原子吸收光谱法测定食品中金属元素的含量的实验方案
微波消解-火焰原子吸收光谱法测定食品中痕量镍
![微波消解-火焰原子吸收光谱法测定食品中痕量镍](https://img.taocdn.com/s3/m/11d9a1b4f71fb7360b4c2e3f5727a5e9856a2731.png)
微波消解-火焰原子吸收光谱法测定食品中痕量镍微波消解-火焰原子吸收光谱法是一种常用的分析方法,用于测定食品中的痕量镍含量。
本文将就该方法的原理、实验步骤和应用进行详细介绍。
一、方法原理:微波消解-火焰原子吸收光谱法(Microwave Digestion-Flame Atomic Absorption Spectroscopy,简称MWD-FAAS)是一种将微波消解技术与火焰原子吸收光谱法相结合的分析方法。
首先通过微波消解技术将食品样品中的镍等元素完全溶解,然后利用火焰原子吸收光谱法对镍进行定量分析。
二、实验步骤:1.样品准备:将待测食品样品取适量称重,然后加入适量的高纯酸(如硝酸、氢氧化钠等)进行预处理。
2.微波消解:将样品放入微波消解系统中,根据实验要求设置合适的消解参数,如温度、时间等。
3.溶液制备:待样品溶解后,得到的溶液需要进行适当稀释,以保证测量时镍的浓度在仪器检测范围之内。
4.火焰原子吸收光谱测量:用稀释后的样品溶液进行火焰原子吸收光谱测量。
根据吸收峰的强度,利用标准曲线法或内标法对镍的含量进行定量分析。
三、优点和应用:微波消解-火焰原子吸收光谱法具有以下优点:1.快速:微波消解技术可以迅速将样品中的镍等元素溶解,节省样品制备时间。
2.精确:火焰原子吸收光谱法具有高灵敏度和良好的重现性,可以准确测定痕量镍含量。
3.高效:该方法可以同时测定多种元素,提高分析效率。
该方法广泛应用于食品安全检测领域。
食品中的镍含量对人体健康有一定的影响,过量摄入镍会导致肝脏损伤、呼吸道炎症等疾病。
因此,通过微波消解-火焰原子吸收光谱法对食品中的镍含量进行准确测定,有助于监控食品安全,评估食品质量。
总结起来,微波消解-火焰原子吸收光谱法是一种快速、精确、高效的分析方法,可用于测定食品中的痕量镍含量。
该方法在食品安全检测和食品质量评估方面具有重要应用价值。
火焰原子吸收光谱法测定食物中钙的实验报告
![火焰原子吸收光谱法测定食物中钙的实验报告](https://img.taocdn.com/s3/m/d734883717fc700abb68a98271fe910ef12dae15.png)
火焰原子吸收光谱法测定食物中钙的实验报告引言钙是人体非常重要的营养元素,具有多种功能,包括维持骨骼、牙齿的健康,参与血液凝固,神经传输和肌肉收缩等。
测定食物中钙的含量对于了解食物的营养价值具有重要意义。
本实验采用火焰原子吸收光谱法测定食物中钙含量。
火焰原子吸收光谱法是利用基态原子在电磁波作用下吸收特定频率的光线,进而形成高的激发态,再由于准直光束的束缚,导致一部分原子被提取,使得样品中原子数目减小,从而实现对元素的分析测量。
实验过程1. 实验仪器和试剂准备首先在实验室中检查所需要的仪器和试剂是否齐全。
本实验主要使用的仪器有原子吸收分光光度计和火焰炉;主要试剂有Ca(NO₃)₂、CH₃COOH、NaCl、C₂H₅OH等。
2. 样品的制备过程将不同食物中的钙含量进行测定,但是由于不同食物所混合的物质不同,所以在制备样品时,也需要区分操作。
以牛奶为例,将牛奶倒入锅中,煮沸至40ml。
然后加入10ml 1%的CH₃COOH,用干燥剂去除蒸发液中的水分,再用NaCl使液体浓缩。
最后用10ml C₂H₅OH稀释样品,得到待测样品。
3. 实际操作测量①测量初始火焰原子吸收光谱。
将真空透镜插入光路,按下电源开关预热5min,选择待测元素Ca的吸收谱线波长423nm,用无水醋酸和氧化钙溶液将样品调节至pH为8-9,以减小干扰。
进行碘灯检波,记录标准吸收度,即为初始火焰原子吸收光谱。
②制备标准曲线取不同浓度的钙标准品,准确称量,添加到标准烧杯中,加入相应的量的无水醋酸和氧化钙溶液将样品调节至pH为8-9,以减小干扰。
对于每个浓度的样品,依次进行样品的测量,得到吸光度值。
③样品的测定4. 数据处理用标准曲线计算样品中钙的浓度,然后将样品的钙含量进行统计和比较。
结果与分析实验结果表明,在本实验中,对于不同食物中的钙含量有所差异。
如牛奶中钙含量较高,约为2.2g/100g,而豆类和蔬菜中的钙含量则较低。
实验中所使用的火焰原子吸收光谱法是一种非常稳定和精确的测量方法,但也存在一些限制。
原子吸收法奶粉中钙镁铜铁含量的测定
![原子吸收法奶粉中钙镁铜铁含量的测定](https://img.taocdn.com/s3/m/1c35f9c65fbfc77da269b1d9.png)
奶粉-钙镁铜铁含量测定-火焰原子吸收光谱法
1适用范围
本方法适用于奶粉中钙、镁、铜、铁含量的测定。
2原理
采用灰化法和湿法硝解对奶粉进行处理,用火焰原子吸收法分别测定了其中的钙、镁、铜、铁等金属元素含量。
3试剂
Ca、Mg、Cu、Fe等标准储备液。
4仪器
原子吸收分光光度计;
Ca、Mg、Cu、Fe空心阴极灯。
5操作步骤
样品处理奶粉样品来自市场随机购买的不同品牌的袋装奶粉。
奶粉干法灰化法:用分析天平准确称取5.000g奶粉于瓷坩埚中,在电炉上加热碳化至不冒烟,再放进马福炉内,逐渐升高温度灰化,在900℃干灰化2h,待灰分与坩埚脱离并为白色取出冷却,加1mol/L盐酸溶解,将溶液和沉淀颗粒全部移到50ml容量瓶中,稀释至标线,放置澄清,取上层液备作原子吸收测定。
奶粉湿法硝化法:用分析天平准确称取5.000g奶粉于150ml的烧杯中,加30ml浓硝酸,盖上表面皿浸在选定的仪器工作条件下,对处理好的样品测其吸光度,并用标准曲线法进行分析。
饱过夜,置电炉上微热,至颗粒溶化,再加入10ml浓硝酸和3ml高氯酸,摇匀,逐渐升温继续加热,溶液颜色变棕红色,继续加入5ml浓硝酸,加热,硝解至透明无色,继续蒸发至溶液冒白烟,并出现黄白色残渣,取下冷却,用水转入50ml 容量瓶中,并用蒸馏水稀释至标线,留作原子吸收的测定。
实验方法
在选定的仪器工作条件下,对处理好的样品测其吸光度,并用标准曲线法进行分析。
6参考文献
任乃林,张育斌,俞凤琼.火焰原子吸收光谱法测定奶粉中的钙镁铜铁含量.广州食品工业科技,18(4):41-42。
原子吸收光谱法测定食品中锌的含量
![原子吸收光谱法测定食品中锌的含量](https://img.taocdn.com/s3/m/ea4e288e76a20029bc642d2e.png)
移入马弗炉中在500±25℃下灰化8h后,取出坩埚 加入小量混合酸,以小火加热。反复处理至残渣 中无炭粒,加10mL(1+11)盐酸溶解后移入50mL容 量瓶,再用 (1+11)盐酸定容至刻度.
分别吸取奶粉样液0.00、1.25、2.5、5.00mL 于25mL容量瓶中并定容至刻度,待测(浓 度分别为0.00、0.20、0.40、0.80ug/mL)
走平后,点“自动调零” 。 ②.吸锌标液为0.00ug/ml(空白)溶液,待曲线走
平后,点“空白”进行数据的测定。 ③.吸锌标液,待曲线走平后,点“开始”,读完
数后,吸取一段时间的蒸馏水使曲线走平 ④.更换下一个浓度的标液,重复③至测定所有标
液
样品(葡萄糖酸锌)测定
1.待锌标准曲线绘制完并用蒸馏水调零后, 更换样品(葡萄糖酸锌),待曲线走平后, 点“开始”,读完数后,记录吸光值读数、 吸一段时间的蒸馏水并调零。
3.分别吸取0.00、0.20、0.40、0.80、1.60mL锌的标 准使用液于25mL容量瓶中,再以(1mol/L)HCL稀 释至刻度,待测。(浓度依次为:0.0、0.20、0.40、 0.80、1.60ug/mL)
预实验:
样品:(葡萄糖酸锌、奶粉、粒,所
锌标准溶液配制
1.锌的标准储备液:称取0.5000g锌粉溶于10mL盐 酸中,然后在水浴蒸发至干,在用小量水溶解后 移入1000mL容量瓶中,以水稀释至刻度。备用。 (浓度为0.5mg/mL)
2.锌的标准使用液:吸取2.5mL锌的标准贮备液于 50mL容量瓶中,以(0.1mol/L)盐酸稀释至刻 度.(浓度为25ug/mL).
原子吸收光谱法如何测定金属
![原子吸收光谱法如何测定金属](https://img.taocdn.com/s3/m/b0adfa0468eae009581b6bd97f1922791688beb4.png)
原子吸收光谱法如何测定金属原子吸收光谱法(Atomic Absorption Spectroscopy,简称AAS)是一种常用于测定金属及其离子的分析方法。
它利用金属原子对特定波长的光吸收的特性来确定样品中金属的浓度。
本文将介绍AAS的基本原理、仪器设备以及实验操作步骤。
一、基本原理AAS的基本原理是利用金属原子在吸收特定波长的光时产生特征的光吸收现象。
当吸收光线经过样品中的金属原子时,根据杰贝特-朗伯定律,被吸收的光强与样品中金属原子的浓度成正比关系。
通过测定吸收光的强度可以确定样品中金属原子的浓度。
二、仪器设备进行原子吸收光谱测定金属需要以下仪器设备:1.原子吸收光谱仪:包括光源、进样器、光栅、光电倍增管等部件。
2.电子天平:用于准确称量样品。
3.雾化器:将液态样品转化为气溶胶状态供光谱仪测定。
4.标准溶液:用于校准仪器和制备样品的不同浓度标准溶液。
三、实验操作步骤进行原子吸收光谱测定金属的实验主要包括以下步骤:1.样品处理:将待测金属样品溶解在适当溶剂中,并过滤除去悬浮物和杂质。
2.准备标准曲线:准备一系列浓度递增的标准溶液,并利用原子吸收光谱仪分别测定它们的吸光度。
3.扣除背景:测定雾化剂或溶剂的吸光度作为背景信号,并将样品的吸光度减去背景信号。
4.测定样品吸光度:利用原子吸收光谱仪测定样品的吸光度,并记录下来。
5.绘制标准曲线:将浓度与吸光度绘制成图表,得到标准曲线。
6.测定样品浓度:根据样品的吸光度和标准曲线,确定样品中金属的浓度。
四、注意事项在进行原子吸收光谱测定金属时,需要注意以下事项:1.样品的处理过程应确保完全溶解和去除杂质,以避免对吸光度测定的影响。
2.标准溶液的浓度应尽可能覆盖待测样品中金属的浓度范围,以获得准确的测定结果。
3.背景信号的扣除要准确可靠,以保证测定结果的准确性。
4.在测定过程中,要及时记录样品和标准溶液的吸光度值,并注意仪器的校准和维护。
五、应用领域原子吸收光谱法广泛应用于环境监测、食品安全、医药生化和金属材料等领域。
食物中的重金属测定实验
![食物中的重金属测定实验](https://img.taocdn.com/s3/m/4046aec0d1d233d4b14e852458fb770bf68a3b4b.png)
食物中的重金属测定实验一、引言重金属是指密度大于5克/立方厘米的金属元素,如铅、镉、铬等。
这些金属在自然界中广泛存在,但过量摄入可能对人体健康造成严重影响。
为了保障食品安全,食物中重金属含量的测定成为一项重要的科学研究和监管工作。
本文将介绍食物中重金属测定的实验方法和步骤。
二、材料与设备1. 标准品:包括铅、镉、铬等重金属的标准溶液,浓度分别为1mg/mL;2. 样品:待测食物样品;3. 试剂:硫酸、硝酸、盐酸等;4. 仪器设备:原子吸收光谱仪、比色计、天平、消解仪等。
三、实验步骤1. 样品前处理a. 取适量待测样品,如蔬菜、水产品等,并将其洗净,去除表面杂质;b. 将样品加工成可消解的形式,如将蔬菜样品切碎、水产品加工成均质状态;c. 样品的加工过程中要注意避免外界受到污染,并使用干净的容器和器具。
2. 样品消解a. 取消解仪,加入适量的溶解试剂,如硫酸、硝酸等;b. 将样品加入消解仪中,并进行加热消解,建议使用微波消解仪进行高效消解;c. 等待样品完全消解,并冷却至室温。
3. 样品前处理a. 将已消解的样品取出,进行滤液处理,去除残渣和杂质;b. 将滤液用蒸馏水稀释到标定体积,使其浓度适合原子吸收光谱仪检测。
4. 原子吸收光谱仪检测a. 打开原子吸收光谱仪,预热至工作温度;b. 将稀释后的样品注入进样器,进行金属元素的测定;c. 确保仪器的校准准确,并根据各金属元素对应的波长和浓度范围进行检测。
5. 数据处理与结果分析a. 将测定结果进行记录,并计算各重金属元素的含量;b. 通过与标准样品的对比,评估待测样品中的重金属含量;c. 分析结果,判断样品食品安全性。
四、实验注意事项1. 在整个实验过程中,避免对样品进行过度处理,以免干扰分析结果;2. 实验前,确保各仪器设备的检测和校准正常;3. 严格遵守实验室的安全操作规范,佩戴好实验服、手套和护目镜;4. 实验后,彻底清洗实验器材,保持实验环境的整洁。
实验报告测定镉
![实验报告测定镉](https://img.taocdn.com/s3/m/38c9a3357f21af45b307e87101f69e314332fabd.png)
一、实验目的1. 了解镉的性质和危害;2. 掌握测定镉含量的实验原理和方法;3. 培养实验操作技能,提高分析能力。
二、实验原理镉是一种重金属元素,具有较强的毒性。
在环境中,镉主要以Cd2+形式存在。
本实验采用原子吸收光谱法测定样品中的镉含量。
原子吸收光谱法是利用特定波长的光被样品中镉原子吸收,通过测量吸光度来计算样品中镉的含量。
三、实验材料与仪器1. 实验材料:- 样品:土壤、水、食品等;- 标准镉溶液:1000μg/mL;- 硝酸、盐酸、氢氧化钠等试剂。
2. 实验仪器:- 原子吸收光谱仪;- 电子天平;- 磁力搅拌器;- 容量瓶;- 试管等。
四、实验步骤1. 样品前处理:- 称取一定量的样品,置于烧杯中;- 加入适量的硝酸,加热溶解;- 冷却后,用盐酸调至pH=2;- 转移至容量瓶中,定容至刻度;- 过滤,备用。
2. 标准溶液配制:- 准确移取一定量的标准镉溶液,置于容量瓶中;- 加入适量的硝酸,加热溶解;- 冷却后,用盐酸调至pH=2;- 转移至容量瓶中,定容至刻度;- 混匀,备用。
3. 样品测定:- 启动原子吸收光谱仪,设定波长为228.8nm;- 分别测定标准溶液和样品溶液的吸光度;- 根据标准曲线计算样品中镉的含量。
五、实验结果与分析1. 标准曲线绘制:- 以标准溶液浓度为横坐标,吸光度为纵坐标,绘制标准曲线;- 标准曲线线性良好,相关系数R²>0.99。
2. 样品测定结果:- 样品中镉含量为X mg/kg(X为实验测得值)。
3. 结果分析:- 根据实验结果,样品中镉含量符合国家标准要求。
六、实验讨论1. 实验过程中,样品前处理是关键步骤。
在处理过程中,要注意样品的溶解、过滤等操作,确保样品溶液的澄清度;2. 实验过程中,标准溶液的配制要准确,避免误差;3. 实验过程中,原子吸收光谱仪的操作要规范,确保测定的准确性。
七、结论本实验采用原子吸收光谱法测定了样品中的镉含量,实验结果准确可靠。
原子吸收光谱法测定食品中铜的含量
![原子吸收光谱法测定食品中铜的含量](https://img.taocdn.com/s3/m/94fd7a5b84868762cbaed55d.png)
原子吸收光谱法测定食品中铜元素的含量实验目的:1.熟悉原子吸收分光光度计的结构及其使用方法2.掌握应用标准曲线法测定铜含量的方法,3.加深理解原子吸收光谱法的基本原理实验原理:1.通常原子处于基态,原子由基态跃迁到激发态吸收一定的能量,这种特定的能量就是该元素的特征谱线。
2.原子吸收光谱法用于定量分析,它是基于从光源中辐射出波长与待测元素的特征谱线波长相同的光(铜是324.7nm)通过试样的原子蒸气时,被蒸气中待测元素(铜)的基态原子所吸收,使透过的谱线强度减弱。
在一定的条件下,其吸收程度与试液待测元素的浓度成正比,即A=Kc。
3.本实验采用标准曲线法测定水中铜含量,即先测定已知浓度的各待测离子标准溶液的吸光度,绘制成吸光度-浓度标准曲线。
再于同样条件下测定食品样品中待测离子的吸光度,从标准曲线上即可查出食品样品中各待测离子的含量。
4.待测试液引入火焰原子吸收仪中,先经喷雾器将试液变为细雾,再与燃气混合载入燃烧器干燥、熔化、蒸发、原子化,待测元素变为基态气态原子。
5.固体样品采取干法灰化使有机物分解,金属元素铜经酸化溶解成为可溶态待测。
仪器和药品:仪器:AA-320N型原子吸收分光光度计、空气压缩机、乙炔钢瓶、Cu空心阴极灯、马弗炉、分析天平、电炉、捣碎机等。
药品:Cu(NO3)2.3H2O、浓HNO3(G.R.)(过硫酸铵、硫酸钠、或过氧化氢、石油醚等,根据样品、及样品处理情况选择)。
标准溶液配制:1.铜标准储备液(1000μg·ml-1):准确称取于Cu(NO3)2·3H2O 0.95g于100ml烧杯中,用0.1molL_1HNO3溶解,定量转移至250ml容量瓶中,用水稀释定容摇匀。
2.铜标准溶液(100μg·ml-1):准确吸取上述铜标准储备液25.00ml于250ml容量瓶中,用0.1molL_1HNO3稀释定容,摇匀。
实验步骤:所有玻璃仪器用0.1molL_1HNO3浸泡24小时以上,冲洗多次后用蒸馏水及二次蒸馏水洗干净晾干备用。
火焰原子吸收光谱法测定食品中的铅
![火焰原子吸收光谱法测定食品中的铅](https://img.taocdn.com/s3/m/b822411ca66e58fafab069dc5022aaea998f418d.png)
火焰原子吸收光谱法测定食品中的铅食品中铅的检测办法除了石墨炉原子汲取光谱法外,常用的分析办法还有:火焰原子汲取光谱法、二硫腙比色法。
火焰原子汲取光谱法允许相对误差≤20%。
(一)原理样品经处理后,铅离子在一定pH条件下与DDTC形成络合物,经4一甲基戊酮一2萃取分别,导入原子汲取光谱仪中,火焰原子化后,汲取283.3 nm共振线,其汲取量与铅含量成正比,与标准系列比较定量。
(二)试剂本试验用水均为去离子水,试剂为分析纯度或优级纯。
(1)硝酸+高氯酸(4+1)。
(2)硫酸铵溶液(300 g/L):称取30g硫酸铵[(NH4)2SO4],用水溶解并加水至1.0 mL。
(3)柠檬酸铵溶液(250 g/L):称取25 g柠檬酸铵,用水溶解并加水至100 mL。
(4)溴百里酚蓝水溶液(1 g/L)。
(5)二乙基二硫代氨基甲酸钠(DDTC)溶液(50 g/L):称取5 g二乙基二硫代氨基甲酸钠,用水溶解并加水至100 mL。
(6)氨水(1+1)。
(7)4一甲基戊酮一2(MIBK)。
(8)铅标准溶液:①铅标准储备液:精确称取1.000 g金属铅(99.99%),分次加少量硝酸(1+1),加热溶解,总量不超过37 mL,移入l 000 mL容量瓶,加水至刻度。
混匀。
此溶液每毫升含1.O mg铅。
②铅标准用法液:如此经多次稀释成每毫升含10.O、20.O、40.O、60.0、80.O ng铅的标准用法液。
(三)仪器 (1)原子汲取分光光度计附火焰原子化器。
(2)马弗炉。
(3)干燥恒温箱。
(4)瓷坩埚。
(5)压力消解器、压力消解罐。
(6)可调式电热板、可调式电炉。
(四)分析步骤 1.样品处理 (1)饮品及酒类取匀称样品10.0~20.0 g于烧杯中,酒类应先在水浴上蒸去酒精,于电热板上先蒸发至一定体积后,加入硝酸一高氯酸(4+1)消化彻低后,转移、定容于50 mL容量瓶中。
(2)谷类去除其中杂物及尘土,须要时除去外壳,碾碎,过30目筛,混匀,称取5.O~10.O g,置于50 mL瓷坩埚中,小火炭化,然后移人马弗炉中,500℃以下灰化16 h后,取出坩埚,放冷后再加少量混合酸,小火加热,不使干枯,须要时再加少许混合酸,如此反复处理,直至残渣中无炭粒,待坩埚第1页共2页。
《SAF共沉淀体系—火焰原子吸收法测定食品和乳制品中的铜、锰、铬、铅》范文
![《SAF共沉淀体系—火焰原子吸收法测定食品和乳制品中的铜、锰、铬、铅》范文](https://img.taocdn.com/s3/m/fcef5ca005a1b0717fd5360cba1aa81144318f30.png)
《SAF共沉淀体系—火焰原子吸收法测定食品和乳制品中的铜、锰、铬、铅》篇一一、引言食品安全是人们日益关注的焦点,其中重金属元素的含量对食品和乳制品的质量安全具有重要影响。
铜、锰、铬、铅等元素在食品和乳制品中的含量虽然微小,但长期摄入超标可能对人类健康产生严重危害。
因此,准确、快速地测定食品和乳制品中的重金属元素,是确保食品安全的重要手段。
本实验研究利用SAF 共沉淀体系与火焰原子吸收法相结合,测定食品和乳制品中上述四种重金属元素的含量。
二、实验原理本实验中,我们采用了SAF共沉淀体系进行样品的前处理。
该体系是一种基于特定化学物质组合的共沉淀方法,能有效地将铜、锰、铬、铅等重金属元素从样品中沉淀出来,便于后续的测定。
接着,我们利用火焰原子吸收法对共沉淀后的重金属元素进行测定。
该方法基于原子吸收光谱原理,具有灵敏度高、准确度好等优点。
三、实验步骤1. 样品处理:取适量食品或乳制品样品,加入适量的SAF共沉淀剂,进行共沉淀处理。
2. 沉淀物分离:将共沉淀后的样品进行离心分离,得到含重金属元素的沉淀物。
3. 原子吸收法测定:将沉淀物溶解于适当的溶剂中,利用火焰原子吸收法进行测定。
四、实验结果与分析通过实验,我们得到了食品和乳制品中铜、锰、铬、铅的含量数据。
采用统计学方法对数据进行处理和分析,得到了以下结果:(详细展示各组数据及图表)从实验结果可以看出,食品和乳制品中铜、锰、铬、铅的含量均符合国家相关标准。
同时,SAF共沉淀体系与火焰原子吸收法相结合的方法具有较高的准确度和灵敏度,能够满足食品安全检测的需求。
五、结论本实验采用SAF共沉淀体系与火焰原子吸收法相结合的方法,成功测定了食品和乳制品中铜、锰、铬、铅的含量。
该方法具有准确度高、灵敏度好等优点,能够有效地满足食品安全检测的需求。
同时,该方法操作简便,适用于大规模的食品安全检测。
因此,我们建议将该方法应用于实际食品安全检测工作中,为保障人们的饮食安全提供有力支持。
食品中铁含量的测定
![食品中铁含量的测定](https://img.taocdn.com/s3/m/1471b717866fb84ae45c8d01.png)
食品中铁含量的测定食品安全检验技术(理化部分)食品中铁的测定有火焰原子吸收光谱法,二硫腙比色法(邻菲啰啉,磺基水杨酸,硫氰酸盐比色法等)两种国家标准方法.下面对原子吸收分光光度法,分光光度法(邻二氮菲法)进行详细阐述.(一)原子吸收分光光度法1,原理经湿法消化样品测定液后,导入原子吸收分光光度计,经火焰原子化后,吸收波长248.3nm的共振线,其吸收量与铁的含量成正比,与标准系列比较定量.2,主要试剂:(1)高氯酸-硝酸消化液:1+4(体积比)(2)0.5mol/LHNO3溶液(3)铁标准储备液:每毫升相当于1mg铁.(4)铁标准使用液:取10.0mL(3)液于100mL容量瓶中,加入0.5mol/L硝酸溶液,定容.3,主要仪器原子吸收分光光度计(铁空心阴极灯)4,操作方法:样品处理品系列标准溶液的配制仪器参考条件的选择标准曲线的绘制样品测定仪器参考条件的选择:波长248.3nm;光源为紫外;火焰:空气-乙炔;其它条件按仪器说明调至最佳状态. 5,结果计算:式中 X----样品的铁含量,mg/100g(或μg/100mL);ρ----测定用样品液中铁的浓度, μg/mL;ρ0----试剂空白液中铁的浓度,μg/mL;m----样品的质量或体积,g或mL;V----样品处理液总体积,mL; f----稀释倍数.6,说明(1)所用玻璃仪器均经硫酸-重铬酸钾洗液浸泡数小时,再以洗衣粉充分洗刷,其后用水反复冲洗,再用去离子水冲洗烘干.(2)本方法最低检出浓度为0.2μg/mL.(二),分光光度法(邻二氮菲法)1,原理:在pH为2~9的溶液中,二价铁离子与邻二氮菲生成稳定的橙红色配合物,在510nm有最大吸收,其吸光度与铁的含量成正比,故可比色测定.2,试剂①盐酸羟胺溶液:10%②邻二氮菲水溶液(新鲜配制):0.12%③醋酸钠溶液:10%④盐酸:1mol/L⑤铁标准溶液:3,测定方法:①样品处理:干法灰化②标准曲线绘制:吸取10g/mL铁标准溶液0.0mL,1.0mL,3.0mL,4.0mL,5.0mL,分别置于50mL容量瓶中,加入1mol/L盐酸溶液1mL,10%盐酸羟胺1mL,0.12%邻二氮菲1mL.然后加入10%醋酸钠5mL,用水稀释至刻度,摇匀,以不加铁的试剂空白溶液作参比液,在510nm波长处,用1比色皿测吸光度,绘制标准曲线.③样品测定:准确吸取样液5~10mL于50mL容量瓶中,以下按标准曲线绘制操作,测定吸光度,在标准曲线上查出相对应的含铁量(μg).(4)结果计算式中 m----样品质量,g ;V1----测定用样液体积,mLV2----样液总体积,mLX----从标准曲线上查得测定用样液相当的铁含量, μg.。
大米中铅的测量实训报告
![大米中铅的测量实训报告](https://img.taocdn.com/s3/m/6294d923178884868762caaedd3383c4bb4cb4b9.png)
一、实验目的本次实验旨在通过化学分析的方法,测定大米样品中铅的含量,了解和掌握原子吸收光谱法(AAS)在食品检测中的应用,提高实验操作技能和数据分析能力。
二、实验原理铅是一种重金属元素,对人体的神经系统、血液系统、消化系统等均有毒害作用。
大米中铅的测定通常采用原子吸收光谱法(AAS),其原理是基于被测元素原子蒸气对特定波长的光产生吸收,根据吸光度的大小,可以计算出样品中铅的含量。
三、实验材料与仪器1. 实验材料:- 大米样品:若干份- 硝酸:分析纯- 氢氟酸:分析纯- 氢氧化钠:分析纯- 铅标准溶液:1000mg/L2. 实验仪器:- 原子吸收光谱仪- 电子天平- 磁力搅拌器- 酸度计- 高频炉- 容量瓶- 移液管四、实验步骤1. 样品前处理(1)准确称取大米样品2.0g,置于50mL烧杯中。
(2)加入10mL硝酸,盖上表面皿,置于高频炉上加热至样品完全溶解,取下烧杯,冷却至室温。
(3)用氢氟酸和硝酸混合液(1+1)滴加至样品溶液中,直至溶液澄清,再继续滴加硝酸至样品溶液呈微酸性。
(4)将溶液转入100mL容量瓶中,用去离子水定容至刻度,混匀。
2. 标准溶液配制(1)准确吸取1.0mL铅标准溶液,置于100mL容量瓶中,用去离子水定容至刻度,得到10mg/L的铅标准溶液。
(2)根据需要,用去离子水将标准溶液稀释至不同浓度。
3. 样品测定(1)开启原子吸收光谱仪,调整仪器参数,使仪器稳定。
(2)依次测定标准溶液和样品溶液的吸光度。
(3)根据标准曲线,计算样品中铅的含量。
五、实验结果与分析1. 标准曲线绘制根据标准溶液的吸光度,绘制铅的标准曲线,得到线性方程为:A=0.0125C+0.0015,相关系数R²=0.9987。
2. 样品测定结果样品中铅的含量为0.05mg/kg。
3. 结果分析通过本次实验,我们成功测定了大米样品中铅的含量。
结果表明,样品中铅含量符合食品安全标准。
六、实验结论本次实验通过原子吸收光谱法测定大米样品中铅的含量,实验操作规范,数据可靠。
原子吸收法测定样品中的锌和铜实验报告
![原子吸收法测定样品中的锌和铜实验报告](https://img.taocdn.com/s3/m/2aa1ddd8988fcc22bcd126fff705cc1755275fe4.png)
原子吸收法测定样品中的锌和铜实验报告实验目的:1. 熟悉原子吸收光谱法的实验操作;2. 了解锌和铜用原子吸收法测定的原理和操作方法;3. 了解标准加入法的原理与实验操作。
实验仪器:1. 原子吸收光谱仪;2. 恒温水浴器;3. 恒温振荡器;4. 量筒;5. 称量器;6. 塑料瓶;7. 移液器;8. 微量滴定管。
实验原理:原子吸收光谱法(AA)是利用原子吸收有特征性的谱线,按摩尔吸收原理,通过光谱定量的方法分析物质中微量金属元素的分析法。
AA方法具有选择性、准确性、精密度高等特点,其检测限在 ppb 级别,常应用于环境、土壤、食品及水质监测等领域。
标准加入法是一种常用的分析方法,它通过加入已知浓度标准溶液来得出被分析样品中的元素浓度,确保结果的精确性。
实验操作:1.准备标准溶液分别取锌、铜标准物质(1000mg/L)各 1mL 转移至 50mL 的量筒中,加水至刻度,得到锌、铜标准溶液,稀释为适宜浓度备用。
2.制备样品取约 0.25g 样品(或经过研磨、筛选后的颗粒小于 80 目的颗粒),加入 10mL 氢氧化钠溶液,放置极音清洗器中,加水至刻度,摇匀,得到样品溶液,称取 5mL 转移至50mL的瓶中,加水至刻度,并用标准加入法制备 3 个含锌、铜不同浓度的溶液,分别得到:样品 1:0.05mg/L 的锌,0.02mg/L 的铜样品 2:0.1mg/L 的锌,0.04mg/L 的铜样品 3:0.2mg/L 的锌,0.08mg/L 的铜3.测定样品中铜和锌的浓度分别将样品 1、样品 2、样品 3 和锌、铜标准溶液(含锌、铜质量浓度均为0.02mg/L)按顺序加入原子吸收光谱仪,设置波长、燃料气体流量、背景校正等实验参数,并进行空白校正,反复测定 3 次,得出铜和锌的吸收值及平均值,计算样品中锌、铜元素的浓度。
实验结果:样品 1:锌浓度:0.048mg/L,铜浓度:0.018mg/L本实验应用原子吸收光谱法成功测定了样品中的锌和铜元素浓度,并证明了标准加入法在微量元素测定中的重要性。
原子吸收光谱法 实验报告
![原子吸收光谱法 实验报告](https://img.taocdn.com/s3/m/bf1e13b7f71fb7360b4c2e3f5727a5e9846a274a.png)
原子吸收光谱法实验报告原子吸收光谱法实验报告引言:原子吸收光谱法是一种常用的分析技术,可以用于测定样品中的金属元素含量。
本实验旨在通过原子吸收光谱法测定未知溶液中钠离子的浓度,并探究实验条件对测定结果的影响。
实验步骤:1. 实验前准备:清洗玻璃仪器、配制标准溶液、校准光谱仪。
2. 测定吸收光谱:将标准溶液依次放入光谱仪中,记录吸收峰的波长和吸光度。
3. 绘制标准曲线:根据测定得到的吸光度数据,绘制出吸光度与浓度的曲线。
4. 测定未知溶液:将未知溶液依次放入光谱仪中,测定其吸光度。
5. 计算未知溶液中钠离子的浓度:根据标准曲线,通过吸光度值得到未知溶液中钠离子的浓度。
实验结果与讨论:通过测定吸收光谱,我们得到了标准溶液中钠离子的吸光度数据,并绘制了标准曲线。
在测定未知溶液时,我们得到了相应的吸光度值。
通过标准曲线,我们可以计算出未知溶液中钠离子的浓度。
在实验过程中,我们还探究了实验条件对测定结果的影响。
首先,我们改变了光谱仪的入射光强度,发现随着光强度的增加,吸光度也相应增加,但当光强度过高时,吸光度反而下降。
这是因为在过高的光强度下,样品中的钠原子发生饱和吸收,无法继续吸收更多的光能量。
其次,我们改变了样品的浓度,发现吸光度与浓度呈线性关系。
这是因为当样品中的钠离子浓度增加时,更多的钠原子吸收入射光,导致吸光度增加。
因此,通过测量吸光度,我们可以准确地测定样品中钠离子的浓度。
实验中还需要注意的是,样品的溶解度和光谱仪的校准。
样品的溶解度应适中,过高或过低都会影响实验结果。
而光谱仪的校准需要定期进行,以确保测量结果的准确性。
结论:通过原子吸收光谱法,我们成功测定了未知溶液中钠离子的浓度。
实验结果表明,该方法可以准确、快速地测定金属元素的含量。
在实验过程中,我们还发现实验条件对测定结果有一定的影响,因此在实际应用中需要注意控制实验条件。
总结:原子吸收光谱法是一种重要的分析技术,可以应用于环境监测、食品安全等领域。
《2024年共沉淀-火焰原子吸收光谱法测定食品中镉、铅、铬、镍的方法研究》范文
![《2024年共沉淀-火焰原子吸收光谱法测定食品中镉、铅、铬、镍的方法研究》范文](https://img.taocdn.com/s3/m/b2870479bdd126fff705cc1755270722192e5932.png)
《共沉淀-火焰原子吸收光谱法测定食品中镉、铅、铬、镍的方法研究》篇一一、引言随着食品工业的快速发展,食品中重金属污染问题日益突出。
镉、铅、铬、镍等重金属元素因其对环境和人体健康的潜在危害,一直是食品安全研究的重点。
因此,开发一种快速、准确、灵敏的测定食品中重金属的方法具有重要意义。
本研究采用共沉淀-火焰原子吸收光谱法,对食品中镉、铅、铬、镍等重金属元素进行测定,以期为食品安全监测提供科学依据。
二、实验原理共沉淀法是一种常用的样品前处理方法,能够有效地从样品基质中分离和浓缩待测元素。
火焰原子吸收光谱法则是根据不同元素原子在不同火焰气氛中能对特定波长的光谱进行吸收,进而确定样品中各元素的含量。
将共沉淀法与火焰原子吸收光谱法相结合,可以有效去除基质干扰,提高测定结果的准确性和可靠性。
三、实验材料与方法(一)实验材料实验所用试剂包括共沉淀剂、待测食品样品以及不同元素的储备液等。
实验所需设备包括共沉淀仪、火焰原子吸收光谱仪等。
(二)实验方法1. 样品处理:取适量食品样品进行预处理,如干燥、研磨、酸浸等步骤,将样品转化为溶液形式。
2. 共沉淀处理:将待测元素与共沉淀剂混合,形成共沉淀物,并通过离心等方法进行分离和浓缩。
3. 火焰原子吸收光谱法测定:将共沉淀物溶解于适当溶剂中,利用火焰原子吸收光谱仪进行测定。
四、实验结果与分析(一)实验结果通过共沉淀-火焰原子吸收光谱法测定食品中镉、铅、铬、镍等重金属元素,得到各元素的含量数据。
(二)结果分析1. 共沉淀法对样品前处理的影响:共沉淀法能有效去除食品基质中的干扰物质,提高待测元素的纯度,从而降低火焰原子吸收光谱法的测定误差。
2. 火焰原子吸收光谱法的灵敏度和准确性:火焰原子吸收光谱法具有较高的灵敏度和准确性,能够准确测定食品中镉、铅、铬、镍等重金属元素的含量。
3. 方法比较:与其他常用的食品重金属测定方法相比,共沉淀-火焰原子吸收光谱法具有较高的准确性和可靠性,适用于多种类型的食品样品。
蔬菜中重金属镉的测定方法、原理和步骤
![蔬菜中重金属镉的测定方法、原理和步骤](https://img.taocdn.com/s3/m/492340806037ee06eff9aef8941ea76e58fa4a23.png)
蔬菜中重金属镉的测定方法、原理和步骤一、概述蔬菜是人们日常饮食中不可或缺的一部分,而蔬菜中的重金属镉含量直接关系到人们的健康。
对蔬菜中镉的测定工作显得尤为重要。
本文将介绍蔬菜中镉的测定方法、原理和步骤。
二、蔬菜中重金属镉的测定方法目前,蔬菜中重金属镉的测定方法主要包括原子吸收光谱法、电感耦合等离子体质谱法、火焰原子吸收光谱法、荧光光谱法等。
三、蔬菜中重金属镉测定方法的原理1. 原子吸收光谱法:原子吸收光谱法是利用物质对特定波长的光吸收的原理来分析物质的含量,通过对样品中镉原子吸收特定波长的光的强度进行测定,从而确定样品中镉的含量。
2. 电感耦合等离子体质谱法:电感耦合等离子体质谱法是利用电感耦合等离子体的高温等离子体体系对样品进行分解,然后利用质谱仪对分解后的样品离子进行质量分析,从而确定样品中镉的含量。
3. 火焰原子吸收光谱法:火焰原子吸收光谱法是利用样品在火焰中的原子化特性对其进行分析,通过测定样品原子化后吸收特定波长的光强度来确定样品中镉的含量。
4. 荧光光谱法:荧光光谱法是利用样品在特定波长的光激发下产生荧光的原理来分析其含量,通过测定样品在激发光波长下发射的荧光强度来确定样品中镉的含量。
四、蔬菜中重金属镉测定步骤1. 样品的准备:将待测样品按照一定的程序进行处理,去除干扰物质,将样品溶解或分解成适宜的状态。
2. 仪器的调试:对所选择的测定方法所需要的仪器进行调试,确保仪器的灵敏度和稳定性。
3. 样品的测定:按照所选择的测定方法将样品进行测定,记录测定结果。
4. 数据处理:对所得的测定结果进行数据处理,得出最终的含量数据。
五、结论通过本文的介绍,可以看出蔬菜中重金属镉的测定工作需要科学的测定方法、准确的仪器和严谨的操作步骤。
希望本文的介绍能够对相关工作人员有所帮助,提高蔬菜中重金属镉测定的准确性和可靠性。
六、参考文献[1] 张三, 李四. 蔬菜中重金属镉测定方法的研究[J]. 食品安全杂志, 2018(3): 56-60.[2] 王五, 赵六. 原子吸收光谱法在蔬菜中镉测定中的应用[J]. 食品科学技术学报, 2017, 40(2): 112-115.七、蔬菜中重金属镉的测定方法的优缺点及适用范围在选择蔬菜中重金属镉的测定方法时,需要考虑不同方法的优缺点以及适用范围。
食品中铅、镉、砷的测定(国标)【精选文档】
![食品中铅、镉、砷的测定(国标)【精选文档】](https://img.taocdn.com/s3/m/c94ec2d2e2bd960591c677a7.png)
食品中铅的测定:第一法石墨炉原子吸收光谱法3 原理试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收283。
3 nm 共振线,在一定浓度范围,其吸收值与铅含量成正比,与标准系列比较定量。
4 试剂和材料硝酸:优级纯。
4.2 过硫酸铵。
4。
3 过氧化氢(30%)。
4。
4 高氯酸:优级纯。
4.5 硝酸(1+1):取50 mL 硝酸慢慢加入50 mL 水中。
4。
6 硝酸(0.5 mol/L):取3.2 mL 硝酸加入50 mL 水中,稀释至100 mL。
4。
7 硝酸(l mo1/L):取6.4 mL 硝酸加入50 mL 水中,稀释至100 mL。
4。
8 磷酸二氢铵溶液(20 g/L):称取2。
0 g 磷酸二氢铵,以水溶解稀释至100 mL。
4。
9 混合酸:硝酸十高氯酸(9+1)。
取9 份硝酸与1 份高氯酸混合。
4.10 铅标准储备液:准确称取1。
000 g 金属铅(99.99%),分次加少量硝酸(4。
5),加热溶解,总量不超过37 mL,移入1000 mL 容量瓶,加水至刻度。
混匀。
此溶液每毫升含 1.0 mg 铅.4。
11 铅标准使用液:每次吸取铅标准储备液1。
0 mL 于100 mL 容量瓶中,加硝酸(4.6)至刻度。
如此经多次稀释成每毫升含10。
0 ng,20.0 ng,40。
0 ng,60。
0 ng,80.0 ng 铅的标准使用液。
5 仪器和设备5。
1 原子吸收光谱仪,附石墨炉及铅空心阴极灯。
5。
2 马弗炉。
5。
3 天平:感量为1 mg.5。
4 干燥恒温箱.5。
5 瓷坩埚。
5.6 压力消解器、压力消解罐或压力溶弹。
5.7 可调式电热板、可调式电炉。
6 分析步骤6.2 试样消解(可根据实验室条件选用以下任何一种方法消解)6.2.1 湿式消解法:称取试样1 g~5 g(精确到0.001 g)于锥形瓶或高脚烧杯中,放数粒玻璃珠,加10 mL 混合酸(4。
9),加盖浸泡过夜,加一小漏斗于电炉上消解,若变棕黑色,再加混合酸,直至冒白烟,消化液呈无色透明或略带黄色,放冷,用滴管将试样消化液洗入或过滤入(视消化后试样的盐分而定)10 mL~25 mL 容量瓶中,用水少量多次洗涤锥形瓶或高脚烧杯,洗液合并于容量瓶中并定容至刻度,混匀备用;同时作试剂空白.6.3 测定6.3.1 仪器条件:根据各自仪器性能调至最佳状态.参考条件为波长283。
火焰原子吸收光谱法测定奶粉中的钙镁铜铁含量
![火焰原子吸收光谱法测定奶粉中的钙镁铜铁含量](https://img.taocdn.com/s3/m/6ee03fc7ed3a87c24028915f804d2b160a4e8661.png)
火焰原子吸收光谱法测定奶粉中的钙镁铜铁含量火焰原子吸收光谱法是一种常用的分析化学方法,用于测定样品中金属元素的含量。
它利用金属元素在特定波长下对特定光谱的吸收特性进行测定,可以准确、快速地测定样品中金属元素的含量。
本文将以奶粉中钙、镁、铜、铁含量的测定为例,介绍火焰原子吸收光谱法的原理、操作步骤及分析结果的处理。
首先,我们需要准备实验所需的仪器和试剂,包括火焰原子吸收光谱仪、标准品、质量浓度的稀释液、样品以及其他必要的实验设备。
在进行实验之前,需要首先进行标定工作。
标定工作是为了确定分析仪器的灵敏度和线性范围。
通过使用不同浓度的标准品进行标定,可以得到标准曲线,然后再用该标准曲线对待测样品进行定量测定。
接下来是样品的处理步骤,首先需要将奶粉样品进行样品预处理,一般是将奶粉样品进行溶解、过滤等操作,得到适合分析的样品溶液。
然后需要将样品溶液进行稀释,以保证在分析范围内,而不使测定值过高以至于超出了分析仪器的线性范围。
在进行分析测定前,需要对火焰原子吸收光谱仪进行预燃及零点调节操作,以保证仪器在良好的工作状态下进行测定。
然后将经过稀释处理的样品溶液以及标准品进行测定。
在测定过程中,需要注意保持火焰原子吸收光谱仪的稳定,同时需根据不同金属元素的特性选择适当的波长进行测定。
在测定完样品和标准品后,需要用标准曲线对样品的吸光度进行定量计算,从而得到样品中钙、镁、铜、铁的含量。
最后,需要对分析结果进行统计处理和评价。
首先进行测定值的准确性和精密度的评价,以及分析结果的可靠性和实用性的检验。
然后可以进行相应的对比分析,如与产品标签上的含量标示对比,以评估奶粉中钙镁铜铁的含量是否符合相关标准。
最后对分析结果进行归纳总结,得出奶粉中钙镁铜铁的含量分析结果。
总之,火焰原子吸收光谱法是一种准确可靠的分析方法,可用于测定奶粉中钙镁铜铁等金属元素的含量。
通过本文简要介绍了该方法的原理、操作步骤及分析结果的处理,希望能对相关研究人员和实验人员有所帮助,提高他们的分析实验能力和实验技术水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子吸收光谱法测定食品中金属元素的含量
一、实验目的
1.进一步了解和熟悉原子吸收光谱法的基本原理和仪器结构。
2.熟悉掌握几种元素分析的前处理方法及基本操作。
3.掌握利用原子吸收光谱法测定食品样品及原材料中金属元素的含量。
4.掌握气体钢瓶的使用及维护。
二、实验原理
原子吸收光谱法(atomic absorption spectrometry, AAS )是指物质所产生的气态的基态原子对特征光谱辐射具有吸收能力的现象。
当辐射投射到原子蒸汽上时,如果辐射波长相应的能量等于原子由基态跃迁到激发态所需要的能量时,就会引起原子对辐射的吸收,产生吸收光谱,通过测量气态原子对特征波长(或频率)的吸收,便可获得有关组成和含量的信息。
原子吸收光谱通常出现在可见光区和紫外区。
一个原子可具有多种能级状态,最低的能态称为基态。
如果原子接受外界能量使其激发至最低激发态(即第一激发态E 1),而后又回到基态所发射出的辐射即为“共振线”。
相反,基态原子的外层电子吸收共振辐射也可从基态跃迁至最低激发态。
在一定的温度下,激发态原子数与基态原子数具有一定的比例。
由计算可知,绝对温度小于3000K 时,激发态原子数与基态原子数的比值是很小的,即与处于基态的原子数相比,处于激发态的原子数可以忽略不计。
因此,可认为基态原子数近似等于待测元素的总原子数。
原子吸收服从朗伯-比尔定律,在一定浓度范围内,待测元素的吸光度与其在待测溶液中的浓度成正比。
即:kcL I I A ==)/lg(0,其中:I 0和I 分别为频率为f 的入射光和透射光的强度,c 为待测溶液中该元素的浓度,k 为摩尔吸光系数,L 为光线通过样品的光程。
本实验采用湿法消解法将样品进行前期消化,然后利用空气乙炔火焰法将样品进行原子化,样品中的待测元素能够迅速处在基态,并且基态原子能在特定光源的激发下跃迁为激发态,同时伴有特定原子吸收光谱的产生。
这样我们利用这种特定的原子吸收光谱对样品中的待测元素进行定性和定量的检测。
三、实验仪器和试剂
1.原子吸收光谱仪(德国耶拿和中国普析通用),消化管,移液管,容量瓶。
2.分析纯高氯酸和硝酸。
3.铜元素标准溶液的配制
(1)铜标准溶液(10mg/L ):准确移取铜标准储备液(1.000 mg/mL )1mL 于100mL 容量
瓶中,加入0.5%稀硝酸定容。
(3)系列标准溶液的配制:分别准确移取铜标准溶液0.00mL 、2.00mL 、4.00mL 、6.00mL 、
8.00mL 和10.00mL 于6个100mL 容量瓶中,加入0.5%稀硝酸定容。
得到浓度分别为
0 mg/L、0.20 mg/L、0.40 mg/L、0.60 mg/L、0.80 mg/L和1.00 mg/L的铜标准溶液。
四、样品消化
准确测量2g样品于100mL消化管中,加入25mL的混合酸(V高氯酸:V硝酸=1:5),再加入2-3颗玻璃珠并盖上玻璃片,转入石墨消化炉进行加热消化,温度设置为200℃,起初消化管上方会出现大量红棕色气体,大约20min后开始出现白色烟雾,此时可以打开玻璃片进行排酸,直至样品消化液渐渐呈现为澄清透明即可停止加热。
最后将得到的透明消化液转移到10mL容量瓶里,用去0.5%稀硝酸进行定容。
消化过程同时进行空白对照以扣除背景。
五、实验操作
5.1开机
(1)打开计算机,待系统稳定后再打开原子吸收光谱仪主机。
(2)双击计算机桌面上软件图标AAS,点击“联机”与仪器联机,仪器开始自检,通过后按“OK”。
5.2仪器参数的设置
(1)选择“AAS”→“选择元素灯”,下一步选择设置该元素灯工作的灯电流、乙炔气流量、特征光谱线、负高压和狭缝宽度等。
(2)选择标准曲线法进行定量计算,设置曲线参数和待测样品参数。
5.3点火:打开空气压缩机,在打开乙炔气体,(注意:此时一定先确定房间通风系统已打开)。
5.4进样:先接入去离子水进行仪器调零,再进样空白样品观察吸光度变化情况,依次进行
标准曲线各点和待测样品的进样,记录吸光值。
并将实验数据保存到数据盘里。
5.5关机:点击熄火,关闭乙炔气体和空压机,待仪器进样去离子水20-30min后,然后关仪器软件,最后关电脑和仪器电源。
5.6 数据处理
六、思考题
1.简述样品湿法消解法中酸的选择原则。
2.比较三种原子化方法的优缺点。
3.尝试简要说明测定样品中金属元素的基本步骤。