概率论与数理统计第一章

合集下载

概率第一章

概率第一章
1.2.1 基本事件空间与事件
随机试验:不能事先准确地预见它的
结果,而且在相同条件下可以重复进行。
1-4
概率论与数理统计
E
随机试验:不能事先准确地预见它的
结果,而且在相同条件下可以重复进行用 符号 E 表示。 随机事件 :在条件下事件可能发生也 可能不发生的事件用大写字母 A , B , C ,表
指出
件,并表示事件 1-9
事件中哪些是基本事 B, C, D
。 概率论与数理统计
E
1.2.2 事件间的关系与运算
1.事件的包含与相等 若事件 A 中的每个基本事件都包含在 B
A
事件 B 之中,即 A 的发生必然导致 B 的发
生,则称事件 A 包含于事件 B ,或事件 B
包含事件 A ,也称是的特款 ,记为 A B 。
1-19
概率论与数理统计
E 与B B)( A与 A与B 如果事件A与事件B A A (1) (B 的和 A B) ;
(2) AB AB BC;
(3) ( A B)( A B)(B C ).
例1.2.4 化简下列各事件:
(1) ( A B)( A B) ; (2) AB AB BC; (3) ( A B)( A B)(B C ).
(2) AB AB BC;
(3) ( A B)( A B)(B C ).
例1.3.1 设事件A, B 的概率分别为 和
,试求下列三种情况下的值: (1) B 互不相容; A, (2) A B ; (3) ( AB ) 1 . P
8
1 3
1 2
1-27
概率论与数理统计
E 与B B)( A与 A与B 如果事件A与事件B A A (1) (B 的和 A B) ;

概率论与数理统计(完整版)

概率论与数理统计(完整版)
17
例3. 某接待站在某一周曾接待过12次来访, 且都是在周二 和周四来访. 问是否可以推断接待时间是有规定的?

实际推断原理:“小概率事件在一次试 验中实际上是不可能发生的”.
18
二、几何定义:
定义若对于一随机试验 ,每个样本点出现是等可能的 ,
样本空间所含的样本点个数为无穷多个 ,且具有非 零的 ,有限的几何度量 ,即 0m(),则称这一随机 试验是一几何概型的 .
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
5
(二) 随机事件
A 2,A 2 A 3, A 1A 2, A 1 A 2, A 1A 2A 3, A 1A 2 A 2A 3 A 1A 3.
14
§3. 概率的概念 一. 古典定义:
等可能概型的两个特点:
(1) 样本空间中的元素只有有限个;
(2) 试验中每个基本事件发生的可能性相同.
例如:掷一颗骰子,观察出现的点数.
概率论与数理统计
第一章 概率论的基本概念 前言
1. 确定性现象和不确定性现象. 2. 随机现象: 在个别试验中其结果呈现出不确定性, 在 大量重复试验中其结果又具有统计规律性. 3. 概率与数理统计的广泛应用.
2
§1.随机试验
我们将对自然现象的一次观察或进行一次科学试验 称为试验。
举例:
E1: 抛一枚硬币,观察正(H)反(T) 面 的情 况. E2: 将一枚硬币抛三次,观察正反面出现的情况.

概率论与数理统计

概率论与数理统计

一、事件的频率与概率
次数, µ n ( A ) : 事件 A 在 n 次可重复试验中出现的 次数,
称为 A 在 n 次试验中出现的频数
频率—— f n ( A) = 频率
µ n ( A)
n
.
频率有如下性质: 频率有如下性质:
1. 非负性:对任何事件 A,有 0 ≤ f n ( A) ≤ 1 非负性:
掷一骰子, 如: A =“掷一骰子,点数小于 4”, B =“掷一骰子,点数小于 5”, 掷一骰子, 则A ⊂ B.
显然对任何事件 A,有 Φ ⊂ A ⊂ Ω⊂ A,则称事件 A与事件 B相等,记作 A = B .
2.事件的和(并) 事件的和(
两个事件 A, B 中至少有一个发生 (属于A或属于 B的样本点 构成的集合 ),称为事件 A 与 B 的和(并 ), 记作 A + B 或 A ∪ B .
显然, 显然,事件 A 与 A 可以构成一个完备事件 组
类似地,称可列个事件 A1 , A2 , L , An, 构成一个 L 类似地, 完备事件组, 完备事件组,如果满足 :
(1)
( 2)
Ai A j = Φ
(i ≠ j )
∑A
i
i
=Ω
律 事件运算满足下列运算 :
(1) 交换律 A + B = B + A AB = BA
设袋中有红, 黄各一球, 例: 设袋中有红,白,黄各一球,有放回抽取三 取出球后仍把球放回原袋中),每次取一球, ),每次取一球 次(取出球后仍把球放回原袋中),每次取一球,试 说明下列各组事件是否相容?若不相容, 说明下列各组事件是否相容?若不相容,说明是否 对立? 对立? 三次抽取, 三次抽取, (1) A=“三次抽取,颜色全不同”,B=“三次抽取, = 三次抽取 颜色全不同” = 三次抽取 相容 颜色不全同” 颜色不全同” (2) A=“三次抽取,颜色全同”,B=“三次抽取, 三次抽取, 三次抽取, = 三次抽取 颜色全同” = 三次抽取 颜色不全同” 颜色不全同” 不相容, 不相容,对立 三次抽取, 三次抽取, (3) A=“三次抽取,无红色球”,B=“三次抽取, = 三次抽取 无红色球” = 三次抽取 无黄色球” 无黄色球” 相容 三次抽取, (4) A=“三次抽取,无红色球也无黄色”, = 三次抽取 无红色球也无黄色” B=“三次抽取, 无白色球” 不相容,不对立 三次抽取, = 三次抽取 无白色球” 不相容,

《概率论与数理统计电子教案第一章

《概率论与数理统计电子教案第一章

随机变量的定义
根据随机变量可能取值的性质,可以分为离散型随 机变量和连续型随机变量。
随机变量的分类
离散型随机变量分布律
分布律的定义 二项分布、泊松分布等。
常见离散型随机变量的分布 律
对于一个离散型随机变量X,其所有可能取 的值xi(i=1,2,...)与取这些值的概率 P{X=xi}(i=1,2,...)构成的表格或公式称为 离散型随机变量X的分布律。
叁 多维随机变量函数的概率密度求法
对于多维随机变量的函数,其概率密度可以通过换元法和雅可比行 列式求得。
随机变量数字特征
数学期望与方差概念
数学期望(期望值)
01
描述了随机变量取值的"平均"水平,是概率加权的平均
值。
方差
02
描述了随机变量取值的离散程度,即取值与期望值的偏
离程度。方差越大,说明随机变量的取值越分散。
大数定律应用
大数定律概念
中心极限定理内容及意义
中心极限定理内容
中心极限定理指出,大量相互独立、同分布 的随机变量之和的分布,当变量个数足够大 时,将趋于正态分布。
中心极限定理意义
中心极限定理是概率论和数理统计中的基本 定理之一,为许多统计方法的推导和应用提 供了理论基础,如置信区间、假设检验等。
棣莫弗-拉普拉斯定理
事件的独立性
计算多个事件同时发生的概率。
两个或多个事件的发生互不影响。
条件概率
在给定条件下,某事件发生的概 率。
独立试验
每次试验的结果与其他次试验的 结果无关。
随机变量及其分布
随机变量概念及分类
设随机试验的样本空间为 S={e}, X=X{e}是定义在 样本空间S上的实值单值 函数。称X=X{e}为随机变 量。

概率论与数理统计 第一章 随机事件与概率

概率论与数理统计 第一章 随机事件与概率
S AB
推广:
(1)n个事件A1,A2, An至少有一个发生
所构成的事件,称为 A1, A2, An的和或并,
记为
n
A1 A2 An Ai
i1
当A1, A2, An互斥时
n
n
Ai Ai
i1
i1
(2)可列无限多个事件 A1, A2, 至少有一个
(1kn)的不同排列总数为:
n n n nk
例如:从装有4张卡片的盒中 有放回地摸取3张
第1张 第2张 第3张
1 2 34
n=4,k =3
1
1
1
2
2
2 共有4.4.4=43种可能取法
3
3
3
4
4
4
2、组合: 从n个不同元素取 k个
(1kn)的不同组合总数为:
C
k n

Ank k!

n! (n k)!k!

Ai
i1
三.互不相容事件(互斥事件)
若A与B不能同时发生,即 AB 则称A与B
互不相容(或互斥)。S与 互斥。
S
A
B
推广:n个事件 A1,A2, An互斥
A1, A2, An 中任两个互斥,即,
i≠j, i, j=1,2,3 ,……n.
四.事件的和(并) 事件A与B至少有一个发生所构成的事件, 称为A与B的和(并)记为A∪B。当A与B 互斥时,A∪B =A+B。
六. 对立事件(逆事件) 由A不发生所构成的事件,称为A的对立事件
(逆事件)。记为 A
A
A
AA ,A A S,A A.
例1.掷一质地均匀的骰子,A=“出现奇数点”= {1,3,5},B=“出现偶数点”= {2,4,6},C=“出现4或6”={4,6}, D=“出现3或5”={3,5},E=“出现的点 数大于2”={3,4,5,6}, 求 A B,C D,AE,E.

概率论与数理统计课件(完整版)

概率论与数理统计课件(完整版)
例1. 两架飞机依次轮番对同一目标投弹, 每次投下一颗炸弹, 每架飞机各带3颗炸弹, 第1架扔一颗炸弹击中目标的概率为0.3, 第2架的概率为0.4, 求炸弹未完全耗尽而击中目标的概率。
1. 计算相互独立的积事件的概率: 若已知n个事件A1, A2, …, An相互独立,则 P(A1A2…An)=P(A1)P(A2)…P(An)
系统一:先串联后并联
A1
B1
A2
B2
A3
B3
A4
B4
*
例3. 100件乐器,验收方案是从中任 取3件测试(相互独立的), 3件测试后都认为音色纯则接收这批 乐器,测试情况如下: 经测试认为音色纯 认为音色不纯 乐器音色纯 0.99 0.01 乐器音色不纯 0.05 0.95
*
1. 公式法:
当A=S时, P(B|S)=P(B), 条件概率化为无条件概率, 因此无条件概率可看成条件概率.

计算条件概率有两种方法:
*
2.缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2次取到奇数的概率.
*
随机试验: (1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的结果; (3) 一次试验前不能确定会出现哪个结果.
*
2. 样本空间与随机事件
样本空间的分类:
离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
空集φ不包含任何样本点, 它在每次试验中都不发生,称为不可能事件。

概率论与数理统计ppt课件

概率论与数理统计ppt课件

称这种试验为等可能概型(或古典概型)。
*
例1:一袋中有8个球,其中3个为红球,5个为黄球,设摸到每一球的可能性相等,从袋中不放回摸两球, 记A={恰是一红一黄},求P(A). 解:
(注:当L>m或L<0时,记 )
例2:有N件产品,其中D件是次品,从中不放 回的取n件, 记Ak={恰有k件次品},求P(Ak). 解:
*
第四章 随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵 第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
*
第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验 第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线性回归 9.4 多元线性回归
解: 设 Ai={ 这人第i次通过考核 },i=1,2,3 A={ 这人通过考核 },
亦可:
*
例:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。
利用乘法公式
与 不相容
(1)若为放回抽样:
(2)若为不放回抽样:
解: 设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}



1 2 N


1 2 N
……

概率论与数理统计知识点总结(超详细版)

概率论与数理统计知识点总结(超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)())(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk knk kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -=(逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计教程ppt课件

概率论与数理统计教程ppt课件
1. 确定性现象
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
16 March 2020
华东师范大学
第一章 随机事件与概率
第3页
1.1.1 随机现象
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
16 March 2020
华东师范大学
第一章 随机事件与概率
例1.2.1 六根草,头两两相接、
尾两两相接。求成环的概率.
解:用乘法原则直接计算 所求概率为
644221 8 6 5 4 3 2 1 15
第30页
16 March 2020
华东师范大学
第一章 随机事件与概率
3. 若 AnF ,n=1, 2, …, 则

UFA.n
n 1
16 March 2020
华东师范大学
第一章 随机事件与概率
第21页
§1.2 概率的定义及其确定方法
• 直观定义 —— 事件A 出现的可能性大小.
• 统计定义 —— 事件A 在大量重复试验下 出现的频率的稳定值称为该事件的概率.
2. 样本点 —— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
16 March 2020
华东师范大学
第一章 随机事件与概率
第5页
1.1.3 随机事件
华东师范大学
第一章 随机事件与概率

东华大学《概率论与数理统计》课件 第一章 随机事件与概率

东华大学《概率论与数理统计》课件 第一章 随机事件与概率
(2) P(S)=1;
(3) 设A1,A何2,…时,P是(A一|列B两)两<互P不(A相)容? 的事件,即AiAj=
,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+….
则称P(A)为事件A的概率。
例 一盒中混有100只新 ,旧乒乓球,各有红、白两 色,分 类如下表。从盒中随机取出一球,若取得的 是一只红球,试求该红球是新球的概率。
1.定义 若对随机试验E所对应的样本空间中的 每一事件A,均赋予一实数P(A),集合函数P(A)满足 条件:
(1) 非负性: P(A) ≥0;
(2) 规范性: P(S)=1;
(3) 可列可加性:设A1,A2,…, 是一列两两互不 相容的事件,即AiAj=,(ij), i , j=1, 2, …, 有
概率论与数理统计
第一章 随机事件与概率
教材:
《概率论与数理统计》
魏宗舒编
高等教育出版社
本章主要内容:
1. 概率的概念与性质 2. 事件的关系与运算性质 3. 古典概型概率的计算 4. 加法公式、条件概率、乘法公式 5. 事件的独立性、伯努利概型
重点:古典概型、概率的计算 难点:事件的关系和运算
条件概率、伯努利概型
(2) 单调不减性:若事件AB,则 P(A)≥P(B)
(3) 事件差: A、B是两个事件,

P(A-B)=P(A)-P(AB)
(4) 加法公式:对任意两事件A、B,有 P(AB)=P(A)+P(B)-P(AB)
该公式可推广到任意n个事件A1,A2,…,An的情形 ;
(5) 互补性:P(A)=1- P(A); (6) 可分性:对任意两事件A、B,有

概率论与数理统计第一章课件

概率论与数理统计第一章课件
样本均值
所有样本点的平均值
样本方差
描述样本点离散程度的量
无偏估计
样本统计量的值等于总体参数的真实值
t分布与F分布
t分布
用于描述小样本数据的分布情况,也 称学生t分布
F分布
用于描述两个比例的方差之间的比例 关系
04
参数估计
点估计与估计量
点估计
用样本统计量来估计未知参数的 过程。
估计量
用于估计未知参数的样本统计量。
假设检验的分类单侧检验、双侧检验。来自 单侧与双侧检验单侧检验
01
只关注参数的一个方向是否满足假设,如检验平均值是否大于
某个值。
双侧检验
02
关注参数的两个方向是否满足假设,如检验平均值是否在两个
值之间。
单侧与双侧检验的选择
03
根据实际问题需求和数据特征选择合适的检验方式。
显著性检验与P值
显著性检验
通过比较样本数据与理论分布,判断样本数据是否显著地偏离理 论分布。
P值
观察到的数据或更极端数据出现的概率,用于判断是否拒绝或接 受假设。
P值的解读
P值越小,表明数据越显著地偏离理论分布,假设越可能不成立。
第一类错误与第二类错误
1 2
第一类错误
拒绝实际上成立的假设,也称为假阳性错误。
第二类错误
接受实际上不成立的假设,也称为假阴性错误。
3
错误率控制
通过调整临界值的大小,可以控制第一类错误和 第二类错误的概率,从而实现错误率控制。
通过参数估计,还可以对生产过 程进行实时监控和预警,及时发 现并解决生产中的问题,保证生
产的稳定性和可靠性。
假设检验在医学研究中的应用
假设检验是数理统计中的一种 重要方法,在医学研究中有着

《概率论与数理统计》第一章知识点

《概率论与数理统计》第一章知识点

第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。

2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。

二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。

(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。

2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。

1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。

2.基本事件:试验的每一可能的结果称为基本事件。

一个样本点w 组成的单点集{w}就是随机试验的基本事件。

3.必然事件:每次实验中必然发生的事件称为必然事件。

用Ω表示。

样本空间是必然事件。

4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。

1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。

2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。

3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。

4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。

5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。

概率论与数理统计第一章——随机事件及概率

概率论与数理统计第一章——随机事件及概率
P65 = 6 5 4 3 2 = 720 (个)
ex2: 从0,1,2,3,4,5, 这六个数字中任取四 个,问能组成多少个四位偶数?
解:组成的四位数是偶数,要求末位为0,2或
4,可先选末位数,共P31 种,前三位数的选取方法有
P53 种,而0不能作首位,所以所组成的偶数个数为
P1 P3 − P1 P1 P2 = 156 (个)
◼ 为方便起见,记Φ为不可能事件,Φ不 包含任何样本点。
(三) 事件的关系及运算 ❖事件的关系(包含、相等)
1A B:事件A发生一定导致B发生
2A=B
A B
B A
B A
例:
✓ 记A={明天天晴},B={明天无雨} B A ✓ 记A={至少有10人候车},B={至少有5人候车}
B A
✓ 抛两颗均匀的骰子,两颗骰子出现的点数分别 记为x,y.记A={x+y为奇数},B={两次的骰子点
A
B
n Ai:A1, A2,An至少有一发生
i=1
n Ai:A1, A 2 ,An同时发生
i =1
✓当AB= Φ时,称事件A与B是互不相
容的,或互斥的。
A
B
A A= A B =
A的逆事件记为A, A A =
, 若 A B =
,
称A, B互逆(互为对立事件)
AA
A
B
事件A对事件B的差事件:
◼可以在相同条件下重复进行(重复性); ◼事先知道所有可能出现的结果(明确性); ◼每次试验前并不知道哪个试验结果会发生 (随机性)。
例: ❖抛一枚硬币,观察试验结果; ❖对某路公交车某停靠站登记下车人数; ❖对某批同型号灯泡,抽取其中一只测 验其使用寿命(按小时计)。

概率论与数理统计第一章随机事件及其概率

概率论与数理统计第一章随机事件及其概率

概率论与数理统计配套教材:苏德矿等,概率论与数理统计,高等教育出版社概率论产生于17世纪,本来是由保险事业发展而产生的,但是来自赌博者的请求,却是数学家们思考概率论问题的源泉1>. 早在1654年,有一个赌徒梅勒向当时的数学家帕斯卡提出了一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢m局就算获胜,全部赌本就归胜者,但是当其中一个人甲赢了a(a&lt;m)局的时候,赌博中止,问赌本应当如何分配才算合理?”概率论在物理、化学、生物、生态、天文、地质、医学等学科中,在控制论、信息论、电子技术、预报、运筹等工程技术中的应用都非常广泛。

序言自然界和社会上发生的现象是多种多样的.在观察、分析、研究各种现象时,通常我们将它们分为两类:(1)可事前预言的,即在准确地重复某些条件下,它的结果总是肯定的,或者根据它过去的状况,在相同条件下完全可以预言将来的发展,例如,在标准大气压下,纯水加热到100℃必然沸腾;向空中抛掷一颗骰子,骰子必然会下落;在没有外力作用下,物体必然静止或作匀速直线运动;太阳每天必然从东边升起,西边落下等等,称这一类现象为确定性现象或必然现象.第一章随机事件及其概率人们经过长期实践和深入研究之后,发现随机现象在个别试验中,偶然性起着支配作用,呈现出不确定性,但在相同条件下的大量重复试验中,却呈现出某种规律性.随机现象的这种规律性我们称之为统计规律性.概率论与数理统计是研究和揭示随机现象的统计规律性的一门数学学科.(2)在个别试验中呈现不确定的结果,而在相同条件下大量重复试验中呈现规律性的现象称为随机现象(或偶然现象).例如,在相同条件下,抛掷一枚硬币,其结果可能是正面朝上,也可能是反面朝上,并且在每次抛掷之前无法确定抛掷的结果是什么.§1 随机事件在一定条件下,并不总是出现相同结果的现象称为随机现象.§1.1 随机试验与样本空间(1)抛一枚硬币,有可能正面H朝上,也有可能反面T朝上.(2)抛一粒骰子,出现的点数.(3)一只灯泡使用的寿命.在相同条件下可以重复的随机现象称为随机试验(Random experiment).随机试验具有以下特点:(1)可以在相同条件下重复进行;(2)每次试验的可能结果不止一个,并且事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.试验的样本空间的实例E1:抛一枚硬币,观察正面H、反面T出现的情况.则样本空间为Ω1 ={H,T}E2:将一枚硬币抛掷三次,观察正面H、反面T出现的情况.则样本空间为Ω 2={HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}E3:将一枚硬币抛掷三次,观察正面H出现的次数.则样本空间为Ω 3={0,1,2,3}E7:记录某地一昼夜的最高温度和最低温度.则样本空间为Ω 7={(x,y)|T0≤x≤y≤T1}这里x表示最低温度,y表示最高温度;并设这一地区的温度不会小于T0,不会大于T1.E4:抛一粒骰子,观察出现的点数.则样本空间为Ω 4={1,2,3,4,5,6}E5:记录电话交换台一分钟内接到的呼唤次数.则样本空间为Ω5={0,1,2,3,…}E6:在一批灯泡中任意抽取一只,测试它的寿命.则样本空间为Ω 6={t|t≥0}于是样本空间是由三个样本点构成的集合这个例子表明:试验的样本点与样本空间是根据试验的内容而确定的.例:抛二粒骰子的样本空间为:§1.2 随机事件(random event)(6)空集?? 称为不可能事件(Impossible event ).(5)样本空间Ω称为必然事件(Certain event) .(4)由样本空间中的单个元素组成的子集称为基本事件(Basic events) . 随机现象的某些样本点组成的集合称为随机事件,简称事件.(2)事件A发生当且仅当A中的某个样本点出现.(1)任一事件A是相应样本空间的一个子集.(3)事件可用集合A表示,也可用语言描述.例:对于试验E2:将一枚硬币抛掷三次,观察正面H、反面T出现的情况. A2={HHH,TTT}(2)事件A2:“三次出现同一面”,则A1={HHH,HHT,HTH,HTT}(1)事件A1:“第一次出现的是正面H”,则A2={HHT,HTH,THH}(3)事件A3:“出现二次正面”,则例:对于试验E6:在一批灯泡中任意抽取一只,测试它的寿命.B={t|0≤t&lt;1000}事件B:“寿命小于1000小时”,则例:对于试验E7:记录某地一昼夜的最高温度和最低温度.C={(x,y)|y-x=10, T0≤x≤y≤T1}事件C:“最高温度与最低温度相差10度”,则§1.3 事件的关系(Relation of events )设试验E的样本空间为Ω ,而A,B,Ak(k=1,2,…)是Ω的子集.事件是一个集合,因而事件间的关系与事件的运算自然按照集合论中集合之间的关系和集合运算来处理.根据“事件发生”的含义,下面给出事件的关系和运算在概率论中的提法.§1.3.1 包含关系(Inclusion relation)定义:若属于A的样本点必属于B,则称事件B包含事件A,记为A ?? B .即事件A发生必然导致事件B发生.例:抛一粒骰子,事件A=“出现4点”,B=“出现偶数点” .则事件A发生必然导致B发生,所以A ?? B .§1.3.2 相等关系(equivalent relation)定义:若属于A的样本点必属于B,且属于B的样本点必属于A,则称事件A 与事件B相等,记为A= B .A=B ?? A??B且B??A例:抛二粒骰子,A=“二粒骰子点数之和为奇数”,B=“二粒骰子的点数为一奇一偶” .则事件A发生必然导致B发生,而且B发生必然导致A发生,所以A = B .§1.3.3 互不相容(Incompatible events)定义:若事件A与事件B没有相同的样本点,则称事件A与B互不相容 .A与B互不相容,即事件A与事件B不可能同时发生.A与B互不相容?? AB=??§1.4.1 事件的并(Union of events)定义:由事件A与B中所有样本点(相同的样本点只计入一次)组成的新事件称为事件A与B的并.§1.4 事件的运算(operation of events )(1)A∪B={x|x∈A或x∈B}(2)当且仅当A,B中至少有一个发生时,事件A∪B发生.例:抛一粒骰子,事件A=“出现点数不超过3”,B=“出现偶数点” .则A={1,2,3}, B={2,4,6} .所以,A∪B={1,2,3,4,6}§1.4.2 事件的交(Product of events)定义:由事件A与B中公共的样本点组成的新事件称为事件A与B的交.(2)当且仅当A与B同时发生时,事件AB发生.(1)A∩B=AB={x|x∈A且x∈B}例:抛一粒骰子,事件A=“出现点数不超过3”,B=“出现偶数点” .则A={1,2,3}, B={2,4,6} .所以,A∩B={2}§1.4.3 事件的差(Difference of events)定义:由事件A中而不B中的样本点组成的新事件称为事件A对B的差.(1)A-B={x|x∈A且x∈B}(2)当且仅当A发生,而B不发生时,事件A-B发生.例:抛一粒骰子,事件A=“出现点数不超过3”,B=“出现偶数点” . 则A={1,2,3}, B={2,4,6} .所以,A-B={1,3}问:B-A=?§1.4.4 对立事件(Opposite events)定义:由在Ω中而不在A中的样本点组成的新事件称为A的对立事件. (1)事件A与B互为对立事件?? A∪B= Ω且AB=?? .(2)A的对立事件记作B=? .例:抛一粒骰子,事件A=“出现点数不超过3”.则A={1,2,3},而Ω={1,2,3,4,5,6,}.所以, ? ={4,5,6}§1.4.5 事件运算的规则1、交换律(Exchange law) :A??B=B??A,AB=BA2、结合律(Combination law) :(A??B)??C=A??(B??C),(AB)C=A(BC)3、分配律(Distributive law) :(A??B)C=(AC)??(BC),(AB)??C=(A??C)(B??C)4、 7>De Morgan对偶律(Dual law) :(1)第三次未中奖(2)第三次才中奖(3)恰有一次中奖(4)至少有一次中奖(5)不止一次中奖(6)至多中奖二次§2 随机事件的概率定义:随机事件A发生可能性大小的度量(数值),称为A发生的概率,记作P(A).对于一个随机事件(必然事件和不可能事件除外)来说,它在一次试验中可能发生,也可能不发生.我们希望知道某些事件在一次试验中发生的可能性究竟有多大,找到一个合适的数来表示事件在一次试验中发生的可能性大小.§2.1 概率的公理化定义定义:设Ω为一个样本空间,如果对任一事件A,赋予一个实数P(A).如果集合函数P(.)满足下列条件:(1)非负性公理:对于每一事件A,有P(A)≥0;(2)正则性公理:P(Ω)=1;(3)可列可加性公理:设A1,A2,…是互不相容的事件,即对于i≠j,AiAj=??,i,j=1,2,…,则有则称P(A)为事件A的概率(Probability).§2.2 概率的统计定义(The statistic definition of probability)定义:在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数nA称为事件A发生的频数.比值nA/n称为事件A发生的频率,并记为fn(A).频率具有下述性质:(1)0≤fn(A)≤1;(2)fn(Ω )=1;(3)若A1,A2,…,Ak是两两互不相容的事件,则§2.2.1 频率(Frequency)历史上抛掷匀质硬币的若干结果§2.2.2 概率的统计定义0.49981499430000维尼0.50051201224000皮尔逊0.5016601912000皮尔逊0.506920484040蒲丰0.51810612048德.摩尔根正面出现频率m/n正面出现次数m抛掷次数n试验者定义:在相同的条件下,进行了n次重复试验,在这n次试验中,事件A发生了nA次,当试验的次数n很大时,如果事件A发生的频率fn(A)=nA/n稳定在某一数值p的附近摆动,而且随着试验次数的增大,这种摆动的幅度越变越小,则称数值p为事件A在这组条件下发生的概率,记作P(A)=p.这样定义的概率称为统计概率.性质1:P(??)=0.§2.3 概率的性质于是由可列可加性得又由P(??)≥0得, P(??)=0证明: 令An+1=An+2=…=??,则由可列可加性及P(??)=0得即性质3:对于任一事件A,有证明:由A ?? B知B=A∪(B-A),且A(B-A)=??,性质4:设A,B是两个事件,若A ?? B,则有P(B-A)=P(B)-P(A)推论:若A ?? B,则P(B)≥P(A)证明:由P(B)=P(A)+P(B-A)又由概率的定义知P(B-A)≥0因此有P(B)≥P(A)因此由概率的有限可加性得P(B)=P(A)+P(B-A)从而有 P(B-A)=P(B)-P(A)证明:因为A-B=A-AB,且AB ?? A性质6:对于任意两事件A,B,有P(A-B)=P(A)-P(AB)故 P(A-B)=P(A-AB)=P(A)-P(AB)证明:因为A ?? Ω,因此有P(A)≤P(Ω)=1性质5:对于任一事件A,有P(A)≤1证明:因为A∪B=A∪(B-AB),且A(B-AB)=??,AB?? B故 P(A∪ B)=P(A)+P(B-AB)=P(A)+P(B)-P(AB)性质7:对于任意两事件A,B,有P(A∪B)=P(A)+P(B)-P(AB)上式称为概率的加法公式.概率的加法公式可推广到多个事件的情况.设A,B,C是任意三个事件,则有P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(CA)+P(ABC)一般,对于任意n个事件A1,A2,…,An,有§3 古典概型与几何概率具有以上两个特点的随机试验称为古典概型,也称为等可能概型. 在概率论发展的初期主要研究具有如下两个特点的随机试验: (1)试验的样本空间的元素只有有限个;(2)试验中每个基本事件发生的可能性相同.§3.1 古典概型古典概型的计算公式因此,若事件A={ei1}∪{ei2}∪…∪{eik}包含k个基本事件,则有P(A)=k/n.设随机试验的样本空间为Ω ={e1,e2,…,en},由于在试验中每个基本事件发生的可能性相同,即有P({e1})=P({e2})=…=P({en})又由于基本事件是两两不相容的,于是有1=P(Ω )=P({e1}∪{e2}∪…∪{en})=P({e1})+ P({e2})+…+P({en})=nP({ei}) i=1,2,…,n所以 P({ei})=1/n i=1,2,…,n即样本空间有4个样本点,而随机事件A1包含2个样本点,随机事件A2包含3个样本点,故P(A1)=2/4=1/2P(A2)=3/4例:将一枚硬币抛掷二次,设事件A1为“恰有一次出现正面”; 事件A2为“至少有一次出现正面”.求P(A1)和P(A2).解:正面记为H,反面记为T,则随机试验的样本空间为Ω ={HH,HT,TH,TT}而 A1={HT,TH}A2={HH,HT,TH}例: 抛掷一颗匀质骰子,观察出现的点数,求出现的点数是不小于3的偶数的概率.解设A表示出现的点数是大小于3的偶数,则基本事件总数n=6,A包含的基本事件是“出现4点”和“出现6点”即m=2,故§3.2 排列与组合公式乘法原理:设完成一件事需分两步,第一步有n1种方法,第二步有n2种方法,则完成这件事共有n1n2种方法A B C加法原理:设完成一件事可有两种途径,第一种途径有n1种方法,第二种途径有n2种方法,则完成这件事共有n1+n2种方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/10/10
概率 Chapter 1-1
12
二、样本空间和随机事件
1、基本概念 随机试验中每个可能出现的结果都叫做样本点(用表示) ; 全体样本点构成的集合叫样本空间(用 表示); 样本空间的子集,即某些实验结果的集合,称为随机事件. 简称事件.
事件一般用大写字母A、B、C等表示,必要时可加下标.

n =“0…01” (前n-1次出现反面,第n次才出现正面)

这个试验有无穷多个可能结果,样本空间Ω={1 ,2…, n…}.
2020/10/10
概率 Chapter 1-1
16
例3
设试验E为从10件产品中任取3件,已知10件中 含有2件次品,用Ai表示取到i件次品: 即 Ai={ i件次品},i=0,1,2 就是3个基本事件.
7
•随机现象的统计规律性(续)
再比如,在桌面上投掷一颗骰子,可能1点 向上,也可能2点向上,……,在投掷之前不能断 言一定哪一个数字向上。这显然是随机现象。
如果重复抛掷,会发现骰子某点出现的 次数与抛掷的总次数之比--我们称之为某 点出现的频率--在一个常数附近摆动。
思考:常数是几? 答案:常数是1/6.
9
第一章 基本内容
第一节 随机试验、样本空间及随机事件
第二节 事件的概率
第三节 条件概率
第四节 全概率公式与贝叶斯公式
第五节 事件的独立性
第六节 独立重复试验和二项概率
四大公式
2020/10/10
概率 Chapter 1-1
10
1.1随机试验、样本空间和随机事件
一、随机试验 基 本 二、样本空间和随机事件 内 三、事件的关系和运算 容
基本事件:试验E的每一个基本结果{}. 复合事件(组合事件):由两个或两个以上基本事件组
合而成的事件{1 ,2…, n}. 必然事件:每次试验中一定出现的事件.用Ω表示. 不可能事件:每次试验中一定不出现的事件. 用表示.
2020/10/10
概率 Chapter 1-1
14
例1
设试验E为掷一颗骰子,观察其出现的点数: An=“出现n点”。n=1,2,3,4,5,6. A1、A2、A3、A4、A5、A6是基事件; A=“偶数点”是复合事件;B=“点数小于5”也是复合事件; “点数不大于6”是必然事件;“点数大于6”是不可能事件. 注:复合事件发生是指:当且仅当其所包含的基本事件
四、事件的运算性质
11
一、先给出随机试验的概念. 试验:对随机现象的观察过程通常称为随机试验.
简称试验.用字母E表示. 试验的三个特性: A、重复性:试验可以在相同的条件下重复进行.
B、随机性:每次结果不止一个,进行一次试验
之前不能确定究竟哪一个结果会出现.
C、明确性:能够明确指出试验的所有可能结果.
6
•随机现象的统计规律性
比如刚才提到的例子,在桌面上投掷一枚 硬币,可能正面向上,也可能反面向上,在投 掷之前不能断言一定哪一面向上。这显然是随 机现象。
但是如果大量抛掷硬币,会发现正面出 现的次数与抛掷的次数之比--我们称之为 正面出现的频率--在常数0.5附近摆动。
2020/10/10
概率 Chapter 1-1
中有一个发生. 如:A2、A4、A6中某-个发生,“偶数点”就发生.
2020/10/10
概率 Chapter 1-1
15
例2
连续投掷一枚硬币,直到出现正面为止。若用“0”表示出现反面,“1” 表示出现正面来记录每次投掷的结果,则这个试验的可能结果有:
1 =“1” (第一次出现正面) 2 =“01” (第一次出现反面,第二次出现正面)
概率论与数理统计
数学与信息科学学院:刘晓真

经济数学 考研内容
高等数学 (50%)
概率论与 数理统计
(25%)
线性代数 (25%)
2020/10/10
cheaper1
2
本教材的主要内容
本书分为两个部分:
第一部分是概率论基础,包括第一、二、三、四、五章. 第一章介绍概率论最基本的概念;第二章引进随
机变量的概念,并用分布函数描述它;第三章介绍随 机向量;第四章介绍随机变量的数字特征;第五章介 绍大数定律与中心极限定理. 第二部分是数理统计初步,包括第六、七、八、九章.
第六章主要介绍数理统计的基本概念;第七章和第八 章分别介绍统计推断的两项主要内容--参数估计和假设 检验;第九章介绍具有回归关系的随机变量如何建立数学 模型.
2020/10/10
概率 Chapter 1-1
17
例4
掷一枚骰子,观察其出现的点数. 定义A1 ={1}, A2 ={2,3,4,5,6}, A3 ={1,3,5}, A4 ={2,4,6}.
概率 Chapter 1-1
5
随机现象:就某一现象而言,在条件相同 的一系列重复观察中,会时而出现时而不 出现,呈现出不确定性,且在每次观察之 前不能准确预料其是否会出现。
如:抽样检验产品质量的结果; 保险公司的年赔偿金额;
掷一颗骰子出现的点数;
抛掷硬币哪面向上等.
2020/10/10
概率 Chapter 1-1
2020/10/10
概率 Chapter 1-1
3
第一章 随机事件及概率
引言 «概率论与数理统计»的研究对象
在自然界中常见到两类不同性质的现象: 确定性现象:可以根据其赖以存在的条件,事 先准确的判定它们未来的结果的现象.
如: 在标准大气压下,水加热到100度就 会沸腾.
每天,太阳从东方升起.
2020/10/10
如:掷一枚硬币,A=“正面向上”;
袋中有红,黄,绿色球各一个.任取一球.则
A1=“取出红球”; A2=“取出黄球”; A3=“取出绿球”.
有时一次完整的试验可 有若干个步骤组成.
如:连续抛掷三次硬币.
13
2020/10/10
概率 Chapter 1-1
13
随机事件的有关概念:由定义,样本空间本身和它的补集都 可以作为事件. 称为必然事件, 称为不可能事件.如果某 个事件只包含一个样本点,即单点集合称为基本事件. 即有如下分类:
2020/10/10
概率 Chapter 1-1
8
随机现象有其偶然性一面,也有其必 然性一面,这种必然性表现在大量重复试 验或观察中,随机现象所呈现出的固有规律 性,称为随机现象的统计规律性.
“概率论与数理统计”是 研究随机现象的统计规律性 的一门数学学科。
如图是常用的柱状图
2020/10/10
概率 Chapter 1-1
相关文档
最新文档