简单有理分式函数的积分
4(4)有理函数及三角函数有理式的积分(1)
原式=
5u + 2 (u2 + 1)2
du
5 2
d(u2 + 1)
(u2 + 1)2 + 2
du (u2 + 1)2
51
u
- 2 u2 + 1 + u2 + 1 + arctanu + C
递推公式
回代
2x -7 2( x2 - 2x + 2) + arctan( x - 1) + C
书上无
Q( x)
部分分式的和, 如果分母多项式Q( x)在实数域
上的质因式分解式为:
Q( x) b0( x - a) ( x2 + px + q) ,( p2 - 4q 0)
, 为正整数, 则 P( x) 可唯一的分解为:
Q( x)
4
有理函数的积分
Q( x) b0( x - a) ( x2 + px + q) ,( p2 - 4q 0)
+ arctan x + C
说明:当被积函数是假分式时,应把它分为 一个多项式和一个真分式,分别积分.
9
有理函数的积分
例2 求
x+3 x2 - 5x + 6 dx
解
x2
x+3 -5x + 6
(x
x+3 - 2)( x - 3)
A+ x-2
B x-3
因式分解 x + 3 A(x - 3) + B(x - 2)
Ap
At + (B - )
2
理学新不定积分分部积分
sinx
2t 1 t
2
,
cosx
1 1
t t
2 2
,
dx
1
2 t
2
dt
R(sin x,cos x)dx
R
1
2t t
2
1t2
, 1
t
2
1
2 t
2
dt.
例16
求
1 sin x sin x(1 cos
x)
dx
.
解:令 t tan x , 则 2
sinx
1
2
tan
x 2
u tan x, v tan x
原式 = tan x lncos x tan2 x dx tan x lncos x (sec2 x 1) dx
tan x lncos x tan x x C
例9 求
解: 令 u
x2 a2 , v 1, 则 u
x x2a2
,
vx
x2 a2 dx x x2 a2
1 2
(1
1
1 x
2
)dx
x2 arctan x 1 ( x arctan x) C .
2
2
一般地
把被积函数视为两个函数之积 ,按“反对幂指三”的
顺序, 前者为 u 后者为 v.
例3 求积分 x2e xdx.
解 u x2 , e xdx de x dv,
x2e xdx x2e x 2 xe xdx
假定分子与分母之间没有公因式
(1) n m, 这有理函数是真分式; (2) n m, 这有理函数是假分式;
利用多项式除法, 假分式可以化成一个多项式和 一个真分式之和.
高数讲义第四节有理函数的积分全
例9
求积分
1
x
1 xdx x
解 令 1 x t 1 x t2,
x
x
x
t
1 2
, 1
dx
2tdt t2 1
2,
例9
求积分
1
x
1 xdx x
解
令 1 x t x
x
xt2211a12,dxdx
1
2a
ln
x2tdat tx2 a1
2
C,
1 x
1
x
xdx
t
2
1t
t
2
2t
12
dt
2
x
2)
1
A 2x
Bx 1
C x2
解:令:
x
1 (1
x)
2
A x
B 1 x
C (1 x)
2
1 A(1 x)2 B x(1 x) C x
取 x1, 得 C 1; 取 x0, 得 A1;
再取 x 2 , 得 1 (1 2)2 B2(1 2) 2 , B 1 ;
1 x (1 x) 2
t
3
1 t 1
1dt
6
(t
2
t
1
t
1
)dt 1
2t 3 3t 2 6t 6 ln | t 1 | C
2 x 1 33 x 1 36 x 1 6 ln(6 x 1 1) C.
说明 无理函数去根号时, 取根指数的最小公倍数.
例11 求积分
x 3x 1
dx. 2x 1
解 先对分母进行有理化
f (x) 为真分式 , 当 m n 时
f (x) 为假分式
有理函数积分待定系数法
有理函数积分待定系数法有理分式的积分可以使用待定系数法进行求解,具体步骤如下:1. 将有理分式进行部分分式分解。
例如,对于形如$$\frac{N(x)}{D(x)} = \frac{N_1(x)}{D_1(x)} + \frac{N_2(x)}{D_2(x)} + \cdots + \frac{N_k(x)}{D_k(x)}$$的有理分式,其中$N(x)$和$D(x)$分别为分子和分母多项式,$N_1(x)$和$D_1(x)$等为部分分式形式。
2. 根据部分分式的形式进行计算。
对于每一项$\frac{N_i(x)}{D_i(x)}$,可以使用待定系数法进行计算。
若$D_i(x)$的次数大于$N_i(x)$的次数,则可设$\frac{N_i(x)}{D_i(x)} = \frac{A_{i1}}{D_{i1}(x)} + \frac{A_{i2}}{D_{i2}(x)} + \cdots + \frac{A_{im_i}}{D_{im_i}(x)}$,其中$D_{ij}(x)$的次数小于$D_i(x)$的次数。
若$D_i(x)$的次数等于$N_i(x)$的次数,则可设$\frac{N_i(x)}{D_i(x)} = \frac{A_{i1}x + B_{i1}}{D_{i1}(x)} + \frac{A_{i2}x + B_{i2}}{D_{i2}(x)} + \cdots + \frac{A_{im_i}x + B_{im_i}}{D_{im_i}(x)}$。
3. 将部分分式进行通分,整理等式。
4. 将所得等式两边同时积分。
例如,对于每一个部分分式$\frac{A_{ij}x + B_{ij}}{D_{ij}(x)}$,可以通过先对其分子进行展开得到$\frac{A_{ij}x}{D_{ij}(x)} + \frac{B_{ij}}{D_{ij}(x)}$。
然后,可通过分别使用常数乘法法则和有理函数法则进行积分,最终得到对应的积分结果。
有理函数积分法
第21讲 理函数的不定积分一、有理函数的不定积分有理函数是指由两个多项式函数的商所表示的函数,其一般形式为mm mn n n xxx x x Q x P x R βββααα++++++==-- 110110)()()(, (1)其中,m 为n 非负整数,n ααα,,,10 与m βββ ,,10都是常数,且00≠α,00≠β. 若n m >,则称它为真分式;若n m ≤,则称它为假分式.由多项式的除法可知,假分式总能化为一个多项式与一个真分式之和.由于多项式的不定积分是容易求得的,因此只需研究真分式的不定积分,故设(1)为一有理真分式. 根据代数知识,有理真分式必定可以表示成若干个部分分式之和(称为部分分式分解).因而问题归结为求那些部分分式的不定积分.为此,先把怎样分解部分分式的步骤简述如下(可与例1对照着做): 第一步 对分母()x Q 在实系数内作标准分解: ()()()()()tt t s q p x q x p xa x a x x Q μμλλ++++--=21121121, (2)其中()t iji ,,2,1,1,0 ==μλβ均为自然数,而且.,,2,1,04;2211t j q p m j j si tj ji =-=+∑∑==μλ第二步 根据分母的各个因式分别写出与之相应的部分分式:对于每个形如()ka x -的因式,它所对应的部分分式是 ()();221kka x A a x A ax A -++-+-对每个形如()kq px x ++2的因式,它所对应的部分分式是()().22222211kkk q px xC x B q px xC x B qpx x C x B ++++++++++++把所有部分分式加起来,使之等于()x R .(至此,部分分式中的常数系数i i i C B A ,,尚为待定的.)第三步 确定待定系数:一般方法是将所有部分分式通分相加,所得分式的分母即为原分母()x Q ,而其分子亦应与原分子()x P 恒等.于是,按同幂项系数必定相等,得到一组关于待定系数的线性方程,这组方程的解就是需要确定的系数.例1 对()8425109422345234-+--+-++-=x x x x x x x x x x R 作部分分式分解解 按上述步骤依次执行如下:()=x Q 84252345-+--+x x x x x ()()().12222+-+-=x x x x部分分式分解的待定形式为()().122222210+-++++++-=x x C Bx x A x A x A x R (3)用()x Q 乘上式两边,得一恒等式()()1210942220234+-+≡-++-x x x A x x x x +()()()()()121222221+--++-+-x x x A x x x x A+()()()222+-+x x C Bx (4)然后使等式两边同幂项系数相等,得到线性方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=---=--+=+----=+++-=++常数项的系数,的系数,的系数,的系数 .1082449483442433123,22102122103210410C A A A x C B A A x C B A A A x C B A A A x B A A 求出它的解:1,1,1,2,1210=-=-===C B A A A ,并代人(3)式,这便完成了)(x R 的部分分式分解:.11)2(12221)(22+---+-++-=x x x x x x x R上述待定系数法有时可用较简便的方法去替代.例如可将x 的某些特定值(如0)(=x Q 的根)代人(4)式,以便得到一组较简单的方程,或直接求得某几个待定系数的值.对于上例,若分别用2=x 和2-=x 代人(4)式,立即求得1120-==A A 和,于是(4)式简化成为)1)(2)(2(161232134+-+-=-+-x x x x A x x x .)2)(2)((2+-++x x C Bx为继续求得C B A ,,1,还可用x 的三个简单值代人上式,如令1,1,0-=x ,相应得到⎪⎩⎪⎨⎧=+-=++=+.83,233,42111C B A C B A C A 由此易得1,1,21=-==C B A .这就同样确定了所有待定系数. 一旦完成了部分分式分解,最后求各个部分分式的不定积分.由以上讨论知道,任何有理真分式的不定积分都将归为求以下两种形式的不定积分:⎰-I ka x dx)()(;()⎰<-+++I I )04()(22q p dx q px x M Lx k.对于()I ,已知()()⎪⎩⎪⎨⎧>+--=+-=--⎰.1,11,1,ln )(1k C a x k k C a x a x dx k k对于()II ,只要作适当换元(令2p x t +=),便化为()⎰⎰++=+++dt rtNLt dx q px xMLx kk222)(⎰⎰+++=,)()(2222kkr t dt N dt r t t L (5)其中.2,422L p M N pq r-=-=.当1=k 时,(5)式右边两个不定积分分别为⎰++=+C r t dt rtt)ln(212222,.a r c t a n 122C rtr rtdt+=+⎰ (6) 当2≥k 时,(5)式右边第一个不定积分为C r t k dt r t tk k++-=+⎰-12222))(1(21)(.对于第二个不定积分,记 ,)(122⎰-+=k k r tdtI 可用分部积分法导出递推公式如下:dt r t t r t rI kk ⎰+-+=)()(1222222⎰+-=-dt r ttrI rkk )(11222212⎰⎪⎪⎭⎫ ⎝⎛+-+=--122212)(1)1(211k k r t td k r I r.)()1(2111122212⎥⎦⎤⎢⎣⎡-+-+=---k k k I r t tk r I r 经整理得到.)1(232))(1(2121222----++-=k k k I k r k r t k r tI (7)重复使用递推公式(7),最终归为计算1I ,这已由(6)式给出. 把所有这些局部结果代回(5)式,并令2p x t +=,就II )的计算.例2 求.)22(1222dx x xx ⎰+-+解:在本题中,由于被积函数的分母只有单一因式,因此,部分分式分解能被简化为222222)22()12()22()22(1+--++-=+-+x x x x x x x x .)22(12221222+--++-=x x x x x现分别计算部分分式的不定积分如下:.)1arctan(1)1()1(22122C x x x d x x dx +-=+--=+-⎰⎰dx x xx dx x xx ⎰⎰+-+-=+--2222)22(1)22()22(12++-+-=⎰222)22()22(x xx x d []⎰+--221)1()1(x x d.)1(221222⎰+++--=tdtx x由递推公式(7),求得其中⎰⎰+++=+121)1(2)1(2222tdtt t t dt .)1arctan(21)22(2122C x x x x +-++--=于是得到.)1a r c t a n (23)22(23)22(12222C x x x x dx x xx +-++--=+-+⎰二、三角函数有理式的不定积分⎰dx x x R )cos ,(sin 是三角函数有理式的不定积分。
大一高数第四章简单有理函数的积分
b0 , b1 , , bm 都是实数,并且a 0 0 ,b0 0 .
假定分子与分母之间没有公因式
(1) n m , 这有理函数是真分式;
( 2) n m , 这有理函数是假分式; 利用多项式除法, 假分式可以化成 一个多项式和一个真分式之和.
例 难点
1 x x1 x 2 . 2 x 1 x 1
1 dx 例 2 1x
1 1 dx dx 解: 2 1x (1 x)(1 x) 1 1 1 [ ]dx 2 1x 1x
1 [ln | 1 x | ln | 1 x |] C 2 1 1x ln | | C 2 1x
注意:分母拆项是常用的技巧!
x 3 A( x 3) B( x 2), x 3 ( A B ) x ( 3 A 2 B ),
A 5 A B 1, , B 6 ( 3 A 2 B ) 3, x3 5 6 . 2 x 5x 6 x 2 x 3
例. 求
1 d x d ( 解: 原式 2 2 x 1) ( x 1) ( 22 ) 1 x 1 arctan C (P203 公式 (20) ) 2 2
1 练习:求积分 x(x 1) dx.
机动
目录
上页
下页
返回
பைடு நூலகம்
结束
例. 求
解: 原式
1 ( 2 x 2) 3 2 2
如
dx, 使用凑微分法比较简单 . x 1
3
x
2
基本思路
尽量使分母简单——降幂、拆项、同乘等 化部分分式,写成分项积分
可考虑引入变量代换
二、简单无理函数的积分
有理函数积分法(3)
2
2
( x2 px q)n
dx
类型4
A
2
(x2
2x px
p
q)n dx
(B
p 2
A)
1 ( x2 px q)n dx
A
2
(x2
1 px
q)n d ( x 2
px
q)
(B
p 2
A)
1 ( x2 px q)n dx
A 1 2 1n
(x2
1 px q)n1
(B p A) 2
arctan
x
2 x (1 x2 )2 dx
arctanx
1 2x 2
2 (1 x2 )2
dx
arctanx 1 2
2x (1 x2 )2 dx
2 (1 x 2 )2 dx
arctanx
1 2
1
1 x2
2
1 (1 x 2 )2 dx
15
1 x x2 ( x2 1)2
13
例4
求
1
3
x x
3
dx.
解
1
3
x x
3
dx
(
1
1
x
1
x1 x x2
)dx
1
3
ln1
x
1
x1 x x
2
dx
ln1
x
(2x 1) 2 1 x x2 2dx
ln1
x
1 2
1
2x x
1 x2 dx
3 2
1
1 x
x2 dx
ln 1 x 1 ln1 x x2 3
( x 1)( x 2)2
有理函数最简分式的计算 - Homepagefudaneducn Fudan
例 1. 求
x2 + x + 5 f (x) =
(x + 1)(x − 1)(x − 2)
x6 + x5 + . . . = x(x5 − 4x4 + . . .) + 5(x5 − 4x4 + . . .) + . . . .
由此易得 其中
A
B
C
Dx + E
f (x) = x + 5 +
+
+
+
,
x − 1 x − 2 x − 3 x2 + 2x + 2
x6 + x5 + x4 + x3 + x2 + x + 1
法I: 设 x 为 x2 + x + 1 = 0 的一个解. 由 (1) 可得
Bx + C
2x2 + 1 = (x + 1)((x(2 +(x(+(1()
= −2x − 1 x+1
(x2 = −x − 1)
= −(2x + 1)x (x + 1)x
(让分母前两项等于x2 + x)
= −(x + 2).
[
]
x2 + x + 5
5
A
=
lim
x→−1
(x + 1)f (x)
华师大版高等数学上册第四章不定积分
一、原函数的概念
定理2
若F(x)是函数f(x)在区间I上的一个原函数,则F(x)+C(C为任意 常数)是fx在区间I上的全体原函数.
定理2说明,若一个函数有原函数,则它必有无穷多个原函数,且 它们彼此相差一个常数. 事实上,设F(x)和G(x)都是f(x)的原函数,则
现在要解决其反问题:已知曲线上任意一点x处的 切线的斜率,要求该曲线的方程.为此,引进原函数的 概念.
一、原函数的概念
定义1
设f(x)是定义在区间I上的函数,若存在函数F(x),使得对 任意x∈I均有
F′(x)=f(x)或dFx=fxdx, 则称函数Fx为fx在区间I上的一个原函数.
例如,因为(sin x)′=cos x,故sin x是cos x的一个原函数.又 如,当x>0时,(ln x)′=1/x,所以ln x是1/x在区间0,+∞上的 一个原函数.
二、不定积分的性质
【例5】
解 虽然被积函数是一个无理式,但是这里我们还是可以通 过性质2及不定积分基本公式(2)求解该不定积分.
【例6】
二、不定积分的性质
三角函数的情形是比较复杂的,但是一般 我们可以通过三角恒等变形,得到被积函数的 等价形式,利用不定积分的基本性质,通过对 等价形式的求积分,得到原来函数的不定积 分.我们在以后遇到的很多问题中都应用到恒 等变形的思想.
二、不定积分的性质
性质3
如果函数f1(x)及f2(x) 的原函数存在,那么
性质3说明∫[f1(x)± f2(x)]dx是f1(x)±f2(x)的原 函数,由于它涉及两个积分记号,形式上含有两个积分常数,把 这两个积分常数合并为一个,因此它实际上是f1(x)±f2(x)的 不定积分,即与∫f1(x) dx±∫f2(x) dx相等.
(完整版)高等数学中有理分式定积分解法总结.doc
由十个例题掌握有理分式定积解法【摘要】 当被积函数为两多项式的商P(x)的有理函数时,解法各种各样、不易掌握,Q( x)在此由易到难将其解法进行整理、总结【关键词】有理分式 真分式 假分式 多项式除法 拆项法 凑微分法 定积分两个多项式的商P xP x称为有理函数,又称为有理分式,我们总假定分子多项式Q x与分母多项式 Q x 之间无公因式,当分子多项式P x 的次数小与分母多项式Q x ,称有理式为真分式,否则称为假分式.1. 对于假分式的积分: 利用多项式除法, 总可将其化为一个多项式与一个真分式之和的形式 .例3x 4 2x 21.1x 2 1dx解 原式3x 2 x21 x 2x21dx3x2dx x 2 dxx 2 13 x2dx 1 x 2 1 dx1 3 x2dx dx1 dxx 3 x21x arctanx C2x 4x 2 3 例 1.221 dxx2x 2 x 2 13 x2 dx解 原式x212 x 2dx 31 1 dx x2 dxx 2x 2 12 x 34arctan x x C31总结:解被积函数为假分式的有理函数时, 用多项式出发将其化简为多项式和真分式之和的形式,然后进行积分 . 对于一些常见函数积分进行记忆,有助于提高解题速度,例如:x 2 dx1 1dxx 2 1 x 2 1P x 对于真分式,若分母可分解为两个多项式乘积Q x = Q 1 x Q 2 x ,且 Q 1x ,Q xP x P xP xQ 2 x 无公因式,则可拆分成两个真分式之和:12,上述过程称为Q xQ 1 x Q 2x把真分式化为两个部分分式之和. 若 Qx 或 Q x 再分解为两个没有公因式的多项式乘12积,则最后有理函数分解式中出现多项式、P 1 xk、P 2 x 等三类函数,则多项xx 2px la q式的积分容易求的2. 先举例,有类型一、类型二、类型三,以此为基础求解较复杂的真分式积分2.1类型一(ax b) mdxcxkx31dx例 2.1.1x2解 原式 =x 33x23x1dxx 2= xdx3 dx 31dx 1dxx x 2= 1x 2 3x 3In x 1 C 2x总结:当被积函数多项式与单项式相乘的形式,将其进行化简,使被积函数为简单幂函数,然后利用常见积分公式进行运算2.2类型二cx kax m dxbx 2例 2.2.13 dxx2解 令 x+2=t , 则 xt 2 , 有 dx dt2t 2原式 = 2dxt 3= t24t4dtt 3= 14 11 dt t2 dt43 dttt=Int+ 4 - 2+Ct t 2=I n x 242Cx 2x 2 2总结:当被积函数形如时cxkm dx ,将其用换元法转换为ax b解法求解2.3 类型三P x l dxax 2bx c例 2.3.1x 32dxx 22x2原式 =x 32 dtx 1 21设=tant,x=tant+1,dx=set2x-1tdt3上式 =1+tantset 2tdtset 2t= tan 3 t 3tan 2 t 3tan t 1dtset 2t = sin 3 t cos 1 t 3sin t cost 3sin 2 t cos 2 t dtm(axb)dx ,再按照后者cx k=- 1 cos 2t costd cost +3sin 2tdt dt cos2tdt4=-Incost + 1cos 2t+2t+2sintcost2 1x 1Q tant=x-1, cost=2,sint= 2x 1 1x1 1上式122x 22 x 214 2arctan x 1 x 2 2x 2C= 2 In x4x 2x 23例2.3.2x 1 dxx 2 2x132x22=2dx22x 3x=1x 21 3 d x 22x 3 -212 dx 2 2 xx 1 2= 1In x22x 3 - 2arttanx 1+C22总结:当被积函数分母含有 ax 2 +bx+c 时,可以用凑微分法进行积分 ;对于形如 ax 2 lbx+c 时,可将其变形为 T 2 x +1或者是1-T 2 x ,然后利用三角函数恒等变形 sin 2x+cos 2x=1和1+tan 2x=set 2x 将T 2 x 降次,便于计算 .3. 以前面的几种简单类型为基础,现在来讨论较为复杂的有理真分式的积分例 3.1 2x+3dx2 3x 10x解法 12x+3 dx2 3x 10x =x 21d x 2 3x 103x 10=In x 23x 10 +C解法 22x+3dxx 23x102x+3 10 = 2x+3 = A + B 2 x 2 3x x+5 x 2 x 5 x =A B x 5B 2A1 1x 5 x 2x 5 x 2原式 =11dxx5 x 2=In x 23x 10 +C总结: 假分式分母可以因式分解, 将被积函数化为部分分式之和的形式, 然后用基本积分公4式进行运算 .x2 dx例 3.22x 1x 2 x 1原式 =2xdx2x 1 x 2 x111 2x 1 1=d 2x 1 - 2x 2 x 2dx 2x 11=1 d 2x 11x21 d x 2x 1112dx 2x 12 x121 3x24=In2x 1 - 1In x2x 1+ 1arctan x1+C232总结:遇到被积函数是复杂的有理函数,用拆分法将其分解为自己熟悉的函数,灵活变换.x 3dx 例 3.3x 2x 1 1=x 3dxx 2x11x 2 1 dxx 2 2x 1 x11 2x 2112 dxx 22xdx1 x11 x2 1 d x22x 11 2 dx1dx 2 2x 1x 1x1Inx1 x 1 Cx 11总结: 此题能够得出一个重要结论, 分母因式分解要求为各个因式之间无公约数,以此为标 准进行因式分解,拆项除此之外, 常见的还有, 可化为有理函数的积分 . 例如利用三角函数的万能公式,将被积函数中含有三角函数的分式函数,例:1+sin xdx . 例如被积函数中含有cos xsin x 1nax b 或 nax b时用换元法将根号去掉,例:x 1 xdx , 1dx . 虽然形式cxd1 x3x15各种各样 , 但只要熟练掌握以上各种类型的积分,那么在被积函数为有理分式函数时应对起来应当是信手拈来,甚是轻松6。
几种特殊类型函数地积分
几种特殊类型函数的积分一、有理函数的不定积分1.化有理函数为简单函数两个多项式的商所表示的函数)(x R 称为有理函数,即mm m m m nn n n n b x b x b x b x b a x a x a x a x a x Q x P x R ++++++++++==------122110122110)()()( (1) 其中n 和m 是非负整数;n a a a a ,,,,210 及m b b b b ,,,,210 都是实数,并且0,000≠≠b a .当(1)式的分子多项式的次数n 小于其分母多项式的次数m ,即m n <时,称为有理真分式;当m n ≥时,称为有理假分式.对于任一假分式,我们总可以利用多项式的除法,将它化为一个多项式和一个真分式之和的形式.例如12)1(112224+++-=+++x x x x x x . 多项式的积分容易求得,下面只讨论真分式的积分问题.设有理函数(1)式中m n <,如果多项式)(x Q 在实数围能分解成一次因式和二次质因式的乘积:μλβα)()()()()(220s rx x q px x b x a x b x Q ++++--= .其中s r q p b a ,,,,,,, 为实数;042<-q p ,…,042<-s r ;,,,βα μλ,, 为正整数,那末根据代数理论可知,真分式)()(x Q x P 总可以分解成如下部分分式之和,即βααα)()()()()(1121b x B a x A a x A a x A x Q x P -++-++-+-=-λββ)()(21112q px x N x M b x B b x B ++++-++-+-μλλλ)()(21121222s rx x S x R q px x N x M q px x N x M ++++++++++++++-srx x S x R s rx x S x R +++++++++-21222)(μμμ . (2) 其中i i i i i i S R N M B A ,,,,,,, 都是待定常数,并且这样分解时,这些常数是唯一的.可见在实数围,任何有理真分式都可以分解成下面四类简单分式之和: (1)a x A - , (2)k a x A )(- (k 是正整数,2≥k ), (3)qpx x B Ax +++2(042<-q p ), (4)kq px x B Ax )(2+++ (k 是正整数,04,22<-≥q p k ).2. 有理函数的不定积分求有理函数的不定积分归结为求四类简单分式的积分.下面讨论这四类简单分式的积分.(1)C a x A a x d ax A dx a x A +-=--=-⎰⎰ln )(1,(2)C a x k A a x d a x A dx a x A k k k+-⋅--=--=---⎰⎰1)(11)()()(, (3)dx qpx x B Ax ⎰+++2(042<-q p ). 将分母配方得)4()2(222p q p x q px x -++=++,作变量代换2px u +=,则du dx p u x =-=,2;由于04,0422>-<-p q q p ,记224a p q =-,于是 du a u B pu A dx p q p x B Ax dx qpx x B Ax ⎰⎰⎰++-=-+++=+++22222)2()4()2( du au ApB du a u Au ⎰⎰+-++=22222C au a Ap B a u A +-++=arctan 2)ln(222 C pq p x p q Ap B q px x A +-+--+++=22242arctan 42)ln(2.(4)dx q px x B Ax k⎰+++)(2 (04,22<-≥q p k ).作变量代换2px u +=,并记224a p q =-,于是⎰⎰⎰+-++=+++du a u ApB du a u Au dx q px x B Ax k k k )(2)()(22222. 其中第一个积分C a u k A a u d a u A du a u Au k k k ++⋅--=++=+--⎰⎰122222222)(1)1(2)()(2)(. 第二个积分可通过建立递推公式求得.记 ⎰+=kk a u du I )(22 利用分部积分法有⎰⎰++++=+=12222222)(2)()(k kk k a u du u k a u u a u du I du a u a a u k a u u k k ⎰++-+++=12222222)()(2)(122222)(+-++=k k kkI a kI a u u .整理得 k k k I ka k a u u k a I 22221212)(21-++⋅=+. 于是可得递推公式]2232)()1(21[111222----++⋅-=k k k I k k a u u k a I . (3)利用(3)式,逐步递推,最后可归结为不定积分C a u aa u du I +=+=⎰arctan 1221. 最后由2px u +=全部换回原积分变量,即可求出不定积分⎰+++dx q px x B Ax k )(2. 例1 求⎰++-dx x x x 22)32(1. 解⎰⎰++-+=++-dx x x dx x x x 2222]2)1[(21)32(1 ⎰⎰+-++=2222)2(2)2(1u du du u u x u]2212121[212)2(21222⎰+++⋅⨯⨯-+-=u du u u uC u u u +-++-=2arctan 221)2(212`C x x x x ++-+++-=21arctan 221)32(222.例2 求dx x x ⎰-2)1(1. 解 因为2)1(1-x x 可分解为1)1()1(122-+-+=-x C x B x A x x . 其中A ,B ,C 为待定系数.可以用两种方法求出待定系数.第一种方法:两端去掉分母后,得)1()1(12-++-=x Cx Bx x A . (4)即 A x C A B x C A +--++=)2()(12由于(4)式是恒等式,等式两端2x 和x 的系数及常数项必须分别相等,于是有⎪⎩⎪⎨⎧==--=+1020A C A B C A , 从而解得 1=A ,1=B ,1-=C .第二种方法:在恒等式(4)中,代入特殊的x 值,从而求出待定系数.如令0=x ,得1=A ;令1=x ,得1=B ;把A ,B 的值代入(4)式,并令2=x ,得C 2211++=,即1-=C .于是⎰⎰---+=-dx x x x dx x x )11)1(11()1(122 ⎰⎰⎰---+=dx x dx x dx x 11)1(112C x x x +----=1ln 11ln . 例3 求⎰+-+dx x x x 22)1)(1(22. 解 因为1)1(1)1)(1(2222222++++++-=+-+x E Dx x C Bx x A x x x , 两端去分母得)1)(1)(()1)(()1(22222+-++-+++=+x x E Dx x C Bx x A x234)2()()(x B E D A x D E x D A +-++-++=)()(C E A x C B E D --++-+-+.两端比较系数得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=+-+-=+-+=-=+220200C E A C B ED BE D A D E D A ,解方程组得1=A ,2-=B ,0=C ,1-=D ,1-=E ,故dx x x x x x dx x x x )11)1(211()1)(1(2222222⎰⎰++-+--=+-+ dx x x dx x x dx x ⎰⎰⎰++-+--=11)1(211222C x x x x +-+-++-=arctan )1ln(21111ln 22 C x x x x +-+++-=arctan 1111ln22. 例4 求⎰+-+dx x x x 6532. 解 因为32)3)(2(36532-+-=--+=+-+x B x A x x x x x x ,两端去分母得 )2()3(3-+-=+x B x A x . 令2=x ,得5-=A ;令3=x ,得6=B .于是Cx x dx x x dx x x x +---=---=+-+⎰⎰2ln 53ln 6)2536(6532C x x +--=56)2()3(ln . 从理论上讲,多项式)(x Q 总可以在实数围分解成一次因式和二次质因式的乘积,从而把有理函数)()(x Q x P 分解为多项式与四类简单分式之和,而简单分式都可以积出.所以,任何有理函数的原函数都是初等函数.但我们同时也应该注意到,在具体使用此方法时会遇到困难.首先,用待定系数法求待定系数时,计算比较繁琐;其次,当分母的次数比较高时,因式分解相当困难.因此,在解题时要灵活使用各种方法.例5 求dx x x x x x ⎰+++++12232. 解dx x dx x dx x x x x dx x x x x x ⎰⎰⎰⎰+++=+++++=+++++1111)1)(1()1()1(12222232C x x +++=arctan 1ln .例6 求dx x x x x ⎰+-+-)54)(44(122 .解 dx x x x x x x x x dx x x x x ⎰⎰+-+-+--+-=+-+-)54)(44()44()54()54)(44(1222222dx x x dx x x ⎰⎰+--+-=54144122 ⎰⎰-+----=)2(1)2(1)2()2(122x d x x d xC x x +----=)2arctan(21.例7 求dx x ⎰+114. 解⎰⎰⎰+--++=+dx x x dx x x dx x 112111211142424dx x x x dx x x x ⎰⎰+--++=2222221112111121 )1(2)1(121)1(2)1(12122xx d xx x x d x x +-+--+-=⎰⎰C x x x x x x ++++---=1212ln 24121arctan 221222.二、三角函数有理式的积分由三角函数和常数经过有限次四则运算所构成的函数称为三角函数有理式.因为所有三角函数都可以表示为x sin 和x cos 的有理函数,所以,下面只讨论)cos ,(sin x x R 型函数的不定积分.由三角学知道,x sin 和x cos 都可以用2tan x 的有理式表示,因此,作变量代换2tan x u =,则222122tan12tan22sec 2tan22cos 2sin 2sin u u x xx x x x x +=+===, 22222222112tan 12tan 12sec 2tan 12sin 2cos cos u u x xx x x x x +-=+-=-=-=. 又由u x arctan 2=,得du u dx 212+=,于是 ⎰⎰++-+=du u u u u u R dx x x R 222212)11,12()cos ,(sin . 由此可见,在任何情况下,变换2tan x u =都可以把积分dx x x R )cos ,(sin ⎰有理化.所以,称变换2tan x u =为万能代换.例8 求dx xx ⎰++cos sin 11. 解 设2tan x u =,则du u du u u u u u dx x x ⎰⎰⎰+=+⋅+-+++=++1112111211cos sin 112222C xC u ++=++=2tan1ln 1ln . 例9 求dx xx ⎰-+cos 1sin 1.解 设2tan x u =,则du u u u u du u u u u u dx xx ⎰⎰⎰+++=+⋅+--++=-+)1(2)1(12111121cos 1sin 12222222du u u du u ⎰⎰++=)1(2122du u u u u du u ⎰⎰+-++=)1()1(212222⎰⎰⎰+-+=du u u du u du u 2212121C u u u ++-+-=)1ln(ln 212 C x x x +--=)2ln(sec 2cot 2tan ln 22.虽然利用代换2tan x u =可以把三角函数有理式的积分化为有理函数的积分,但是,经代换后得出的有理函数积分一般比较麻烦.因此,这种代换不一定是最简捷的代换.例10 求dx xx ⎰+sin 1sin . 解 dx x x x dx xx x dx x x ⎰⎰⎰-=--=+222cos sin sin sin 1)sin 1(sin sin 1sin dx xx dx x x ⎰⎰--=222cos cos 1cos sin ⎰⎰⎰+--=dx dx x x d x 22cos 1cos cos 1C x x x ++-=tan cos 1. 例11 求dx x ⎰+2cos 311. 解x d x dx x x dx xtan 4tan 13sec sec cos 3112222⎰⎰⎰+=+=+ C x +=)2tan arctan(21.三、简单无理函数的积分(一)),(nb ax x R +型函数的积分),(u x R 表示x 和u 两个变量的有理式.其中a ,b 为常数.对于这种类型函数的积分,作变量代换u b ax n=+,则a b u x n -=,du anu dx n 1-=,于是 du a nuu a b u R dx b ax x R n n n 1),(),(-⋅-=+⎰⎰ . (5)(5)式右端是一个有理函数的积分.例12 求⎰++dx x 3211. 解 令u x =+32,则23-=u x ,du u dx 23=,于是⎰⎰⎰++-=+=++du u u du u u dx x 111313211223 C u u u du u u +++-=++-=⎰)1ln 2(3)111(32C x x x +++++-+=333221ln 323)2(23.例13 求dx xx ⎰+31.解 为了同时去掉被积函数中的两个根式,取3和2的最小公倍数6,并作变量代换u x =6,则6u x =,du u dx 56=,23u x =,3u x =,于是du u u du u u dx xx⎰⎰⎰+=+=+1616128283u d uu u u ⎰++-+-=)111(62246 C u u u u u ++-+-=arctan 6625676357 C x x x x x x ++-+-=66656arctan 6625676.(二)),(ndcx b ax x R ++型函数的积分 这里),(u x R 仍然表示x 和u 两个变量的有理式.其中d c b a ,,,为常数.对于这种类型函数的不定积分,作变量代换u d cx b ax n=++,则nn cu a b du x --=,du cu a bc ad nu dx n n 21)()(--=-,于是du cu a bc ad nu u cu a b du R dx d cx b ax x R n n n nn21)()(),(),(--⋅--=++-⎰⎰. (6) (6)式右端是一个有理函数的积分.例14 求dx xx x ⎰+11. 解 令u x x =+1, 则112-=u x ,du u u dx 22)1(2--=,于是 duu u du u u du u u u u dx x x x ⎰⎰⎰⎰-+--=--=--⋅-=+111212)1(2)1(112222222C u u u du u ++---=-+-=⎰11ln 2)111(22C u u u +--++-=1ln )1ln(222 C x x xx x++++++-=ln )11ln(212.例15 求dx x x ⎰-+342)1()1(1.解 ⎰⎰+--+=-+dx x x x x dx x x 334211)1)(1(1)1()1(1,令ux x =+-311,则311u x x =+-,3311u u x -+=,du u u dx 232)1(6-=, 于是du u dx x x x dx x x ⎰⎰⎰=+--=-+23234212311)1(1)1()1(1C x x C u +-+-=+-=3112323.。
几种特殊类型函数的积分
2
.
解 设 3 x 2 u .于是xu22,dx3u2d u ,从而
1
dx 3x
2
1
1 u
·3u2d u
3
u2 1
1du u
3 (u
1 1 )du 1 u
3(
u2 2
uln|1u|)C
3 3 (x 2)2 33 x 2 ln |1 3 x 2 | +C. 2
练习
求积分:
(1)
2
dx cos
an bm
其中m和n都 是非负整数;a0 ,a1 ,a2 ,… ,an 及b0 ,b1 ,b2
,… ,bm都是实数,并且a00,b00.当n<m时,称这有理函数
是真分式;而当nm时,称这有理函数是假分式.假分式总可以
化成一个多项式与一个真分式之和的形式.例如
x3 x 1 x2 1
x
1 x2 1
.
例2 求
x
2
x
2 2x
3
dx
.
解
x2
x
2
2 x
3
dx
(1 2
x
2x 2 2 2x
3
3
x
2
1 2
x
)dx 3
1 2
x
2x 2 2 2x
dx 3
3
x
2
1 2
x
dx 3
1 2
d (x2 2x 3) x2 2x 3
3
d (x 1) (x 1)2 ( 2)2
1 ln(x2 2x 3) 3 arctan x 1 C .
2
dx.
解
x2
3x 1 3x
有理函数的积分
有理函数的积分有理函数的积分,听起来有点复杂是不是?一开始大家都会想,这个是啥东西,是不是就是数学里的某个难点,得跟它死磕才行?咱们稍微放轻松,就会发现,原来它不过是一个相当简单的数学小魔法而已。
来,跟我一起,一步步揭开它的神秘面纱!有理函数,简单点说,就是两个多项式的比。
就像是一个分子和一个分母,它们之间关系亲密无间,非分不可。
比方说,(f(x)=frac{P(x){Q(x)),其中,(P(x))和(Q(x))都是多项式。
这个你懂了吧?问题来了,咱们现在要做的就是把这个有理函数给积分了!哎哟,别着急,积分其实没你想的那么复杂。
1.有理函数积分的基本方法积分,咱们一般想的就是把那个函数的面积算出来,或者说求它的原函数。
咋整呢?有个常用的招儿就是分式分解。
你看,有理函数的分子和分母之间的关系就好像咱们生活中的复杂关系一样,偶尔需要拆解,才能一目了然。
举个简单的例子吧,假设咱们有一个这样的函数:(f(x)=frac{2x+1{x^21)。
哎哟,这看起来就有点复杂了,咋办呢?不要怕,咱们就把这个分母拆开!你看,(x^21)其实可以分解成((x1)(x+1)),然后,咱就把这个函数拆开成两项,像这样:frac{2x+1{x^21=frac{A{x1+frac{B{x+1。
这俩项就是咱们常说的“部分分式分解”。
然后你再解出(A)和(B),积分就不难了,简直是手到擒来。
你看,这一拆一分,原本复杂的东西就变得简单多了。
积分的时候,咱们一项一项地处理,最后就能得出结果。
如果你碰到的分母比较复杂,像是(x^2+1)这种无法分解的情况,那你就得用点技巧,常见的有用部分分式法或者用一些换元法,把问题给转化成更容易处理的形式。
2.直接分母的高次多项式分式分解不总是能帮到咱们,特别是当分母是高次多项式的时候。
你看,假如咱们有一个分母是(x^3+2x^2+x+1)的有理函数,分解起来就可能有点棘手。
怎么办呢?别着急,这时候咱们可以考虑通过长除法,先做除法,把高次多项式先减去,再剩下一个较低次的多项式去积分。
几种特殊类型函数的积分
假分式总可以化成一个多项式与一个真分式之和的形式.例如,
x3 x 1 x(x2 1) 1
x
1
.
x2 1
x2 1
x2 1
求真分式的不定积分时,如果分母可因式分解,则先因式分解,然后化成部分分式再积分.
1.1 有理函数的积分
例1
求
x2
x
3 5x
6
dx
.
解 设 x 3 x 3 A B ,则
x ln sec x ln 1 tan x C .
2
2
2
1.2 三角函数有理式的积分
说明 并非所有三角函数有理式积分计算都要通过变换化为有理函数的积分.例如,
1
cos x sin
x
dx
1
1 sin
x
d(1
sin
x)
ln(1
sin
x)
C
.
高等数学
x2 5x 6 (x 2)(x 3) x 2 x 3
A(x 3) B(x 2) (A B)x 3A 2B x 3 ,
即 A B 1, 3A 2B 3,
解得 A 5 , B 6 ,所以
x2
x
3 5x
6
dx
5 x2
x
6
3
dx
5
x
1
2
dx
6
x
1
3
dx
5ln | x 2 | 6ln | x 3| C .
7
7
1.2 三角函数有理式的积分
三角函数有理式是指由三角函数和常数经过有限次四则运算所构成的函数,其特点是分子 分母都包含三角函数的和差与乘积运算.由于各种三角函数都可以用 sin x 及 cos x 的有理式表 示,故三角函数有理式也就是 sin x , cos x 的有理式.
不定积分公式总结
不定积分公式总结在微积分的学习中,不定积分是一个非常重要的概念,它是求导的逆运算。
掌握不定积分公式对于解决积分问题至关重要。
下面,就让我们一起来总结一下常见的不定积分公式。
首先,我们来看看基本的积分公式。
1、常数的积分:∫C dx = Cx + C1 (其中 C 为常数,C1 为积分常数)这是最简单的积分公式,常数的积分就是常数乘以 x 再加上积分常数。
2、幂函数的积分:∫x^n dx =(1/(n + 1))x^(n + 1) + C (n ≠ -1)当 n 为正整数时,这个公式很容易理解和应用。
比如,∫x² dx =(1/3)x³+ C 。
3、指数函数的积分:∫e^x dx = e^x + C∫a^x dx =(1/lna)a^x + C (a > 0,a ≠ 1)指数函数的积分仍然是它本身,只是要加上积分常数。
4、对数函数的积分:∫lnx dx = xlnx x + C∫log_a x dx =(1/lna)(xlnx x) + C (a > 0,a ≠ 1)接下来,我们看一些三角函数的积分公式。
1、∫sinx d x = cosx + C2、∫cosx dx = sinx + C3、∫tanx dx = ln|cosx| + C4、∫cotx dx = ln|sinx| + C5、∫secx dx = ln|secx + tanx| + C6、∫cscx dx = ln|cscx + cotx| + C然后,还有反三角函数的积分公式。
1、∫arcsinx dx = xarcsinx +√(1 x²) + C2、∫arccosx dx =xarccosx √(1 x²) + C3、∫arctanx dx = xarctanx (1/2)ln(1 + x²) + C4、∫arccotx dx = xarccotx +(1/2)ln(1 + x²) + C此外,还有一些常见的积分公式组合。
有理函数积分
万能代换
t 的有理函数的积分
x x 2 tan 2 tan x x 2 , 2 sin x 2sin cos 2 x 2 2 2 x 1 tan sec 2 2 2 x 2 x 1 tan 1 tan 2 x 2 x 2 2, cos x cos sin 2 2 2 x 2 x 1 tan sec 2 2 x x 2arctan u (万能置换公式) 令 u tan 2
Mx N 3. 2 dx x px q Mx N 4. 2 dx n ( x p x q)
变分子为
M 2
(2 x p)分 2 n ( x px q )
2 p p 2 x px q x q , 2 4 2
x dx 使用凑微分法比较简单 3 x 1
尽量使分母简单——降幂、拆项、同乘等
2
基本思路
化部分分式,写成分项积分 可考虑引入变量代换
例2. 求积分
解:
1 dx . 2 x( x 1)
1 1 1 1 dx dx 2 2 x( x 1) x 1 x ( x 1)
2 2u 2 1 u sin x , cos x du , dx 2 2 2 1 u 1 u 1 u
2u 1 u 2 2 R(sin x ,cos x ) dx R 1 u2 , 1 u2 1 u2 du.
1 sin x dx . 例8. 求 sin x(1 cos x) x 解: 令 t tan , 则 2 x cos x x 2 sin 2 2 tan 2t 2 2 sin x 2 x cos 2 x 1 tan 2 x 1 t 2 sin 2 2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、有理函数的积分
有理函数是指有理式所表示的函数,它包括有理整式和 有理分式两类:
有理整式 f(x)=a0xn+a1xn-1+…+an-1x+an;
有理分式
其中m,n都是非负整数,a0,a1,…,an及b0,b1,…,bn都是 实数,并且a0≠0,b0≠0.
一、有理函数的积分
1=A(1+x2)+(Bx+C)(1+x),
一、有理函数的积分
整理得 1=(A+B)x2+(B+C)x+A+C.(4-19)
比较式(4-19)两端x的同次幂的系数及常数,有
一、有理函数的积分
3. 有理函数积分举例 【例1】
去分母,得 2x3+x-1=(Ax+B)(x2+1)+(Cx+D) =Ax3+Bx2+(A+C)x+(B+D),
三、积分表的使用
同时还应了解,求函数的不定积分与求函数的导数的 区别.求一个函数的导数总可以循着一定的规则和方法去做, 而求一个函数的不定积分却没有统一的规则可循,需要具 体问题具体分析,灵活应用各类积分方法和技巧.
实际应用中常常利用积分表来计算不定积分.求不定积 分时可按被积函数的类型从表中查到相应的公式,或经过 少量的运算和代换将被积函数化成表中已有公式的形式.
二、可化为有理函数的积分
二、可化为有理函数的积分
二、可化为有理函数的积分
【例3】
二、可化为有理函数的积分
【例4】
二、可化为有理函数的积分
二、可化为有理函数的积分
2. 简单无理函数的积分
求简单无理函数的积分,其基本思想 是利用适当的变换将其有理化,转化为有理 函数的积分.下面通过例子来说明.
二、可化为有理函数的积分
【例5】
【例6】
三、积分表的使用
本章介绍了不定积分的概念及计算方法.必须指出的 是:初等函数在它的定义区间上不定积分一定存在,但 不定积分存在与不定积分能否用初等函数表示出来不是 一回事.事实上,有很多初等函数,它们的不定积分是存 在的,但它们的不定积分却无法用初等函数表示出来, 如
M1x+N1(x2+px+q)k+M2x+N2(x2+px 其中Mi,Ni(i=1,2,…,k)都是常数.
(4-17) 其中A,B为待定常数,可用如下方法求出待定系数.
一、有理函数的积分
第一种方法 式(4-17)两端去分母后,得 x+3=A(x-3)+B(x-2),
整理得 x+3=A+Bx-3A+2B.(4-18)
在有理分式中,n<m时,称为真分式;n≥m时,称为假分式.
利用多项式除法,可以把任意一个假分式化为一个有理整式
和一个真分式之和.例如,
(4-10)
有理整式的积分很简单,下面只讨论真分式的积分.
一、有理函数的积分
1. 最简分式的积分
下列四类分式 (1)Ax-a;(2)A(x-a)n;(3)Mx+Nx2 统称为最简分式,其中n为大于等于2的正整数;A,M,N,a,p,q 均为常数,且p2-4q<0. 下面先讨论这四类最简分式的不定积分. 前两类最简分式的不定积分可以由基本积分公式直接得到. 对第三类最简分式,将其分母配方得
设给定真分式P(x)/Q(x),要把它表示为最简分式的 和,首先要把分母Q(x)在实数范围内分解为一次因式与 二次因式的乘积,再根据这些因式的结构,利用待定系 数法确定所有系数.
设多项式Q(x)在实数范围内能分解为如下形式: Q(x)=b0(x-a)α…(x-b)β(x2+px+q)λ…(x2+rx+s)μ,
一、有理函数的积分
一、有理函数的积分
上式最后一个不定积分的求法在上节的例8中已经给出. 综上所述,最简分式的不定积分都能被求出,且原函数都 是初等函数.根据代数学的有关定理可知,任何真分式都可以分 解为上述四类最简分式的和,因此,有理函数的原函数都是初 等函数.
Байду номын сангаас
一、有理函数的积分
2. 有理分式化为最简分式的和
一、有理函数的积分
比较两端同次幂系数,得A=2,B=0,C=-1,D=-1.从而
一、有理函数的积分
【例2】
一、有理函数的积分
二、可化为有理函数的积分
1. 三角函数有理式的积分
由sin x,cos x和常数经过有限次四则运算构成 的函数称为三角有理函数,记为 R(sin x,cos x).
三角函数的积分比较灵活,方法很多.在换元积 分法和分部积分法中介绍过一些方法.这里主要介绍 三角函数有理式的积分方法,其基本思想是通过适 当的变换,将三角有理函数化为有理函数的积分.
一、有理函数的积分
其中Ai,…,Bi,Mi,Ni,…,Ri及Si等都是常数. 对式(4-16),应注意到以下两点: (1)若分母Q(x)中含有因式(x-a)k,则分解后含有下列k个最简分式 之和: 其中A1,A2,…,Ak都是常数.
一、有理函数的积分
(2)若分母Q(x)中含有因式(x2+px+q)k,其中p2- 4q<0,则分解后含有下列k个最简分式之和:
三、积分表的使用
三、积分表的使用
所以
谢谢聆听
因为这是恒等式,等式两端x的系数和常数必须分别相等, 于是有
从而解得A=-5,B=6.
一、有理函数的积分
第二种方法在恒等式(4-18)中,代入特殊的x值,从而求出 待定的常数.在式(4-18)中,令x=2,得A=-5;令x=3,得B=6. 同样得到
又如,真分式11+x1+x2可分解为 11+x1+x2=A1+x+Bx+C1+x2, 两端去分母后,得