角形的两个直角边分别为3和5,∴这个直角三角形的斜边长为=.故答案为.14.计算(﹣2)×(+2)的结果是﹣1.【分析】利用平方差公式计算.【解答】解:原式=()2﹣22=3﹣4=﹣1.故答案为﹣1.15.依次连接矩形中点得到的四边形一定是菱形.【分析】连接矩形对角线.利用矩形对角线相等、三角形中位线定理证得四边形EFGH 是平行四边形,且EF=FH=HG=EG;然后由四条边相等的平行四边形是菱形推知四边形EFGH是菱形.【解答】解:如图E、F、G、H是矩形ABCD各边的中点.连接AC、BD.∵AC=BD(矩形的对角线相等),EF AC,HG AC,∴EF∥HG,且EF=HG=AC;同理HE∥GF,且HE=GF=BD,∴四边形EFGH是平行四边形,且EF=FH=HG=EG,∴四边形EFGH是菱形.故答案是:菱形.16.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于6cm.【分析】由菱形ABCD的周长为48cm,根据菱形的性质,可求得AD的长,AC⊥BD,又由E是AD的中点,根据直角三角形斜边的中线等于斜边的一半,即可求得线段OE 的长.【解答】解:∵菱形ABCD的周长为48cm,∴AD=12cm,AC⊥BD,∵E是AD的中点,∴OE=AD=6(cm).故答案是:6cm.17.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是3.【分析】分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH 中点,则G的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.【解答】解:如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EP A=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10﹣2﹣2=6,∴MN=3,即G的移动路径长为3.18.如图,O为矩形ABCD对角线AC,BD的交点,AB=6,M,N是直线BC上的动点,且MN=2,则OM+ON的最小值是2.【分析】利用轴对称变换以及平移变换,作辅助线构造平行四边形,依据平行四边形的性质以及轴对称的性质,可得当O,N,Q在同一直线上时,OM+ON的最小值等于OQ 长,利用勾股定理进行计算,即可得到OQ的长,进而得出OM+ON的最小值.【解答】解:如图所示,作点O关于BC的对称点P,连接PM,将MP沿着MN的方向平移MN长的距离,得到NQ,连接PQ,则四边形MNQP是平行四边形,∴MN=PQ=2,PM=NQ=MO,∴OM+ON=QN+ON,当O,N,Q在同一直线上时,OM+ON的最小值等于OQ长,连接PO,交BC于E,由轴对称的性质,可得BC垂直平分OP,又∵矩形ABCD中,OB=OC,∴E是BC的中点,∴OE是△ABC的中位线,∴OE=AB=3,∴OP=2×3=6,又∵PQ∥MN,∴PQ⊥OP,∴Rt△OPQ中,OQ===2,∴OM+ON的最小值是2,故答案为:2.三.解答题(共5小题)19.计算:(﹣)÷+.【分析】先根据二次根式的除法法则运算,然后化简后合并即可.【解答】解:原式=﹣+=2﹣+=.20.如图,在三角形纸片ABC中,∠ACB=90°,BC=5,AB=13,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,点A与BC延长线上的点D重合,求CE的长.【分析】结合已知条件可知AC=4,利用三角形面积推出S△ABC=S△BCE+S△BDE,即可推出CE的长度.【解答】解:∵∠ACB=90°,BC=5,AB=13,∴AC=12,根据将其三角形纸片ABC对折后点A落在BC的延长线上,则AB=BD=13,∵S△ABC=S△BCE+S△BDE,∴×5×12=BC×EC+EC×BD,∴30=×EC(5+13),∴CE=.21.如图,BE是△ABC的中线,BD∥AC,且BD=AC,连接AD、DE.(1)求证:BC=DE;(2)当∠ABC=90°时,判断四边形ADBE的形状,并说明理由.【分析】(1)首先判定四边形DBCE是平行四边形,然后即可证得BC=DE;(2)首先证得四边形ADBE是平行四边形,然后利用对角线互相垂直的平行四边形是平行四边形判定菱形即可.【解答】解:(1)证明:∵BE是△ABC的中线,∴EC=AC,∵BD=AC,∴BD=CE,∵BD∥AC,∴四边形DBCE是平行四边形,∴BC=DE;(2)四边形ADBE是菱形,理由如下:∵BE是△ABC的中线,∴EA=AC,∵BD=AC,∴BD=AE,∵BD∥AC,∴四边形ADBE是平行四边形,∵∠ABC=90°,∴AB⊥DE,∴四边形ADBE是菱形.22.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.【分析】(1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;(2)分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB是矩形,再根据矩形的对边相等可得AG=BC=3,然后求出DG=2,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾.【解答】(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,在△BEC与△FED中,,∴△BEC≌△FED,∴BE=FE,又∵E是边CD的中点,∴CE=DE,∴四边形BDFC是平行四边形;(2)①BC=BD=3时,由勾股定理得,AB===2,所以,四边形BDFC的面积=3×2=6;②BC=CD=3时,过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG﹣AD=3﹣1=2,由勾股定理得,CG===,所以,四边形BDFC的面积=3×=3;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是6或3.23.如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.(Ⅰ)若点A′落在矩形的对角线OB上时,OA′的长=4;(Ⅱ)若点A′落在边AB的垂直平分线上时,求点D的坐标;(Ⅲ)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).【分析】(Ⅰ)由点B的坐标知OA=8、AB=6、OB=10,根据折叠性质可得BA=BA′=6,据此可得答案;(Ⅱ)连接AA′,利用折叠的性质和中垂线的性质证△BAA′是等边三角形,可得∠A′BD=∠ABD=30°,据此知AD=AB tan∠ABD=2,继而可得答案;(Ⅲ)分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得.【解答】解:(Ⅰ)如图1,由题意知OA=8、AB=6,∴OB=10,由折叠知,BA=BA′=6,∴OA′=4,故答案为:4;(Ⅱ)如图2,连接AA′,∵点A′落在线段AB的中垂线上,∴BA=AA′,∵△BDA′是由△BDA折叠得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等边三角形,∴∠A′BA=60°,∴∠A′BD=∠ABD=30°,∴AD=AB tan∠ABD=6tan30°=2,∴OD=OA﹣AD=8﹣2,∴点D(8﹣2,0).(Ⅲ)①如图3,当点D在OA上时,由旋转知△BDA′≌△BDA,∴BA=BA′=6,∠BAD=∠BA′D=90°,∵点A′在线段OA的中垂线上,∴BM=AN=OA=4,∴A′M===2,∴A′N=MN﹣A′M=AB﹣A′M=6﹣2,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,则=,即=,解得:DN=3﹣5,则OD=ON+DN=4+3﹣5=3﹣1,∴D(3﹣1,0);②如图4,当点D在AO延长线上时,过点A′作x轴的平行线交y轴于点M,延长AB 交所作直线于点N,则BN=CM,MN=BC=OA=8,由旋转知△BDA′≌△BDA,∴BA=BA′=6,∠BAD=∠BA′D=90°,∵点A′在线段OA的中垂线上,∴A′M=A′N=MN=4,则MC=BN==2,∴MO=MC+OC=2+6,由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,则=,即=,解得:ME=,则OE=MO﹣ME=6+,∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴=,即=,解得:DO=3+1,则点D的坐标为(﹣3﹣1,0),综上,点D的坐标为(3﹣1,0)或(﹣3﹣1,0).。

重庆市缙云教育联盟2020-2021学年八年级下学期期末质量检测数学试题

重庆市缙云教育联盟2020-2021学年八年级下学期期末质量检测数学试题

绝密★启用前重庆市2020-2021学年(下)年度质量检测初二数学注意:本试卷包含Ⅰ、Ⅱ两卷。

第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。

第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。

答案写在试卷上均无效,不予记分。

第I卷(选择题)一、选择题(本大题共12小题,共36.0分)1.已知,平面内∠AOB=20°,∠AOC=50°,射线O M、O N分别平分∠AOB,∠AOC,求∠MON的大小是()A. 10°B. 10°或35°C. 35°D. 15°或35°2.下列说法中正确的是()A. 三角形的三条高都在三角形内B. 直角三角形只有一条高C. 锐角三角形的三条高都在三角形内D. 三角形每一边上的高都小于其他两边3.一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等b.一组对边平行且相等c.一组邻边相等d.一个角是直角顺次添加的条件:①a→c→d②b→d→e③a→b→c则正确的是()A. 仅①B. 仅③C. ①②D. ②③4.下列数据中不能确定物体位置的是()A. 某市政府位于北京路32号B. 小明住在某小区3号楼7号C. 太阳在我们的正上方D. 东经130°,北纬54°的城市5.如图1,点F从菱形ABCD的顶点A出发,沿A→B→D以1cm/s的速度匀速运动到点D,图2是点F运动时,△FDC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A. √5B. 3C. 2√5D. 56.2021年2月1日,教育部印发的《关于加强中小学生手机管理工作的通知》指出,中小学生原则上不得将个人手机带入校园,禁止带入课堂.某校针对这个通知随机调查了若干名家长对带手机进校园的态度并制成了统计图(如图),赞成学生带手机进校园的家长有22人,则反对学生带手机进校园的家长有()A. 140人B. 120人C. 220人D. 100人7.如图,在△ABC中,∠ACB=90°,AC=BC=4,点D是BC边的中点,点P是AC边上一个动点,连接PD,以PD为边在PD的下方作等边三角形PDQ,连接CQ.则CQ的最小值是()A. √32B. 1 C. √2 D. 328.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 19.如图1,将7张长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A. a=bB. a=3bC. a=2bD. a=4b10.如图:在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,−1),P5(2,−1),P6(2,0)…则点P2020的坐标是()A. (673,−1)B. (673,1)C. (336,−1)D. (336,1)11.在同一坐标系中,二次函数y=ax2+bx与一次函数y=bx−a的图象可能是()A. B. C. D.12.如图1,在平面直角坐标系中,▱ABCD在第一象限,且BC//x轴.直线y=x从原点O出发沿x轴正方向平移,在平移过程中,直线被▱ABCD截得的线段长度n与直线在x轴上平移的距离m 的函数图象如图2所示.那么▱ABCD的面积为()A. 3B. 3√2C. 6D. 6√2第II卷(非选择题)二、填空题(本大题共6小题,共18.0分)13.已知∠AOB=90∘,射线OC在∠AOB内部,且∠AOC=20∘,∠COD=50∘,射线OE、OF分别平分∠BOC、∠COD,则∠EOF的度数是________。

2020年初二数学下期中试题(附答案)(1)

2020年初二数学下期中试题(附答案)(1)

2020年初二数学下期中试题(附答案)(1)一、选择题1.下列运算中,正确的是( )A .235+=;B .2(32)32-=-;C .2a a =;D .2()a b a b +=+. 2.小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A .2.7 米B .2.5 米C .2.1 米D .1.5 米3.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .3102B .3105C .105D .3554.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是( )A .10尺B .11尺C .12尺D .13尺5.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是( )①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A .①②④B .①③④C .③④D .①②6.如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60︒,得到线段BM .连接AM 并延长交CD 于点N ,连接MC ,则MNC ∆的面积为( )A .2312a -B .2212a -C .2314a -D .2214a - 7.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140° 8.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k <3B .k <0C .k >3D .0<k <3 9.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A .83B .8C .43D .610.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC 沿A ﹣D 的方向平移AD 长,得△DEF (B 、C 的对应点分别为E 、F ),则BE 长为( )A .1B .2C .5D .311.如图,点E F G H 、、、分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC BD =,则四边形EFGH 为矩形;②若AC BD ⊥,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .412.要使代数式23x -有意义,则x 的取值范围是( ) A .3x ≠ B .3x > C .3x ≥ D .3x ≤二、填空题13.比较大小:52_____13.14.当直线y=kx+b 与直线y=2x-2平行,且经过点(3,2)时,则直线y=kx+b 为______.15.如图,已知正方形ABCD ,以BC 为边作等边△BCE ,则∠DAE 的度数是_____.16.菱形ABCD 中,对角线AC =8,BD =6,则菱形的边长为_____.17.已知菱形ABCD 的两条对角线长分别为12和16,则这个菱形ABCD 的面积S=_____.18.已知:如图,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点,AC =10,BD =8,则MN =_____.19.如图,在平行四边形ABCD 中,P 是CD 边上一点,且AP 和BP 分别平分∠DAB 和∠CBA ,若AD=5,AP=8,则△APB 的周长是 .20.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax b y kx =+⎧⎨=⎩的二元一次方程组的解是_____________。

2019-2020学年湖南省益阳市赫山区八年级(下)期末数学试卷 解析版

2019-2020学年湖南省益阳市赫山区八年级(下)期末数学试卷  解析版

2019-2020学年湖南省益阳市赫山区八年级(下)期末数学试卷一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)下列几组数中,能作为直角三角形三边长度的是()A.2,3,4B.4,4,5C.5,6,7D.5,12,13 2.(4分)剪纸是我国的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.3.(4分)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.134.(4分)顺次连接矩形的各边中点,所得的四边形一定是()A.正方形B.菱形C.矩形D.梯形5.(4分)在平面直角坐标系中,点P(﹣3,4)关于x轴的对称点的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(3,4)D.(3,﹣4)6.(4分)如图,在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0)、(5,0)、(2,3),则点C的坐标是()A.(8,2)B.(5,3)C.(7,3)D.(3,7)7.(4分)小红把一枚硬币抛掷10次,结果有4次正面朝上,那么()A.正面朝上的频数是0.4B.反面朝上的频数是6C.正面朝上的频率是4D.反面朝上的频率是68.(4分)如图,CD是△ABC的边AB上的中线,且CD=AB,则下列结论错误的是()A.AD=BD B.∠A=30°C.∠ACB=90°D.AC2+BC2=AB29.(4分)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A.B.C.D.10.(4分)如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A.x>0B.0<x<1C.1<x<2D.x>2二、填空题:本题共8小题,每小题4分,把答案填在答题卡中对应题号后的横线上. 11.(4分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,则点D到AB的距离是.12.(4分)五边形从某一个顶点出发可以引条对角线.13.(4分)已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为cm2.14.(4分)将点P(﹣3,4)先向下平移3个单位,再向右平移2个单位后得到点Q,则点Q的坐标是.15.(4分)在函数y=中,自变量x的取值范围是.16.(4分)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.则下列说法中,正确的序号为.①小明中途休息用了20分钟.②小明休息前爬山的平均速度为每分钟70米.③小明在上述过程中所走的路程为6600米.④小明休息前爬山的平均速度大于休息后爬山的平均速度.17.(4分)一次函数y=kx+b(k≠0)中,x与y的部分对应值如表:x﹣2﹣1012y9630﹣3那么,一元一次方程kx+b=0的解为.18.(4分)如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.三、解答题:本题共8小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(8分)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm,求AB的长.20.(8分)已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于F、F.求证:四边形AFCE是菱形.21.(8分)在平面直角坐标系xOy中,已知直线l:y=kx+b(k≠0经过点A(﹣4,0),与y轴交于点B,如果△AOB的面积为4,求直线l的表达式.22.(10分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.23.(10分)某班同学为了解2019年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.月均用水量频数频率0<x≤560.125<x≤10m0.2410<x≤15160.3215<x≤20100.2020<x≤254n25<x≤3020.04请解答以下问题:(1)求出上面的频数分布表中的m、n的值,并把频数分布直方图补充完整;(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过10t的家庭大约有多少户?24.(10分)阅读与探究我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.请结合上述阅读材料,解决下列问题:(1)在我们所学过的特殊四边形中,是勾股四边形的是;(写出一种即可)(2)下面图1,图2均为6×6的正方形网格,点A,B,C均在格点上,请在图中标出格点D,并连接AD,CD,使得四边形ABCD符合下列要求:图1中的四边形ABCD是勾股四边形,并且是中心对称图形;图2中的四边形ABCD是勾股四边形且对角线相等,但不是中心对称图形.25.(12分)如图,已知四边形ABCD是正方形,点E、F分别在AD、DC上,BE与AF 相交于点G,且BE=AF.(1)求证:△ABE≌△DAF;(2)求证:BE⊥AF;(3)如果正方形ABCD的边长为5,AE=2,点H为BF的中点,连接GH.求GH的长.26.(12分)如表是某摩托车厂2019年前3个月摩托车各月产量:x(月)123y(辆)550600650(1)根据表格中的数据,求y(辆)与x(月)之间的函数表达式;(2)按照此趋势,你能预测该摩托车厂2019年4月摩托车月产量吗?(3)能够利用(1)中所建立函数模型预测2019年12月摩托车月产量吗?为什么?2019-2020学年湖南省益阳市赫山区八年级(下)期末数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)下列几组数中,能作为直角三角形三边长度的是()A.2,3,4B.4,4,5C.5,6,7D.5,12,13【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.【解答】解:A、∵22+32≠42,∴不能构成直角三角形;B、∵42+42≠52,∴不能构成直角三角形;C、∵52+62≠72,∴不能构成直角三角形;D、∵52+122=132,∴能构成直角三角形.故选:D.2.(4分)剪纸是我国的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:A.3.(4分)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.13【分析】根据多边形的内角和定理:180°•(n﹣2)求解即可.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.4.(4分)顺次连接矩形的各边中点,所得的四边形一定是()A.正方形B.菱形C.矩形D.梯形【分析】根据菱形的定义:只需证明四边相等即可.【解答】解:顺次连接矩形的各边中点,根据矩形的对角线相等和中位线定理可知所得的四边形四边相等,所以是菱形.故选:B.5.(4分)在平面直角坐标系中,点P(﹣3,4)关于x轴的对称点的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(3,4)D.(3,﹣4)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.【解答】解:点A(﹣3,4)关于x轴的对称点的坐标是(﹣3,﹣4),故选:B.6.(4分)如图,在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0)、(5,0)、(2,3),则点C的坐标是()A.(8,2)B.(5,3)C.(7,3)D.(3,7)【分析】平行四边形的对边相等且互相平行,所以AB=CD,AB=5,D的横坐标为2,加上5为7,所以C的横坐标为7,因为CD∥AB,D的纵坐标和C的纵坐标相同为3.【解答】解:在平行四边形ABCD中,∵AB∥CDAB=5,∴CD=5,∵D点的横坐标为2,∴C点的横坐标为2+5=7,∵AB∥CD,∴D点和C点的纵坐标相等为3,∴C点的坐标为(7,3).故选:C.7.(4分)小红把一枚硬币抛掷10次,结果有4次正面朝上,那么()A.正面朝上的频数是0.4B.反面朝上的频数是6C.正面朝上的频率是4D.反面朝上的频率是6【分析】根据实验结果得出结论即可.【解答】解:小红做抛硬币的实验,共抛了10次,4次正面朝上,6次反面朝上,则正面朝上的频数是4,反面朝上的频数是6,故选:B.8.(4分)如图,CD是△ABC的边AB上的中线,且CD=AB,则下列结论错误的是()A.AD=BD B.∠A=30°C.∠ACB=90°D.AC2+BC2=AB2【分析】根据CD是△ABC的边AB上的中线,且CD=AB,可以得到AD、BD和CD 的关系,从而可以判断A是否正确,再根据等腰三角形的性质和三角形内角和,可以得到∠ACB的度数,从而可以得到∠ACB的度数,即可判断C是否正确,最后根据勾股定理,可以判断D是否正确;对于∠A,由题目中的条件,无法判断角的度数,从而可以判断B是否正确.【解答】解:∵CD是△ABC的边AB上的中线,且CD=AB,∴AD=BD=CD,故选项A正确,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴∠2+∠3=90°,即∠ACB=90°,故选项C正确;∴AC2+BC2=AB2,故选项D正确;无法判断∠A的度数,故选项B错误;故选:B.9.(4分)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A.B.C.D.【分析】根据正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:A.10.(4分)如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A.x>0B.0<x<1C.1<x<2D.x>2【分析】先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.【解答】解:把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),所以当x>1时,2x>kx+b,∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选:C.二、填空题:本题共8小题,每小题4分,把答案填在答题卡中对应题号后的横线上. 11.(4分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,则点D到AB的距离是2.【分析】首先根据已知易求CD=2,利用角平分线的性质可得点D到AB的距离是2.【解答】解:∵BC=6,BD=4∴CD=2∵∠C=90°,AD平分∠CAB∴点D到AB的距离=CD=2.故填2.12.(4分)五边形从某一个顶点出发可以引2条对角线.【分析】从n边形的一个顶点出发有(n﹣3)条对角线,代入求出即可.【解答】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为:2.13.(4分)已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24cm2.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷2=24cm2.故答案为:24.14.(4分)将点P(﹣3,4)先向下平移3个单位,再向右平移2个单位后得到点Q,则点Q的坐标是(﹣1,1).【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:根据题意,知点Q的坐标是(﹣3+2,4﹣3),即(﹣1,1),故答案为:(﹣1,1).15.(4分)在函数y=中,自变量x的取值范围是x>1.5.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得2x﹣3>0,解得x>1.5.故答案为:x>1.5.16.(4分)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.则下列说法中,正确的序号为①②④.①小明中途休息用了20分钟.②小明休息前爬山的平均速度为每分钟70米.③小明在上述过程中所走的路程为6600米.④小明休息前爬山的平均速度大于休息后爬山的平均速度.【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800﹣2800)米,爬山的总路程为3800米,根据路程、速度、时间的关系进行解答即可.【解答】解:①、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;②、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;③、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;④、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;综上所述,正确的有①②④.故答案为:①②④17.(4分)一次函数y=kx+b(k≠0)中,x与y的部分对应值如表:x﹣2﹣1012y9630﹣3那么,一元一次方程kx+b=0的解为x=1.【分析】利用函数值为0时对应的自变量的值为方程kx+b=0(k≠0)的解得到答案.【解答】解:∵x=1时,y=0,∴一元一次方程kx+b=0的解为x=1.故答案为x=1.18.(4分)如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.【分析】以PA,PC为邻边作平行四边形PAQC,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,然后根据△P′OC和△ABC相似,利用相似三角形的性质即可求出PQ的最小值.【解答】解:∵∠BAC=90°,AB=3,AC=4,∴BC==5,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∵∠ACB=∠P′CO,∠CP′O=∠CAB=90°,∴△CAB∽△CP′O,∴,∴,∴OP′=,∴则PQ的最小值为2OP′=,故答案为:.三、解答题:本题共8小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(8分)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm,求AB的长.【分析】根据角平分线的定义、直角三角形的性质计算.【解答】解:在Rt△ABC中,∠C=90°,∠A=∠30°,∴∠ABC=60°.∵BD是∠ABC的平分线,∴∠ABD=∠CBD=30°.∴∠ABD=∠BAD,∴AD=DB,在Rt△CBD中,CD=5cm,∠CBD=30°,∴BD=10cm.由勾股定理得,BC=5,∴AB=2BC=10cm.20.(8分)已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于F、F.求证:四边形AFCE是菱形.【分析】根据EF是对角线AC的垂直平分线,可以求证△AOE≌△COF,证明四边形的对角线互相平分,垂直,就可以证出.【解答】解:∵EF是对角线AC的垂直平分线,∴OA=OC,AC⊥EF,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,∵∠AOE=∠COF,∴在△AOE和△COF中,∴△AOE≌△COF(ASA).∴OE=OF.∴四边形AFCE是平行四边形,又∵AC⊥EF,∴四边形是AFCE菱形.21.(8分)在平面直角坐标系xOy中,已知直线l:y=kx+b(k≠0经过点A(﹣4,0),与y轴交于点B,如果△AOB的面积为4,求直线l的表达式.【分析】先把A点坐标代入y=kx+b得到b=4k,则y=kx+4k,所以B(0,4k),利用三角形面积公式得到×4×|4k|=4,解得k=或﹣,从而得到直线l的表达式.【解答】解:把A(﹣4,0)代入y=kx+b得﹣4k+b=0,解得b=4k,∴y=kx+4k,当x=0时,y=kx+4k+4k,则B(0,4k),∵△AOB的面积为4,∴×4×|4k|=4,解得k=或﹣,∴直线l的表达式为y=x+2或y=﹣x﹣2.22.(10分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.【分析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可;(3)找出点A关于x轴的对称点A′,连接A′B与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置,然后连接AP、BP并根据图象写出点P的坐标即可.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△PAB如图所示,P(2,0).23.(10分)某班同学为了解2019年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.月均用水量频数频率0<x≤560.125<x≤10m0.2410<x≤15160.3215<x≤20100.2020<x≤254n25<x≤3020.04请解答以下问题:(1)求出上面的频数分布表中的m、n的值,并把频数分布直方图补充完整;(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过10t的家庭大约有多少户?【分析】(1)根据0<x≤5中频数为6,频率为0.12,则调查总户数为6÷0.12=50,进而得出在5<x≤10范围内的频数以及在20<x≤25范围内的频率;(2)根据(1)中所求即可得出不超过15t的家庭总数即可求出,不超过15t的家庭占被调查家庭总数的百分比;(3)根据样本数据中超过10t的家庭数,即可得出1000户家庭超过10t的家庭数.【解答】解:(1)∵被调查的总户数为6÷0.12=50(户),∴m=50×0.24=12,n=4÷50=0.08,补全频数分布直方图如下:(2)该小区用水量不超过15t的家庭占被调查家庭总数的百分比为0.12+0.24+0.32=0.68=68%;(3)该小区月均用水量超过10t的家庭大约有1000×(1﹣0.12﹣0.24)=640(户).24.(10分)阅读与探究我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.请结合上述阅读材料,解决下列问题:(1)在我们所学过的特殊四边形中,是勾股四边形的是矩形;(写出一种即可)(2)下面图1,图2均为6×6的正方形网格,点A,B,C均在格点上,请在图中标出格点D,并连接AD,CD,使得四边形ABCD符合下列要求:图1中的四边形ABCD是勾股四边形,并且是中心对称图形;图2中的四边形ABCD是勾股四边形且对角线相等,但不是中心对称图形.【分析】(1)根据勾股四边形的定义判断即可.(2)根据要求结合数形结合的思想画出图形即可.【解答】解:(1)矩形是勾股四边形.故答案为:矩形.(2)如图1中,四边形ABCD即为所求.如图2中,四边形ABCD即为所求.25.(12分)如图,已知四边形ABCD是正方形,点E、F分别在AD、DC上,BE与AF 相交于点G,且BE=AF.(1)求证:△ABE≌△DAF;(2)求证:BE⊥AF;(3)如果正方形ABCD的边长为5,AE=2,点H为BF的中点,连接GH.求GH的长.【分析】(1)根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE =∠D=90°,然后利用“斜边直角边”证明Rt△ABE≌Rt△DAF;(2)结合(1)得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°即可;(3)根据直角三角形斜边上的中线等于斜边的一半得GH=BF,利用勾股定理求出BF 的长即可得出答案.【解答】解:(1)证明:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在Rt△ABE和Rt△DAF中,,∴Rt△ABE≌Rt△DAF(HL);(2)证明:∵Rt△ABE≌Rt△DAF,∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,知识像烛光,能照亮一个人,也能照亮无数的人。

2020-2021学年湖北省十堰市郧西县八年级(下)期末数学试卷(解析版)

2020-2021学年湖北省十堰市郧西县八年级(下)期末数学试卷(解析版)

2020-2021学年湖北省十堰市郧西县八年级(下)期末数学试卷一、选择题(共10小题).1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.下列运算不正确的是()A.×=B.÷=C.+=D.(﹣)2=2 3.下列四组线段中,不能作为直角三角形三条边的是()A.2cm,5cm,6cm B.2cm,2cm,2cmC.3cm,4cm,5cm D.5cm,12cm,13cm4.下列能够判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=AD,CB=CD D.AB=CD,AD=BC5.在10名学生中,8名学生的平均成绩是x,如果另外2名学生每人得84分,那么整个组的平均成绩是()A.B.C.D.6.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形7.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数的图象与x轴的交点坐标是(4,0)8.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是()A.7B.8C.7D.79.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且OE=AE,则边BC的长为()A.2B.3C.D.610.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.下列结论:①乙比甲晚出发1小时;②甲比乙晚到B地3小时;③甲的速度是5千米/时;④乙的速度是20千米/小时;根据图象信息,你认为错误的结论个数是()A.1个B.2个C.3个D.4个二、填空题(每题3分,共18分)11.在函数y=中,自变量x的取值范围是.12.为鼓励业主珍惜每一滴水,某小区物业表扬了100个节约用水模范户,5月份用水的情况如表:每户节水量(单位:吨)1 1.2 1.5节水户数651520那么,5月份这100户平均节约用水的吨数为吨.13.如图,等腰△ABC中,AB=AC,AB的垂直平分线DE分别交AC,AB于点D,E.若∠DBC=15°,则∠A=.14.如图,四边形ABCD为菱形,AB=2,∠DAB=60°,点E、F分别在边DC、BC上,且CE=CD,CF=CB,则S△CEF=.15.如图所示,函数y1=|x|和y2=x+的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.16.如图,锐角△ABC的边AC=6,△ABC的面积为15,AD平分∠BAC交BC于D,M,N分别是AD和AB上的动点,则BM+MN的最小值是.三、解答题(72分)17.计算:﹣÷+(3﹣)².18.如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形.(1)求证:▱ABCD为矩形;(2)若AB=4,求▱ABCD的面积.19.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?20.如图,∠B=90°,AB=4,BC=3,CD=12,AD=13,点E是AD的中点,求CE的长.21.如图,直线l1:y1=﹣x+b分别与x轴、y轴交于点A、点B,与直线l2:y2=x交于点C(2,2).(1)若y1<y2,请直接写出x的取值范围;(2)点P在直线l1:y1=﹣x+b上,且△OPC的面积为3,求点P的坐标?22.如图,在△ABC中,BD平分∠ABC交AC于D,作DE∥BC交AB于点E,作DF∥AB 交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∠BDE=15°,∠C=45°,CD=2,求DE的长.23.某工厂新开发生产一种机器,每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤x≤70,且为整数),函数y与自变量x的部分对应值如表x单位:台)102030y(单位:万元/台)605550(1)求y与x之间的函数关系式;(2)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.①该厂第一个月生产的这种机器40台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)②若该厂每月生产的这种机器当月全部售出,则每个月生产多少台这种机器才能使每台机器的利润最大?24.如图1,正方形ABCD的边长为6cm,点F从点B出发,沿射线AB方向以1cm/秒的速度移动,点E从点D出发,向点A以1cm/秒的速度移动(不到点A).设点E,F同时出发移动t秒.(1)在点E,F移动过程中,连接CE,CF,EF,则△CEF的形状是,始终保持不变;(2)如图2,连接EF,设EF交BD于点M,当t=2时,求AM的长;(3)如图3,点G,H分别在边AB,CD上,且GH=3cm,连接EF,当EF与GH 的夹角为45°,求t的值.25.平面直角坐标系中,直线l1:y=﹣x+3与x轴交于点A,与y轴交于点B,直线l2:y =kx+2k与x轴交于点C,与直线l1交于点P.(1)当k=1时,求点P的坐标;(2)如图1,点D为PA的中点,过点D作DE⊥x轴于E,交直线l2于点F,若DF=2DE,求k的值;(3)如图2,点P在第二象限内,PM⊥x轴于M,以PM为边向左作正方形PMNQ,NQ的延长线交直线l1于点R,若PR=PC,求点P的坐标.参考答案一、选择题(10小题,每小题3分,共30分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.解:0.2=,由于被开方数中含有分母,所以不是最简二次根式,12=22×3,18=32×2,由于被开方数中有能开得尽方的因数,所以都不是最简二次根式;符合最简二次根式的定义,是最简二次根式.故选:C.2.下列运算不正确的是()A.×=B.÷=C.+=D.(﹣)2=2解:A、×==,故正确.B、==,故正确.C、+,故错误.D、(﹣)2=2,故正确.故选:C.3.下列四组线段中,不能作为直角三角形三条边的是()A.2cm,5cm,6cm B.2cm,2cm,2cmC.3cm,4cm,5cm D.5cm,12cm,13cm解:A、由于22+52≠62,不能作为直角三角形的三边长;B、由于22+22=(2)2,能作为直角三角形的三边长;C、由于32+42=52,能作为直角三角形的三边长;D、由于52+122=132,能作为直角三角形的三边长.故选:A.4.下列能够判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=AD,CB=CD D.AB=CD,AD=BC解:如图所示:A、∵AB∥CD,AD=BC,不符合“一组对边平行且相等的四边形是平行四边形”,∴不能判定四边形ABCD是平行四边形,故本选项不符合题意;B、∵∠A=∠B,∠C=∠D,不符合“两组对角分别相等的四边形是平行四边形”,∴不能判定四边形ABCD是平行四边形,故本选项不符合题意;C、∵AB=AD,CB=CD,不符合“两组对边分别相等的四边形是平行四边形”,∴不能判定四边形ABCD是平行四边形,故本选项不符合题意;D、∵AB=CD,AD=BC,符合“两组对边分别相等的四边形是平行四边形”,∴四边形ABCD是平行四边形,故本选项符合题意,故选:D.5.在10名学生中,8名学生的平均成绩是x,如果另外2名学生每人得84分,那么整个组的平均成绩是()A.B.C.D.解:由题意可得,整个组的平均成绩是:=(分),故选:B.6.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形解:A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.故选:B.7.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数的图象与x轴的交点坐标是(4,0)解:A、一次项系数小于0,则函数值随自变量的增大而减小,故A结论正确,不符合题意.B、函数经过一、二、四象限,不经过第三象限,故B结论正确,不符合题意.C、函数的图象向下平移4个单位长度得y=﹣2x+4﹣4=﹣2x,故C结论正确,不符合题意;D、当y=0时,x=2,则函数图象与x轴交点坐标是(2,0),故D结论错误,符合题意;故选:D.8.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是()A.7B.8C.7D.7解:∵AE=5,BE=12,即12和5为两条直角边长时,小正方形的边长=12﹣5=7,∴EF=;故选:C.9.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且OE=AE,则边BC的长为()A.2B.3C.D.6解:∵四边形ABCD是矩形,∴∠A=90°,∠ABC=90°,AB=CD,即EA⊥AB,∵四边形BFDE是菱形,∴BD⊥EF,∵OE=AE,∴点E在∠ABD的角平分线上,∴∠ABE=∠EBD,∵四边形BFDE是菱形,∴∠EBD=∠DBC,∴∠ABE=∠EBD=∠DBC=30°,∵AB的长为3,∴BC=3,故选:B.10.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.下列结论:①乙比甲晚出发1小时;②甲比乙晚到B地3小时;③甲的速度是5千米/时;④乙的速度是20千米/小时;根据图象信息,你认为错误的结论个数是()A.1个B.2个C.3个D.4个解:由图象知,甲出发1小时后乙才出发,甲比乙晚到B地2小时.故①结论正确,②结论错误;甲的速度是:20÷4=5(km/h),故③结论正确;乙的速度是:20÷1=20(km/h),故④结论正确;所以错误的结论个数是1个.故选:A.二、填空题(每题3分,共18分)11.在函数y=中,自变量x的取值范围是x≥﹣1.解:根据题意得:x+1≥0,解得,x≥﹣1.12.为鼓励业主珍惜每一滴水,某小区物业表扬了100个节约用水模范户,5月份用水的情况如表:每户节水量(单位:吨)1 1.2 1.5节水户数651520那么,5月份这100户平均节约用水的吨数为 1.13吨.解:5月份这100户平均节约用水的吨数为=1.13(吨),故答案为:1.13.13.如图,等腰△ABC中,AB=AC,AB的垂直平分线DE分别交AC,AB于点D,E.若∠DBC=15°,则∠A=50°.解:设∠A=x,∵DE垂直平分线AB,∴AD=BD,∴∠ABD=∠A=x,∴∠ABC=15°+x,∵AB=AC,∴∠C=∠ABC=15°+x,在△ABC中,根据三角形内角和等于180°得,15°+x+15°+x+x=180°,解得x=50°.故答案为:50°.14.如图,四边形ABCD为菱形,AB=2,∠DAB=60°,点E、F分别在边DC、BC上,且CE=CD,CF=CB,则S△CEF=.解:∵四边形ABCD为菱形,AB=2,∠DAB=60°,∴AB=BC=CD=2,∠DCB=60°,∵CE=CD,CF=CB,∴CE=CF=,∴△CEF为等边三角形,∴S△CEF=,故答案为:.15.如图所示,函数y1=|x|和y2=x+的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是x<﹣1或x>2.解:当x≥0时,y1=x,又,∴两直线的交点为(2,2),y2=x+当x<0时,y1=﹣x,又y2=x+,∴两直线的交点为(﹣1,1),由图象可知:当y1>y2时x的取值范围为:x<﹣1或x>2.故答案为:x<﹣1或x>2.16.如图,锐角△ABC的边AC=6,△ABC的面积为15,AD平分∠BAC交BC于D,M,N分别是AD和AB上的动点,则BM+MN的最小值是5.解:作N关于AD的对称点为R,作AC边上的高BE(E在AC上),∵AD平分∠CAB,△ABC为锐角三角形,∴R必在AC上,∵N关于AD的对称点为R,∴MR=MN,∴BM+MN=BM+MR,即BM+MN=BR≥BE(垂线段最短),∵△ABC的面积是15,AC=6,∴×6×BE=15,∴BE=5,即BM+MN的最小值为5.三、解答题(72分)17.计算:﹣÷+(3﹣)².解:原式=4﹣+9﹣6+3=4﹣3+12﹣6=12﹣5.18.如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形.(1)求证:▱ABCD为矩形;(2)若AB=4,求▱ABCD的面积.【解答】解(1)∵△AOB为等边三角形∴∠BAO=60°=∠AOB,OA=OB ∵四边形ABCD是平行四边形∴OB=OD,∴OA=OD∴∠OAD=30°,∴∠BAD=30°+60°=90°∴平行四边形ABCD为矩形;(2)在Rt△ABC中,∠ACB=30°,∴AB=4,BC=AB=4∴▱ABCD的面积=4×4=1619.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40,图①中m的值为15;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.20.如图,∠B=90°,AB=4,BC=3,CD=12,AD=13,点E是AD的中点,求CE的长.解:在Rt△ABC中,∠B=90°,∵AB=3,BC=4,∴,∵CD=12,AD=13,∵AC2+CD2=52+122=169,AD2=169,∴AC2+CD2=AD2,∴∠C=90°,∴△ACD是直角三角形,∵点E是AD的中点,∴CE=.21.如图,直线l1:y1=﹣x+b分别与x轴、y轴交于点A、点B,与直线l2:y2=x交于点C(2,2).(1)若y1<y2,请直接写出x的取值范围;(2)点P在直线l1:y1=﹣x+b上,且△OPC的面积为3,求点P的坐标?解:(1)∵直线l1:y1=﹣x+b与直线l2:y2=x交于点C(2,2),∴当y1<y2时,x>2;(2)将(2,2)代入y1=﹣x+b,得b=3,∴y1=﹣x+3,∴A(6,0),B(0,3),∴S△BOC=×3×2=3,当点P与点B重合时,△OPC的面积为3,此时,P(0,3);当点P在射线CA上时,点C为PB的中点,设点P的坐标为(a,b),则=2,=2,解得a=4,b=1,∴P(4,1),综上所述,点P的坐标为(0,3)或(4,1).22.如图,在△ABC中,BD平分∠ABC交AC于D,作DE∥BC交AB于点E,作DF∥AB 交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∠BDE=15°,∠C=45°,CD=2,求DE的长.【解答】(1)证明:∵DE∥BC,DF∥AB,∴四边形BEDF是平行四边形,∠EDB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠EDB,∴BE=DE,∴平行四边形BEDF是菱形;(2)解:过点D作DH⊥BC于点H,如图所示:∵四边形BEDF是菱形,∴BF=DF=DE,∴∠FBD=∠FDB=∠BDE=15°,∴∠DFH=30°,∵DH⊥BC,∴∠DHF=∠DHC=90°,∴DH=DF,∵∠C=45°,∴△CDH是等腰直角三角形,∴DH=CH=CD=×2=2,∴DF=2DH=4,∴DE=4.23.某工厂新开发生产一种机器,每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤x≤70,且为整数),函数y与自变量x的部分对应值如表x单位:台)102030y(单位:万元/台)605550(1)求y与x之间的函数关系式;(2)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.①该厂第一个月生产的这种机器40台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)②若该厂每月生产的这种机器当月全部售出,则每个月生产多少台这种机器才能使每台机器的利润最大?解:(1)设y与x的函数关系式为y=kx+b,,得,即y与x的函数关系式为y=﹣0.5x+65(10≤x≤70,且为整数);(2)①设z与a之间的函数关系式为z=ma+n,,得,∴z与a之间的函数关系式为z=﹣a+90,当z=40时,40=﹣a+90,得a=50,当x=40时,y=﹣0.5×40+65=45,40×50﹣40×45=2000﹣1800=200(万元),答:该厂第一个月销售这种机器的总利润为200万元;②设每台机器的利润为w万元,w=(﹣x+90)﹣(﹣0.5x+65)=﹣x+25,∵10≤x≤70,且为整数,∴当x=10时,w取得最大值,答:每个月生产10台这种机器才能使每台机器的利润最大.24.如图1,正方形ABCD的边长为6cm,点F从点B出发,沿射线AB方向以1cm/秒的速度移动,点E从点D出发,向点A以1cm/秒的速度移动(不到点A).设点E,F同时出发移动t秒.(1)在点E,F移动过程中,连接CE,CF,EF,则△CEF的形状是等腰直角三角形,始终保持不变;(2)如图2,连接EF,设EF交BD于点M,当t=2时,求AM的长;(3)如图3,点G,H分别在边AB,CD上,且GH=3cm,连接EF,当EF与GH 的夹角为45°,求t的值.解:(1)等腰直角三角形.理由如下:如图1,在正方形ABCD中,DC=BC,∠D=∠ABC=90°.依题意得:DE=BF=t.在△CDE与△CBF中,,∴△CDE≌△CBF(SAS),∴CF=CE,∠DCE=∠BCF,∴∠ECF=∠BCF+∠BCE=∠DCE+∠BCE=∠BCD=90°,∴△CEF是等腰直角三角形.故答案是:等腰直角三角形.(2)如图2,过点E作EN∥AB,交BD于点N,则∠NEM=∠BFM.∴∠END=∠ABD=∠EDN=45°,∴EN=ED=BF.在△EMN与△FMB中,,∴△EMN≌△FMB(AAS),∴EM=FM.∵Rt△AEF中,AE=4,AF=8,∴=EF==4,∴AM=EF=2;(3)如图3,连接CE,CF,EF与GH交于P.由(1)得∠CFE=45°,又∠EPQ=45°,∴GH∥CF,又∵AF∥DC,∴四边形GFCH是平行四边形,∴CF=GH=3,在Rt△CBF中,得BF===3,∴t=3.25.平面直角坐标系中,直线l1:y=﹣x+3与x轴交于点A,与y轴交于点B,直线l2:y =kx+2k与x轴交于点C,与直线l1交于点P.(1)当k=1时,求点P的坐标;(2)如图1,点D为PA的中点,过点D作DE⊥x轴于E,交直线l2于点F,若DF=2DE,求k的值;(3)如图2,点P在第二象限内,PM⊥x轴于M,以PM为边向左作正方形PMNQ,NQ的延长线交直线l1于点R,若PR=PC,求点P的坐标.解:(1)当k=1时,直线l2为y=x+2.解方程组,解得,∴P(,);(2)当y=0时,kx+2k=0,∵k≠0,∴x=﹣2,∴C(﹣2,0)则OC=2,当y=0时,﹣x+3=0,∴x=6,∴A(6,0),OA=6,过点P作PG⊥DF于点G,在△PDG和△ADE中,,∴△PDG≌△ADE,得DE=DG=DF,∴PD=PF,∴∠PFD=∠PDF∵∠PFD+∠PCA=90°,∠PDF+∠PAC=90°∴∠PCA=∠PAC,∴PC=PA过点P作PH⊥CA于点H,∴CH=CA=4,∴OH=2,当x=2时,y=﹣×2+3=2代入y=kx+2k,得k=;(3)直角△PQR和直角△PMC中,,∴Rt△PMC≌Rt△PQR,∴CM=RQ,∴NR=NC,设NR=NC=a,则R(﹣a﹣2,a),代入y=﹣x+3,得﹣(﹣a﹣2)+3=a,解得a=8,设P(m,n),则,解得,∴P(﹣,).。

2020-2021学年四川省泸州市八年级(下)期末数学试卷(解析版)

2020-2021学年四川省泸州市八年级(下)期末数学试卷(解析版)

2020-2021学年四川省泸州市八年级(下)期末数学试卷一、选择题(共12小题).1.写方方正正中国字,做堂堂正正中国人.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列汉字是轴对称图形的是()A.B.C.D.2.函数y=中,自变量x的取值范围是()A.x≥1B.x>1C.x<1D.x≤13.下列四个二次根式中,最简二次根式是()A.B.C.D.4.甲,乙,丙,丁四个小组的同学分别参加了班级组织的中华古诗词知识竞赛,四个小组的平均分相同,其方差如下表,若要从中选出一个成绩更稳定的小组参加年级的比赛,那么应选()组名甲乙丙丁方差 4.3 3.24 3.6A.甲B.乙C.内D.丁5.如图,在▱ABCD中,如果∠A+∠C=100°,则∠B的度数是()A.50°B.80°C.100°D.130°6.将函数y=2x的图象沿y轴向下平移1个单位长度后,所得图象与x轴的交点坐标为()A.(0,﹣1)B.(﹣1,0)C.D.7.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AC,BC,AB的中点,连接DE,CF.若CF=1,则DE的长度为()A.1B.2C.D.48.下列曲线中不能表示y是x的函数的是()A.B.C.D.9.下列说法正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线相等的菱形是正方形D.对角线互相垂直且相等的四边形是正方形10.如图,四边形ABCD是矩形,∠BDC的平分线交AB的延长线于点E,若AD=4,AE =10,则AB的长为()A.4.2B.4.5C.5.2D.5.511.正比例函数y=kx(k≠0)的函数值y随着x的增大而增大,则一次函数y=﹣kx+k+1的图象一定经过()A.一二三象限B.一二四象限C.二三四象限D.一三四象限12.如图,在正方形ABCD的外侧作等边△CDE,对角线AC与BD相交于点O,连接AE 交BD于点F,若OF=1,则AB的长度为()A.2B.C.2D.3二、填空题(本大题共4个小题,每小题3分,共12分).13.分解因式:a2﹣1=.14.正六边形的内角和为度.15.使得函数的函数值大于1的自变量x的取值范围是.16.如图,在菱形ABCD中,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH.若∠B=45,BC=,则GH的最小值为.三、本大题共3个小题,每小题6分,共18分.17.计算:(π﹣3)0+(﹣1)2021﹣2﹣2.18.计算:(+)×﹣﹣()﹣1.19.计算:.四、本大题共2个小题,每小题7分,共14分.20.某校倡议学生利用双休日参加义务劳动,为了解同学们劳动时间情况,学校采用随机抽样的方法调查了部分同学的劳动时间作为样本,并用得到的数据绘制成两幅不完整的统计图,根据图中信息,解答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分的圆心角是度;本次抽查的学生劳动时间的众数是,中位数为;(3)若该校共有学生800人,根据样本数据估计该校学生劳动时间不低于1.5小时的人数.21.如图,已知△ABC中,AB=AC,BC=5,D为AB上一点,CD=4,BD=3.(1)求证:∠BDC=90°;(2)求AC的长.五,本题满分9分.22.如图,点D为△ABC的边BC的中点,过点A作AE∥BC.且AE=BC,连接DE,CE.(1)求证:AD=EC;(2)若AB=AC,判断四边形ADCE的形状,并说明理由;(3)若要使四边形ADCE为正方形.则△ABC应满足什么条件?(直接写出条件即可,不必证明)六,本题满分11分.23.如图,在平面直角坐标系xOy中,已知次函数y=kx+b的图象经过点C(3,0)和点D (0,6),直线y1=x+m与x轴,y轴分别交于A,B两点,与直线CD相交于点E,且OD=3OA.(1)求一次函数y=kx+b的解析式;(2)求四边形OBEC的面积S四边形OBEC;(3)在坐标轴上是否存在点P,使得S△ABP=?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡上相应的位置)1.写方方正正中国字,做堂堂正正中国人.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列汉字是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.解:A.找不到这样一条直线,翻折后使直线两方的部分能够完全重合,所以不是轴对称图形,故此选项不合题意;B.找不到这样一条直线,翻折后使直线两方的部分能够完全重合,所以不是轴对称图形,故此选项不合题意;C.图形沿着一条直线翻折,直线两方的部分能够完全重合,所以它是轴对称图形,故此选项符合题意;D.找不到这样一条直线,翻折后使直线两方的部分能够完全重合,所以不是轴对称图形,故此选项不合题意.故选:C.2.函数y=中,自变量x的取值范围是()A.x≥1B.x>1C.x<1D.x≤1【分析】根据二次根式的意义,被开方数是非负数,以及分母不等于0即可求解.解:根据题意得x﹣1>0,解得x>1.故选:B.3.下列四个二次根式中,最简二次根式是()A.B.C.D.【分析】根据最简二次根式的定义即可求出答案.解:A、原式=3,故A不符合题意.B、原式=,故B符合题意.C、原式=,故C不符合题意.D、原式=2,故D不符合题意.故选:B.4.甲,乙,丙,丁四个小组的同学分别参加了班级组织的中华古诗词知识竞赛,四个小组的平均分相同,其方差如下表,若要从中选出一个成绩更稳定的小组参加年级的比赛,那么应选()组名甲乙丙丁方差 4.3 3.24 3.6A.甲B.乙C.内D.丁【分析】根据方差的意义求解即可.解:由表格知,乙的方差最小,所以若要从中选出一个成绩更稳定的小组参加年级的比赛,那么应选乙,故选:B.5.如图,在▱ABCD中,如果∠A+∠C=100°,则∠B的度数是()A.50°B.80°C.100°D.130°【分析】四边形ABCD是平行四边形,可得∠A=∠C,又由∠A+∠C=100°,即可求得∠A的度数,继而求得答案.解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A+∠C=100°,∴∠A=∠C=50°,∴∠B=180°﹣∠A=130°.故选:D.6.将函数y=2x的图象沿y轴向下平移1个单位长度后,所得图象与x轴的交点坐标为()A.(0,﹣1)B.(﹣1,0)C.D.【分析】根据“上加下减”的原则求得平移后的解析式,令y=0,解得即可.解:由“上加下减”的原则可知,将函数y=2x的图象沿y轴向下平移1个单位长度后,所得函数的解析式为y=2x﹣1,令y=0,则2x﹣1=0,∴x=,∴图象与x轴的交点坐标为(,0),故选:C.7.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AC,BC,AB的中点,连接DE,CF.若CF=1,则DE的长度为()A.1B.2C.D.4【分析】根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.解:在Rt△ABC中,F是AB的中点,CF=1,∴AB=2CF=2,∵D,E分别是AC,BC的中点,∴DE是△ABC的中位线,∴DE=AB=1,故选:A.8.下列曲线中不能表示y是x的函数的是()A.B.C.D.【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可得出结论.解:当x取一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项D中的曲线,当x取一个值时,y的值可能有2个,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应.故D中曲线不能表示y是x的函数,故选:D.9.下列说法正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线相等的菱形是正方形D.对角线互相垂直且相等的四边形是正方形【分析】根据各个选项中的说法,可以判断是否正确,从而可以解答本题.解:A、对角线相等的平行四边形是矩形,原命题是假命题;B、对角线互相垂直的平行四边形是菱形,原命题是假命题;C、对角线相等的菱形是正方形,是真命题;D、对角线互相平分且垂直且相等的四边形是正方形,原命题是假命题;故选:C.10.如图,四边形ABCD是矩形,∠BDC的平分线交AB的延长线于点E,若AD=4,AE =10,则AB的长为()A.4.2B.4.5C.5.2D.5.5【分析】根据矩形的性质和角平分线的性质推知∠E=∠1=∠2,则BE=BD,所以在直角△ABD中,利用勾股定理求得AB的长度即可.解:如图,∵四边形ABCD是矩形,∴CD∥AB,∴∠1=∠E.又∵∠BDC的平分线交AB的延长线于点E,∴∠1=∠2,∴∠2=∠E.∴BE=BD.∵AE=10,∴BD=BE=10﹣AB.在直角△ABD中,AD=4,BD=10﹣AB,则由勾股定理知:AB==.∴AB=4.2.故选:A.11.正比例函数y=kx(k≠0)的函数值y随着x的增大而增大,则一次函数y=﹣kx+k+1的图象一定经过()A.一二三象限B.一二四象限C.二三四象限D.一三四象限【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.解:∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵﹣k<0,b=k+1>0,∴一次函数y=﹣kx+k+1的图象经过一、二、四象限,故选:B.12.如图,在正方形ABCD的外侧作等边△CDE,对角线AC与BD相交于点O,连接AE 交BD于点F,若OF=1,则AB的长度为()A.2B.C.2D.3【分析】先根据正方形和等边三角形的性质证明△ADE是等腰三角形,求出∠DAE=∠DEA,再求出∠OAF=30°,在直角三角形OAF中即可得出结论.解:∵四边形ABCD是正方形,△CDE是等边三角形,∴AD=CD,∠ADC=90°,DC=DE,∠CDE=∠DEC=60°,∠DAC=45°,AC⊥BD,∴AD=DE,∠ADE=90°+60°=150°,∠AOD=90°,∴∠DAE=∠DEA=(180°﹣150°)=15°,∠OAF=45°﹣15°=30°,∴AF=2OF=2,∴OA=,∴AB=,故选:B.二、填空题(本大题共4个小题,每小题3分,共12分).13.分解因式:a2﹣1=(a+1)(a﹣1).【分析】符合平方差公式的特征,直接运用平方差公式分解因式.平方差公式:a2﹣b2=(a+b)(a﹣b).解:a2﹣1=(a+1)(a﹣1).故答案为:(a+1)(a﹣1).14.正六边形的内角和为720度.【分析】由多边形的内角和公式:180°(n﹣2),即可求得正六边形的内角和.解:正六边形的内角和为:180°×(6﹣2)=180°×4=720°.故答案为:720.15.使得函数的函数值大于1的自变量x的取值范围是x>.【分析】由题意可得x﹣1>1,解不等式即可.解:由题意可得,x﹣1>1,解得x>,故答案为x>.16.如图,在菱形ABCD中,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH.若∠B=45,BC=,则GH的最小值为.【分析】连接AF,利用三角形中位线定理,可知GH=AF,求出AF的最小值即可解决问题.解:连接AF,如图所示:∵四边形ABCD是菱形,∴AB=BC=2,∵G,H分别为AE,EF的中点,∴GH是△AEF的中位线,∴GH=AF,当AF⊥BC时,AF最小,GH得到最小值,则∠AFB=90°,∵∠B=45°,∴△ABF是等腰直角三角形,∴AF=AB=×2=,∴GH=,即GH的最小值为,故答案为:.三、本大题共3个小题,每小题6分,共18分.17.计算:(π﹣3)0+(﹣1)2021﹣2﹣2.【分析】直接利用零指数幂的性质以及有理数的乘方、负整数指数幂的性质分别化简得出答案.解:原式=1﹣1﹣=﹣.18.计算:(+)×﹣﹣()﹣1.【分析】根据乘法分配律、负整数指数幂、二次根式的加减法可以解答本题.解:(+)×﹣﹣()﹣1=+﹣2﹣6=6+3﹣2﹣6=.19.计算:.【分析】根据分式的加减运算以及乘除运算法则即可求出答案.解:原式=•==a+1.四、本大题共2个小题,每小题7分,共14分.20.某校倡议学生利用双休日参加义务劳动,为了解同学们劳动时间情况,学校采用随机抽样的方法调查了部分同学的劳动时间作为样本,并用得到的数据绘制成两幅不完整的统计图,根据图中信息,解答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分的圆心角是144度;本次抽查的学生劳动时间的众数是 1.5小时,中位数为 1.5小时;(3)若该校共有学生800人,根据样本数据估计该校学生劳动时间不低于1.5小时的人数.【分析】(1)根据劳动时间1小时的人数和所占的百分比,可以求得本次调查的学生总人数,然后即可计算出劳动时间1.5小时的人数,从而可以将条形统计图补充完整;(2)根据(1)中补充完整的条形统计图中的数据,可以计算出扇形图中的“1.5小时”部分圆心角是多少度;根据条形统计图中的数据,可以写出抽查的学生劳动时间的众数、中位数;(3)总人数乘以样本中劳动时间不低于1.5小时的人数对应的百分比可得.解:(1)30÷30%=100(人),劳动时间1.5小时的有:100﹣12﹣30﹣18=40(人),补全的条形统计图如图所示:(2)360°×=144°,由条形统计图可知,抽查的学生劳动时间的众数是1.5小时、中位数是1.5小时;故答案为:144,1.5小时,1.5小时;(3)800×=464(人),答:估计该校学生劳动时间不低于1.5小时的人数有464人.21.如图,已知△ABC中,AB=AC,BC=5,D为AB上一点,CD=4,BD=3.(1)求证:∠BDC=90°;(2)求AC的长.【分析】(1)根据勾股定理的逆定理判断即可;(2)根据勾股定理求出AC即可.【解答】(1)证明:∵BC=5,CD=4,BD=3,∴42+32=52,∴∠BDC=90°;(2)解:在Rt△ADC中,∠ADC=180°﹣90°=90°,依题意有AC2=(AB﹣3)2+CD2,即AC2=(AC﹣3)2+42,解得AC=.故AC的长为.五,本题满分9分.22.如图,点D为△ABC的边BC的中点,过点A作AE∥BC.且AE=BC,连接DE,CE.(1)求证:AD=EC;(2)若AB=AC,判断四边形ADCE的形状,并说明理由;(3)若要使四边形ADCE为正方形.则△ABC应满足什么条件?(直接写出条件即可,不必证明)【分析】(1)证AE=CD,再由AE∥BC,得四边形ADCE是平行四边形,即可得出AD =EC;(2)由等腰三角形的性质得AD⊥BC,则∠ADC=90°,由(1)得:四边形ADCE是平行四边形,即可得出结论;(3)由(2)得:四边形ADCE是矩形,再由直角三角形斜边上的中线性质得AD=BC =CD,即可得出结论.【解答】(1)证明:∵点D为△ABC的边BC的中点,∴BD=CD=BC,∵AE=BC,∴AE=CD,又∵AE∥BC,∴四边形ADCE是平行四边形,∴AD=EC;(2)解:四边形ADCE是矩形,理由如下:∵AB=AC,点D为△ABC的边BC的中点,∴AD⊥BC,∴∠ADC=90°,由(1)得:四边形ADCE是平行四边形,∴平行四边形ADCE是矩形;(3)解:要使四边形ADCE为正方形.则△ABC应满足AB=AC,且∠BAC=90°,理由如下:由(2)得:四边形ADCE是矩形,又∵∠BAC=90°,点D为△ABC的边BC的中点,∴AD=BC=CD,∴矩形四边形ADCE为正方形.六,本题满分11分.23.如图,在平面直角坐标系xOy中,已知次函数y=kx+b的图象经过点C(3,0)和点D (0,6),直线y1=x+m与x轴,y轴分别交于A,B两点,与直线CD相交于点E,且OD=3OA.(1)求一次函数y=kx+b的解析式;(2)求四边形OBEC的面积S四边形OBEC;(3)在坐标轴上是否存在点P,使得S△ABP=?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法可得答案;(2)根据OD=6,OD=3OA,可得OA的长,即点A的坐标,从而得AB的解析式,根据函数交点坐标的性质可得点E的坐标,最后由面积公式可得答案;(3)根据两种情况进行讨论即可,当点P在x轴上时,设点P的坐标为(t,0);②当点P在y轴上时,设点P的坐标为(0,t),由方程可得答案.解:(1)∵函数y=kx+b的图象经过点C(3,0)和点D(0,6),∴,∴,∴一次函数的解析式为:y=2x+6.(2)∵OD=6,OD=3OA,∴OA=2,即A(﹣2,0),∴×(﹣2)+m=0,∴m=1,∴直线AB的解析式为y1=x+1,∵直线y1=x+1交y轴于点B,∴B(0,1),∵直线y1=x+1与直线y=﹣2x+6于点E,∴,∴,即E(2,2),∴S四边形OBEC=S△OCD﹣S△BDE=×3×6﹣×5×2=4.(3)存在,分两种情况讨论:①当点P在x轴上时,设点P的坐标为(t,0),由题意得:×|t+2|×1=×(×5×2),∴t=6或t=﹣10,∴此时点P的坐标为(6,0),(﹣10,0).②当点P在y轴上时,设点P的坐标为(0,t),由题意得:×|t﹣1|×2=×(×5×2),∴t=5或t=﹣3,∴此时点P的坐标为(0,5),(0,﹣3).综上所述,在坐标轴上存在点P,使得S△ABP=,其坐标为(6,0),(﹣10,0),(0,5),(0,﹣3).。

2020年初二数学下期末试卷(带答案)

2020年初二数学下期末试卷(带答案)

2020年初二数学下期末试卷(带答案)2020年初二数学下期末试卷(带答案)一、选择题1.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,0),点C的坐标为(0,1),则选C。

2.已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM 长为半径画弧,两弧交于点C,连接AC,BC,则△XXX一定是等腰三角形。

3.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则CBD的度数为60度。

4.如图,在ABCD中,对角线AC、BD相交于点O。

E、F是对角线AC上的两个不同点,当E、F两点满足下列条件时,四边形DEBF不一定是平行四边形:DE=BF。

5.下列计算正确的是52=10.6.下列计算中正确的是32 1.7.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是:参加本次植树活动共有30人。

8.已知a,b,c是ABC的三边,且满足(a b)(a b c)0,则ABC是等腰直角三角形。

9.下列结论中,错误的有③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形。

10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是4m2/h。

1.300平方米2.150平方米3.330平方米4.450平方米11.答案为B。

根据角平分线定理可知AE/ED=AB/BD=6/4,AF/FD=BC/BD=8/4,因此AE+AF=ED+DF=2×BD=8,故选B。

12.答案为B。

根据余弦定理可得AC=4√7,因为BD是菱形的对角线,所以BD=2√7,又因为ABCD是菱形,所以BC=AC/2=2√7,故选B。

13.角平分线定理。

当XXX时,BE=ED=DF=FB,即四边形BEDF为正方形。

湖北省黄冈市黄州区2020-2021学年八年级下学期期末数学试题试卷(Word版,含答案与解析)

湖北省黄冈市黄州区2020-2021学年八年级下学期期末数学试题试卷(Word版,含答案与解析)
故选:D.
【点睛】本题考查了全等三角形的性质和判定,正方形的判定,角平分线性质的应用,能判断Rt△AED≌Rt△AFD是解此题的关键.
12.如图,E是平行四边形ABCD内一点,已知DE⊥AD,∠CBE=∠CDE,∠BCE=45°,CE的延长线交AD于F,连接BF,下列结论:①DE=DF;②△BEF为等腰三角形;③AF= CE;④BD的长等于四边形ABCD周长的 倍,其中正确的有( )个
14.若最简二次根式3 与5 可以合并,则合并后的结果为___.
【答案】
【解析】
【分析】根据这两个最简二次根式可以合并,得出它们是同类二次根式,即被开方数相同,列出方程求出m,然后合并同类二次根式即可.
【详解】解:∵最简二次根式3 与5 可以合并,
∴2m+5=4m-3,
解得:m=4,
∴最简二次根式 , ,
A.AB=CDB.AD=BCC.AD∥BCD. ∠A+∠B=180°
【答案】B
【解析】
【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.
∴NC∥AD,
∵DE⊥AD,
∴DN⊥BC,
∴∠DNC=90°,
∴∠CED=90°+45°=135°,
∴∠BME=∠DEC=135°,
在△BME和△DEC中
∴BE=CD,BM=DE,
连接DM,
∵∠BME=∠CED=135°,∠MEC=90°,
∴∠MED=360°-90°-135°=135°,
∴∠BME=∠DEM,
故选C.

2019-2020学年安徽省六安市霍邱县八年级下学期期末数学试卷 (解析版)

2019-2020学年安徽省六安市霍邱县八年级下学期期末数学试卷 (解析版)

2019-2020学年安徽六安市霍邱县八年级第二学期期末数学试卷一、选择题(共10小题).1.若有意义,则x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣22.下列运算正确的是()A.=﹣2B.(2)2=6C.+=D.×=3.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1 4.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.6B.7C.8D.95.一个三角形三个内角之比为1:2:3,其所对三边之比为()A.1:2:3B.1::C.1::2D.1::3 6.如图,矩形ABCD的对角线AC=10,∠BOC=120°,则AB的长度是()A.5B.6C.8D.57.一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7B.7,6.5C.5.5,7D.6.5,78.为执行“均衡教育“政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+2x)=12000B.2500(1+x)2=1200C.2500+2500(1+x)+2500(1+2x)=12000D.2500+2500(1+x)+2500(1+x)2=120009.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形10.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.8二、填空题(本大题共有4小题,每小题5分,共计20分)11.计算÷的结果是.12.已知x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,则m的值是.13.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',变形后∠A'=30°,若矩形ABCD的面积是9,则平行四边形A'B'C'D'的面积是14.如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,延长BC至点D,连接AD,若△ABD是以AD为其中一腰的等腰三角形,则线段DC的长等于.三、解答题(本大题共有9小题,共计90分)15.计算:.16.解方程:x2﹣6x﹣4=0.17.已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.18.已知关于x的方程x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,化简:.19.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点都在网格交点上,请按要求完成下列各题.(1)线段AB的长为,BC的长为.(2)点D也在格点上,且以A,B,C,D为顶点的四边形是平行四边形.请在网格图中画出一个符合条件的平行四边形;(3)设(2)中你所画的平行四边形的面积为S,请通过计算说明;S=AC•BC.20.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,…按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明其正确性.21.某校初二学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):′1号2号3号4号5号总分甲班1009811089103500乙班891009511997500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)计算两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.方差的公式为.22.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品面捐款的数额.23.我们给出如下定义:把对角线相等的四边形叫做“对等四边形”.如图①,在四边形ABCD中,AC=BD,四边形ABCD就是“对等四边形”.(1)下列四边形中,一定是“对等四边形”的是(填序号)①平行四边形②矩形③菱形④梯形(2)如图②,在“对等四边形”ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,求证:四边形EFGH是菱形.(3)在(2)的条件下,若四边形EFGH也是“对等四边形”,且对角线长为2,求四边形ABCD的面积.参考答案一、选择题(共10小题).1.若有意义,则x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣2【分析】二次根式有意义,被开方数是非负数.解:依题意,得x﹣2≥0,解得,x≥2.故选:A.2.下列运算正确的是()A.=﹣2B.(2)2=6C.+=D.×=【分析】根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可.解:A:=2,故本选项错误;B:=12,故本选项错误;C:与不是同类二次根式,不能合并,故本选项错误;D:根据二次根式乘法运算的法则知本选项正确.故选:D.3.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1【分析】方程利用完全平方公式变形即可得到结果.解:用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选:A.4.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.6B.7C.8D.9【分析】根据多边形的内角和公式及外角的特征计算.解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故选:C.5.一个三角形三个内角之比为1:2:3,其所对三边之比为()A.1:2:3B.1::C.1::2D.1::3【分析】求出三角形的各个内角,利用直角三角形30度角的性质解决问题即可.解:设△ABC中,∠A:∠B:∠C=1:2:3,∵∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,设BC=a,则AB=2a,AC=a,∴BC:AC:AB=1::2,故选:C.6.如图,矩形ABCD的对角线AC=10,∠BOC=120°,则AB的长度是()A.5B.6C.8D.5【分析】由矩形的性质得出OA=OB=4,证明△AOB是等边三角形,得出AB=OA即可.解:∵四边形ABCD是矩形,∴OA=AC=5,OB=OD,AC=BD=10,∴OA=OB=5,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=5;故选:A.7.一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7B.7,6.5C.5.5,7D.6.5,7【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:在这一组数据中7是出现次数最多的,故众数是7,而将这组数据从小到大的顺序排列后,处于中间位置的数是6,7,那么由中位数的定义可知,这组数据的中位数是(6+7)÷2=6.5.故选:D.8.为执行“均衡教育“政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+2x)=12000B.2500(1+x)2=1200C.2500+2500(1+x)+2500(1+2x)=12000D.2500+2500(1+x)+2500(1+x)2=12000【分析】设每年投入教育经费的年平均增长百分率为x,根据题意可得,2017年投入教育经费+2017年投入教育经费×(1+增长率)+2017年投入教育经费×(1+增长率)2=1.2亿元,据此列方程.解:设每年投入教育经费的年平均增长百分率为x,由题意得,2500+2500×(1+x)+2500(1+x)2=12000.故选:D.9.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形【分析】A、一组对边相等,另一组对边平行的四边形不一定为平行四边形,例如等腰梯形满足一组对边相等,另一组对边平行,但不是平行四边形;B、对角线相等的四边形不一定为矩形,例题等腰梯形的对角线相等,但不是矩形,应改为对角线相等的平行四边形为矩形;C、对角线互相垂直的四边形不一定为菱形,例如:画出图形,如图所示,AC与BD垂直,但是显然ABCD不是菱形,应改为对角线互相垂直的平行四边形是菱形;D、两条对角线相等且互相垂直平分的四边形是正方形,根据题意画出相应的图形,如图所示,根据对角线互相平分,得到四边形为平行四边形,再由平行四边形的对角线相等,得到平行四边形为矩形,最后根据矩形的对角线互相垂直得到矩形为正方形.解:A、一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如等腰梯形,一组对边平行,另一组对边相等,不是平行四边形,故本选项为假命题;B、对角线相等的四边形不一定是矩形,例如等腰梯形对角线相等,但不是矩形,故本选项为假命题;C、两条对角线互相垂直的四边形不一定是菱形,如图所示:AC⊥BD,但四边形ABCD不是菱形,本选项为假命题;D、两条对角线相等且互相垂直平分的四边形是正方形,已知:四边形ABCD,AC=BD,AC⊥BD,OA=OC,OB=OD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形为平行四边形,又AC=BD,∴四边形ABCD为矩形,∵AC⊥BD,∴四边形ABCD为正方形,则本选项为真命题,故选:D.10.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.8【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB==4,再由勾股定理求出AC即可.解:连接AE,如图:∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=5,∴AE=CE=5,BC=BE+CE=3+5=8,∴AB===4,∴AC===4;故选:A.二、填空题(本大题共有4小题,每小题5分,共计20分)11.计算÷的结果是3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.解:.故答案为:312.已知x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,则m的值是4.【分析】根据方程的系数结合两根之和等于3,即可得出关于m的一元一次方程,解之即可得出m的值.解:∵x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,∴m﹣1=3,∴m=4.故答案为:4.13.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',变形后∠A'=30°,若矩形ABCD的面积是9,则平行四边形A'B'C'D'的面积是【分析】根据30°角所对的直角边等于斜边的一半,可知平行四边形的高等于矩形的宽的一半,由于底不变,所以平行四边形A'B'C'D'的面积是矩形面积的一半.解:由题意可知,平行四边形A'B'C'D'的底边A'D'与矩形的长AD相等,平行四边形A'B'C'D'的高变为矩形的宽的一半,所以平行四边形A'B'C'D'的面积是矩形面积的一半.所以平行四边形A'B'C'D'的面积是.故答案为:.14.如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,延长BC至点D,连接AD,若△ABD是以AD为其中一腰的等腰三角形,则线段DC的长等于5或.【分析】先利用勾股定理求出AB的长,再分①AD=AB;②AD=BD两种情况进行讨论即可得出结论.解:∵Rt△ABC中,∠ACB=90°,AC=12,BC=5,∴AB===13.∵△ABD是以AD为其中一腰的等腰三角形,∴分两种情况:①当AD=AB时,∵AC⊥BD,∴DC=BC=5;②当AD=BD时,设DC=x,则AD=BD=5+x.∵Rt△ADC中,∠ACD=90°,∴DC2+AC2=AD2,即x2+122=(5+x)2,解得x=.综上所述,线段DC的长等于5或.故答案为:5或.三、解答题(本大题共有9小题,共计90分)15.计算:.【分析】首先利用乘法分配律计算乘法,然后化简,再算加减即可.解:原式=+﹣4=2+﹣4=﹣2+.16.解方程:x2﹣6x﹣4=0.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.17.已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.【分析】证明△AEB≌△CFD,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC.∴∠BAE=∠DCF.在△AEB和△CFD中,,∴△AEB≌△CFD(SAS).∴BE=DF.18.已知关于x的方程x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,化简:.【分析】首先利用根的判别式确定m的取值范围,再化简二次根式,利用绝对值的性质计算即可.解:∵x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,∴△=4(m﹣1)2﹣4(m2+5)≥0,即﹣8m﹣16≥0,解得:m<﹣2,则=|1﹣m|+|m+2|=1﹣m﹣m﹣2=﹣2m﹣1.19.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点都在网格交点上,请按要求完成下列各题.(1)线段AB的长为5,BC的长为2.(2)点D也在格点上,且以A,B,C,D为顶点的四边形是平行四边形.请在网格图中画出一个符合条件的平行四边形;(3)设(2)中你所画的平行四边形的面积为S,请通过计算说明;S=AC•BC.【分析】(1)利用勾股定理计算即可.(2)根据平行四边形的判定画出图形即可.(3)利用勾股定理的逆定理证明解:(1)由题意,AB==5,BC==2,故答案为5,.(2)如图所示.(3)由勾股定理得,又∵AB=5,,∴AC2+BC2=AB2,∴∠ACB=90°,由勾股定理逆定理得△ACB为以AC和BC为直角边的直角三角形,∵,又∵所作的平行四边形的面积为△ACB面积的两倍,∴S=AC•BC.20.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,…按照以上规律,解决下列问题:(1)写出第5个等式:5+1;(2)写出你猜想的第n个等式:(+1)(n+1﹣)=n+1(用含n的等式表示),并证明其正确性.【分析】(1)根据所给等式可得答案;(2)首先写出第n个等式,然后再利用二次根式的乘法进行计算即可.【解答】(1)解:(+1)(6﹣)=5+1,故答案为:5+1;(2)(+1)(n+1﹣)=n+1,证明:∵=∴,故答案为:(+1)(n+1﹣)=n+1.21.某校初二学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):′1号2号3号4号5号总分甲班1009811089103500乙班891009511997500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)计算两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.方差的公式为.【分析】(1)优秀率等于100分以上(含100分)的人数除以总人数;(2)按大小顺序排列,中间一个数或两个数的平均数为中位数;(3)由方差的公式进行计算即可;(4)根据比赛成绩的优秀率高,中位数大,方差小,综合评定,则甲班踢毽子水平较好.解:(1)甲班的优秀率为:3÷5=0.6=60%,乙班的优秀率为:2÷5=0.4=40%;(2)甲班5名学生比赛成绩的中位数是100个乙班5名学生比赛成绩的中位数是97个;(3)甲班的平均分为,乙班的平均分为==100,甲班在这次比赛中的方差为:,乙班在这次比赛中的方差为:∴S甲2<S乙2;(4)甲班定为冠军.因为甲班5名学生的比赛成绩的优秀率比乙班高,中位数比乙班大,方差比乙班小,综合评定甲班踢毽子水平较好.22.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品面捐款的数额.【分析】(1)由该商品的售价结合售价每降低1元就会多售出3件,即可得出每天售出该工艺品的件数;(2)①根据总利润=每件工艺品的利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;②根据每天通过销售该工艺品面捐款的数额=0.5×每天销售的数量,即可得出结论.解:(1)∵该商品的售价为x元/件(20≤x≤40),且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴每天能售出该工艺品的件数为60+3(40﹣x)=(180﹣3x)件.(2)①依题意,得:(x﹣20)(180﹣3x)=900,整理,得:x2﹣80x+1500=0,解得:x1=30,x2=50(不合题意,舍去).答:该商品的售价为30元/件.②0.5×(180﹣3×30)=45(元).答:李晨每天通过销售该工艺品面捐款的数额为45元.23.我们给出如下定义:把对角线相等的四边形叫做“对等四边形”.如图①,在四边形ABCD中,AC=BD,四边形ABCD就是“对等四边形”.(1)下列四边形中,一定是“对等四边形”的是②(填序号)①平行四边形②矩形③菱形④梯形(2)如图②,在“对等四边形”ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,求证:四边形EFGH是菱形.(3)在(2)的条件下,若四边形EFGH也是“对等四边形”,且对角线长为2,求四边形ABCD的面积.【分析】(1)由矩形的性质可求解;(2)由三角形中位线定理可得EH=BD=FG,EF=AC=GH,由“对等四边形”的性质可得AC=BD,可得EH=FG=EF=GH,可得结论;(3)先证四边形EFGH是正方形,边长为,可得EF⊥FG,EF=FG=,由三角形中位线定理解得BD⊥AC,BD=AC=,可求解.解:(1)∵矩形的对角线相等,∴矩形一定是“对等四边形”,故答案为:②;(2)证明:连接AC、BD,∵点E,F,G,H分别为边AB,BC,CD,DA的中点,∴EH=BD=FG,EF=AC=GH,∵四边形ABCD是“对等四边形”,∴AC=BD,∴EH=FG=EF=GH,∴四边形EFGH是菱形;(3)连接EG,HF,∵四边形EFGH是菱形,∴GE与HF互相垂直平分,又∵四边形EFGH是“对等四边形”,且对角线长为2,∴GE=HF=2,∴四边形EFGH是正方形,边长为,∴EF⊥FG,EF=FG=,∵点E,F,G,H分别为边AB,BC,CD,DA的中点,∴FG∥BD,FG=BD,EF∥AC,EF=AC,∴BD⊥AC,BD=AC=,∴四边形ABCD的面积等于AC×BD=4.。

2020-2021学年广东省深圳市南山区八年级(下)期末数学试卷(学生版+解析版)

2020-2021学年广东省深圳市南山区八年级(下)期末数学试卷(学生版+解析版)

2020-2021学年广东省深圳市南山区八年级(下)期末数学试卷一、选择题(本题有10小题,每题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上)1.(3分)使分式m−1m−3在实数范围内有意义,则实数m 的取值范围是( ) A .m ≠1 B .m ≠3 C .m =3 D .m =12.(3分)下列图形中,是轴对称图形不是中心对称图形的是( )A .B .C .D .3.(3分)下列实数中,能够满足不等式x ﹣3<0的正整数是( )A .﹣2B .3C .4D .24.(3分)若x <y ,则下列不等式成立的是( )A .3x >3yB .x +1<y +1C .x 3>y 3D .−x 3<−y 3 5.(3分)设四边形的内角和等于a ,五边形的内角和等于b ,则a 与b 的关系是( )A .a >bB .a =bC .a =b +180°D .b =a +180° 6.(3分)若a b =2,则a 2−ab a 2−b 2的值为( ) A .13 B .23 C .−13 D .−23 7.(3分)平行四边形的两条对角线一定( )A .互相平分B .互相垂直C .相等D .以上都不对8.(3分)阅读理解:我们把|a b c d |称作二阶行列式,规定它的运算法则为|a b cd |=ad ﹣bc ,例如|1324|=1×4﹣2×3=﹣2,如果|23−x 1x |>0,则x 的取值范围是( ) A .x >1 B .x <﹣1 C .x >3 D .x <﹣39.(3分)如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =18,S △ABD=27,则CD 的长为( )A .4B .8C .3D .610.(3分)如图,将一个含30°角的直角三角尺AOB 放在平面直角坐标系中,两条直角边分别与坐标轴重叠.已知∠OAB =30°,AB =16,点D 为斜边AB 的中点,现将三角尺AOB 绕点O 顺时针旋转90°,则点D 的对应点D ′的坐标为( )A .(4√3,4)B .(8√3,﹣8)C .(4,﹣4√3)D .(4√3,﹣4)二、填空题(本题有5小题,每题3分,共15分,把答案填在答题卡上)11.(3分)分解因式:a 2﹣4b 2= .12.(3分)若分式x 2−9x−3的值为0,则x 的值为 .13.(3分)如图,平行四边形ABCD 中,AB =9,BC =4,连接AC ,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M ,N ,作直线MN ,交CD 于点E ,连接AE ,则△AED 的周长是 .14.(3分)如图,直线y 1=x +b 与y 2=kx ﹣1相交于点P ,则关于x 的不等式x +b >kx ﹣1的解集为 .15.(3分)如图,在四边形ABCD中,AD=BC,点P是对角线的中点,点E和点F分别是AB与CD的中点.若∠PEF=20°,则∠EPF的度数是.三、解答题:(本题共7小题,其中第16题10分第17题6分,第18题6分,第19题8分,第20题8分,第21题8分,第22题9分,共55分)16.(10分)解不等式(组)(1)解不等式:1−x+23>−x6,并把解集在数轴上表示出来.(2)求不等式组{5x−1>3(x+1)12x−1≤7−32x的正整数解.17.(6分)先化简,再求值:(a−3aa+1)÷a−2a2+2a+1请选择一个合适的数作为a值求式子的值.18.(6分)解方程:2x2−4+xx−2=1.19.(8分)如图所示,△ABC的三个顶点都在边长为1的小正方形组成的网格的格点上,以点O为原点建立平面直角坐标系,回答下列问题:(1)将△ABC先向上平移5个单位,再向右平移1个单位得到△A1B1C1,画出△A1B1C1,并直接写出A1的坐标;(2)将△A1B1C1绕点(0,﹣1)顺时针旋转90°得到△A2B2C2,画出△A2B2C2;(3)观察图形发现,△A2B2C2是由△ABC绕点顺时针旋转度得到的.20.(8分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)求证:△AEF≌△BAC;(2)四边形ADFE是平行四边形吗?请说明理由.21.(8分)五月的第二个星期日是母亲节,母亲们在这一天通常会收到礼物,康乃馨被视为献给母亲的花,某花店在母亲节前夕用3000元购进一批康乃馨,在母亲节当天供不应求,又马上用6000元加急购进一批康乃馨,第二批康乃馨数量是第一批的1.2倍,单价比第一批贵2元.(1)第一批康乃馨进货单价多少元?(2)若两次购进康乃馨按同一价格销售,两批全部售完后,获利不少于4200元,那么销售单价至少为多少元?22.(9分)在平行四边形ABCD中,AE⊥CD于E,CF⊥AD于F,H为AD上一动点,连接CH,CH交AE于G,且AE=CD=4.(1)如图1,若∠B=60°,求CF、AF的长;(2)如图2,当FH=FD时,求证:CG=ED+AG;(3)如图3,若∠B=60°,点H是直线AD上任一点,将线段CH绕C点逆时针旋转60°,得到线段CH,请直接写出AH′的最小值.2020-2021学年广东省深圳市南山区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分。

2020年朝阳区初二下数学期末试题及答案

2020年朝阳区初二下数学期末试题及答案

北京市朝阳区2019~2020学年度第二学期期末检测八年级数学试卷 2020.7一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.若二次根式8-x 有意义,则实数x 的取值范围是(A )x≠8 (B )x ≥8 (C )x ≤8 (D )x=82.满足下列关系的三条线段a ,b ,c 组成的三角形一定是直角三角形的是(A )c b a +< (B )c b a -> (C )c b a == (D )222c b a -=3.若菱形的两条对角线的长分别为6和10,则菱形的面积为(A )60 (B )30 (C )24 (D )154.下列曲线中,表示y 是x 的函数的是(A ) (B ) (C ) (D ) 5.《九章算术》内容丰富,与实际生活联系紧密,在书上讲述了这样一个问题“今有垣高一丈。

倚木于垣,上与垣齐。

引木却行一尺,其木至地。

问木长几何?”其内容可以表述为:“有一面墙,高1丈。

将一根木杆斜靠在墙上,使木杆的上端与墙的上端对齐,下端落在地面上。

如果使木杆下端从此时的位置向远离墙的方向移动1尺,则木杆上端恰好沿着墙滑落到地面上。

问木杆长多少尺?”(说明:1丈=10尺) 设木杆长x 尺,依题意,下列方程正确的是 (A )22210)1(+-=x x(B )22210)1(+=+x x(C )2221)1(+-=x x(D )2221)1(+=+x xx y O xy O x yO6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,AB=2,∠ABO=60º,线段EF 绕点O 转动,与AD ,BC 分别相交于点E ,F ,当∠AOE =60º时,EF 的长为 (A )1 (B )3 (C )2 (D )47.想要计算一组数据:197,202,200,201,199,198,203的方差2s ,在计算平均数的过程中,将这组数据的每一个数都减去200,得到一组新数据―3,2,0,1,―1,―2,3,且新的这组数据的方差为4,则2s 为(A )4 (B )16 (C )196 (D )204 8.已知O 为数轴原点. 如图,(1)在数轴上截取线段OA =2; (2)过点A 作直线n 垂直于OA ; (3)在直线n 上截取线段AB =3;(4)以O 为圆心,OB 的长为半径作弧,交数轴于点C .根据以上作图过程及所作图形,有以下四个结论:①OC=5; ②OB=13; ③3<OC<4;④AC=1. 上述结论中,所有正确结论的序号是 (A )①② (B )①③(C )②③(D )②④二、填空题(本题共18分,第9-14题,每小题2分,第15-16题,每小题3分) 9.已知x=35+, y=35-,则x y = .10.下列命题,①对顶角相等;②两直线平行,同位角相等;③平行四边形的对角相等.其中逆命题是真命题的命题共有 个.11.如图所示的正方形网格中,每个小正方形的面积均为1,正方形ABCM ,CDEN ,MNPQ 的顶点都在格点上,则正方形MNPQ 的面积为 .(第11题) (第12题)O12.某校八年级同学2020年4月平均每天自主学习时间统计如图所示,那么这组数据的众数是 . 13.下列问题,①某登山队大本营所在地气温为4℃,海拔每升高1km 气温下降6℃,登山队员由大本营向上登高x km ,他们所在位置的气温是y ℃;②铜的密度为8.9 g/ cm 3,铜块的质量y g 随它的体积x cm 3的变化而变化;③圆的面积y 随半径x 的变化而变化. 其中y 与x 的函数关系是正比例函数的 是 (只需填写序号). 14.为了践行“首都市民卫生健康公约”,某班级举办“七步洗手法”比赛活动,小明的单项成绩如下表所示(各项成绩均按百分制计):若按书面测试占30%、实际操作占50%、宣传展示占20%,计算参赛个人的综合成绩(百分制),则小明的最后得分是 .15.在平面直角坐标系xOy 中,若直线y =2x +3向下平移n 个单位长度后,与直线y =-x +2的交点在第一象限,则n 的取值范围是 .16.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BCDA 的路径匀速运动到点A 处停止.设点P 运动的路程为x ,△P AB 的面积为y ,表示y 与x 函数关系的图象如图2所示,则下列结论: ① a =4;②b =20;③当x =9时,点P 运动到点D 处;④当y =9时,点P 在线段BC 或DA 上. 其中所有正确结论的序号是 .三、解答题(本题共66分,第17题8分,第18题5分,第19-23题,每小题6分,第24题7分,第25-26题,每小题8分)解答应写出文字说明、演算步骤或证明过程. 17.计算(1)323)3262(-⨯+. (2)已知13+=x ,求代数式x x 22-的值.项目 书面测试 实际操作 宣传展示 成绩(分)969896图1 图2(第16题)C xyba 139O18.阅读下面材料,并回答问题.在几何学习中,经常通过添加辅助线构造图形,将未知问题转化为已知问题.以下给出的“三角形中位线定理”的两种不同证明方法,就体现了三角形问题和平行四边形问题的相互转化.图①图②依据a:;依据b:;依据c:;依据d:;依据e:.19.如图,矩形ABCD 中,AB =4,AD =3,将矩形ABCD 沿对角线AC 折叠,使点B 落在点E 处,AE 交CD 于点F .(1)写出折叠后的图形中的等腰三角形:_______; (2)求CF 的长.20.如图,在平面直角坐标系xOy 中,直线l 1:y =kx -1与直线l 2:y =21x +2交于点A (m ,1). (1)求m 的值和直线l 1的表达式;(2)设直线l 1,l 2分别与y 轴交于点B ,C ,求△ABC 的面积; (3)结合图象,直接写出不等式2211+<-x kx 的解集.21.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,延长CD 到E ,使DE =CD ,连接AE ,OE .(1)求证:四边形ABDE 是平行四边形; (2)若AD =DE =4,求OE 的长.O22.某水果商从外地购进某种水果若干箱,需要租赁货车运回. 经了解,当地运输公司有大、小两种(1)若该水果商计划租用大、小货车共8辆,其中大货车x辆,共需付租金y元,请写出y与x的函数关系式;(2)在(1)的条件下,若这批水果共340箱,所租用的8辆货车可一次将购进的全部水果运回,请给出最节省费用的租车方案,并求出最低费用.23.下面给出了我国31个省份2019年居民人均可支配收入(单位:万元):1.9139 1.95012.0397 2.2082 2.2618 2.3103 2.3328 2.38282.3903 2.4254 2.4412 2.4563 2.4666 2.4703 2.5665 2.62622.6415 2.6679 2.7680 2.8319 2.89203.0555 3.1597 3.18203.5616 3.90144.1400 4.2404 4.9899 6.7756 6.9442对上述数据进行整理、描述和分析,下面给出了部分信息:回答下列问题:(1)写出表中a, b的值;根据上述信息,2019年全国居民人均可支配收入继续增长.24.有这样一个问题:探究函数22xy-=的图象与性质.小明根据学习函数的经验,对函数22xy-=的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数22xy-=的自变量x的取值范围是;(2)下表是y与x的几组对应值.x …-3 -2 -1 0 1 2 3 4 5 6 7 …y … 2.5 2 1.5 1 0.5 0 0.5 m 1.5 2 2.5 …求m的值;(3)如下图,在平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)进一步探究发现该函数的性质:当x时,y随x的增大而增大.25.已知菱形ABCD ,∠BAD =60°,直线BH 不经过点A ,D ,点A 关于直线BH 的对称点为E ,CE 交直线BH 于点P ,连接AP .(1)如图1,当直线BH 经过点C 时,点E 恰好在DB 的延长线上,点P 与点C 重合,则∠AEP =________°,线段EA 与EP 之间的数量关系为_____; (2)当直线BH 不经过点C ,且在菱形ABCD 外部,∠CBH <30º时,如图2,① 依题意补全图2;②(1)中的结论是否发生改变?若不改变,请证明;若改变,说明理由.图1 图226.如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,点A (8,0),B (10,6). (1)求直线AC 的表达式;(2)点M 从点O 出发以每秒1个单位长度的速度沿x 轴向右运动,点N 从点A 出发以每秒3个单位长度的速度沿x 轴向左运动,两点同时出发.过点M ,N 作x 轴的垂线分别交直线OC ,AC 于点P ,Q ,猜想四边形PMNQ 的形状(点M ,N 重合时除外),并证明你的猜想;(3)在(2)的条件下,当点M 运动 秒时,四边形PMNQ 是正方形(直接写出结论).xyACBO北京市朝阳区2019~2020学年度第二学期期末检测八年级数学试卷参考答案 2020.7一、选择题(本题共16分,每小题2分)二、填空题(本题共18分,第9-14题,每小题2分,第15-16题,每小题3分)三、解答题(本题共66分,第17题8分,第18题5分,第19-23题,每小题6分,第24题7分,第25-26题,每小题8分)17.(1)解:原式242226-+=……………………………………………………………3分23=. ………………………………………………………………………4分(2)解:原式)13(2)13(2+-+= ………………………………………………………1分=4+2 ……………………………………………………………3分2=.………………………………………………………………………………4分18.解:依据a :对角线互相平分的四边形是平行四边形 …………………………………………1分依据b :一组对边平行且相等的四边形是平行四边形 …………………………………2分依据c :两角和它们的夹边分别相等的两个三角形全等 …………………………………3分 依据d :全等三角形的对应边相等 …………………………………………………………4分依据e :平行四边形对边平行且相等 ………………………………………………………5分19.解:(1)△AFC .……………………………………………………………………………………1分(2)设CF =x ,根据题意可知,∠EAC=∠BAC . ………………………………………………………2分 ∵ 四边形ABCD 是矩形, ∴ CD =AB=4,AB ∥CD .∴ ∠FCA=∠BAC . ………………………………………………………………………3分∴ ∠EAC =∠FCA .∴ AF =CF= x . …………………………………………………………………………4分 在Rt △ADF 中,由勾股定理可得222AF DF AD =+.∴222)4(3x x =-+.……………………………………………………………………5分 解得 825=x .∴825=CF .………………………………………………………………………………6分20.(1)∵点A (m ,1)在直线l 2:y =21x +2上, ∴21m +2=1. 解得m =-2. .….…………………………………………………………………………1分 ∴点A (-2,1).∵点A (-2,1)在直线l 1:y =kx -1上, ∴-2k -1=1. 解得k =-1.∴直线l 1的表达式为y =-x -1. …………………………………………………………2分 (2)∵直线l 1:y =-x -1,直线l 2:y =21x +2, ∴点B (0,-1),点C (0,2).…………………………………………………………4分 ∴BC =3.∴S △ABC =32321=⨯⨯. ..…………………………………………………………………5分 (3)2->x . ……………………………………………………………………………………6分 21.(1)证明:∵ 四边形ABCD 是矩形,∴ AB ∥CD ,AB =CD . .….……………………………… ………………………………1分 ∵ DE =CD ,∴ DE =AB .∴ 四边形ABDE 是平行四边形. …………………………………………………………2分 (2)解:∵ AD =DE=4,∠ADE= 90º,∴ AE =24. ………………………………………………………………………………3分 ∴ BD = AE =24.在Rt △BAD 中,O 为BD 中点, ∴AO =21BD =22.………………………………………………………………………4分 ∵ AD =CD ,∴ 矩形ABCD 是正方形. ………………………………………………………………5分 ∴ ∠EAO=∠OAD+∠DAE=45º+45º= 90º.∴OE=210. ……………………………………………………………………………6分22.解:(1)y=400x+320(8-x)=80x+2560. ………………………………………………………2分(2)由45x+35(8-x)≥340,得x≥6.……………………………………………………3分∵y=80x+2560,其中80>0,∴y随x的增大而增大.∴当x=6时,y值最小.……………………………………………………………………4分所以最节省费用的方案为:租用大货车6辆,小货车2辆.……………………………5分最低费用为y=80×6+2560=3040(元).………………………………………………6分23.解:(1)12,2. …………………………………………………………………………………2分(2)2.6262. …………………………………………………………………………………4分(3)①②. ……………………………………………………………………………………6分24.解:(1)全体实数.………………………………………………………………………………1分(2)1. ………………………………………………………………………………………3分(3)如图所示.…………………………………………………………………………………………6分(4)x>2.…………………………………………………………………………………7分25.(1)60.……………………………………………………………………………………………1分EA=EP. …………………………………………………………………………………2分(2)①补全图形,如图.…………………………………………………………………………………………………3分②不改变.…………………………………………………………………………………4分证明:连接EB并延长EB交CD于点Q.∵四边形ABCD是菱形,∠BAD=60°,∴∠ABC=120°. …………………………………5分BA=BC.∵ 点A 与点E 关于直线BH 对称,∴ P A =PE ,BA =BE .∴ BE =BC .∴ ∠BAE =∠BEA ,∠BEC =∠BCE . ……………………………………………6分∴ ∠ABQ =2∠BEA ,∠CBQ =2∠BEC .∵ ∠ABC =∠ABQ+∠CBQ ,∠AEP =∠BAE +∠BEC ,∴∠AEP =12∠ABC =60°. …………………………………………………………7分 ∴△AEP 是等边三角形.∴ EA =EP . …………………………………………………………………………8分26.(1)解:∵四边形OABC 是平行四边形,点A (8,0),B (10,6),∴C (2,6). ………………………………………………………………………1分设直线AC 的表达式为y =kx +b ,∵点A (8,0),C (2,6),∴⎩⎨⎧=+=+.62,08b k b k 解得⎩⎨⎧=-=.8,1b k ∴ 直线AC 的表达式为y =-x +8. ………………………………………………3分(2)猜想:四边形PMNQ 是矩形. ………………………………………………………4分证明:如图,∵点C (2,6),∴直线OC 的表达式为y =3x . ……………………5分设点M ,N 的运动时间为t 秒,则OM =t ,AN =3t ,∴M (t ,0),N (8-3t ,0).∵P M ,QN 垂直x 轴,点P ,Q 分别在直线OC ,AC 上,∴P (t ,3t ),Q (8-3t ,3t ).∴PM =QN =3t.∵PM ∥QN ,∴四边形PMNQ 是平行四边形. ………………………………………………………6分又 PM ⊥x 轴,∴平行四边形PMNQ 是矩形.(3)78或8. ……………………………………………………………………………………8分坚持希望一天,一个瞎子和一个瘸子结伴去寻找那种仙果,他们一直走呀走,途中他们翻山越岭。

2020-2021初二数学下期末试卷(及答案)

2020-2021初二数学下期末试卷(及答案)

2020-2021初二数学下期末试卷(及答案)一、选择题1.若(5-x)2=x﹣5,则x的取值范围是()A.x<52.若代数式x+1x-1B.x≤5C.x≥5D.x>5有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1 3.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S∆AOB =S四边形DEOF中正确的有A.4个B.3个C.2个D.1个4.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x-k的图象大致是()A.B.C.D.5.已知y=(k-3)x|k|-2+2是一次函数,那么k的值为()A.±3B.3C.-3D.无法确定6.如图,以△Rt ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=62,那么AC的长等于()A.12B.16C.43D.827.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差8.如图(1),四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△P AD的面积为S,S关于t的函数图象如图(2)所示,当P运动到BC中点时,△APD 的面积为()A.4B.5C.6D.79.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法不一定成立的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD10.如图,在ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A.2B.3C.4D.611.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑()米A.0.4B.0.6C.0.7D.0.812.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则y=kx-k的图象大致是()A.B.C.D.二、填空题13.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,DF∥AB,交BC于点F,当△ABC满足_________条件时,四边形BEDF是正方形.14.在函数y=x-4x+1中,自变量x的取值范围是______.15.如图,直线l1:y=x+n–2与直线l2:y=mx+n相交于点P(1,2).则不等式mx+n<x+n–2的解集为______.16.如图所示,将四根木条组成的矩形木框变成ABCD的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.17.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是______.18.将直线y=2x向下平移3个单位长度得到的直线解析式为_____.19.已知a<0,b>0,化简(a-b)2=________20.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是_________.三、解答题21.在学校组织的“文明出行”知识竞赛中,8(1)和8(2)班参赛人数相同,成绩分为A、B、C三个等级,其中相应等级的得分依次记为A级100分、B级90分、C级80分,达到B级以上(含B级)为优秀,其中8(2)班有2人达到A级,将两个班的成绩整理并绘制成如下的统计图,请解答下列问题:(1)求各班参赛人数,并补全条形统计图;(2)此次竞赛中8(2)班成绩为C级的人数为_______人;(3)小明同学根据以上信息制作了如下统计表:8(1)班8(2)班平均数(分)m91中位数(分)9090方差n29请分别求出m和n的值,并从优秀率和稳定性方面比较两个班的成绩;22.已知:如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:∠EBF=∠EDF.23.甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)学生甲学生乙数与代数9394空间与图形9392统计与概率8994综合与实践9086(1)分别计算甲、乙同学成绩的中位数;(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?24.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A 地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.25.如图所示,ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】因为a2=-a(a≤0),由此性质求得答案即可.【详解】∵(5-x)2=x-5,∴5-x≤0∴x≥5.故选C.【点睛】此题考查二次根式的性质:a2=a(a≥0),a2=-a(a≤0).2.D解析:D【解析】【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【详解】依题意,得x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.⎨∠BAD=∠ADE DEOF【点睛】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.B解析:B【解析】【分析】根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE得S△ABF =S△DAE,则S△ABF△-S AOF=S△DAE△-S AOF,即S△AOB=S四边形.【详解】解:∵四边形ABCD为正方形,∴AB=AD=DC,∠BAD=∠D=90°,而CE=DF,∴AF=DE,△在ABF和△DAE中⎧AB=DA⎪⎪⎩AF=DE∴△ABF≌△DAE,∴AE=BF,所以(1)正确;∴∠ABF=∠EAD,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE⊥BF,所以(2)正确;连结BE,形-∵BE >BC ,∴BA≠BE , 而 BO ⊥AE ,∴OA≠OE ,所以(3)错误;∵△ABF ≌△DAE , ∴S △ABF =S △DAE ,∴S △ABF △-S AOF =S △DAE △-S AOF ,∴S △AOB =S 四边DEOF ,所以(4)正确.故选 B .【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.4.B解析:B【解析】 【分析】先根据正比例函数 y = kx 的函数值 y 随 x 的增大而增大判断出 k 的符号,再根据一次函数 的性质进行解答即可. 【详解】解:Q 正比例函数 y = kx 的函数值 y 随 x 的增大而增大,∴ k >0, k <0 ,∴ 一次函数 y = x - k 的图象经过一、三、四象限.故选 B . 【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出 k 的取值范围.5.C解析:C【解析】 【分析】根据一次函数的定义可得 k -3≠0,|k|-2=1,解答即可. 【详解】一次函数 y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为 1. 所以|k|-2=1, 解得:k=±3,因为 k -3≠0,所以 k≠3, 即 k=-3.故选:C .(62)+(62)=12,【点睛】本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.6.B解析:B【解析】【分析】首选在AC上截取C G=AB=4,连接OG,利用SAS△可证ABO≌△GCO,根据全等三角形的性质可以得到:O A=OG=62,∠AOB=∠COG,则可证△AOG是等腰直角三角形,利用勾股定理求出AG=12,从而可得AC的长度.【详解】解:如下图所示,在AC上截取C G=AB=4,连接OG,∵四边形BCEF是正方形,∠BAC=90︒,∴OB=OC,∠BAC=∠BOC=90︒,∴点B、A、O、C四点共圆,∴∠ABO=∠ACO,△在ABO△和GCO中,BA=CG{∠ABO=∠ACO,OB=OC∴△ABO≌△GCO,∴OA=OG=62,∠AOB=∠COG,∵∠BOC=∠COG+∠BOG=90︒,∴∠AOG=∠AOB+∠BOG=90︒,∴△AOG是等腰直角三角形,∴AG=22∴AC=12+4=16.故选:B.【点睛】⨯ ⨯ 4 = 5;本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.7.D解析:D【解析】 【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越 大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

2020年湖北省十堰市中考数学试卷及答案

2020年湖北省十堰市中考数学试卷及答案

湖北省十堰市2020年初中毕业生学业考试数 学 试 题 友情提示:Hi ,展示自己的时候到啦,你可要冷静思考、沉着答卷啊!即使遇到困难也不要放弃,要相信自己,能行!祝你取得好成绩! ⒈本试卷共8页,25个小题,满分120分,考试时间120分钟. ⒉在密封区内写明县(市、区)名、校名、姓名和考号,不要在密封区内答题.⒊答题时允许使用规定的科学计算器.一、选择题(本题共10个小题,每小题3分,共30分)下面每题给出的四个选项中,只有一个是正确的,请 把你认为正确选项的代号填在下表内1.5的倒数是A .51B .51- C .-5 D .52.下列长度的三条线段,能组成三角形的是A .1cm ,2 cm ,3cmB .2cm ,3 cm ,6 cmC .4cm ,6 cm ,8cmD .5cm ,6 cm ,12cm 3.如图,C 、D 是线段AB 上两点,若CB =4cm ,DB=7cm ,且D 是AC 的中点,则AC 的长等于A .3cmB .6cmC .11cmD .14cm4.如图,在ΔABC 中,AC=DC=DB ,∠ACD=100°,则∠B 等于 A .50° B .40° C .25° D .20° 5.把方程2133123+-=-+x x x 去分母正确的是 A .)1(318)12(218+-=-+x x x B .)1(3)12(3+-=-+x x x C .)1(18)12(18+-=-+x x x D .)1(33)12(23+-=-+x x x 6.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是A .91B .61C .31D .217.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是CB第4题图DA第3题图DC BA8.如图,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是 A .∠3=∠4 B .∠A+∠ADC=180° C .∠1=∠2 D .∠A =∠59.如图,将ΔPQR 向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是A . (-2,-4)B . (-2,4)C .(2,-3)D .(-1,-3) 10.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0x < 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限第9题图AC第8题图EE54321DB BCA二、填空题(本题共6小题,每小题3分,共18分.请将答案直接填写在该题目中的横线上)11.2020年5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共向四川灾区捐款大约1514000000元人民币,这个数字用科学记数法可表示为 元人民币.12.已知,|x|=5,y=3,则=-y x . 13.计算:=---31922a a a .14.如图,直线AB 、CD 相交于点O ,AB OE ⊥,垂足为O , 如果︒=∠42EOD ,则=∠AOC .15.如图,已知矩形ABCD ,P 、R 分别是BC 和DC 上的点,E 、F 分别是PA 、PR 的中点.如果DR=3,AD=4,则EF 的长为 . 16.观察下面两行数:2, 4, 8, 16, 32, 64, … ①5, 7, 11, 19, 35, 67, … ②第14题图┌O EA BCD第15题图PRFEABCD根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果) .三、解答题(本题共3小题,每小题7分,共21分)17.(7分)计算:022)21(45sin 2)1(--︒+-- 解:022)21(45sin 2)1(--︒+--= =18.(7分)解方程组: ⎩⎨⎧=-=+. ②y x , ① y x 54219.(7分)在同一条件下,对同一型号的汽车进行耗油1升所行驶路程的实验,将收集到的数据作为一个样本进行分析,绘制出部分频数分布直方图和部分扇形统计图.如下图所示(路程单位:km)结合统计图完成下列问题:⑴扇形统计图中,表示135.12x <≤部分的百分数是 ; ⑵请把频数分布直方图补充完整,这个样本数据的中位数落在第 组;⑶哪一个图能更好地说明一半以上的汽车行驶的路程在1413x <≤之间?哪一个图能更好地说明行驶路程在135.12x <≤的汽车多于在5.1414x <≤的汽车?四、应用题(本大题2小题,共15分)20.(7分)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在得分 评卷人西 东12.5≤x <1312≤x <12.513.5≤x <1413≤x <13.530%30%14≤x <14.513.3%6.7%北偏东60°方向上,航行12海里到达B点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.21.(8分)如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m2?⑵能否使所围矩形场地的面积为810m2,为什么?第21题图五、推理与计算(本大题2小题,共15分)22.(7分)如图,把一张矩形的纸ABCD 沿对角线BD 折叠,使点C 落在点E 处,BE 与AD 交于点F . ⑴求证:ΔABF ≌ΔEDF ;⑵若将折叠的图形恢复原状,点F 与BC 边上的点M 正好重合,连接DM ,试判断四边形BMDF 的形状,并说明理由.CDBAM第22题图FE23.(8分)如图,AB 、BC 、CD 分别与⊙O 切于E 、F 、G ,且AB ∥CD .连接OB 、OC ,延长CO 交⊙O 于点M ,过点M 作MN ∥OB 交CD 于N .⑴求证:MN 是⊙O 的切线;⑵当0B=6cm ,OC=8cm 时,求⊙O 的半径及MN 的长.第23题图O GCABDN MFE六、综合应用与探究(本大题2小题,共21分)24.(9分)5月12日,我国四川省汶川县等地发生强烈地震,在抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要25台,乙地需要23台;A 、B 两省获知情况后慷慨相助,分别捐赠该型号挖掘机26台和22台并将其全部调往灾区.如果从A 省调运一台挖掘机到甲地要耗资0.4万元,到乙地要耗资0.3万元;从B 省调运一台挖掘机到甲地要耗资0.5万元,到乙地要耗资0.2万元.设从A省调往甲地x台挖掘机,A、B两省将捐赠的挖掘机全部调往灾区共耗资y 万元.⑴请直接写出y与x之间的函数关系式及自变量x的取值范围;⑵若要使总耗资不超过15万元,有哪几种调运方案?⑶怎样设计调运方案能使总耗资最少?最少耗资是多少万元?2与x轴的一个交点为25.(12分)已知抛物线b=2ax-+y+axA(-1,0),与y轴的正半轴交于点C.⑴直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;⑵当点C在以AB为直径的⊙P上时,求抛物线的解析式;⑶坐标平面内是否存在点M,使得以点M和⑵中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.湖北省十堰市2020年初中毕业生学业考试数学试题参考答案及评分说明一、选择题(每题3分,共30分)第1~10题:A C B D A A D C A C二、填空题(每空3分,共18分)11.910514.1⨯ 12.2或-8(错一个扣1分,错两个不得分)13.31+a 14.48° 15.2.516.2051三、解答题(第17~19题,每题7分,共21分)17.解:原式=12121-⨯+ ……………………………6分 =1 …………………………………7分说明:第一步三项中,每对一项给2分.18.解:①+②,得,x 93= ∴.x 3= ………………3分把3=x 代入②,得,y 53=- ∴.y 2-= …6分∴原方程组的解是 ⎩⎨⎧-==.y ,x 23 ………………………7分说明:其它解法请参照给分.19.解:⑴20%; …………………………………………2分⑵补图略;3; …………………5分说明:频数为6,补对直方图给2分;组数填对给1分.⑶扇形统计图能很好地说明一半以上的汽车行驶的路程在1413x <≤之间;条形统计图(或直方统计图)能更好地说明行驶路程在135.12x <≤的汽车多于在5.1414x <≤的汽车. ……………7分说明:只回答“扇形统计图”;“条形统计图(或直方统计图)”也给满分.四、应用题(第20题7分,第21题8分,共15分)20.解:有触礁危险.………………………………1分理由: 过点P 作PD ⊥AC 于D .…………………2分设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°.∴BD =PD =x . ………………………………3分在Rt △PAD 中,∵∠PAD =90°-60°=30°, ∴x .x AD 330tan =︒=………………………………4分∵BD ,AB AD +=∴x .x +=123 ∴)13(61312+=-=x .………6分 ∵,<18)13(6+∴渔船不改变航线继续向东航行,有触礁危险. ………………7分说明:开头“有触礁危险”没写,但最后解答正确不扣分.21.解:⑴设所围矩形ABCD 的长AB 为x 米,则宽AD 为)80(21x -米. ………1分说明:AD 的表达式不写不扣分依题意,得 ,x x 750)80(21=-• …………………2分即,.x x 01500802=+-解此方程,得 ,x 301= .x 502= ………3分∵墙的长度不超过45m ,∴502=x 不合题意,应舍去. …4分当30=x 时,.x 25)3080(21)80(21=-⨯=- 所以,当所围矩形的长为30m 、宽为25m 时,能使矩形的面积为750m 2. ……5分 ⑵不能.因为由,x x 810)80(21=-•得 .x x 01620802=+- (6)分又∵ac b 42-=(-80)2-4×1×1620=-80<0,∴上述方程没有实数根. (7)分因此,不能使所围矩形场地的面积为810m 2……………8分说明:如果未知数的设法不同,或用二次函数的知识解答,只要过程及结果正确,请参照给分.五、推理与计算(第22题7分,第23题8分,共15分)22.解:⑴证明:由折叠可知,C .E ED ,CD ∠=∠= ……1分在矩形ABCD 中,C ,A CD ,AB ∠=∠=∴E .A ED AB ∠=∠=, ∵∠AFB =∠EFD ,∴△AFB ≌△EFD . ……………………4分⑵四边形BMDF 是菱形. ………………………5分理由:由折叠可知:BF =BM ,DF =DM . …………6分由⑴知△AFB ≌△EFD ,∴BF =DF .∴BM =BF =DF =DM .∴四边形BMDF 是菱形. …………………7分23.解:⑴证明:∵AB 、BC 、CD 分别与⊙O 切于点E 、F 、G , ∴DCB .OCB ABC ,OBC ∠=∠∠=∠2121 …………………1分 ∵AB ∥CD ,∴∠ABC +∠DCB =180°. ∴.DCB ABC OCB OBC ︒=︒⨯=∠+∠=∠+∠9018021)(21 ∴.OCB OBC -BOC ︒=︒-︒=∠+∠︒=∠9090180)(180 ……2分 ∵MN ∥OB ,∴∠NMC =∠BOC =90°.∴MN 是⊙O 的切线.……4分⑵连接OF ,则OF ⊥BC .…………………………………5分由⑴知,△BOC是Rt △,∴.OC DB BC 10862222=+=+= ∵OF ,BC OC OB S BOC ••=••=∆2121 ∴6×8=10×OF .∴0F =4.8.即⊙O 的半径为4.8cm . …………………………………6分由⑴知,∠NCM =∠BCO ,∠NMC =∠BOC =90°,∴△NMC ∽△BOC . (7)分 ∴.MN .CO CM OB MN 88.486+==即 ∴MN =9.6(cm). …………………………………8分说明:不带单位不扣分.六、综合应用与探究(第24题9分,第25题12分,共21分)24.解:⑴.x x x x y )2623(2.0)25(5.0)26(3.04.0+-+-+-+=或:.x x x x y )2522(2.0)25(5.0)26(3.04.0+-+-+-+=即:.x y 7.192.0+-= (253≤≤x ) ………3分说明:函数式正确给2分,x 的取值范围正确给1分,函数式不化简不扣分.⑵依题意,得.x 157.192.0≤+- 解之,得.x 247≥ 又∵253≤≤x ,且x 为整数, ∴.x 2524或= (5)分说明:用建立不等式组的方法求解也可,请参照给分.即,要使总耗资不超过15万元,有如下两种调运方案:方案一:从A 省往甲地调运24台,往乙地调运2台;从B 省往甲地调运1台,往乙地调运21台.方案二:从A 省往甲地调运25台,往乙地调运1台;从B 省往甲地调运0台,往乙地调运22台. (6)分⑶由⑴知:.x y 7.192.0+-= (253≤≤x )∵-0.2<0, ∴y 随x 的增大而减小.∴当25=x 时,∴.y 7.147.19252.0=+⨯-=最小值 (8)分答:设计如下调运方案:从A 省往甲地调运25台,往乙地调运1台;从B 省往甲地调运0台,往乙地调运22台,能使总耗资最少, 最少耗资为14.7万元. ……………9分25.解:⑴对称轴是直线:1=x ,点B 的坐标是(3,0). ……2分说明:每写对1个给1分,“直线”两字没写不扣分.⑵如图,连接PC ,∵点A 、B 的坐标分别是A(-1,0)、B (3,0),∴AB =4.∴.AB PC 242121=⨯== 在Rt △POC 中,∵OP =PA -OA =2-1=1, ∴.PO PC OC 3122222=-=-=∴b =.3 ………………………………3分当01=-=,y x 时,,a a 032=+-- ∴.a 33= ………………………………4分∴.x x y 3332332++-= ………………5分 ⑶存在.……………………………6分理由:如图,连接AC 、BC .设点M 的坐标为),(y x M .①当以AC 或BC 为对角线时,点M 在x 轴上方,此时CM ∥AB ,且CM =AB .由⑵知,AB =4,∴|x|=4,3==OC y .∴x =±4.∴点M 的坐标为)3,4()3,4(-或M .…9分说明:少求一个点的坐标扣1分.②当以AB 为对角线时,点M 在x 轴下方.过M 作MN ⊥AB 于N ,则∠MNB =∠AOC =90°.∵四边形AMBC 是平行四边形,∴AC =MB ,且AC ∥MB .∴∠CAO =∠MBN .∴△AOC ≌△BNM .∴BN =AO =1,MN =CO ∵OB =3,∴0N =3-1=2.∴点M 的坐标为(2,M . ……………………………12分说明:求点M 的坐标时,用解直角三角形的方法或用先求直线解析式,然后求交点M 的坐标的方法均可,请参照给分.综上所述,坐标平面内存在点M ,使得以点A 、B 、C 、M 为顶点的四边形是平行四边形.其坐标为123((2,M M M -.写,但最后解答全部正确,不扣分。

2019-2020学年山东省济宁市曲阜市八年级下学期期末数学试卷 (解析版)

2019-2020学年山东省济宁市曲阜市八年级下学期期末数学试卷 (解析版)

2019-2020学年山东济宁市曲阜市八年级第二学期期末数学试卷一、选择题(共10小题).1.要使二次根式有意义,x的值可以是()A.﹣2B.﹣3C.﹣4D.﹣52.一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)3.在▱ABCD中、如果∠A=65°、那么∠C的度数是()A.115°B.65°C.25°D.35°4.某青年排球队l2名队员的年龄情况如下表所示:年龄1819202122人数14322则这12名队员的平均年龄是()A.18岁B.19岁C.20岁D.21岁5.以下列各组数为边长,能构成直角三角形的是()A.5,12,13B.1,2,C.,,2D.4,5,66.下列运算结果正确的是()A.=﹣3B.(﹣)2=2C.÷=2D.=±4 7.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是菱形8.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,159.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 10.已知:如图,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,则PE+PF等于()A.B.C.D.二、填空题(共6小题).11.正比例函数图象经过(3,﹣6),则这个正比例函数的解析式是.12.已知:x=,y=﹣2,代数式x2﹣2xy+y2的值为.13.已知,如图,一小船以20海里/时的速度从港口A出发向东北方向航行,另一小船以15海里/时的速度同时从港口A出发向东南方向航行,离开港口1小时后,则两船相距.14.将直线y=2x﹣5向上平移2个单位,所得直线解析式为.15.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AB边中点,菱形ABCD的周长为24,则OH的长等于.16.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积为.三、解答题:共72分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:×+6﹣.18.如图,每个小正方形的边长都为1(1)求四边形ABCD的周长;(2)求∠BCD的大小.19.甲、乙两名同学5次数学练习的成绩如下表:(单位:分)测试日期2月10日2月20日3月5日3月18日3月27日甲126127130133134乙130125130135130已知甲同学这5次数学练习成绩的平均数为130分,方差为10分2.(1)乙同学这5次数学练习成绩的平均数为分,方差为分2;(2)甲、乙都认为自己在这5次练习中的表现比对方更出色,请分别写出一条支持他们俩观点的理由.20.如图,在平行四边形ABCD中,E、F为对角线BD上的两点,且∠BAF=∠DCE.求证:BE=DF.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x 轴相交于点B,与y轴交于点D,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k,b的值;(2)请直接写出不等式kx+b﹣3x>0的解集;(3)M为射线CB上一点,过点M作y轴的平行线交y=3x于点N,当MN=OD时,求M点的坐标.22.“双剑合璧,天下无敌”,其意思是指两个人合在一起,取长补短,威力无比.在二次根式中也常有这种相辅相成的“对子”,如:(2+)(2﹣)=1,=3,它们的积中不含根号,我们说这两个二次根式是互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样解:,=7+4.像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决下列问题:(1)将分母有理化得;+1的有理化因式是;(2)化简:=;(3)化简:……+.23.如图,矩形ABCD中,点P是线段AD上的一个动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/s的速度向点D运动(不与D 重合).设点P运动的时间为t秒,请用t表示PD的长;并求出t为何值时,四边形PBQD是菱形?参考答案一、选择题(共10小题).1.要使二次根式有意义,x的值可以是()A.﹣2B.﹣3C.﹣4D.﹣5解:由题意得,x+2≥0,解得,x≥﹣2,故选:A.2.一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)解:令y=0,则2﹣x=0,解得x=2,所以一次函数y=2﹣x与x轴的交点坐标是(2,0),故选:C.3.在▱ABCD中、如果∠A=65°、那么∠C的度数是()A.115°B.65°C.25°D.35°解:∵四边形ABCD是平行四边形,∴∠C=∠A=65°,故选:B.4.某青年排球队l2名队员的年龄情况如下表所示:年龄1819202122人数14322则这12名队员的平均年龄是()A.18岁B.19岁C.20岁D.21岁解:(18+4×19+3×20+2×21+2×22)÷12=(18+76+60+42+44)÷12=240÷12=20(岁).故这l2名队员的平均年龄是20岁.故选:C.5.以下列各组数为边长,能构成直角三角形的是()A.5,12,13B.1,2,C.,,2D.4,5,6解:A、52+122=132,能构成直角三角形,故选项符合题意;B、12+22≠()2,不能构成直角三角形,故选项不合题意;C、()2+22≠()2,不能构成直角三角形,故选项不合题意;D、42+52≠62,不能构成直角三角形,故选项不合题意.故选:A.6.下列运算结果正确的是()A.=﹣3B.(﹣)2=2C.÷=2D.=±4解:A、=3,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、÷=,故本选项不符合题意;D、=4,故本选项不符合题意;故选:B.7.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是菱形解:A、∵四边形ABCD是平行四边形,AB=BC,∴四边形ABCD是菱形,故正确;B、∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,故正确;C、∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,故正确;D、∵四边形ABCD是平行四边形,AC=BD,四边形ABCD是矩形,故错误.故选:D.8.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,15解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,则这组数据的中位数是15;15出现了2次,出现的次数最多,则众数是15.故选:D.9.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.故选:C.10.已知:如图,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,则PE+PF等于()A.B.C.D.解:连接PO,∵矩形ABCD的两边AB=5,BC=12,∴S矩形ABCD=AB•BC=60,OA=OC,OB=OD,AC=BD,AC===13,∴S△AOD=S矩形ABCD=15,OA=OD=AC=,∴S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=OA(PE+PF)=××(PE+PF)=15,∴PE+PF=,故选:A.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.正比例函数图象经过(3,﹣6),则这个正比例函数的解析式是y=﹣2x.解:设这个正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(3,﹣6),∴﹣6=3k,解得k=﹣2,∴y=﹣2x.故答案是:y=﹣2x.12.已知:x=,y=﹣2,代数式x2﹣2xy+y2的值为4.解:∵x=,y=﹣2,∴x﹣y=2,∴原式=(x﹣y)2=4,故答案为:413.已知,如图,一小船以20海里/时的速度从港口A出发向东北方向航行,另一小船以15海里/时的速度同时从港口A出发向东南方向航行,离开港口1小时后,则两船相距25海里.解:由题意得:两船的行驶方向为直角,向东北方向航行的小船行驶路程为:20×1=20(海里),向东南方向航行的小船行驶路程为:15×1=15(海里),两船的距离:=25(海里),故答案为:25海里.14.将直线y=2x﹣5向上平移2个单位,所得直线解析式为y=2x﹣3.解:由“上加下减”的原则可知,将函数y=2x﹣5向上平移,2个单位所得函数的解析式为y=2x﹣5+2,即y=2x﹣3.故答案为:y=2x﹣3.15.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AB边中点,菱形ABCD的周长为24,则OH的长等于3.解:∵菱形ABCD的周长等于24,∴AB==6,∵四边形ABCD是菱形,∴AC⊥BD,∵H为AB边中点,∴在Rt△AOB中,OH为斜边上的中线,∴OH=AB=3.故答案为:3.16.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积为1.解:∵四边形ABD是正方形,∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,∴∠AOB=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠BOF,在△AOE和△BOF中,,∴△AOE≌△BOF(ASA),∴△AOE的面积=△BOF的面积,∴四边形AFOE的面积=正方形ABCD的面积=×22=1;故答案为:1.三、解答题:共72分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:×+6﹣.解:原式=+2﹣=2+2﹣=3.18.如图,每个小正方形的边长都为1(1)求四边形ABCD的周长;(2)求∠BCD的大小.解:(1)由勾股定理得:DC==,BC==2,AD==,AB==,所以四边形ABCD的周长为AB+BC+cd+ad=+2++=+3+;(2)连接BD,由勾股定理得:BD==5,∵DC=,BC=2,∴DC2+BC2=BD2,∴∠BCD=90°.19.甲、乙两名同学5次数学练习的成绩如下表:(单位:分)测试日期2月10日2月20日3月5日3月18日3月27日甲126127130133134乙130125130135130已知甲同学这5次数学练习成绩的平均数为130分,方差为10分2.(1)乙同学这5次数学练习成绩的平均数为130分,方差为10分2;(2)甲、乙都认为自己在这5次练习中的表现比对方更出色,请分别写出一条支持他们俩观点的理由.解:(1)乙的平均分=(130+125+130+135+130)=130,方差=[(130﹣130)2+(125﹣130)2+(130﹣130)2+(135﹣130)2+(130﹣130)2]=10.故答案为130,10.(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在130分以上(含130分)的次数更多.20.如图,在平行四边形ABCD中,E、F为对角线BD上的两点,且∠BAF=∠DCE.求证:BE=DF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABF=∠CDE,在△ABF和△CDE中,∴△ABF≌△CDE(ASA),∴ED=BF,∴BD﹣CF=BD﹣DE,∴BE=DF.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x 轴相交于点B,与y轴交于点D,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k,b的值;(2)请直接写出不等式kx+b﹣3x>0的解集;(3)M为射线CB上一点,过点M作y轴的平行线交y=3x于点N,当MN=OD时,求M点的坐标.解:(1)当x=1时,y=3x=3,∴C点坐标为(1,3).直线y=kx+b经过(﹣2,6)和(1,3),则,解得:k=﹣1,b=4;(2)x<1;(3)当x=0时,y=﹣x+4=4,∴D点坐标为(0,4),∴OD=4.设点M的横坐标为m,则M(m,﹣m+4),N(m,3m),∴MN=3m﹣(﹣m+4)=4m﹣4∵MN=OD,∴4m﹣4=4,解得m=2.即M点坐标为(2,2).22.“双剑合璧,天下无敌”,其意思是指两个人合在一起,取长补短,威力无比.在二次根式中也常有这种相辅相成的“对子”,如:(2+)(2﹣)=1,=3,它们的积中不含根号,我们说这两个二次根式是互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样解:,=7+4.像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决下列问题:(1)将分母有理化得;+1的有理化因式是﹣1;(2)化简:=﹣;(3)化简:……+.解:(1)==,(+1)(﹣1)=()2﹣12=2﹣1=1,即+1的有理化因式是﹣1,故答案为:,﹣1;(2)===﹣,故答案为:﹣.(3)原式=﹣1+﹣+﹣+…+﹣=﹣1=10﹣1=9.23.如图,矩形ABCD中,点P是线段AD上的一个动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/s的速度向点D运动(不与D 重合).设点P运动的时间为t秒,请用t表示PD的长;并求出t为何值时,四边形PBQD是菱形?解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠PDO=∠QBO,∵O为BD的中点,∴DO=BO,在△PDO和△QBO中,,∴△PDO≌△QBO(ASA),∴OP=OQ;(2)由题意知:AD=8cm,AP=tcm,∴PD=8﹣t,∵PB=PD,∴PB2=PD2,即AB2+AP2=PD2,∴62+t2=(8﹣t)2,解得t=,∴当t=时,PB=PD.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二(下)第一学月考试数学试卷(B)内容:四边形全章时间:90分钟一、选择题:1.下列说法:(1)四边形最多有3个钝角. (2)四边形最多有3个锐角.(3)四边形至少有1个钝角。

(4)n边形的内角和能被180整除。

其中正确的有()(A)1个(B)2个(C)3个(D)4个2.七边形的对角线的条数是()(A)10 (B)12 (C)14 (D)163.下列说法:(1)平行四边形的对角线互相平分。

(2)菱形的对角线互相垂直平分。

(3)矩形的对角线相等,并且互相平分。

(4)正方形的对角线相等,并且互相垂直平分。

其中正确的是()(A)①,②.(B)①,②,③.(C)②,③,④(D)①,②,③,④4.下列命题中,假命题是( )(A)对角线互相平分且相等的四边形是矩形.(B)对角线相等的菱形是正方形.(C)两邻边相等的平行四边形是正方形. (D)对角线互相垂直平分的四边形是菱形.5.下列图形中,既是中心对称图形,又是轴对称图形的是( )(A)平行四边形 (B)等边三角形 (C)矩形 (D)等腰梯形6.如图1,梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,则图中面积相等三角形有()(A)1对(B)2对(C)3对(D)4对7.四边形ABCD的对角线相交于O点,能判定四边形是正方形的条件是()(A)AC=BD,AB=CD,AB∥CD。

(2)AD∥BC,∠A=∠C。

(C)AO=BO=CO=DO,AC⊥BD。

(D)AO=CO,BO=DO,AB=BC。

8.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形。

②一组对边平行,一组对角相等的四边形是平行四边形。

③两组对角分别相等的四边形是平行四边形。

④顺次连结等腰梯形各边中点所得到的四边形是菱形。

其中正确的是()(A)①②.(B)①②③.(C)②③④(D)①②③④。

9.顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()(A )平行四边形.(B) 对角线相等的四边形.(C) 矩形.(D) 对角线互相垂直的四边形. 10.如图2,矩形ABCD 中,∠AOD=1200, BC= 33cm,则下列结论: ①∠2=300. ②AB=3 cm. ②AC==6cm. ④S 矩形ABCD =93cm 2. (5) ΔAOB 是等边三角形. 其中正确的有( )(A )①②③.(B )①②③④.(C )②③④⑤.(D )①②③④⑤。

11. 如图3,菱形ABCD 的面积为23,∠ABC ∶∠BAD=1∶2,则下列结论: ①∠ABC=600.②∠ABO=300.③ AC=2.④BD=23.⑤菱形ABCD 的周长是8. 其中正确的有( )(A )①②③④⑤.(B )①②③④.(C )②③④⑤.(D )①②③. 12.如图4,正方形ABCD 中,点E 在BC 的延长线上,AE 平分∠DAC,则下列结论: (1)∠E=22.50. (2) ∠AFC=112.50. (3) ∠ACE=1350. (4)AC=CE 。

(5) AD ∶CE=1∶2. 其中正确的有( ) (A )5个 (B )4个 (C )3个 (D )2个13. 如图5,在梯形ABCD 中,AD ∥BC ,AC ⊥BD ,AC=3cm ,BD=4cm. 作DE ∥AC ,交BC 的延长线于E ,则下列结论:(1) 四边形ACED 是平行四边形. (2)∠BDE=∠BOC=900; (3)BC+AD=BE=5cm; (4)梯形ABCD 的高DH=EBDEBD ⨯=2.4cm,面积为 6cm 2; (5)S 梯形ABCD =S ΔBDE .。

其中正确的有( )(A )5个 (B )4个 (C )3个 (D )2个14.如图6,梯形ABCD 中,AD ∥BC ,AH=HC,DG=GB ,GH 交两腰于E 、F. 则下列结论: (1) AE=EB ,DF=FC 。

(2) AD ∥EF ∥BC. (3)EH=GF=21BC,EG=HF=21AD.(4)GH=21(BC-AD). 其中正确的有( )(A )1个 (B )2个 (C )3个 (D )4个15.直角梯形的一个内角为ο120,较长的腰为6cm ,一底为5cm ,则这个梯形的面积为( )(A )23221cm .(B )23239cm .(C )2523cm .(D )23221cm 或23239cm . 二、填空:16.若等腰梯形的周长为80cm, 高为12cm,中位线长与 腰长相等, 则它的面积为________cm 2. 17.如图7,一块矩形场地,长为120米,宽为70米, 从中留出如图所示的宽为1米的小道,其余部分种草, 则草坪的面积为__________米2.18.矩形ABCD 的周长是14cm ,对角线相交于O ,ΔAOD 与ΔAOB 的周长的差是1cm ,那么这个矩形的面积是______。

19.平行四边形ABCD 中,AB=6cm ,BC=12cm ,对边AD 和BC 的距离是4cm ,则对边AB 和CD 间的距离是______。

20.菱形两对角线长分别为24cm 和10cm ,则菱形的高为______。

21.一个多边形除去一个内角外,其余内角的和为25700,则这个多边形的边数是____. 三、解下列各题:22.如图,梯形ABCD 中,DC ∥AB ,AC ⊥BD ,梯形的高为4,对角线AC=5,求梯形ABCD 的面积。

23.如图,矩形ABCD 的对角线相交于O ,BE ⊥DE ,OF ⊥DE 。

求证:点F 是DE 的中点。

24.在平行四边形ABCD 的对角线AC 上截取AF=CE ,作FH ⊥BC ,EG ⊥AD 。

求证:GH 与EF 互相平分。

25.梯形ABCD 中,AD ∥BC ,E 、F 分别是AD 、BC 的中点,∠B+∠C=900。

求证:EF=21(BC-AD )。

26.如图,在正方形ABCD的对角线BD上取一点E,使BE=BC,过E点作FG⊥BD,FG与AD、DC 相交于G、F。

求证:DE=EF=FC。

27.如图,梯形ABCD中, DC∥AB,对角线相交于E,∠AEB=600,AC=BD=24cm,AB=3DC,求梯形ABCD的周长和面积。

28.已知:如图,ΔABC中,AD是高,BE=EC,∠C=2∠B。

求证:AC=2ED。

29. 如图, 等腰梯形ABCD中, DC∥AB,对角线相交于O,∠AOB=600,点P、Q、G分别是AO、BC、DO的中点。

求证:ΔPQG是等边三角形。

参考答案: 一.CCDC,CCCD,BDAA,ADD. 二. 16.240; 17.8211; 18.12cm 2; 19.8cm; 20.cm 13120; 21.17. 三.22.作CG ⊥AB 于G,则CG=4,AG=3.作CM ∥DB,交AB 的延长线于M, 则BM=DC,∠ACM=∠AFB=900. 设GM=x,CM=y,由CM 2+CA 2=AM 2及CM 2-GM 2=CG 2得⎪⎩⎪⎨⎧=-+=-2222224)3(5x y x y 解得x=316. ∴S 梯形ABCD =21×(DC+AB)×CG=21×AM ×CG=350. 23.∵BE ⊥DE,OF ⊥DE, ∴BE ∥OF,∵矩形ABCD 中,DO=OB, ∴DF=FE.24. 连结EG 、FH. 先证GF ∥HE再证ΔAGF ≌ΔCHE,得GF=HE, ∴GEHF 是平行四边形, ∴GH 与EF 互相平分. 25.作EG ∥AB,交BC 于E;作EH ∥DC,交BC 于E. ∵AD ∥BC,∴四边形ABGE 和EDCH 是平行四边形. ∵AE=ED,∴BG=AE=ED=CH,∵BF=FC,∴GF=FH,∵∠B+∠C=900,∠B=EGH,∠C=∠EHG, ∴∠EGH+∠EHG=900, ∴∠GEH=900, ∴EF=21×GH=21(BC -2BG)= 21(BC -AD). 26.连EC.∵ABCD 是正方形,FG ⊥BD, ∴∠BEC+∠CEF=∠BCE+∠ECF=900. ∵BE=BC, ∴∠BEC=∠BCE, ∴∠CEF=∠ECF, ∴EF=FC. ∵∠EDF=450, ∴∠EFD=450,∴EF=ED, ∴EF=ED=FC. 27.作CG ∥DB,交AB 的延长线于G. ∵梯形ABCD 中,DC ∥AB,∴∠ACG=∠AEB=600,CG=DB=AC=24, ∴ΔACG 是等边三角形, ∴AG=AC=24,作CH ⊥AG 于H,则CH=123, ∴S 梯形ABCD =21×AG ×CH=1443. ∵AB=3DC=3BG,AB+BG=24, ∴AB=18,BG=6, ∴BH=6,∴BC=13622=+BH CH∴梯形ABCD 的周长=2BC+AG=(1312+24)cm. 28.作AC 的中点F,连FE,FD. 先证EF ∥AB,DF=FC=AF, ∴∠EFC=∠B,∠C=∠FDC, ∵∠C=2∠B, ∴∠FDC=2∠FED, ∵∠FDC=∠FED+∠EFD, ∴∠FED=∠EFD, ∴DE=DF, ∴AC=2DF=2DE. 29.先证ΔDAB ≌ΔCBA, ∴∠DBA=∠CAB, ∵∠AOB=600,∴ΔAOB 是等边三角形, ∵AP=PO, ∴BP ⊥AO, ∵CQ=QB, ∴PQ=21BC. 同理GQ=21BC. 再证PG=21AD. ∴PQ=QG=GP. 。

相关文档
最新文档