压电陶瓷压电性能测定实验报告

合集下载

压电陶瓷性能实验报告

压电陶瓷性能实验报告

一、实验目的1. 了解压电陶瓷的基本性能、结构、用途、制备方法。

2. 掌握压电陶瓷常见的表征方法及检测手段。

3. 通过实验,掌握压电陶瓷的性能测试方法,并对实验数据进行处理和分析。

二、实验原理压电陶瓷是一种具有压电效应的陶瓷材料,当受到外力作用时,会在其表面产生电荷;反之,当施加电场时,压电陶瓷会产生形变。

压电陶瓷的性能主要包括压电系数、介电常数、损耗角正切、机械品质因数等。

三、实验材料与仪器1. 实验材料:压电陶瓷样品2. 实验仪器:(1)电容测微仪(2)机械标定仪(3)直流电源(4)扫描隧道显微镜(5)谐振法测定仪(6)准静态法测定仪四、实验步骤1. 样品准备:将压电陶瓷样品清洗干净,并用无水乙醇进行脱脂处理。

2. 压电陶瓷性能测试:(1)电容测微仪测试:将压电陶瓷样品固定在电容测微仪上,通过改变直流电压,观察样品的轴向变形和弯曲变形。

(2)谐振法测定:将压电陶瓷样品固定在谐振法测定仪上,测量样品的频率响应曲线和压电耦合系数。

(3)准静态法测定:将压电陶瓷样品固定在准静态法测定仪上,测量样品的压电常数d33。

3. 数据处理与分析:将实验数据输入计算机,进行数据处理和分析,得出压电陶瓷的性能参数。

五、实验结果与分析1. 电容测微仪测试结果:通过电容测微仪测试,得出压电陶瓷样品的轴向变形和弯曲变形与电压的关系曲线。

根据曲线,计算出样品的压电系数。

2. 谐振法测定结果:通过谐振法测定,得出压电陶瓷样品的频率响应曲线和压电耦合系数。

根据曲线,计算出样品的介电常数和损耗角正切。

3. 准静态法测定结果:通过准静态法测定,得出压电陶瓷样品的压电常数d33。

根据测定结果,分析样品的压电性能。

六、实验结论1. 压电陶瓷样品具有良好的压电性能,满足实验要求。

2. 实验过程中,通过电容测微仪、谐振法测定和准静态法测定,分别获得了压电陶瓷样品的轴向变形、弯曲变形、频率响应曲线、压电耦合系数、介电常数、损耗角正切和压电常数等性能参数。

压电陶瓷电特性测试与分析

压电陶瓷电特性测试与分析

摘要:通过对压电陶瓷器件进行阻抗测试可得到压电振子等效电路模型参数与谐振频率。

通过对压电陶瓷器件电容值、温度稳定性、绝缘电阻、介质耐电压等电性能参数进行测量与分析后可知:压电陶瓷器件电特性符合一般电容器特点,所用连接线材在较低频率下寄生电容不明显,在常温下工作较稳定,厚度较厚的产品绝缘性和可靠性指标较好。

关键词:压电陶瓷;等效电路模型;电特性;可靠性0 引言压电陶瓷(Piezoelectric Ceramics,PZT)受到微小外力作用时,能把机械能变成电能,当加上电压时,又会把电能变成机械能。

它通常由几种氧化物或碳酸盐在烧结过程中发生固相反应而形成,其制造工艺与普通的电子陶瓷相似。

与其他压电材料相比,具有化学性质稳定,易于掺杂、方便塑形的特点[1],已被广泛应用到与人们生活息息相关的许多领域,遍及工业、军事、医疗卫生、日常生活等。

利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热释电性可制作人体红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性器件。

通过物理或化学方法制备的PZT、PLZT等铁电薄膜,在电光器件、非挥发性铁电存储器件等有重要用途[2-5]。

为了保护生态环境,欧盟成员国已规定自2006年7月1日起,所有在欧盟市场上出售的电子电气产品设备全部禁止使用铅、水银、镉、六价铬等物质。

我国对生态环境的保护也是相当重视的。

因此,近年来对无铅压电陶瓷进行了重点发展和开发。

但无铅压电陶瓷性能相对于PZT陶瓷来说,总体性能还是不足以与PZT陶瓷相比。

因此,当前乃至今后一段时间内压电陶瓷首选仍将是以PZT为基的陶瓷。

本文将应用逆压电效应以压电陶瓷蜂鸣片为例进行阻抗测试、电容值、绝缘电阻、介质耐电压等电性能参数进行测量与分析。

1 测量参数和实验方法依据目前我国现有的关于压电陶瓷材料的测试标准主要有以下:GB/T 3389-2008 压电陶瓷材料性能测试方法GB/T 6427-1999 压电陶瓷振子频率温度稳定性的测试方法GB/T 16304-1996 压电陶瓷电场应变特性测试方法GB 11387-89 压电陶瓷材料静态弯曲强度试验方法GB 11320-89 压电陶瓷材料性能方法(低机械品质因数压电陶瓷材料性能的测试)GB 11312-89 压电陶瓷材料和压电晶体声表面波性能测试方法GB 11310-89 压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试压电陶瓷蜂鸣片由一块两面印刷有电极的压电陶瓷板和一块金属板(黄铜或不锈钢等)组成。

压电陶瓷压力与应电压曲线测试分析

压电陶瓷压力与应电压曲线测试分析
4、通过改变输入信号的频率和振幅,重复上述实验过程,得到一系列实验 数据;
5、根据实验数据,计算压电陶瓷片的压电常数等参数。
参考内容二
引言
压电陶瓷是一种具有特殊电学性质的陶瓷材料,具有广泛的应用前景,如超 声波探测、医学成像、传感测量等领域。为了更好地发挥压电陶瓷的特性,本次 演示将对压电陶瓷的特性进行详细分析,并通过实验测试探究其性能表现。
实验测试
为了验证压电陶瓷的特性,我们设计了一系列实验测试。首先,我们选取了 一种常见的压电陶瓷材料,按照一定比例制备成试样。接着,我们对试样进行了 静电力学测试,以评估其压电性能。实验过程中,我们将试样置于应变模式下, 通过调节电压,观察试样的形变情况。同时,我们用万用表测量了试样的电阻值, 以评估其绝缘性能。
背景
压电陶瓷是一种可产生压电效应的陶瓷材料。压电效应是指材料在受到机械 应力作用时,会产生电荷,形成电场;或者在电场作用下,会产生机械形变。压 电陶瓷的这种特性使得它成为一种重要的电子材料,可用于各种能量转换和传感 应用。
特性分析
1、特点
压电陶瓷具有许多特点,如高灵敏度、高分辨率、低噪声等。这些特点使得 压电陶瓷在许多领域中具有独特的应用优势。此外,压电陶瓷的响应时间快、温 度稳定性好,可适用于各种复杂环境。
3、通过对比不同温度下的测试结果,发现温度对压电陶瓷材料的压电性能 也有一定影响,高温条件下材料的压电性能会有所提高。
4、在相同压力下,材料的应电压会随着温度的升高而降低,这可能是由于 高温下材料的热膨胀系数发生变化所致。
参考内容
引言
压电陶瓷片是一种具有压电特性的无机非金属材料,具有优异的机电耦合性 能和频率稳定性。压电陶瓷片的压电特性是指其在受到机械应力时会产生电场, 反之,在电场作用下会产生机械形变。这种特性被广泛应用于超声波换能器、振 动传感器、音频设备等众多领域。本次演示将介绍一种测试与分析压电陶瓷片压 电特性的方法,以期为相关领域的研究与应用提供参考。

压电陶瓷的测试-

压电陶瓷的测试-

第二章压电陶瓷测试2.4 NBT基陶瓷的极化与压电性能测试2.4.1 NBT基陶瓷的极化1. 试样的制备为对压电陶瓷进行极化和性能测试,烧结后的陶瓷需要进行烧银处理。

烧银就是在陶瓷的表面上涂覆一层具有高导电率,结合牢固的银薄膜作为电极。

电极的作用有两点:(1)为极化创造条件,因为陶瓷本身为强绝缘体,而极化时要施加高压电场,若无电极,则极化不充分;(2)起到传递电荷的作用,若无电极则在性能测试时不能在陶瓷表面积聚电荷,显示不出压电效应。

首先将烧结后的圆片状样品磨平、抛光,使两个平面保持干净平整。

然后在样品的表面涂覆高温银浆(武汉优乐光电科技有限公司生产,型号:SA-8021),并在一定温度干燥。

将表面涂覆高温银浆的样品放入马弗炉进行处理,慢速升温到320~350℃,保温15min以排除银浆中的有机物,快速升温到820℃并保温15min后随炉冷却,最后将涂覆的银电极表面抛光。

2. NBT基压电材料的极化利用压电材料正负电荷中心不重合,对烧成后的压电陶瓷在一定温度、一定直流电场作用下保持一定的时间,随着晶粒中的电畴沿着电场的择优取向定向排列,使压电陶瓷在沿电场方向显示一定的净极化强度,这一过程称为极化[70]。

极化是多晶铁电、压电陶瓷材料制造工艺中的重要工序,压电陶瓷在烧结后是各向同性的多晶体,电畴在陶瓷体中的排列是杂乱无章的,对陶瓷整体来说不显示压电性。

经过极化处理后,陶瓷转变为各向异性的多晶体,即宏观上具有了极性,也就显示了压电性。

对于不同类型的压电陶瓷,进行合适的极化处理才能充分发挥它们最佳的压电特征。

决定极化条件的三个因素为极化电压、极化温度和极化时间。

为了确定NBT基压电材料的最佳极化条件,本文采用硅油浴高压极化装置(华仪电子股份有限公司生产,型号:7462)详细研究了样品的极化行为,并确定了最佳的极化条件。

2.4.2 NBT基陶瓷的压电性能测试1.压电振子及其等效电路图2.11 压电振子的等效电路利用压电材料的压电效应,可以将其按一定取向和形状制成有电极的压电器件。

无铅压电陶瓷实验报告

无铅压电陶瓷实验报告

一、实验目的本实验旨在探究无铅压电陶瓷的制备工艺、性能测试及其在压电应用中的潜在价值。

通过实验,了解无铅压电陶瓷的物理化学性质,掌握其制备过程,并评估其在压电性能方面的表现。

二、实验材料与设备1. 实验材料:- 钛酸铋钠(Na0.5Bi0.5TiO3,简称NBT)- 钛酸锶钡(BaxSr1-xTiO3,简称BST)- 氧化铋(Bi2O3)- 氧化钡(BaO)- 氧化钠(Na2O)- 氧化钾(K2O)- 氧化锂(Li2O)2. 实验设备:- 搅拌机- 烧结炉- 压电测试仪- 扫描电子显微镜(SEM)- X射线衍射仪(XRD)- 能量色散谱仪(EDS)三、实验步骤1. 粉体合成:将上述原料按一定比例混合,在搅拌机中充分混合均匀,制备成粉末。

2. 烧结:将混合好的粉末装入模具,在烧结炉中加热至一定温度,保温一段时间后冷却。

3. 性能测试:利用压电测试仪测试样品的压电性能,包括介电常数、介电损耗、压电系数等。

利用SEM、XRD和EDS分析样品的微观结构和物相组成。

四、实验结果与分析1. 介电性能:实验结果表明,NBT基无铅压电陶瓷具有较高的介电常数(εr=1000-3000),介电损耗较低(tanδ=0.001-0.02),表现出良好的介电性能。

2. 压电性能:实验结果表明,NBT基无铅压电陶瓷具有较高的压电系数(d33=300-500pC/N),在压电应用中具有较高的潜力。

3. 微观结构:SEM结果表明,样品具有良好的晶粒结构,晶粒尺寸约为1-2 μm。

XRD结果表明,样品主要由NBT相组成,并伴有少量其他相。

EDS结果表明,样品中元素分布均匀。

4. 性能优化:通过调整原料比例、烧结温度等参数,可以进一步优化无铅压电陶瓷的性能。

例如,增加氧化铋的含量可以提高材料的压电系数,降低烧结温度可以缩短烧结时间。

五、结论本实验成功制备了NBT基无铅压电陶瓷,并对其性能进行了测试。

结果表明,NBT基无铅压电陶瓷具有较高的介电常数、压电系数和良好的微观结构,具有在压电应用中的潜力。

压电陶瓷片压电特性的测试与分析

压电陶瓷片压电特性的测试与分析

1 概述振动在周围环境中无处不在,振动机械能不仅是一种较普遍的能源形式,而且该能源是一种清洁的能源,如果可以将这些振动形式的能量转换为电能加以收集存储供随后使用,就可以将这种取之不尽的能源用于实际的工程当中,解决一些能源问题[1]。

目前微机电技术、材料科学、微电子技术、计算机技术等各领域科技最近几年得到快速发展,使得研究对象和产品结构和部件的尺寸变得越来越小,同时需求量变得越来越大,使得精密仪器对特殊形状的压电陶瓷片需求越来越多,压电陶瓷的应用形式也越来越广[2]。

本文将在不同外界压力作用下,对压电陶瓷元件的电气参数进行测试与分析。

2 压电陶瓷性能简介目前国内外已有对压电陶瓷压电特性进行的研究,并取得了一定成果。

1880年Pierre Curie 和Jacques Curie 在实验中发现了压电效应(在机械外力作用下,介质内部正负电荷中心发生相对位移而引起极化,由机械效应转化为电效应),1881年他们又通过实验验证了逆压电效应(加反向电场,陶瓷片沿极化方向缩短。

这种由于电效应转变成机械效应的现象是逆压电效应)的存在[3]。

压电陶瓷的力输出特性和其位移输出特性是分不开的,针对电陶瓷的位移输出特性,1998年,哈工大张涛等在论文中提出陶瓷是具有有限刚度的弹性体,在受到外力后要被压缩。

压电陶瓷位移输出和电压之间的关系是:随电压增大,位移输出也增大,力输出和位移输出的关系是;随位移输出的增大,力输出减小[4,5]。

压陶瓷的输出力和位移的关系曲线表明在空载的情况下压电陶瓷的输出位移为最大输出位移,在最大输出力的作用下,压电陶瓷的位移输出将为零[6]。

由于迟滞、蠕变等因素的影响,难以用一种统一的数学模型来准确的描述它[7]常见的描述有Preisach 模型[8-9]Prandtle-Ishlinskii 模型[10-11],Maxwell 模型[12] 。

是从现象的角度描述其位移输出特性。

因此受到位移输出复杂性的影响,其力输出特性的描述也变的相当的复杂。

[2017年整理]实验十一压电陶瓷介电性能测定--4-13日修改

[2017年整理]实验十一压电陶瓷介电性能测定--4-13日修改

实验十一 压电陶瓷介电性能测定实验名称:压电陶瓷介电性能测定 实验项目性质:普通实验 所涉及课程:电子材料 计划学时:2学时 一 、实验目的1. 通过实验了解电介质介电常数与介质损耗角正切tgδ 的概念和物理意义;2. 熟悉用LCR 型电桥测量电容器的电容量及介质损耗角正切的方法;3. 通过实验了解不同类型的介质材料其tgδ随频率的变化特性。

二、实验内容1. 实验老师介绍使用TH2810B 系列LCR 型电桥;2. 测试压电陶瓷的介电常数。

三、实验(设计)仪器设备和材料清单TH2810B 系列LCR 型电桥、压电陶瓷晶片、千分尺等。

四、实验原理根据电介质理论,各种电介质在电场作用下都要发生极化过程,其宏观表现可以用电介质的介电系数来表征。

不同类型的介质材料,由于发生极化的微观机制不同,不仅数值有明显差别,而且与频率的关系也有很大不同。

同样地,由于产生介质损耗的来源不同,各类电介质的tg δ数值及其与频率的关系都表现出各不相同的特点。

实验时,选用要测定的电介质制成电容器作为测量样品,利用LCR 电桥直接测定电容量和损耗角正切值的大小以及与频率的关系,研究介质的极化特性。

在已知样品直径(d )和电介质厚度(t )的条件下,由公式204/r Ct d επε=--C -电容(F ),t 样品厚度(m ),d -样品直径(m ),ε0-真空介电常数8.85×10-12(F/m )。

就能计算出相应的介电系数 。

测试不同频率下电介质的介电系数和损耗角正切tgδ,常用电桥法,其工作原理如图11-1所示。

将试样等效成电容C X 和电阻R X 并联,调节R 4和C N ,使电桥平衡,根据平衡条件可求得:改变测试频率,可获得不同频率下的介电系数和损耗角正切。

其中C N 、R 3为已知标准平衡元件。

图11-1 电桥法测试原理五、实验步骤利用TH2810B系列LCR型电桥测试。

1.用游标卡尺测量样品的厚度t和直径d。

压电陶瓷特性实验报告

压电陶瓷特性实验报告

压电陶瓷特性实验报告压电陶瓷特性实验报告引言压电陶瓷是一种能够在外力作用下产生电荷的材料,具有广泛的应用领域。

本实验旨在研究压电陶瓷的特性,包括压电效应、介电特性和机械特性等方面。

通过实验,我们可以更深入地了解压电陶瓷的性能和应用潜力。

实验一:压电效应在这个实验中,我们使用了一块压电陶瓷片和一台压电仪器。

首先,我们将压电陶瓷片固定在仪器上,并施加一定的压力。

随后,我们观察到仪器上显示的电压值随着施加的压力而变化。

这说明压电陶瓷具有压电效应,即在外力作用下会产生电荷。

实验二:介电特性为了研究压电陶瓷的介电特性,我们使用了一台电容测试仪。

首先,我们将压电陶瓷片固定在测试仪上,并连接电源。

随后,我们通过改变电源的电压,观察到测试仪上显示的电容值的变化。

这表明压电陶瓷在电场作用下会发生介电极化,导致电容值的变化。

实验三:机械特性在这个实验中,我们使用了一台拉伸试验机。

我们将压电陶瓷片固定在试验机上,并施加一定的拉伸力。

通过改变施加的力大小,我们观察到压电陶瓷片的形变情况。

同时,我们还测量了形变量与施加力的关系。

结果显示,压电陶瓷具有良好的机械特性,能够在外力作用下发生可逆的形变。

实验四:应用潜力通过以上实验的结果,我们可以看出压电陶瓷具有多种特性,具备广泛的应用潜力。

例如,在传感器领域,压电陶瓷可以用于测量压力、温度和加速度等参数。

此外,在声学领域,压电陶瓷可以用于扬声器和麦克风等设备。

还有一些其他领域,如医疗、能源和通信等,也可以应用压电陶瓷技术。

结论通过本次实验,我们深入了解了压电陶瓷的特性。

压电效应、介电特性和机械特性是压电陶瓷的重要特性,为其在多个领域的应用提供了基础。

压电陶瓷的应用潜力巨大,可以为现代科技的发展做出重要贡献。

我们相信,在进一步研究和技术创新的推动下,压电陶瓷将在未来得到更广泛的应用。

压电陶瓷实验报告

压电陶瓷实验报告

压电陶瓷实验报告压电陶瓷微位移性能测量实验报告一、实验目的:1、了解压电陶瓷的性能参数;2、了解电容测微仪的工作原理,掌握电容测微仪的标定方法;3、掌握压电陶瓷微位移测量方法;二、实验仪器:电容测微仪一台:型号JDC-2000测微台架一台:型号BCT-5C,斜度1:50直流调压器一台:电压量程(0~300V)标定平铁板一块压电陶瓷管一根三、实验原理:(一)利用测微台架标定电容测微仪在测微台架的台架上放置一金属平板,将电容测微仪探头用测微台架夹紧,使探头的端面与平板平行,见图1,移动测微台架的旋钮,分别读出测微仪移动示值和电容测微仪的示值。

这样得到一组数据即可对电容测微仪进行标定。

图1 电容侧微仪标定原理图(二)用标定后的电容测微仪测量压电陶瓷管的线性度在电容测微仪的线性区(对应机械标定仪的某个位置),通过可调直流电源按一定间隔改变直流电压(见图2),分别对压电陶瓷加压,使之分别产生轴向变形(见图3)和弯曲变形(见图4),从而得到压电陶瓷的伸长与偏转量与施加其上的电压的关系。

图2 可调高压电源图3 测压电陶瓷轴向伸缩图4测压电陶瓷侧向弯曲四、实验步骤(一)标定电容测微仪的线性度1、实验前,了解实验原理及其实验注意事项,并检查实验仪器是否齐全。

2、使用仪器前,将传感器端面与被测物(标定平铁板)表面用汽油认真清洗干净,以清洗掉杂质及灰尘微粒;而后将电源线和传感器与电缆分别连接好并拧紧。

3、将标定平铁板安放在测微台架的台架上,而后用夹具将电容传感器探头夹紧,接着上下调整探头使探头与标定平铁板距离接近测量区。

4、为便于进行数据分析,可将测微台架示值调至某一合适值,并将电容测微仪示值调零,而后进行实验;实验采用一人细调(等间距)测微台架,另一人记录的方式,为了标定线性区,测定线性误差,调值采用先等间距调至140μm,再等间距调回的方法。

(为了节约时间,调值范围为0~140μm,调值间距为5μm,共计读29个数。

天津大学工程光学实验——压电陶瓷特性测量

天津大学工程光学实验——压电陶瓷特性测量

d 2 1 2nL
光程差没变化一个波长干涉条纹就明暗变化一次,则测量过程中 d 相对 应的干涉条纹变化次数为
实验内容 1. 推导出位移 L 和条纹变化数 N 的关系式。 2. 测量位移 L 与电压 U 的关系,并表述 U-L 曲线。 3. 计算出最大位移量 Lmax。 实验要求 1. 调整激光器使光束与平台平行,并进行扩束。
位移l和条纹变化数n的推导设在测量开始时一束激光经分光器g分成两束它们经参考反射镜m1和目标反射镜m2后沿原路返回并在分光电处重新相遇两束光的光程差为为目标反射镜m2到分光点的距离为参考镜m1到分光点的距离
天津大学本科生实验报告ห้องสมุดไป่ตู้
课程名称:压电陶瓷特性测量 实验二
一、 实验目的
姓名:
学号:
学院:精仪学院
Lmax 10.76 m
1. 通过实验掌握激光测长仪的基本工作原理; 2. 掌握搭设激光光路的基本方法与技巧; 3. 学会用干涉方法测量微小位移。 二、 实验原理 测量位移是迈克尔逊干涉仪的典型应用,测量原理如图-1 所示。 由 He-Ne 激光器发出的光 经分光镜 G 后,光束被分成两 路,反射光射向参考镜 M1(固 定) , 透射光射向测量镜 M2 (可 移动) ,两路光分别经 M1、M2
N
式中 0 为激光光波中心波长。
d 2nL 0 0
天津大学本科生实验报告
课程名称:压电陶瓷特性测量 姓名: 学号: 学院:精仪学院
五、 思考题 实验原理光路中未加补偿镜,为什么?请说明原因。 答:由于实验中使用单色光,光程损失可以通过调节参考反射镜的位置进行 补偿,这样就可以免去补偿镜。
反射后,在接受屏 P 处产生干涉,通过测出条纹的变化数可计算出位移量, 这就是激光测长仪的基本原理。 三、 实验仪器

压电陶瓷实验报告

压电陶瓷实验报告
压电陶瓷实验报告
压电陶瓷实验报告
引言
压电陶瓷作为一种重要的功能材料,在电子、声学、光学等领域有着广泛的应用。本次实验旨在研究压电陶瓷的基本性质和应用,并通过实验验证压电效应的存在。
实验一:压电效应的观察
在这个实验中,我们使用了一块压电陶瓷片,并将其固定在一块金属基座上。通过连接电源,我们可以对陶瓷片施加压力。实验中,我们使用了一个示波器来记录压电陶瓷片的振动情况。
实验结果显示,当施加压பைடு நூலகம்时,压电陶瓷片开始振动,并产生电压信号。这就是压电效应的基本原理。压电陶瓷的晶格结构使其能够将机械能转化为电能,从而产生电压。
实验二:压电陶瓷的应用
在这个实验中,我们探索了压电陶瓷在声学领域的应用。我们将压电陶瓷片固定在一个共振腔内,并通过连接电源施加电压。实验结果显示,当施加电压时,压电陶瓷片开始振动,并产生声波。
这种应用被广泛用于传感器和振动马达等设备中。压电陶瓷可以将机械能转化为电能,并产生电压信号,从而实现电子设备的工作。
结论
通过这次实验,我们深入了解了压电陶瓷的基本性质和应用。压电陶瓷作为一种功能材料,在电子、声学、光学等领域有着广泛的应用前景。压电效应的存在使得压电陶瓷能够将机械能转化为电能,并产生电压信号,从而实现各种设备的工作。
这种应用被广泛用于扬声器和超声波传感器等设备中。压电陶瓷的振动频率可以通过施加的电压来调节,从而实现不同频率的声波产生。
实验三:压电陶瓷的应用
在这个实验中,我们研究了压电陶瓷在电子领域的应用。我们将压电陶瓷片固定在一个电路板上,并通过连接电源施加电压。实验结果显示,当施加电压时,压电陶瓷片产生电压信号。
尽管本次实验只是简单地介绍了压电陶瓷的基本原理和应用,但我们相信,通过进一步的研究和实验,我们可以发现更多压电陶瓷的潜在用途,并为各个领域的技术发展做出贡献。

压电陶瓷报告

压电陶瓷报告

项目编号0912011411自然科学√项目分类社会科学中国海洋大学本科生研究发展计划(OUC-SRDP)项目研究报告项目名称:钛酸铋钠基无铅压电陶瓷材料的溶胶-凝胶法制备及电性能研究负责人:杜乘风所在学院:材料科学与工程研究院专业年级:2007级材料化学指导教师: 戴金辉起止年月:2009 年06 月至2010 年04 月1.文献综述1.1 压电陶瓷压电铁电陶瓷是功能陶瓷中应用广泛的一类,铁电性应用在存储器、记忆器等领域、压电性应用在换能器、驱动器、声表面波器件等领域,热释电应用在探测器、报警器、焦平面列阵等领域,介电应用在电容器、传感器等领域。

包括电容器陶瓷在内的压电铁电陶瓷,其世界市场份额占整个功能陶瓷的三分之一。

压电陶瓷,是一种能够将机械能和电能互相转换的功能陶瓷材料,即是一种具有压电效应的材料。

在能量转换方面,利用压电陶瓷将机械能转换成电能的特性,可以制造出压电点火器、移动X光电源、炮弹引爆装置。

电子打火机中就有压电陶瓷制作的火石,打火次数可在100万次以上。

用压电陶瓷把电能转换成超声振动,可以用来探寻水下鱼群的位置和形状,对金属进行无损探伤,以及超声清洗、超声医疗,还可以做成各种超声切割器、焊接装置及烙铁,对塑料甚至金属进行加工。

压电陶瓷具有敏感的特性,可以将极其微弱的机械振动转换成电信号,可用于声纳系统、气象探测、遥测环境保护、家用电器等。

地震是毁灭性的灾害,而且震源始于地壳深处,以前很难预测,使人类陷入了无计可施的尴尬境地。

压电陶瓷对外力的敏感使它甚至可以感应到十几米外飞虫拍打翅膀对空气的扰动,用它来制作压电地震仪,能精确地测出地震强度,指示出地震的方位和距离。

这不能不说是压电陶瓷的一大奇功。

压电陶瓷在电场作用下产生的形变量很小,最多不超过本身尺寸的千万分之一,但基于这个原理制做的精确控制机构--压电驱动器,对于精密仪器和机械的控制、微电子技术、生物工程等领域都是一大福音。

谐振器、滤波器等频率控制装置,是决定通信设备性能的关键器件,压电陶瓷在这方面具有明显的优越性。

(完整版)实验二:压电材料的压电常数d33测试

(完整版)实验二:压电材料的压电常数d33测试

F F F-++-F Q压电介质正压电效应逆压电效应机械能电能图2 压电效应的可逆性压电式传感器大都采用压电材料的正压电效应制成。

大多数晶体都具有压电效应,而多数晶体的压电效应都十分微弱。

2、压电陶瓷的压电效应压电陶瓷是一种经过极化处理后的人工多晶铁电体。

多晶是指它由无数细微的单晶组成,所谓铁电体是指它具有类似铁磁材料磁畴的电畴结构,每个单晶形成一单个电畴,这种自发极化的电畴在极化处理之前,个晶粒内的电畴按任意方向排列,自发极化的作用相互抵消,陶瓷的极化强度为零,因此,原始的压电陶瓷呈现各向同性而不具有压电性。

为使其具有压电性,就必须在一定温度下做极化处理。

图3 陶瓷极化过程示意图 图4 束缚电荷与自由电荷排列示意图所谓极化处理,是指在一定温度下,以强直流电场迫使电畴自发极化的方向转到与外加电场方向一致,作规则排列,此时压电陶瓷具有一定的极化强度,再使温度冷却,撤去电场,电畴方向基本保持不变,余下很强的剩余极化电场,从而呈现压电性,即陶瓷片的两端出现束缚电荷,一端为正,另一端为负。

如图3所示。

由于束缚电荷的作用,在陶瓷片的极化两端很快吸附一层来自外界的自由电荷,这时束缚电荷与自由电荷数值相等,极性相反,故此陶瓷片对外不呈现极性。

如图4所示。

如果在压电陶瓷片上加一个与极化方向平行的外力,陶瓷片产生压缩变形,片内的束缚电荷之间距离变小,电畴发生偏转,极化强度变小,因此吸附在其表面的自由电荷,有一部分被释放而呈现放电现象。

当撤销压力时,陶瓷片恢复原状,极化强度增大,因此又吸附一部分自由电荷而出现充电现象。

这种因受力而产生的机械效应转变为电效应,将机械能转变为电能,就是压电陶瓷的正压电效应。

放电电荷的多少与外力成正比例关系33q d F (1)其中33d 是压电陶瓷的压电系数,F 为作用力。

图5 静态法测量压电常数装置图测量时,为了避免施加力F3时会有附加冲击力而引起测量误差,一般加压时会合上电键K1,使样品短路而清除加压所产生的电荷。

压电陶瓷压电性能测定实验报告

压电陶瓷压电性能测定实验报告

广东工业大学实验报告学院电子科学与技术(电子信息材料及元器件)专业班成绩评定学号姓名(号)教师签名十二题目:压电陶瓷压电性能测定第周星期一、实验目的iv. 了解压电常数的概念和意义;v. 掌握压电陶瓷压电常数的测定方法。

vi. 学会操作ZJ-3AN 型准静态d33 测量仪。

二、实验内容1. 实验老师介绍使用压电常数测量仪测试d33 的原理与步骤;2. 测试压电陶瓷的压电常数。

三、实验(设计)仪器设备和材料清单ZJ-3AN 型准静态d33 测量仪、压电陶瓷晶片等。

四、实验原理压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,是一种具有压电效应的材料。

当在某一特定方向对晶体施加应力时,在与应力垂直方向两端表面能出现数量相等、符号相反的束缚电荷,这一现象被称为“正压电效应”。

逆压电效应:当一块具有压电效应的晶体置于外电场中,由于晶体的电极化造成的正负电荷中心位移,导致晶体形变,形变量与电场强度成正比。

压电常数是反映力学量(应力或应变)与电学量(电位移或电场)间相互耦合的线性响应系数。

通常用d ij 表示,下标中第一个数字代表电场方向或电极面的垂直方向,第二个数字代表应力或应变方向。

五、实验步骤1. 用两根多芯电缆把测量头和仪器本体连接好,接通电源;2. 把Φ20 尼龙片插入测量头的上下探头之间,调节手轮,使尼龙片刚好压住为止;3. 把仪器后面板上的“显示选择” 开关置于“d33” 一侧,此时面板右上方绿灯亮;4. 把仪器后面板上的“量程选择” 开关置于“×1” 档;5. 按下“快速模式”,仪器通电预热10 分钟后,调节“调零” 旋钮使面板表指电子科学与技术专业实验指导书126示在“0” 与“-0” 之间跳动。

调零即完成,撤掉尼龙片开始测量。

6. 依次接入待测元件,表头显示d33 结果及正负极性,记录于表12-1。

7. 取三次测量的平均值。

六、实验数据测试与记录。

PZT陶瓷的压电性能测试实验报告

PZT陶瓷的压电性能测试实验报告

测量头原理示意图
4. PZT压电陶瓷d33的测量
4. PZT压电陶瓷d33的测量
3.操作方法
3.1 测试前的准备工作
3.1.1 用两根多芯电缆把测量头和仪器本体连接好,接通电源。 3.1.2 把附件盒内的Φ20尼龙片插入测量头得上下探头之间,调节 手轮,是尼龙片刚好压住为止。 3.1.3 把仪器后面板上的“显示选择”开关置于“d33”一侧,此时 前面板上右上方绿灯亮。 3.1.4 仪器后面板设有“量程选择”开关,可根据需要选择。一般 置于“×1”档即可,如材料的d33值较低可置于“×0.1”档;但两档要 分别为零。 3.1.5 按下“快速模式”,仪器通电预热10分钟后,调节“凋零” 旋钮使面板表指示在“0”与“-0”之间跳动,跳动即完成,撤掉尼龙片 开始测量。凋零一律在“快速模式”下进行,为减少测量误差,在测 量过程中零点如有变化或换档时,需要从新凋零。
快速模式即连续测量,被测元件均为极化后已放置一点时间并已彻 底放电后的试样,此时“放电提示”红色发光二极管闪烁,随时提醒 操作人员首先对压电元件放电后再进行测量,以避免损坏仪器。选择 “快速模式”测量,每更换一个被测元件,表头会迅速显示d33结果及 正负极性。
3.4“安全模式”测量
对于刚刚极化完的压电试样,在短时间内,即使多次放电也很难彻 底放完,压电试样上仍然会存在少则几千伏,多则几万伏的电压。选 择“安全模式”可使仪器在测量过程中能自动对被测元件进行放电, 以确保仪器安全。在插入被测试样后,放电过程开始并自动完成,此 时表头指示为零,按下“测量触发”键,表头才能显示出测量结果。 每测一只元件,都要重复一次上述过程。在“安全模式”状态下, “放电提示”指示灯熄灭,“测量触发”按钮内的绿色发光二极管一 直点亮。
PZT压电陶瓷的制备及其d33 的测试

实验二:压电材料的压电常数d33测试

实验二:压电材料的压电常数d33测试

F F F-++-F Q压电介质正压电效应逆压电效应机械能电能图2 压电效应的可逆性压电式传感器大都采用压电材料的正压电效应制成。

大多数晶体都具有压电效应,而多数晶体的压电效应都十分微弱。

2、压电陶瓷的压电效应压电陶瓷是一种经过极化处理后的人工多晶铁电体。

多晶是指它由无数细微的单晶组成,所谓铁电体是指它具有类似铁磁材料磁畴的电畴结构,每个单晶形成一单个电畴,这种自发极化的电畴在极化处理之前,个晶粒内的电畴按任意方向排列,自发极化的作用相互抵消,陶瓷的极化强度为零,因此,原始的压电陶瓷呈现各向同性而不具有压电性。

为使其具有压电性,就必须在一定温度下做极化处理。

图3 陶瓷极化过程示意图图4 束缚电荷与自由电荷排列示意图所谓极化处理,是指在一定温度下,以强直流电场迫使电畴自发极化的方向转到与外加电场方向一致,作规则排列,此时压电陶瓷具有一定的极化强度,再使温度冷却,撤去电场,电畴方向基本保持不变,余下很强的剩余极化电场,从而呈现压电性,即陶瓷片的两端出现束缚电荷,一端为正,另一端为负。

如图3所示。

由于束缚电荷的作用,在陶瓷片的极化两端很快吸附一层来自外界的自由电荷,这时束缚电荷与自由电荷数值相等,极性相反,故此陶瓷片对外不呈现极性。

如图4所示。

如果在压电陶瓷片上加一个与极化方向平行的外力,陶瓷片产生压缩变形,片内的束缚电荷之间距离变小,电畴发生偏转,极化强度变小,因此吸附在其表面的自由电荷,有一部分被释放而呈现放电现象。

当撤销压力时,陶瓷片恢复原状,极化强度增大,因此又吸附一部分自由电荷而出现充电现象。

这种因受力而产生的机械效应转变为电效应,将机械能转变为电能,就是压电陶瓷的正压电效应。

放电电荷的多少与外力成正比例关系33q d F(1)图5 静态法测量压电常数装置图测量时,为了避免施加力F3时会有附加冲击力而引起测量误差,一般加压时会合上电键K1,使样品短路而清除加压所产生的电荷。

去压时先打开电键K1,使样品上所产生的电荷全部释放到电容上,用静电计测其电压V3(伏),用下式求出:Q3=(Co+C1)V3 (1-40)式中,C3为样品的静电容(法);C为外加并联电容(法),V3为电压(伏)。

最新压电陶瓷制备与测试试验报告

最新压电陶瓷制备与测试试验报告

精品文档压电陶瓷制备与测试实验报告一、实验要求1、了解压电陶瓷的基本性能、结构、用途、制备方法。

2、了解压电陶瓷常见的表征方法及检测手段。

3、掌握压电陶瓷材料压电、介电性能等性能测试方法。

4、掌握压电陶瓷的性能分析方法。

二、压电陶瓷材料制备过程主要包括以下步骤:配料-混合-预烧-粉碎-成型-排胶-烧结-被电极-极化-测试。

1、配料:Bi2O3···14.1244113464136 Sc2O3···4.13930659262249PbO···23.339070300907 TiO2···8.397211760056962、原料选用纯度高、细度小和活性大的粉料,根据配方或分子式选择所用原料,并按原料纯度进行修正计算,然后进行原料的称量。

按化学配比配料以后,使用行星式球磨机将各种配料混合均匀。

实验室常采用的是水平方向转动球磨方式,震动球磨是另一种常用的球磨方法,此外还有气流粉碎法等混合方法。

3、混合球磨后的原料进行预烧。

预烧是使原料间发生固相化学反应以生成所需产物的过程,预烧过程中应注意温度和保温时间的选择。

将预烧反应后的材料使用行星式球磨机粉碎。

4、成型的方法主要有四种;轧膜成型、流延成型、干压成型和静水压成型。

轧膜成型适用于薄片元件;流延成型适合于更薄的元件,膜厚可以小于10 m;干压成型适合于块状元件;静水压成型适合于异形或块状元件。

除了静水压成型外,其他成型方法都需要有粘合剂,粘合剂一般占原料重量的3%左右。

成型以后需要排胶。

粘合剂的作用只是利于成型,但它是一种还原性强的物质,成型后应将其排出以免影响烧结质量。

5、烧结是将坯体加热到足够高的温度,使陶瓷坯体发生体积收缩、密度提高和强度增大的过程。

烧结过程的机制是组成该物质的原子的扩散运动。

烧结的推动力是颗粒或者晶粒的表面能,烧结过程主要是表面能降低的过程。

压电陶瓷材料实验报告

压电陶瓷材料实验报告

一、实验目的1. 了解压电陶瓷材料的基本特性和应用领域。

2. 掌握压电陶瓷材料的制备方法及性能测试技术。

3. 分析压电陶瓷材料的性能与结构之间的关系。

二、实验原理压电陶瓷材料是一种具有压电效应的无机非金属材料,其基本原理是在外部机械力的作用下,内部产生电荷,从而实现机械能与电能之间的相互转换。

压电陶瓷材料具有高介电常数、高介电损耗、高压电系数等特性,广泛应用于声学、光电子、传感器、驱动器等领域。

三、实验材料与仪器1. 实验材料:PZT(锆钛酸铅)压电陶瓷材料。

2. 实验仪器:(1)高温烧结炉:用于压电陶瓷材料的烧结。

(2)X射线衍射仪(XRD):用于分析压电陶瓷材料的晶体结构。

(3)扫描电子显微镜(SEM):用于观察压电陶瓷材料的微观结构。

(4)压电系数测试仪:用于测试压电陶瓷材料的压电系数。

(5)介电性能测试仪:用于测试压电陶瓷材料的介电常数和介电损耗。

四、实验步骤1. 压电陶瓷材料的制备(1)将PZT粉末与适量粘结剂混合,制成浆料。

(2)将浆料涂覆在陶瓷基板上,形成压电陶瓷薄膜。

(3)将压电陶瓷薄膜放入高温烧结炉中,进行烧结,烧结温度为850℃左右,保温时间为2小时。

2. 压电陶瓷材料的性能测试(1)X射线衍射分析:对烧结后的压电陶瓷材料进行XRD分析,确定其晶体结构。

(2)扫描电子显微镜分析:对压电陶瓷材料进行SEM分析,观察其微观结构。

(3)压电系数测试:利用压电系数测试仪测试压电陶瓷材料的压电系数。

(4)介电性能测试:利用介电性能测试仪测试压电陶瓷材料的介电常数和介电损耗。

五、实验结果与分析1. X射线衍射分析(1)通过XRD分析,确定压电陶瓷材料的晶体结构为PZT相。

(2)分析压电陶瓷材料的晶体结构特点,如晶胞参数、晶粒尺寸等。

2. 扫描电子显微镜分析(1)通过SEM分析,观察压电陶瓷材料的微观结构,如晶粒尺寸、晶界、孔隙等。

(2)分析压电陶瓷材料的微观结构对性能的影响。

3. 压电系数测试(1)测试压电陶瓷材料的压电系数,确定其性能。

陶瓷电性能的测定 (压电陶瓷d33的测定)

陶瓷电性能的测定 (压电陶瓷d33的测定)

3、准静态法:保留了动态法和静态法测量的优点,对被测试样形 状尺寸的要求放得很宽(片状、柱状、条状、圆管状、圆环状 甚至是半球壳等各种形状、尺寸的试样均能测量),其实用性 更强。此外还具有测量范围宽,分辨率细,可靠性高,操作简 单快捷等诸多特点。
二、实验原理:
仪器发出电驱动信号,使测试头内的电磁驱动
四、实验步骤:
1、用两根多芯电缆把测量头和仪器本体连接好,接 通电源。 2、把附件盒内的Φ20尼龙片插入测量头的上下探头 之间,调节手轮,使尼龙片刚好压住为止。 3、把仪器后面板上的“显示选择”开关置于“d33”一 侧,此时前面板右上方绿灯亮;“量程选择”开关 一般置于“×1”档即可。 4、按下“快速模式”,仪器通电预热10分钟后,调 节“调零”旋钮使面板指示在“0”与“-0”之间跳 动,调零即完成,撤掉尼龙片开始测量。调零一律 在“快速模式”下进瓷电性能的测定
(压电陶瓷d33的测定)
压电常数d33是压电陶瓷重要的特性参数 之一,它是压电介质把机械能(或电能)转换 为电能(或机械能)的比例常数,反映了应力 或应变和电场或电位移之间的联系,直接反映 了材料机电性能的耦合关系和压电效应的强弱。
一、测试方法:
1、动态法:压电常数精度高,但对被测试样的形状、尺寸有严格 的限制,测量方法也非常烦琐,同时还存在无法测得试样极性 的缺陷; 2、静态法:操作比较简单,还能同时测出被测试样的压电常数值 和极性,但对被测试样的形状、尺寸要求也比较苛刻,特别是 由于静态法测量中所施加的作用力较大以及压电材料固有的非 线性现象和热释电效应,造成测量误差较大,测试结果可信度 差。
部分产生一个约0.25牛顿,频率为110赫兹的低频
交变力,通过上下探头加到被测试样和内部的比较 样品上,由于两者在力学上串联,因而所受到的交 变力相等。由正压电效应产生出的两个压电电信号 再由仪器处理后,即显示其d33值和极性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东工业大学实验报告
学院电子科学与技术(电子信息材料及元器件)专业班成绩评定
学号姓名(号)教师签名
十二题目:压电陶瓷压电性能测定第周星期
一、实验目的
iv. 了解压电常数的概念和意义;
v. 掌握压电陶瓷压电常数的测定方法。

vi. 学会操作ZJ-3AN 型准静态d33 测量仪。

二、实验内容
1. 实验老师介绍使用压电常数测量仪测试d33 的原理与步骤;
2. 测试压电陶瓷的压电常数。

三、实验(设计)仪器设备和材料清单
ZJ-3AN 型准静态d33 测量仪、压电陶瓷晶片等。

四、实验原理
压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,是一种具有
压电效应的材料。

当在某一特定方向对晶体施加应力时,在与应力垂直方向两端表面能出现数
量相等、符号相反的束缚电荷,这一现象被称为“正压电效应”。

逆压电效应:当一块具有压电效应的晶体置于外电场中,由于晶体的电极化
造成的正负电荷中心位移,导致晶体形变,形变量与电场强度成正比。

压电常数是反映力学量(应力或应变)与电学量(电位移或电场)间相互耦
合的线性响应系数。

通常用d ij 表示,下标中第一个数字代表电场方向或电极面的垂直方向,第二个数字代表应力或应变方向。

五、实验步骤
1. 用两根多芯电缆把测量头和仪器本体连接好,接通电源;
2. 把Φ20 尼龙片插入测量头的上下探头之间,调节手轮,使尼龙片刚好压住为
止;
3. 把仪器后面板上的“显示选择” 开关置于“d33” 一侧,此时面板右上方绿灯
亮;
4. 把仪器后面板上的“量程选择” 开关置于“×1” 档;
5. 按下“快速模式”,仪器通电预热10 分钟后,调节“调零” 旋钮使面板表指
电子科学与技术专业实验指导书
126
示在“0” 与“-0” 之间跳动。

调零即完成,撤掉尼龙片开始测量。

6. 依次接入待测元件,表头显示d33 结果及正负极性,记录于表12-1。

7. 取三次测量的平均值。

六、实验数据测试与记录。

相关文档
最新文档