聚羧酸高性能减水剂的复配和应用
聚羧酸系高效减水剂在60m箱梁中的应用
( )粗 骨 料 : 用 广 东 四 会 迳 口碎 石 5 2 3 采 ~ 5
表 观 密 度 堆 积 密 度 紧 密 密 度 空 隙 含 泥 泥 块 含 细度 铘 邸 / g・c1。/ c 。/ n g・ m一 g・C 。牢 / 量 / 量 / I n 模 数
mm, 求采用 5 1 T和 1 ̄2 掺 合级 配 , 要 ~ 6ml l 6 5mm
机 场 特 大 桥 6 n箱 梁 混 凝 土 的 性 能 要 求 OI
如下 :
制, 采用该减水剂配制 的高性 能混凝 土满足大跨度多 向预应 力箱梁 的施工需求 , 符合设计要求 。聚羧酸 系高效减 水剂 且 配制的混凝 土具有坍落度经时损失小 、 可泵性好 、 和易性好 、 水泥用量低 、 早期强度 高、 水化热升温平稳 、 混凝土收缩 小的 显著特点 。广深沿江高速公路 ( 深圳段 ) 机场特大桥 6 l 0r 箱 f
出现 , 避免 混凝 土后期 开裂 。
( )混凝 土 的 流动 性 能 要 好 , 梁 钢 筋 分 布密 5 箱
1 工 程概 况
机 场特大 桥是 广深沿 江高 速公路 ( 圳段 ) 深 中部 的一座 海 上 桥 梁 , 讫 里 程 为 K6 + 1 3 K7 + 起 6 0~ 2 9 3 全 长 6 8 m。机 场 特 大 桥 5跨 一 联 , 2 4, . 4k 共 3 联, 共计 2 8片 6 整体 预 制箱 梁 , 2 Om 该桥 架设 采 用
收 稿 日期 : 0 0 8 O 2 1 一O 一 3
作者简介 : 张
超 (9 4 , , 1 8 -)男 助理工程师 ,0 6 2 0 年毕业 于湖北经济学院经济管理专业 。
5 O 表 2 广 东 西 江砂 ( 庆 段 ) 术 指 标 肇 技
聚羧酸系高效减水剂的研究和应用
在国外,聚羧酸类减水剂的研究已有相当长的历史,其应用技术已经成熟。日本是研究和使用聚羧酸类减水剂最多也是最成功的国家,1995年以后聚羧酸系减水剂在日本的使用量就超过了传统的萘系减水剂,1998年底聚羧酸系减水剂产品已占所有高性能AE减水剂产品总数的60%以上,其主要生产厂商有花王、竹本油脂、日本制纸、藤泽药品等[1]。对聚羧酸系减水剂的研究主要集中在新拌混凝土有关性能和硬化混凝土的力学性能及高强高性能混凝土在工程中的应用技术。目前聚羧酸系减水剂可使混凝土的水灰比下降到0.25以下,而水泥用量仍可保持在500kg/m3,同时它的坍落度可保持200mm以上,完全满足施工要求。近年来,北美和欧洲的一些研究者的论文中也有许多关于研究开发具有优越性能的聚羧酸系减水剂的报道,主要是商业开发和推广,如Grance公司的Adva系列、MBT公司的pheomixTOOFC牌号、Sika公司的Viscocrete3010等[2]。
4.2支链PEO对产物性能的影响
Uchikawa[18]和Yoshioka等[19]发现聚羧酸系减水剂的PEO侧链对水泥颗粒分散性和分散保持性有重要的影响,侧链聚合度越小,水泥浆体的流动性损失越快,由于空间位阻效应,所合成的带有聚氧乙烯侧链的高效减水剂随着侧链的增长,减水剂的空间立体作用增加,因此对水泥颗粒的分散效果更好,流动保持性也增加,但是PEO侧链过大时,支链间可能发生缠结,在水泥颗粒间形成桥接,反而影响流动性保持性[20]。Kinoshita[21]研究了甲基丙烯酸乙二醇接枝共聚物类聚羧酸系高效减水剂,认为具有不同长度的聚乙二醇能同时达到较高的流动性和流动度保持性能。该甲基丙烯酸乙二醇接枝共聚物含有羧酸官能团、磺酸基官能团和烷氧基聚乙二醇官能团,含有长侧链聚乙二醇的聚羧酸减水剂有较高的立体排斥力,分散时间短,有较好的分散性和流动度,但流动性保持性能差;含有短侧链聚乙二醇的聚羧酸系减水剂分散时间长,流动保持性能好。Sakai[22]发现主链较短支链较长的聚羧酸系减水剂的分散性能要好于主链较长而支链较短的聚羧酸系减水剂。Nawa等[23]研究了普通硅酸盐水泥掺加具有不同聚氧乙烯基侧链长度、不同支链位置的聚羧酸型超塑化剂后,流动度受温度(10~30℃)影响的规律,结果表明,侧链长度越长,掺加有该减水剂的水泥浆的分散性受温度的影响越小。因此,在主链上具有适当长度PEO侧链的接枝共聚物既能获得所需的流动性,也能获得流动性的保持性。
聚羧酸系高性能减水剂的性能及应用研究
聚羧酸系高性能减水剂的性能及应用研究作者:何佳发来源:《建材发展导向》2014年第01期摘要:针对聚羧酸系高效减水剂的定义,以及实际应用中的种类、原料及性能和特点,文章进行了论述。
聚羧酸系高效减水剂在国内外的研究中都取得了很大的成绩,研究分析了其原理、合成方法及性能和分子的关系。
关键词:聚羧酸;高效减水剂;混凝土;合成方法;作用机理聚羧酸高效减水剂的分子结构是含羧基接枝共聚物的表面活性剂,通过观察发现其分子结构成梳形,在发挥作用的过程中主要是通过不饱和单体进行,在引发剂作用下共聚而获得。
用于水泥混凝土中具有较高的减水、增塑、保坍及较低的收缩性能的减水剂。
在生产中,以木钙为代表的普通减水剂是第一代减水剂;以萘系为代表的高效减水剂是第二代减水剂;聚羧酸高效减水剂为第三代高性能减水剂,是当今世界技术含量最高,技术研究最前沿的,综合性能优越的高效减水剂。
聚羧酸减水剂又叫做聚羧酸超塑化剂,根据当前的行业标准《聚羧酸系高性能减水剂》JG/T 223-2007,对聚羧酸系减水剂的基本定义进行了明确的规定,在聚羧酸高效减水剂的分子结构中含羧酸的接枝共聚物,支链结构的基本特征是以聚氧化乙烯形成“梳状”或“接枝状”,同时拥有其他的功能基团。
1 聚羧酸减水剂的性能特点及适用范围聚羧酸系高效减水剂的性能特点十分的明显,其优越性能体现在自身的分子结构性能特点和掺加此减水剂的混凝土的性能两部分。
聚羧酸高效减水剂的减水率比萘系减水剂高得多,同时还具有流动性好的特点,是本世纪性能最优越的混凝土材料;其使用范围十分广泛,对于配置大掺量粉煤灰或大掺量矿渣混凝土,施工中喷射超塑化混凝土、纤维增强流动性混凝土及高强高流动性混凝土等都有重要作用;不仅如此聚羧酸高效减水剂还被普遍的用于各种新型混凝土的拌合中,在很多的建筑工程中,例如大跨度桥梁、隧道、工业与民用建筑等,都发挥了十分重要的作用。
2 聚羧酸系减水剂效果影响因素2.1 对胶凝材料的适应性问题。
聚羧酸系高性能减水剂的性能及应用研究
工作探索聚羧酸系高性能减水剂的性能及应用研究边淑芳'唐山冀东水泥外加剂有限责任公司,河北唐山064000)摘要:聚羧酸系高性能减水剂是目前国际上性能最为优秀的一种混凝土添加剂,广泛应用于各个行业和领域。
由于聚羧酸系减水剂的合理使用关系到实际施工中的混凝土质量,需要我们对其在具体应用中专业知识和使用技术进行进一步的研究。
通过对聚羧酸系减水剂及其性能进行简要介绍和分析,进而对实际应用中需要注意的问题进行了探讨。
关键词:聚羧酸系减水剂;减水剂应用1基本概述聚羧酸系高性能减水剂作为目前国际上技术含量最高,综合性能最优秀的减水剂,已经在水利、电力、建筑、桥 梁、铁路、公路、军工等各个领域得到了广泛的应用。
聚羧 酸系高性能减水剂最早是由日本在上世纪八十年代中期开发 并应用的,是高分子化工合成产品,主要是利用引发剂作用 将不饱和单体进行共聚,并将 性 的 到聚合主上得。
本 水、塑、不影响混凝土凝结化和的作用,并能与不同水的 性。
酸、、聚 酸 和酸是 成聚羧酸系减水剂的主要 。
2性能分析聚羧酸系减水剂是 减水剂和系减水剂的第三代高性能产品,前代产品,性能 的优为 。
,在减水 ,聚羧酸系减水剂的减水 在25!上,最高 40, ,的性,2本 ,并 经 ,在 ,减水剂 高的四,良好的 性 在与不 凝土 的性,,,的 ,子,,凝土体 性,最 的减混凝土开所产生的危害六,广泛的适应性,对各 种水泥和各种掺 混凝土 的塑性和分散性 七,高 性,减水剂的减水和保塑性等可通过对聚 分子量、短、疏 及 种类的调整进行 最,绿色环,不 任何甲醛等他有害 和成分,毒、腐蚀。
3在实际中的应用研究3.1适应性分析在际施工中,聚羧酸系高性能减水剂各种水泥能适应,但粉煤灰聚羧酸系减水剂对于粉煤灰的适应则为困 难,这就需要在施工中尽能的把矿粉磨细。
通常情况下,减水剂对一级灰的适应性对,但是对二、三级灰,减 水剂适应性则对差。
这种情况下即加减水剂用,果也不明显。
浅谈聚羧酸高性能减水剂的合成及复配技术综述
浅谈聚羧酸高性能减水剂的合成及复配技术综述本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!0 前言聚羧酸高性能减水剂是应用于水泥混凝土中的一种水泥分散剂,早期开发的产品是以主链为甲基丙烯酸,侧链为羧酸基团和MPEG(Methoxy polyethylene glycol)的聚酯型结构,目前多为主链为聚合丙烯酸和侧链为聚醚Allyl alcoholpolyethylene glycol 的聚醚型结构,聚羧酸减水剂是具有一定长度和数量的亲水性长侧链及带有多样性强极性活性基团主链组成的特殊分子结构表面活性剂。
聚羧酸减水剂产品在润湿环境下,其多个侧链支撑的向外伸展的梳齿结构为水泥粒子的进一步分散提供了充分的空间排列效应,能使水泥分散能力和保持的时间区别于其他类型的减水剂,从而满足混凝土施工流动性及其保持时间。
聚羧酸减水剂的结构多样化使得此类产品的开发和发展更具有意义,工程师可以通过合成技术的“分子设计”方法,改变聚羧酸高效减水剂的梳形结构、主链组成,适当变化侧链的密度与长度,在主链上引入改性基团调整或改变分子结构,而获得适用于不同需求的聚羧酸产品,实现产品的功能化和更佳的适应性。
聚羧酸减水剂产品除了母液合成技术中“分子设计”方法外,也通过添加缓凝剂、引气剂、消泡剂、增稠剂、抗泥剂等小料的方法,使其适应不同季节、不同材料和配合比的混凝土施工需要,最终获得性能优异的复合型高效减水剂。
对于大中型的聚羧酸厂家,从聚羧酸合成技术入手研制混凝土所需要的优质聚羧酸减水剂、获得不同类型的功能型母液是必须的选择,对于复配为主的聚羧酸减水剂应用型小厂,应该能够掌握母液间的复配及辅助小料的物理性复配,由母液特点和小料的物理性复配来解决技术问题。
1 聚羧酸高性能减水剂的合成聚羧酸减水剂产品于2005 年前后陆续投放市场之后,经历了早期的APEG 聚醚类、酯类产品到甲基烯基聚醚的更新,目前,APEG 聚醚类、酯类产品几乎已退出了市场。
聚羧酸高性能减水剂在优化混凝土配合比中的应用
聚羧酸高性能减水剂在优化混凝土配合比中的应用摘要:文章基于新世界增城综合发展项目B标段总承包工程的混凝土配合比进行的研究,针对C60、C35高强高性能自密实混凝土,C50高强高性能水下桩混凝土施工,采用聚羧酸高性能减水剂进行优化设计和试验。
详细分析了聚羧酸高性能减水剂的作用机理和优点,通过实验验证和理论分析相结合的方法,确定了不同配合比下的最佳使用量。
试验结果表明,采用的聚羧酸高性能减水剂的混凝土在流动性、保塌性、抗离析性、抗压强度等方面表现出色,为项目实际要求提供了有力支持。
关键词:聚羧酸高性能减水剂;混凝土配合比;优化应用工程概况新世界增城综合发展项目B标段总承包工程位于广州市增城区新塘镇永宁街长岗村。
该项目难点在于对C60自密实、C35自密实、C50主体水下工程桩混凝土施工,该项目具有强度高、施工难度高等特点。
但目前预拌混凝土行业多数使用普通聚羧酸高效减水剂,其各项指标远不能满足高性能混凝土的需要。
所以,此次的文章就在混凝土当中应用聚羧酸高性能减水剂来进行配合比的优化设计和相关试验研究,并进行现场模拟施工试验工作,以达到工程的实际要求。
1引言混凝土是建筑工程中广泛应用的材料之一,其性能直接影响到结构的耐久性和安全性[1]。
近年来,随着聚羧酸高性能减水剂的引入,其在混凝土工程中的应用逐渐引起了研究者的关注。
聚羧酸高性能减水剂以其优越的分散性和流动性能,对混凝土的性能调控起到了关键作用[2]。
然而,在不同配合比下,聚羧酸高性能减水剂的最佳使用量和效果仍然存在着一定的研究空白。
本文旨在通过对聚羧酸高性能减水剂的性能特点、应用机理以及实际工程中的应用案例进行深入研究,系统分析聚羧酸高性能减水剂在不同混凝土配合比下的优化效果。
通过实验验证与理论分析相结合的方法,探讨聚羧酸高性能减水剂在混凝土中的最佳使用条件,为混凝土配合比的合理设计提供科学依据。
研究结果对于提高混凝土工程的性能、延长结构使用寿命具有重要的实际意义。
聚羧酸减水剂的复配
聚羧酸减水剂的复配
聚羧酸减水剂是一种常用的混凝土添加剂,它能够显著降低混凝土的用水量,提高混凝土的流动性和可泵性,同时还能够改善混凝土的力学性能。
在混凝土施工过程中,聚羧酸减水剂的复配是非常重要的环节,它直接影响着混凝土的质量和性能。
聚羧酸减水剂的复配是指将聚羧酸减水剂与其他混凝土添加剂进行配比和混合的过程。
在复配过程中,需要考虑到混凝土的用水量、初凝时间、凝结时间、强度发展等因素,以及聚羧酸减水剂与其他添加剂之间的相容性。
复配过程中需要注意的一点是避免使用不同品牌或型号的聚羧酸减水剂进行混合,因为不同品牌或型号的聚羧酸减水剂可能具有不同的性能和配比要求,混合使用可能会导致混凝土性能的不稳定。
在复配过程中还需要注意聚羧酸减水剂的用量控制。
使用过多的聚羧酸减水剂可能会导致混凝土的流动性过大,影响混凝土的抗渗性和抗冻性;使用过少的聚羧酸减水剂则可能无法达到预期的减水效果,影响混凝土的强度和耐久性。
因此,在复配过程中需要根据具体的施工要求和混凝土性能要求,合理控制聚羧酸减水剂的用量。
复配过程中还可以考虑添加其他的混凝土添加剂,如缓凝剂、早强剂、粉煤灰等,以进一步改善混凝土的性能。
但是,在使用其他添加剂时也需要注意相容性和配比要求,避免出现不良的化学反应或
影响混凝土的性能。
聚羧酸减水剂的复配是混凝土施工过程中非常重要的一环。
合理的复配可以提高混凝土的性能,保证工程质量。
因此,在进行聚羧酸减水剂的复配时,需要考虑混凝土的要求,合理控制用量,并注意与其他添加剂的相容性,以获得最佳的施工效果。
聚羧酸类高性能减水剂的合成及复配--
HPEG和TPEG实例
• 氧化-还原共轭体系: • 预备:(1)AA36克+去离子水20克 • (2)L-抗坏血酸0.3克+巯基乙酸0.69+去离子水 110 • (3)NOH13克+水260 • 合成前1小时备好 • 流程: • 1.在在配有搅拌和加热装置的四口瓶(1000毫升) 中加入去离子水200克。边搅拌边加入TPEG共365克; 加热搅拌溶解到60度后直接加双氧水(30%浓度)3 克。
• 2.在搅拌保温状态下,开始滴加(1)[滴加 控制时间3h左右];稍后5分钟后开始滴加 (2)[控制滴加时间3.5h左右]。全部滴加完 毕后开启加热到60度。并在此温度范围继 续搅拌1h. • 3.降温到50度以下。在10分钟左右缓慢加入 (3)。调节PH值在6-7。 • 抽检。成品
聚羧酸类高性能减水剂复配
4.具体投料比例(以100公斤MPEG计): MPEG1000-100公斤=100摩尔 MAA=100摩尔*4*86/1000=34.4公斤 对甲苯磺酸=MPGG1000的100公斤*2%=2公 斤 • 对苯二酚=MAA的34.4公斤*1%=0.344公斤
• 5.实验室操作参考: • 把计量好的MPEG1000共200克;对苯二酚 0.69克;对甲苯磺酸4克依次投入干净的有 配套加热的四口烧瓶中,在80度熔化,滴 加计量好的MAA68.8克,滴加时间在30-50 分钟,加完后升温到130度。分别在每一小 时间歇抽真空。收集冷却下来的液体。在 130度反应6小时以上。
1.APEG参考合成工艺
• 国内目前APEG共聚工艺大体是俩种反应体系: 一是采取75度以上温度纯氧化体系;二是45度 左右的氧化-还原体系。 • 各供应商为推广产品也提供不少合成工艺。 • 就目前来看,人们习惯的把每个百分点价格来 讨论减水剂成本。其实产品的成本我认为应该 是同混凝土配合比,同掺量(比如都配成掺量 C*1%的)的成品成本对比。另外还要考虑广 泛的适应性。APEG虽然价格较HPEG和TPEG低, 但是综合成本还是不一定低。
聚羧酸减水剂的应用详解
聚羧酸减水剂的应用详解聚羧酸高效减水剂有什么特点?聚羧酸盐高效减水剂是近十年新开发的高性能、高强度、高体积稳定性、高流动性、高耐久性混凝土用超塑化剂。
其特点是减水率较其他高效减水剂都高,保塑性好,配制的混凝土工作性能好、耐久性和强度高、收缩小。
而且其生产过程无污染,是环保型外加剂。
聚羖酸高效减水剂生产过程中带有一定气泡,含气量2%-8%,但气泡结构不同,使用时应筛选和消泡。
聚羖酸高效减水剂对混凝土用水量和砂石含泥(粉)量比较敏感。
聚羖酸高效减水剂怎么分类?聚羧酸高效减水剂分醚类(A)和脂类(M)。
醚类生产工艺比脂类简单,一步合成,生产成本较低,且性能较稳定,对水泥的相容性和减水效果好于脂类,因此目前大多数采用醚类。
根据资料介绍,醚类(M):脂类(A)=1:1.5混合使用性价比最高。
聚羖酸高效减水剂分非缓凝型(FHN)和缓凝型(HN);按形态分固态(G)和液态(Y);按质量可分I、Ⅱ两个级别。
其标记为PCA-类型-形态-级别,如 PCA-FHN-Y-Ⅱ,即为非缓凝液体合格品聚羧酸高效减水剂。
聚羖酸高效减水剂和其他外加剂的相容性如何聚羧酸高效减水剂和其他外加剂的相容性见表4-1。
怎样复配聚羖酸高效减水剂下面提供儿种配方供读者参考:泵送剂方案1:20%浓度原液500kg+15kg葡萄糖酸钠(缓凝)+2.5kg柠檬酸(缓凝、降黏)+483kg水,掺量2%。
泵送剂方案2:27%浓度脂类聚羧酸150kg+37%浓度醚类聚狻酸150kg+15kg葡萄糖酸钠+1.5kg引气剂+5kg柠檬酸+678kg水,掺量2%。
泵送防冻剂:0.25%PC(折合固含量)+0.01%萄糖酸钠+0.003%柠檬酸+0.5%亚钠+0.035%三乙醇胺+0.002%十二烷基硫酸钠(K12)。
(按胶凝材料用量的百分比)抗冻剂:0.25%PC(折合固含量)+0.01%铺萄糖酸钠+0.003%柠檬酸+0.005%消泡剂+0.007%十二烷基硫酸钠(K12)。
聚羧酸减水剂在混凝土应用中常见问题
聚羧酸减水剂在混凝土应用中常见问题聚羧酸类减水剂以其优越的性能和无污染生产,近年来在国外发展很快,尤其在日本,聚羧酸与萘系的使用比例已经超出7:3.聚羧酸类减水剂从分子结构、作用原理和在混凝土中的表现行为与传统减水剂有很大区别,因此,正确认得和合理使用是推广聚羧酸减水剂应用的紧要环节。
聚羧酸系减水剂具有掺量少、减水率高、保塑性能好、与水泥适应性强、混凝土收缩小等特点。
但在聚羧酸系减水剂工程应用过程中发现,该减水剂与其他减水剂一样,也有确定的局限性,其优点只是相对的,所以,在生产使用过程中仍然要通过试验检验后方可以应用。
在工程应用过程中,常显现以下问题,依据实际情况提出分析解决方案。
一、与水泥适用性水泥和胶凝料子成分多而杂多变,从吸附—分散机理来看,不行能找到一种什么都适应的减水剂,聚羧酸减水剂尽管具备比萘系更广泛的适应性,但仍可能对部分水泥适应性差。
这种适应性大多反映在:减水率降低和坍落度损失加添。
即使是同一种水泥,球磨到不同细度时,减水剂的作用也会不同。
现象:某搅拌站用所在地区某P—042.5R水泥,给某工地供应C50混凝土,用的是聚羧酸系高效减水剂,做混凝土搭配比时,发现该水泥用减水剂的掺量比其他水泥稍多,但实际搅拌时,出厂混凝土拌合物坍落度目测有210mm,到工地往混凝土泵车中卸料时,却发现该车混凝土已卸不出来,通知厂内送一桶减水剂加入搅拌后,目测坍落度有160mm,基本可以满足泵送要求,但刚卸过程中,又显现卸不出来现象,赶忙把该车混凝土返厂,加入大量的水及少量的减水剂,才尽力卸出,险些凝固在搅拌车中。
原因分析:没有坚持对每一批水泥在开盘前做与外加剂的适应性试验。
防备:对每一批水泥在开盘前用施工搭配比做一次复配试验。
选择合适的掺合料,“煤矸石”做掺合料的水泥与聚羧酸系减水剂的适应性差,躲避使用。
二、用水量的敏感性由于采用聚羧酸减水剂后,混凝土的用水量大幅度减少,单方混凝土的用水量大多在130~165kg;水胶比为0.3—0.4,甚至不足0.3.在低用量水情况下,加水量波动可能导致坍落度更改很大,引起混凝土拌和物坍落度蓦地变大、泌水。
聚羧酸减水剂的性能及在工程中的应用
区域治理前沿理论与策略聚羧酸减水剂的性能及在工程中的应用冒海军 葛威浙江省建材集团有限公司混凝土事业部,浙江杭州310000摘要:本文主要介绍了聚羧酸减水剂的匀质性和掺入混凝土中性能,以及工程中的运用情况,可用于高标号混凝土工程和良好效果以及可配置较大掺合料混凝土。
关键词:聚羧酸减水剂;性能;应用随着科学技术的不断进步,聚羧酸减水剂已经在国内各类工程建设中成功应用,取得了一定经济效益和社会效益,所以,我们应该大力推广其应用。
一、聚羧酸减水剂的性能聚羧酸系高效减水剂是一种高分子化学合成产品,其主要工艺为酯化,接枝共聚和产品pH值和密度的调节。
主要原料为甲基丙烯酸,甲基丙烯酸甲酯,马来酸,聚乙二醇烯丙基磺酸酯,甲代烯丙基磺酸酯等,在引发剂过硫酸铵,过硫酸钠等作用下发生聚合。
整个化学工艺没有副产品是一种环保型超塑化剂。
混凝土减水率大于25%,坍落度在2小时内基本不丢失,氯离子含量低,碱含量低,收缩率低。
它对超细活性掺合料的开发和应用以及高性能混凝土的开发和应用是最有效的技术措施。
1聚羧酸性能减水剂的匀质性聚羧酸性能减水剂按其固体含量来分有20%或40%含固量。
根据实际应用需要而定,目前市场上应用较广的是20%含固量的产品。
2聚羧酸性能减水剂掺入混凝土中的性能聚羧酸性能减水剂其混凝土减水率大于25%,能大幅度提高混凝土各龄期的强度,特别是后期强度,其收缩率比较萘系高效减水剂来得低。
其色泽为茶色溶液、无臭、无味、无沉淀物,具有低氯低碱性能,其表面张力较低,具有一定的引气性。
为了解决引气问题,可以在产品中掺入一定量的消泡剂来调节降低产品的含气量。
二、聚羧酸性能减水剂在工程中的运用情况随着聚羧酸高效减水剂的成熟生产技术和大规模生产,聚羧酸减水剂在实际工程中的应用越来越广泛,涉及水利工程,路桥工程,高速铁路建设,火电工程,市政工程,商品混凝土等领域。
特别是在高档混凝土和泵送混凝土应用方面更多,其中与聚羧酸高性能减水剂高度减水,高强度,保护性能好等优点有很大关系。
聚羧酸系高性能减水剂及其应用技术.doc
聚羧酸系高性能减水剂及其应用技术1、概述近几十年以来,我国商品混凝土工程技术取得了很大进步,商品混凝土拌合物性能从干硬性到塑性和大流动性、商品混凝土强度从中低强度到中高强度、商品混凝土的综合性能从普通性能开始向中高性能方向发展。
商品混凝土减水剂技术的应用与发展对商品混凝土工程的这些巨大技术进步,起了决定性作用,没有商品混凝土减水剂技术的应用与发展,就不可能有现代商品混凝土技术的发展。
例如,在商品混凝土原材料方面,和几十年前我国的干硬性商品混凝土技术阶段相比,目前的水泥、砂子、石子等质量基本上没有质的变化,如果说有变化,某些地区的砂石质量还有所下降,有些地区还可能下降幅度较大,水泥的质量由于换标也发生了较大的变化波动,但总体上说,我国的商品混凝土技术仍有很大提高,这主要是因为商品混凝土外加剂技术特别是商品混凝土减水剂技术在此期间得到了较广泛应用的缘故。
现代商品混凝土减水剂技术的发展,是现代商品混凝土技术发展的关键,并对于商品混凝土技术发展具有决定性的作用,所以商品混凝土减水剂技术的创新与发展一直是商品混凝土外加剂行业发展的重点与热点。
一般认为,减水剂的发展分为以下三个阶段:以木钙为代表的第一代普通减水剂阶段、以萘系为主要代表的第二代高效减水剂阶段和目前以聚羧酸盐为代表的第三代高性能减水剂阶段。
当然减水剂的这三个发展阶段并不是截然分开的,而是相互交叉的发展过程。
目前国内使用最广泛的高效减水剂是萘系高效减水剂,市场占有率达高达90%以上。
对总体综合性能而言,以木钙为代表的第一代普通减水剂和以萘系、蜜氨系为代表的第二代高效减水剂均难以满足实际商品混凝土工程特别是高性能商品混凝土对减水剂的性能要求。
与萘系等第二代高效减水剂相比,第三代聚羧酸系高性能减水剂的性能与质量有了质的提高,基本能够满足高性能商品混凝土对减水剂的性能要求,该类产品基本具备了取代萘系高效减水剂的技术性能优势与经济条件。
所以我国目前正在向以聚羧酸系高性能减水剂为代表的第三代高性能减水剂方向发展。
聚羧酸高性能减水剂的复配和应用
根据化学成分和性能特点,聚羧酸高 性能减水剂可分为标准型、缓凝型、 早强型和引气型等。
发展历程及现状
发展历程
聚羧酸高性能减水剂经历了从第一代木质素磺酸盐类、第二代萘系到第三代聚羧酸系的发展历程,性能不断提升。
现状
目前,聚羧酸高性能减水剂已成为混凝土外加剂的主导产品,广泛应用于建筑、水利、交通等基础设施建设领域。
高性能化
随着建筑行业对高性能混凝土的需求 增加,高性能减水剂的市场需求也将 持续增长。
智能化
借助人工智能、大数据等先进技术, 实现减水剂生产的智能化管理和优化, 提高生产效率和产品质量。
国际化
加强国际合作与交流,推动减水剂技 术的国际化发展,拓展海外市场。
06 实验研究及案例分析
实验设计思路和方法
VS
复配目的
通过复配,可以改善单一减水剂的缺陷, 提高减水率、保坍性、增强效果等,同时 降低成本,实现高性能减水剂的高效、经 济应用。
常见复配组分选择
聚羧酸系高性能减水剂
具有高减水率、低掺量、保坍 性好等优点,是复配中的主要 组分。
脂肪族高效减水剂
减水效果较好,价格较低,但 保坍性较差,可作为经济型复 配组分。
绿色生产技术创新
原料选择
采用可再生、低毒、低污染的原料,从源头上减少对 环境的影响。
生产工艺优化
改进生产工艺,提高资源利用效率,减少废弃物排放, 降低能耗和物耗。
产品性能提升
通过研发新型高效减水剂,提高混凝土的工作性能和 耐久性,减少对环境的负荷。
未来发展趋势预测
绿色化
未来减水剂的发展将更加注重环保性 能,推动绿色化生产和使用。
1 2 3
高性能混凝土
聚羧酸高性能减水剂可显著提高混凝土的流动性, 降低水灰比,制备出高强度、高耐久性的高性能 混凝土。
聚羧酸高性能减水剂的发展和在工程中的应用
521 概述混凝土外加剂作为混凝土材料中的第五种组分早已被人们所认可,尤其在当今混凝土及水泥制品中已广泛应用,其在改善新拌混凝土和硬化混凝土性能方面具有无可取代的作用。
外加剂的应用促进了混凝土新技术的发展,同时也促进了工业副产品在胶凝材料中的应用,对资源节约和环境保护都有积极作用。
随着科技的发展和外加剂产品性能的不断完善,外加剂技术推动了混凝土行业的进步和发展,使混凝土在性能要求、施 工工艺、节能环保等方面都有很大提高和可操作性。
目前世界各国对聚羧酸减水剂的研究和应用较多,其中日本在1986年率先研发具有一定比例的亲水性官能团的聚羧酸减水剂,并逐步完善并成功推广和应用。
欧美国家则相对日本较晚。
国外在聚羧酸减水剂研究与国内相比更关心作用机理、减水剂对水泥水化与浆体微观结构影响以及新拌混凝土性能和坍落度保持、混凝土引气、离析泌水、凝结和可泵送的一些综合性能。
我国自20世纪90年代中后期以来,科研单位、高等院校、有实力的外加剂企业通过大量研究和试验在聚羧酸减水剂上取得不少科研成果。
同时聚羧酸减水剂已经在国内各类工程建设中成功应用,取得了一定经济效益和社会效益,但是具有完全自主知识产权的国产聚羧酸减水剂数量和产量均尚小。
所以我国聚羧酸减水剂的研发和工业化生产及工程大范围应用仍处于初始阶段,展望未来任重道远。
2 聚羧酸高性能减水剂的现状聚羧酸高性能减水剂作为外加剂发展中的第三代产品,由于其良好特性和使用效果逐渐被人们所认识和利用,是当今减水剂行业发展的主导方向。
除具有绿色环保、高强度、高减水率、低掺量、分散性和保坍性能好等优点外,其另一个主要特性是分子结构自由度大,可以通过分子结构设计获得预期性能优异的多用途高效减水剂。
2.1 聚羧酸减水剂的分类聚羧酸减水剂有以下几种分类:按主链所用单体不同分为丙烯酸系、甲基丙烯酸系、马来酸酐和马来酸系;按所用活性单体等原料品种分为二元、三元等共聚物;按表面活性剂不同分为非离子型减水剂和离子型减水剂;按照聚羧酸的分子结构和官能团分为甲基丙烯酸-甲基丙烯酸脂性、烯丙基醚型聚羧酸盐、亚胺型聚羧酸盐和两性聚羧酸盐;按用途不同分为高流动性保持能力和高早强性聚羧酸减水剂。
聚羧酸高效减水剂配制防冻泵送剂在哈尔滨西客站工程中的应用
聚羧酸高效减水剂配制防冻泵送剂在哈尔滨西客站工程中的应用文摘:本文介绍利用聚羧酸高性能减水剂配制防冻泵送剂,液体产品低负温下具有很好的稳定性,配制的混凝土具有良好的抗冻害性能及在哈尔滨西客站工程的冬期施工中的应用情况,同时对制定防冻泵送剂的行业标准进行了探讨。
关键词:聚羧酸高性能减水剂;防冻泵送剂;负温稳定性;-15℃;冬期施工中图分类号: th3 文献标识码: a 文章编号:1 前言聚羧酸类高性能减水剂大量用于工业与民用建筑、市政工程、桥梁隧道、公路、铁路和水利等工程的冬期混凝土的施工中。
冬期施工的泵送混凝土、商品混凝土要求混凝土外加剂在具有泵送功能的基础上,同时要具有防冻功能,使泵送施工的混凝土早期免遭冻害,混凝土强度能正常发展。
聚羧酸类高性能减水剂从分子结构、作用原理和在混凝土中的表现行为与传统减水剂有很大区别。
我们针对哈尔滨西客站工程的冬期施工,结合施工单位对外加剂的掺加量及技术性能要求,我们对采用聚羧酸系高性能减水剂配制冬期施工用的混凝土防冻泵送剂进行了大量的试验研究,制备出了具有良好的低负温条件下储存稳定性、抗冻害能力等优异性能的防冻泵送剂,满足了哈尔滨西客站的冬期施工要求。
哈尔滨西客站是新建铁路哈大客运专线的重要组成部分,主体工程预计投资53.3亿元,设计规模为18个站台面22线,站房综合楼总建筑面积在70000平方米,将建设成为一座现代化的铁路枢纽客站。
哈尔滨西客站的工期紧,即使严寒季节施工也不能停,冬期施工周期较长,自2010年10月下旬开始进入冬期施工,2011年春节前一直干到2011年1月下旬。
哈尔滨及整个东北地区在冬季的气温很低,最低达到零下30多度,对于我们山东地区的外加剂生产厂来讲,如何能把液体外加剂送到哈尔滨,给我们液体外加剂的运输带来了很大的难度,经过研究攻克了这一难题,确保了外加剂的及时供应,使工程的冬期施工非常顺利。
2 nc-3型防冻泵送剂的性能2.1试验材料水泥:基准水泥防冻泵送剂:山东省建筑科学研究院混凝土外加剂厂生产的nc-3防冻泵送剂骨料:细骨料,泰安河砂,细度模数2.6~3.0;粗骨料,济南产石灰岩碎石,粒径5~10mm和1~20mm。
聚羧酸系高效减水剂
合成工艺优化
改进合成工艺,降低生产 成本,提高生产效率,实 现大规模生产。
作用机理研究
深入研究聚羧酸系高效减 水剂的作用机理,为新产 品研发提供理论支持。
市场前景与竞争格局
市场需求持续增长
随着基础设施建设的不断 推进,聚羧酸系高效减水 剂的市场需求将持续增长 。
产品质ห้องสมุดไป่ตู้竞争
各厂家在产品质量上展开 竞争,通过提高产品质量 和性能来获取更大的市场 份额。
合成工艺流程
2. 将混合液加热至 一定温度,加入链 转移剂;
4. 反应结束后,将 产物冷却至室温, 调节pH值至中性;
1. 将单体、催化剂 、引发剂等原料混 合均匀;
3. 继续加热并保持 一定时间,使聚合 反应进行;
5. 经过滤、干燥等 步骤,得到聚羧酸 系高效减水剂成品 。
合成影响因素与控制方法
聚羧酸系高效减水剂
汇报人: 2023-11-17
目录
• 聚羧酸系高效减水剂概述 • 聚羧酸系高效减水剂的合成与制备 • 聚羧酸系高效减水剂的性能与测试方法 • 聚羧酸系高效减水剂的应用领域与效果 • 聚羧酸系高效减水剂的发展趋势与挑战 • 聚羧酸系高效减水剂的案例分析与应用实
践
01
聚羧酸系高效减水剂概述
催化剂和引发剂用量
催化剂和引发剂用量不当可能导致聚合反应进行不均匀, 影响产物质量。控制方法为选择合适的催化剂和引发剂用 量。
03
聚羧酸系高效减水剂的性 能与测试方法
物理性能测试
颗粒度
聚羧酸系高效减水剂的颗粒度应 符合规范要求,以确保其在使用 过程中具有良好的分散性和流动
性。
密度
聚羧酸系高效减水剂的密度应稳 定,且与混凝土的配合比设计相 匹配,以确保混凝土的抗压强度
聚羧酸系减水剂的合成原理与复配技术课件
聚羧酸系减水剂的合成方法
聚羧酸系减水剂的合成方法主要包括自由基聚合和离子聚 合。自由基聚合是常用的合成方法,通过引发剂引发单体 聚合,形成高分子聚合物。离子聚合则是通过离子交换剂 的作用,使单体离子化后再聚合。
聚羧酸系减水剂的合成过程中,温度、压力、反应时间等 工艺参数也会影响其性能和产率。因此,选择合适的工艺 参数对于合成高性能的聚羧酸系减水剂至关重要。
高性能混凝土
高性能混凝土是一种新型混凝土材料,具有高强度、高耐久性和高工作性等特点。聚羧酸系减水剂在高性能混凝土中的应用 可以提高混凝土的工作性能和耐久性,降低水灰比,减少收缩和开裂。
聚羧酸系减水剂可以与其他外加剂如缓凝剂、引气剂等配合使用,进一步改善高性能混凝土的性能。
自密实混凝土
自密实混凝土是一种不需要振捣即可自行密 实的混凝土,具有高流动性和稳定性。聚羧 酸系减水剂在自密实混凝土中的应用可以提 高混凝土的流动性和稳定性,减少离析和泌 水现象。
与其他外加剂的复配
聚羧酸系减水剂与缓凝剂的复配
01
通过复配缓凝剂,可以调整混凝土的凝结时间,满足工程需求。
聚羧酸系减水剂与引气剂的复配
02
引气剂可以提高混凝土的抗冻性和耐久性,但需注意控制气泡
含量。
聚羧酸系减水剂与增稠剂的复配
03
增稠剂可以改善混凝土的工作性,提高坍落度。
与不同水泥的适应性研究
聚羧酸系减水剂与通用水泥的适应性
减水剂分子具有较强的抗硬水能力, 能够在不同水质条件下保持稳定的减 水效果。
03
聚羧酸系减水剂的应用领 域
混凝土预制构件
预制构件是建筑行业中的重要组成部 分,聚羧酸系减水剂在混凝土预制构 件中的应用可以提高混凝土的流动性, 降低用水量,减少构件表面气泡和裂 纹,提高构件的耐久性和力学性能。
新型聚羧酸系高性能陶瓷减水剂的合成及应用
按照配方 比例称取聚合单体丙烯酸 、 马来酸酐和聚 7 , - 醇单烯丙基醚, 置于三 口烧瓶中, 用4 0 %的氢氧化钠溶液 中和至中性 ,加入链转移剂,在搅拌下开始升温至 8 0  ̄8 5  ̄ C ,滴加
泰
分散后
图 2 减水剂在 泥浆表面吸 附分散 示意 图
由于合成的聚羧酸系陶瓷减水剂是高分子聚合物, 其具有亲水性长链 , 当其吸附于陶瓷 泥浆颗粒表面后 , 减水剂分子 中的亲水性长链可以伸展于水溶液 中, 在所吸附的泥浆颗粒表 面形成有一定厚度的亲水立体层 , 当泥浆颗粒相互靠近到达一定距离时, 亲水立体层之间产
第3 期
王 斌 等 :新 型聚羧 酸系 高性 能陶 瓷减水 剂的合 成及 应用
第3 8卷 第 3期 2 0 1 3年 9月
广 州 化 学
Gu a ng z ho u Ch e mi s t r y
、 , 0 1 . 38 NO . 3 S e p t . 2 01 3
文章编号 :1 0 0 9 — 2 2 0 X( 2 0 1 3 ) 0 3 — 0 0 4 7 - 0 5
由于泥浆颗粒 间存在静电引力作用会形成絮凝结构, 使1 0 % ̄3 0 %的拌合水被包裹于陶瓷泥
浆颗 粒之 间 ,不 能参 与 自由流 动 ,失去润 滑 作用 ,影 响陶 瓷泥 浆 的流动 性 。加入 陶 瓷减 水剂 后 ,减水 剂分 子会 定 向吸 附于泥 浆颗 粒表 面 ,其 带有 的 阴离子 基 团会 使泥浆 颗 粒表 面形 成双
酸钠 、焦磷酸钠液等为主 ,以单一或复合形式加入。1 9 9 3年 以后,取而代之 的是第二代减
水 剂 ,包 括腐殖 酸 盐 一硅 酸盐 复合 物 、腐 殖酸 盐 一磷酸 盐 复合物 、磷 酸盐 一硅 酸盐 复合 物 、 天 然产 物 改性 类 高分 子 电解 质 等[ 1 ] 。新 型聚 羧 酸 系 减水 剂 的研 发直 到近 年才 逐渐 开展 ,大 部 分产 品的性 能还 不稳 定 ,适 应性 较 差 ,单从 减水 性来 说 ,与 国外产 品还 有较大 差 距 ,这也 是 导致 我 国 的陶 瓷生 产 能耗 偏 高 、节 能减 排压 力突 出的主 要 问题所 在 【 3 。 因此 ,科研 工 作 者有 必 要在 这 一领 域 投入 更 大 的精 力 ,为 我 国陶 瓷产业 的升级 做 出贡献 。 本研 究工 作针 对 陶瓷 企业 的技术 需求 , 采 用分 子设 计原 理 ,合成 了新 型聚 羧酸 系陶 瓷减 水剂 ( C A- 1 0 0 ) 。该 产 品 在企 业试 用 后 ,发 现 综合 性 能 与 国外 进 口产 品持 平 ,个 别性 能优
聚羧酸高性能减水剂及应用
聚羧酸高性能减水剂及应用聚羧酸类减水剂以其优越的性能和无污染生产,近年来在国外发展很快,尤其在日本,聚羧酸与萘系的使用比例已经超过7:3。
聚羧酸类减水剂从分子结构、作用原理和在混凝土中的表现行为与传统减水剂有很大区别,因此,正确认识和合理使用是推广聚羧酸减水剂应用的重要环节。
作者积累了三年来生产和应用LEX- 9系列聚羧酸减水剂的经验,希望通过交流对这类新型减水剂在我国的发展有益。
一、聚羧酸类减水剂聚羧酸类减水剂是一种分子结构为含羧基接枝共聚物的表面活性剂,在混凝土中有很高而又相对持久的减水作用。
可以在国内外文献中查阅到数十种具有上述分子结构特征的表面活性剂,其中有:马来酸(酯)接枝共聚物、丙烯酸酯接枝共聚物,含末端磺酸基接枝共聚物,不饱和聚醚接枝共聚物等等。
所有这类共聚物都形成“梳状”或“树枝状”支链结构,所不同的是主链和支链的长短,刚度、形态、极性等不同。
萘系减水剂是一种典型的离子型分散剂,一旦进入水泥—水体系中,立即形成吸附层(双电层),从而使颗粒表面静电斥力增加而达到分散效果。
聚羧酸类减水剂进入水泥—水体系中行为要复杂得多,第一,它的主链和支链都有选择性的吸附;第二,不同基团可能形成强弱不同的双电层使颗粒相斥;第三,吸附后在颗粒表面形成立体的大分子层,以位阻效应使颗粒难以团聚。
多数专家认为位阻效应是聚羧酸减水剂持久分散水泥颗粒的主要作用。
正因如此,不同分子结构聚羧酸接枝共聚物对水泥颗粒的吸附、分散作用不完全一样,尤其对不同成分、不同大小的颗粒作用不尽一样。
聚羧酸减水剂产品就是选择一种或数种共聚物(或不同分子量的共聚物),达到能最大程度上分散各种胶凝材料颗粒。
二、聚羧酸减水剂的基本性能提起聚羧酸减水剂往往与“高性能”相联系。
日本JISA6204-1995标准为日本这类高性能减水剂作了界定。
与其他标准相比,它在流动度减水率及流动度保持,含气量及含气量变化方面提出了比其他减水剂更高的要求。
表一1是近几年来收集到十多种聚羧酸减水剂,用JC473-2001标准建议配合比,对其主要性能测试结果例举一部分如下:a、高减水率:用GB8076—1997标准检测,减水率应在24%左右或以上,用JC473-2001标准检测,坍落度增加值应>12cm,b、流动度保持好:日本标准JISA6204-1995中规定坍落度经时损失≤60mm,可以成为衡量流动度保持的指标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 引气剂:主要十二烷基硫酸钠K12, 十二烷基苯磺酸,皂代, 松香类。掺量按胶材计算:0.0005%~0.007%
• 增稠剂:纤维素类。
精选课件
18
• 互溶性
• 与葡钠、糖钙、木钙、白糖、柠檬酸、K12等溶解性好, 与磷酸钠、三萜皂苷互溶性差。
精选课件
19
聚羧酸原液的复配
• 目前国内市场上聚羧酸系列产品主要有两种,一 种为聚酯类(M),另一种为聚醚类(A)。
型 号
产物类型
合成特征
烯丙醇封端聚氧 乙烯醚类
自由基聚合引发 A 3-甲基-2-丁 法、氧化还原体
烯醇封端聚氧乙 系引发 烯醚类
甲基丙烯酸半酸
酯化(低酸醇
比)、甲基丙烯
聚氧乙烯
酸或丙烯酸与酯
B 单甲基丙烯酸酯 化物引发共聚合
类
甲基丙烯酸高酸
酯化(高酸醇
比),共聚合时
不另添加羧酸
单体种类
反应条件
不同起始剂,获 大单体来源于聚氧
报告人:黎思幸
(北京东方新绿科技发展有限公司 总工程师)
内容概要
➢ 1 聚羧酸高性能减水剂的发展现状及展望 ➢ 2 聚羧酸高性能减水剂的产品分类 ➢ 3 聚羧酸高性能减水剂的复配技术 ➢ 4 聚羧酸减水剂的应用及有关问题 ➢ 5 结语
1. 聚羧酸减水剂的发展现状与展望
• 1)由于聚羧酸的高性能,全球化学外加剂都在朝着该方向发展。国 内聚羧酸的发展——也在经历换代变革 推广阶段-今后3年 加速应用阶段—进而成为主导产品(我国使用率 不足20%,而发达国家达70%以上)。
酯醚单体的配伍效应可使聚合物获得较好的性能。
3 聚羧酸系减水剂的复配技术
复配技术实践性强:
实践出真知,多做多交流。应深入了解产品特 性。不过分相信产品说明书和检验报告。以混凝 土试验为准,净浆试验仅供参考。
以满足现时工程混凝土施工要求为前提条件, 项目招标试验结果并不能代表工程实施时的实际 情况。最好复配试验与原材料变化及配合比的优 化调整同时进行。
25
20
15
10
0.60
0.80
1.00
1.20
1.40
1.60
PC掺量(%)
精选课件
16
• 合理利用聚羧酸减水剂高保坍特点: • 1h坍损小,但要了解聚羧酸的适应性。 • 聚羧酸减水剂的含气量变化大; • 气泡结构不同,含气量2~8%,应通过筛选和消泡。 • 混凝土拌合物对用水量较敏感
• 适宜的聚羧酸掺量,主要看混凝土的状态变化:
得可聚合活性聚 乙烯醚生产厂、引
氧乙烯醚、甲基 发共聚反应温度60
丙烯酸、丙烯酸、 度~85度,氧化还
马来酸、分子调 原反应温度40度~
节剂、密度平衡 65度,反应时间4~
单体等
6h
催化酯化、温度100
聚氧乙烯单甲醚、 甲基丙烯酸、丙 烯酸、链转移剂、 引发剂等
-125度,反应时间 5~10h(反应时间 取决于酯化程度), 氮气保护,引发共 聚反应温度60度~
• 对砂石含泥量、含粉比较敏感。对铁锈有一定反应性。
精选课件
17
• 对应缓凝效果、含气量、保坍、粘度(和易性)要求,以及 混凝土中水泥、掺合料、砂石料的多样性及变化,需要外加 剂进行适应,产品供应要根据工程实际进行复配。
• 复配形式:
• (1)原液的复配:不同聚羧酸类型之间不同比例的复配;一 般不可与萘系等传统减水剂复配(在混溶剂开发成功之前)
• 2)工程领域得到普遍应用
聚羧酸减水剂在重点工程及普通民用工程都得到了大量 的应用。
3)聚羧酸系减水剂规模不断增大,市场不断成熟 生产企业快速增加,自主研发、产品创新不断。应用技术发展较快,
市场规模逐渐形成,产业链形成,进入市场成熟区。 聚羧酸的多样化的结构特点和新型产品的出现,将是该产品不断
• 两种聚羧酸减水剂的性价比如下表1:
性能比较
价格比
掺量
初始流 1h
2h
(折
动度
固)
较 (元/ 吨)
聚酯类 0.2% 300
310
305
3500
聚醚类 0.2%
290 精选课2件70
255
3100 20
• 从表1可知,从性能方面比较,聚酯类聚羧酸减水 剂的初始流动度可达到300mm,随着时间增加,
• (2)与辅助功能型组分的复配:即通常所述的小料复配。
• 与萘系高效减水剂的复配基础是基本相同的,但复配技术有 所区别。
• 复配的成分:
• 缓凝成分:葡萄糖酸钠,酒石酸钠、柠檬酸、白糖、六偏磷 酸钠
• 消泡成分:主要看互溶性及消泡的效果,0.002~0.0008%, 掺量按外加剂计算:每吨外加剂0。2~0.8kg。
发展、最终全面更新换代的推动力。
精选课件
5
4)聚羧酸减水剂的高性能,多功能,节能性
可直接带来的贡献百亿元/年(不计有害气体排放),低炭经济。 综上,聚羧酸高性能减水剂蕴藏的发展潜力很大。
2 聚羧酸高性能减水剂的产品分类
聚羧酸的多样化、多品种、多功能(与萘系不同,各厂 家产品基本是不同的)
标准型聚羧酸减水剂
按功能划分 聚羧酸减水剂
长侧链早强型聚羧酸减水剂 高保坍等
烯丙基醚聚羧酸减水剂
化学成分划分 聚羧酸减水剂
甲基丙烯酸单甲醚酯类聚羧酸减水剂 丁烯基醚聚羧酸减水剂
复合型聚羧酸减水剂
精选课件
9
酯类聚羧酸的分子结构
高性能聚羧酸的单体分子结构
精选课件
11
聚羧酸减水剂产品分类及合成
酯
一般采取措施(氮气置换和低真空脱水工艺)分离酯化水。
类 应注意适宜的阻聚剂用量,合适的温度和酯化时间。
聚
羧 酸
第二步的自由基聚合反应条件较宽松,一般控制好引发剂量 和加料速度可保证分子链的引发、转移过程正常进行,使共聚物获 得良好的性能。
复
合 类 C类:醚类和酯类结合及复合类
关键因素:需控制反应物的分子量,适当提高引发剂用量。
95度
C 酯醚结合型
采用酯与醚不同类型单体共聚合成
精选课件
12
封 端 聚 醚
A类:不同类型的封端聚氧乙烯醚产物 关键因素是:封端方式不同-活性聚醚种类不同 (显著因素)及聚合工艺
聚
质量:产品性能、质量及适应性,具有较大潜力(好于酯
羧 类)
酸
B类:活性大单体甲氧基聚氧乙烯(甲基)丙烯酸酯
关键因素:酯化程度、双键保护
精选课件
15
• 熟悉减水率与掺量的关系,聚羧酸减水率高,减水率”范 围18%~35%(萘系一般在15%~23%)。 聚羧酸减水 剂的掺量按固体含量算一般0.1~0.3%(20%浓度产品一 般掺量在1%左右),掺量大小取决于混凝土原材料组分 的质量、配合比、混凝土性能要求(标号)。
35
30
混凝土减水率(%)