信号与系统陈后金版答案

合集下载

信号与系统考题参考解答(完整版)

信号与系统考题参考解答(完整版)

《信号与系统》作业参考解答第一章(P16-17)1-3 设)(1t f 和)(2t f 是基本周期分别为1T 和2T 的周期信号。

证明)()()(21t f t f t f +=是周期为T 的周期信号的条件为T nT mT ==21 (m ,n 为正整数) 解:由题知)()(111t f mT t f =+ )()(222t f mT t f =+要使)()()()()(2121t f t f T t f T t f T t f +=+++=+则必须有21nT mT T == (m ,n 为正整数) 1-5 试判断下列信号是否是周期信号。

若是,确定其周期。

(1)t t t f πsin 62sin 3)(+= (2)2)sin ()(t a t f =(8)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=2cos 28sin 4cos )(k k k k f πππ解:(1)因为t 2sin 的周期为π,而t πsin 的周期为2。

显然,使方程n m 2=π (m ,n 为正整数)成立的正整数m ,n 是不存在的,所以信号t t t f πsin 62sin 3)(+=是非周期信号。

(2)因为)2cos 1()sin ()(22t a t a t f -==所以信号2)sin ()(t a t f =是周期π=T 的周期信号。

(8)由于)4/cos(k π的周期为8)4//(21==ππN ,)8/sin(k π的周期为16)8//(22==ππN ,)2/cos(k π的周期为4)2//(23==ππN ,且有16412321=⨯=⨯=⨯N N N所以,该信号是周期16=N 的周期信号。

1-10 判断下列系统是否为线性时不变系统,为什么?其中)(t f 、][k f 为输入信号,)(t y 、][k y 为零状态响应。

(1))()()(t f t g t y = (2))()()(2t f t Kf t y += 解:(1)显然,该系统为线性系统。

陈后金《信号与系统》(第2版)配套题库(名校考研真题 周期信号的频域分析)【圣才出品】

陈后金《信号与系统》(第2版)配套题库(名校考研真题  周期信号的频域分析)【圣才出品】

第4章 周期信号的频域分析一、选择题1.设连续时间信号f(t)的傅里叶变换的系统通常同时满足是冲激串,则信号f(t)为______。

[电子科技大学]A.实偶周期信号B.实偶非周期信号C.实奇周期信号D.实奇非周期信号【答案】A【解析】根据傅里叶变换定义,有由,可得到为奇函数,因此f(t)为实偶函数。

由是冲激串,可知f(t)是周期信号,因此选择A。

2.如图4-1所示周期信号f(t),其直流分量等于()。

[北京交通大学]A.0B.2C.4D.6图4-1【答案】C【解析】直流分量即为Fourier系数的C0,由于故答案为C。

3.信号的周期为______。

[北京邮电大学]A.8B.24C.12πD.12【答案】B【解析】分析:本题考查离散序列的周期性。

的周期为8,周期为12,两部分是相加的形式,因此周期是两个周期的最小公倍数,也即24。

二、填空题1.已知冲激序列,其三角函数形式的傅里叶级数为______。

[北京邮电大学]【答案】【解析】由序列可知该冲激序列为偶函数,因此正弦分量为0,直流分量:余弦分量的幅度:因此,傅里叶级数为2.设f(t )的频谱函数为,则的频谱函数等于______?[北京邮电大学]【答案】【解析】由尺度变换若,则时域特性若,则可知,的频谱函数等于三、判断题若,其频带分别为,则,其频带为()[北京邮电大学]【答案】正确。

【解析】对于单边频谱,假设都是过LP 滤波器的信号。

时域相乘相当于频域卷积,所以带宽为。

时域卷积相当于频域相乘,所以带宽为四、解答题1.已知信号和,其傅里叶变换分别为和为了确保,求的最大值。

[电子科技大学]解:由于,取其傅里叶变换,和之间的关系为而又抑制而题目的要求为,也即信号不能发生混叠。

由的表达式可知,原始信号的带宽为2π,再由奈奎斯特采用定理,有的最大值为带宽值的一半,也即2.实基带信号x(t)具有频谱,假定,试回答以下问题:(1)为了保证x(t)可以从y(t)中恢复出来,是否应限制的取值范围?(2)为了保证x(t)可以从y(t)的实部Re[y(t)]中恢复出来,试确定的取值范围。

陈后金《信号与系统》(第2版)课后习题(连续时间信号与系统的复频域分析)

陈后金《信号与系统》(第2版)课后习题(连续时间信号与系统的复频域分析)

4 / 42
圣才电子书 十万种考研考证电子书、题库视频学习平台

7-5 试求图 7-2 示信号的单边 Laplace 变换。
(a)
(b)
图 7-2
解:(1) 可用阶跃信号和斜波信号的线性组合表示,即
利用阶跃信号和斜波信号的 Laplace 变换及时秱特性,可得
(2)
7-6 试利用 Laplace 变换的性质求下列函数的 Laplace 变换。
解:周期为 T 的单边周期信号 可以表示为第一个周期信号
及其时秱
的线性组合,即
(a)
(b)
(c)
(d)
图 7-1
若计算出 的 Laplace 变换 ,利用 Laplace 变换的时秱特性和线性特性,即
可求得单边周期信号的 Laplace 变换为
(1)
(2)设 因为
所以
3 / 42
圣才电子书


经过什么运算才得到的,则将 迚行相应的运算即可求出
,故由 Laplace
(4)由 Laplace 变换的指数加权特性,可得
(5)由 Laplace 变换的微分特性,可得
6 / 42
圣才电子书 十万种考研考证电子书、题库视频学习平台

(6)由 Laplace 变换的线性加权特性,可得
(7) 可得
的微分,由第(3)小题的结果及 Laplace 变换的微分特性,
7-9 试求下列 的初值
和终值
解:根据初值定理和终值定理即可求出信号 的初值
和终值
。但应用初
值定理时, 应为真分式,若 丌是真分式,则应将其表示为多项式不真分式乊和,
对真分式部分应用初值定理。在应用终值定理时也要注意,只有 的极点在 左半平面或

陈后金《信号与系统》(第2版)章节题库(连续时间信号与系统的复频域分析)

陈后金《信号与系统》(第2版)章节题库(连续时间信号与系统的复频域分析)

(5)
由微分性质
得:

(6)
(7) (8)
12.已知 F(s)和收敛域,求 f(t)。
17 / 76
圣才电子书 十万种考研考证电子书、题库视频学习平台

解:(1) 由于 <-3,f(t)是反因果信号,所以 (2) 由于 <-1,f(t)是反因果信号,所以 (3)
(1)f(-t)u(-t)↔F(-s);(2)f(t)u(-t)↔—F(s);
(3)f(-t)u(t)↔F(-s)。
证明:用定义式来证明
,则
(1)
令-t=λ,则
(2)
(3)
7.已知
求下列信号的拉氏变换:
(1)
解:从收敛域知 f(t)是因果信号,利用拉氏变换的性质求解。
(1) (2)
(3)
12 / 76
的单边拉普拉斯
2.因果信号 f(t)的拉普拉斯变换为 度为________。
【答案】2
2 / 76
则 f(t)在 t=0 的冲激强
圣才电子书

【解析】用长除法得
十万种考研考证电子书、题库视频学习平台

由于 F(s)含常数项 2,其逆变换正好对应 F(t),故 f(t)在 t=0 的冲激强度为 2。
圣才电子书 十万种考研考证电子书、题库视频学习平台

(4)
8.已知 f(t)的波形如图 7-3 所示,求下列信号的拉氏变换。
解:(1)
图 7-3
(2) (3) (4) (5) (6)
9.用拉氏变换性质求以下各题(f(t)是因果信号)。
13 / 76
圣才电子书 十万种考研考证电子书、题库视频学习平台
解:(1) (2) (3) (4)

信号与系统陈后金版答案

信号与系统陈后金版答案

第二步:求差分方程的齐次 解: 2 求差分方程的齐次 第二步 h [ 0 ] = C 1 + C 2 r −5r /6 +1/ 6 = 0 1 k1 1 k 1 特征方程为: [ ( + 特征方程为=hCk1 ] = )[3 (C 2) ( −) 2 ( 求 ] u [ C ] = 3, C 2 = − 2 h [1] ⇒ ) 出 k1 ∴r =1/ 2, r2 =1/3 2 3 3 1 2
(3) 计算固有响应与强迫响应 计算固有响应与强迫响应:
1 7 1 k 4 1 k y[k ] = [ − ( ) + ( ) ]u[k ] 完全响应: 完全响应 2 2 2 3 3 7 1 k 4 1 k 固有响应: yh [k ] = [− ( ) + ( ) ]u[ k ] 固有响应 2 2 3 3 1 强迫响应: 强迫响应 y p [k ] = u[k ] 2 (4) 计算瞬态响应与稳态响应 计算瞬态响应与稳态响应:
特征根为 s1 = -2, s2 = -5, 又因为 n > m , 所以: 则 h ( t ) = K 1e − 2 t u ( t ) + K 2 e − 5 t u ( t )
h '(t ) = − 2 K 1e −2 t u (t ) + K 1δ (t ) − 5 K 2 e −5 t u (t ) + K 2δ (t ) = − 2 K 1e −2 t u (t ) − 5 K 2 e −5 t u (t ) + ( K 1 + K 2 )δ (t ) h ''(t ) = 4 K 1e −2 t u (t ) − 2 K 1δ (t ) + 25 K 2 e −5 t u (t ) − 5 K 2δ (t ) + ( K 1 + K 2 )δ '(t ) 代入方程有: = K 1 + K 2 = '( t ) = 2 K 2δ ( t ) + 5 K∴K2 + (7/3; K1 )δ −1/3; 2δ '( t ) + 3δ ( t ) 1δ ( t )

陈后金《信号与系统》(第2版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(上册)

陈后金《信号与系统》(第2版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(上册)

图2-2
3.有一离散时间信号
(1)画出
(2)求序列 学]
使之满足
解:(1)
又 比较上述两式可得: 故如图2-3所示。
[电子科技大
图2-3
4.已知 如图2-4(a),画出

的波形。[北
京理工大学]
解:将 反转得 如图2-4(b)所示,将它们相加、减得 ,波形如图2-4(c)、(d)所示。
图2-4 5.已知f(t)的波形如图2-5所示,令r(t)=tu(t)。
大学]
图1-2 解:因为:
故:
y2(t)的波形如图1-3所示。
图1-3 3.将如图1-4(a)、(b)所示的连续信号展成如下形式:
给出信号
最简单的解析表达形式。[北京航空航天大学]
图1-4
解:(a)该信号可分为两段:

可化简为

,即:
(b)该信号可分为三段: 可化简为 故
,即
4.求
的值。[北京航空航天大学2006研]
,应该与齐次解有关,即系统的特征根为-1和-3,故特征方程应为 ,即a0=4,a1=3。
(2)设系统对激励 rzs(t),则
的零输入响应和零状态响应分别为rzi(t)和
由于
,则由线性时不变系统的微分特性可知
同时,设系统的单位冲激响应为h(t),则由线性时不变系统的叠加性 可知
由式(1)、式(2),并设
陈后金《信号与系统》(第2版)配 套模拟试题及详解
第一部分 名校考研真题 第1章 信号与系统分析导论 一、选择题
1.方程 天大学2007研] A.线性时不变 B.非线性时不变 C.线性时变 D.非线性时变 E.都不对 【答案】B
描述的系统是( )。[北京航空航

陈后金《信号与系统》第2版笔记和课后习题含考研真题详解(信号的时域分析)【圣才出品】

陈后金《信号与系统》第2版笔记和课后习题含考研真题详解(信号的时域分析)【圣才出品】

陈后金《信号与系统》第2版笔记和课后习题含考研真题详解第2章信号的时域分析2.1复习笔记一、连续时间信号的时域描述基本信号:普通信号,奇异信号。

1.典型普通信号(1)指数信号①指数信号的数学表示式为图2-1指数信号②指数信号特点指数信号为单调增或单调减信号,为了表示指数信号随时间单调变化的快慢程度,将|α|的倒数称为指数信号的时间常数,以τ表示,即指数信号对时间的微分和积分仍是指数形式。

(2)虚指数信号和正弦信号①虚指数信号的数学表示式为虚指数信号0j te 是周期为2π/|ω0|的周期信号。

②正弦信号和余弦信号仅在相位上相差π/2,通常统称为正弦信号,表示式为正弦信号也是周期为2π/|ω0|的周期信号。

③虚指数信号与正弦信号关系利用欧拉公式,虚指数信号可以用与其相同周期的正弦信号表示,即正弦信号和余弦信号用相同周期的虚指数信号来表示,即图2-2正弦信号(3)复指数信号的数学表示式为利用欧拉公式展开,可得注意:若σ<0,复指数信号的实部、虚部为减幅的正弦信号,波形如图2-3(a)、(b)所示。

若σ>0,其实部、虚部为增幅的正弦信号,波形如图2-3(c)、(d)所示。

若σ=0,可写成纯虚指数信号图2-3复指数信号的实部和虚部(4)抽样函数①抽样函数的数学表示式为图2-4抽样函数②抽样函数性质:2.奇异信号(1)单位阶跃信号①单位阶跃信号定义单位阶跃信号以符号u(t)表示,其定义为有延时的单位阶跃信号,对应的表示式为图2-5阶跃信号应用阶跃信号与延迟阶跃信号,可以表示任意的矩形信号。

图2-6(a)所示矩形信号可以表示为图2-6矩形信号②阶跃信号特点阶跃信号具有单边性,任意信号与阶跃信号相乘即可截断该信号。

(2)单位冲激信号①定义单位冲激信号狄拉克定义延时的单位冲激信号δ(t-t0)定义为图2-7冲激信号冲激信号的广义函数理论定义式中,φ(t)是测试函数。

②冲激信号的性质a.筛选特性:图2-8冲激信号的筛选特性b.取样特性:c.展缩特性:注意:由展缩特性可得出如下推论。

信号与系统习题(陈后金版)

信号与系统习题(陈后金版)
4 6 cos(0t ) 2 cos(20t ) 4 cos(30t )
4-8 已知周期信号f(t)=2cos(2лt-3)+sin(6лt), 求傅立叶级数指数表示式,并画出其频谱.
0 2
f (t ) e
j ( 2t 3 )
e
j ( 2t 3 )
• 3-16
• 3-24
解:

3-26
3-39 计算序列卷积和。 (1)2ku[k]*u[k-4] (3)(1/2)k u[k]*u[k]
(1)
n
2 u[n] u[k n 4] 2 n u[k 4]
n n0

k 4
1 2 k 3 u[k 4] (2 k 3 1)u[k 4] 1 2
动态方程式的特征根s1,2 = -1,2, 且n>m, 故h(t)的形式为
3 8 为y(t ) (3te
2 t
e
2 t
e )u(t )
t
1 t 1 3 t 2 t 3 7 y f (t ) ( e e e )u (t ) 2 2
3-14
3-14
• (2) y"(t ) 4 y' (t ) 4 y(t ) 3 f') 2 f (t ),t 0; f (t ) et u(t ),y(0 ) 2, y' (0 ) 3 (t
动态方程式的特征根s1,2 =
2, 则零输入响应的形式为
2 t
y x (t ) K1e
动态方程式的特征根s1,2 = -1,2, 且n>m, 故h(t)的形式为
3 8 为y(t ) (3te

陈后金《信号与系统》(第2版)课后习题(系统的频域分析)

陈后金《信号与系统》(第2版)课后习题(系统的频域分析)

根据题意
,即
,最后可得
6-15 已知信号 的最大抽样周期
解:因为 样定理,可得恢复原信号的最大抽样周期为
。当对该信号取样时,试求能恢复原信号
,其最高角频率
根据时域抽
6-16 对
二信号以 l/400 秒的周期抽样时,哪个抽样信号在恢复原
信号时丌出现混迭误差。分别画出抽样信号
及其频谱
解:信号在时域进行理想抽样
(1)试求系统的单位冲激响应
(2)若输入为
时,求系统的输出
(3)试求系统对任意输入 的输出
解:(1)
利用 Fourier 变换的对称互易特性推导
所以
(2)
所以 (3)任意信号 通过 Hilbert 变换器的输出
6-13 一线性相位低通滤波器的频率响应如题图 6-3 所示,试求:
(1)滤波器的单位冲击响应
6-2 已知一个 LTI 连续系统的动态方程为 如图 6-1 所示的周期方波,求系统的输出
,若输入信号 f(t)是
图 6-1 解:对微分方程两边进行 Fourier 变换可得
1 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台

将周期信号展开为 Fourier 级数形式 所以系统输出为
(2)由于
,所以
,满足无失真传输系统的条件,
故系统为无失真传输系统。
6-6 已知滤波器的频率响应为 的输出响应。
解:(1)
,系统的输入信号 如下,求系统
所以 (2)
所以
3 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台

6-7 已知信号 通过系统
后的输出响应为 ,今欲使 通过另一系统
圣才电子书 十万种考研考证电子书、题库视频学习平台

信号与系统第二章(陈后金)3

信号与系统第二章(陈后金)3

1.信号分解为直流分量与交流分量
连续时间信号
x(t ) xDC (t ) + xAC (t )
x (t)
1 b xDC (t ) a x(t )dt b-a
x(t ) xDC (t ) + xAC (t )
直流
t
交流
离散时间信号
x[k ] xDC [k ] + xAC [k ]
信号与系统
Signals and Systems
普通高等教育“十一五”国家级规划教材 《信号与系统》
陈后金,胡健,薛健
高等教育出版社, 2007年
信号的时域分析
连续时间信号的时域描述 连续时间信号的基本运算
离散时间信号的时域描述
离散时间信号的基本运算 确定信号的时域分解
离散时间信号的基本运算
翻转 (x[k] x[-k] ) 位移 ( x[k] x[kn] ) 内插与抽取 序列相加 序列相乘 差分与求和
1. 翻转
x[k] x[-k]
将 x[k] 以纵轴为中心作180度翻转
x[k] 2 1 -1 0 1 2 3 k
-2 -1 0 1
3 2
x[-k] 2
3 2 1 2 k
2. 位移 x[k] x[kn]
n>0
x[k-n]表示将x[k]右移n个单位。 x[k+n]表示将x[k]左移n个单位。
原信号x
4倍抽取后信号x1
8倍抽取后信号x1
4. 序列相加
指将若干离散序列序号相同的数值相加
y[k ] x1[k ] + x2[k ] + + xn [k ]
x1[ k ]
1 k 0 -1

陈后金《信号与系统》(第2版)(下册)-章节题库-第6~7章【圣才出品】

陈后金《信号与系统》(第2版)(下册)-章节题库-第6~7章【圣才出品】

6.已知 LTL 因果系统,输入 解:
输出为
,求系统的频率特性

由于 所以 得
8 / 173
圣才电子书 十万种考研考证电子书、题库视频学习平台

(2) 得 频谱图如图 6-3 所示。
图 6-3
7.两个互为逆系统的 LTL 因果系统,单位冲激响应为

(1)频率特性
有何关系?
1.若 f(t)最高角频率为 ,则对
叏样,其频谱丌混叠的最大间隔是
______。
【答案】
【解析】信号 f(t)的最高角频率为 ,根据傅里叶发换的展缩特性可得信号 f(t/4)
的最高角频率为 ,信号 f(t/2)的最高角频率为
根据傅里叶发换的乘积特性,
两信号时域相乘,其频谱为该两信号频谱的卷积,故 f(t/4)、f(t/2)的最高角频率为
因此该系统频率响应特性的实部不虚部有关联。
2.信号 e(f)=cos(10t)cos(1000t)通过下述哪个系统时丌失真( )。
【答案】C 【解析】e(t)=cos(10t)cos(1000t)的频域响应在 990~1100Hz 乊间,{ε(ω +1100)-ε(ω-1100)}的矩形框正好让原信号完整通过, 只是一个线性发换,相
解:先求

(1)

再求
的傅里叶反发换得 。
(2)
(3)
(4)
5.因果 LTL 系统的输入 和输出 关系为

其中
7 / 173
圣才电子书 十万种考研考证电子书、题库视频学习平台

。求(1)系统频域凼数
;(2)系统的冲激响应 。
解:系统输入输出斱程为
两边傅里叶发换,有
(1)频域凼数 (2)冲激响应

信号与系统第五章陈后金2

信号与系统第五章陈后金2

Yzs (e jΩ ) X (e jΩ )
DTFT {h[k ]}
DTFT{d [k]}
DTFT{h[k ]}
H(ej)一般可表示为幅度与相位的形式
H (e j ) | H (e j ) | e jj( )
幅度响应
相位响应
(magnitude response) (phase response)
( ) dj( ) 群延时 ( group delay )
即在间断点的前后出现了振荡,其振荡 的最大峰值约为阶跃突变值的9%左右, 且不随滤波器带宽的增加而减小。
结论
1. 输出响应的延迟时间取决于理想低通滤波器的 相位响应的斜率。
2. 输入信号在通过理想低通滤波器后,输出响应 在输入信号不连续点处产生逐渐上升或下降的 波形,上升或下降的时间与理想低通滤波器的 通频带宽度成反比。
低通变为无失真传输系统, h(t)也变为冲激信号。
五、理想模拟滤波器
2. 理想低通滤波器的冲激响应
分析:
2) h(t)主峰出现时刻 t = td 比输入信号d (t) 作用
时刻t = 0延迟了一段时间td 。td是理想低通 滤波器相位响应的斜率。
3) h(t)在 t<0 的区间也存在输出,可见理想低 通滤波器是一个非因果系统,因而它是一个 物理不可实现的系统。
Yzs (e j X (e j
) )
若n阶离散LTI系统的差分方程为
y[k] a1 y[k 1] an1 y [k n 1] an y[k n] b0x[k ] b1x[k 1] bm1x [k m 1] bm x[k m]
则离散系统的频率响应可表示为
H (e j
变,而相位没有失真。
四、线性相位的离散时间LTI系统

陈后金《信号与系统》(第2版)名校考研真题(连续时间信号与系统的复频域分析)

陈后金《信号与系统》(第2版)名校考研真题(连续时间信号与系统的复频域分析)

其中 f(t)是因果输入信号。 (1)求系统甬数 H(s); (2)画出 H(s)的零、极点图,并判断系统是否稳定; (3)画出直接形式的信号流图。[西北工业大学研] 解:(1) (2)故两个零点为 z1=0,z2=1;4 个极点为 P1=p2=-1,p2=﹣2+j2,p4=一 2-i2, H0=1,H(s)的零、极点。如图 7-7 所示,系统是稳定的。
1 / 27
圣才电子书 十万种考研考证电子书、题库视频学习平台

包含虚轴。由积分公式可知 f(t)=1 的傅里叶变换丌存在,因此,双边拉普拉斯变换也丌 存在,因此选择 D
3.已知连续时间系统的系统函数则其幅频特性响应所属类型为( )。
[国防科技大学研]
①低通
②高通
③带通
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 7 章 连续时间信号与系统的复频域分析
一、选择题
1.信号
的拉普拉斯变换及收敛域为( )。[北京邮电大学研]
A.
B.
C.
D.
【答案】B
【解析】本题考查拉普拉斯变换的定义及收敛域范围的确定,有
2.信号(t)=1 的双边拉普拉斯变换为( )。[电子科技大学研] A. B. C. D. 【答案】D 【解析】因为傅里叶变换是双边拉普拉斯变换的特例,存在傅里叶变换表明收敛域至少
图 7-3 (2)H(s)稳定,—1<Re(s)<1,
(3)由
可得:
6 / 27
从而得到系统的状态方程为
圣才电子书 十万种考研考证电子书、题库视频学习平台

直接 2 型框图如图 7-4 所示。
(4) (5)
图 7-4
6.判断图 7-5 所示系统稳定时是的取值范围。[东南大学研]

陈后金《信号与系统》(第2版)名校考研真题(系统的频域分析)

陈后金《信号与系统》(第2版)名校考研真题(系统的频域分析)

第6章系统的频域分析一、选择题1.选择题已知信号f(t)的最高频率,则对信号取样时,其频谱不混叠的最大取样间隔等于()。

[北京交通大学研]A.B.C.D.【答案】A【解析】信号f(t)的最高频率为,根据Fourier变换的展缩特性可得信号的最高频率为(Hz),再根据时域抽样定理,可得对信号取样时,其频谱不混叠的最大取样间隔2.下列说法中正确的是()。

[东南大学研]A.罗斯—霍维茨准则也能判断离散系统的稳定性B.信号经调制后带宽一定增加C.抽样频率必须是信号最高频率的2倍以上才不产生混叠D.积分器是线性运算,不改变信号的带宽【答案】AD【解析】本题考查信号与系统的综合应用。

罗斯霍维茨准则是稳定性判定准则,信号经调制后带宽不一定增加,有时只是频谱的搬移,积分运算是累加运算,也即线性运算,抽样频率必须是信号最高频率的2倍或者2倍以上才不产生混叠。

因此选择AD。

3.系统的幅频特性和相频特性如图6-1(a)、(b)所示,则下列信号通过该系统时,不产生失真的是()。

[西安电子科技大学研]A.B.C.D.【答案】B【解析】由系统的幅频特性和相频特性可知:若输入信号的频率均处于之间,既不产生幅度失真又不产生相位失真。

只有(B)满足这一条件。

图6-1二、填空题1.已知一连续时间LTI系统的频响特性该系统的幅频特性相频特性是否是无失真传输系统______。

[北京交通大学研] 【答案】否【解析】由于的分子分母互为共轭,故有所以系统的幅度响应和相位响应分别为由于系统的相位响应不是的线性函数,所以系统不是无失真传输系统。

三、解答题1.某因果数字滤波器的零、极点如图6-2所示,并已知其H(π)=-1试求:图6-2(1)它的系统函数H(z)及其收敛域,且回答它是IIR、还是FIR的什么类型(低通、高通、带通、带阻或全通)滤波器;(2)写出图6-2(b)所示周期信号x[n研]的表达式,并求其离散傅里叶级数的系数;(3)该滤波器对周期输入x[n研]的响应y[n研]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y g (t )
1 0 1 2 3
t
3-4 已知离散时间 系统,输入 x1[k ] = δ [k − 1] 时,输出 已知离散时间LTI系统 输入 输出; 系统 输出
1 k −1 y1[k ] = ( ) u[k − 1], 求当输入x2 [k ] = 2δ [k ] + u[k ]时系统响应y2 [k ]。 2
x '(t) = e δ (t −1) − e δ (t − 2) − e [u(t −1) −u(t − 2)] + 3δ '(t −3)
−1 −2 −t
=−e−t [u(t −1) −u(t − 2)] + e−1δ (t −1) − e−2δ (t − 2) + 3δ '(t −3)
2-11:(3)
2-4: (4)

2-4: (5) ∞

−∞
sin(t)δ (t −π / 4)dt = sin(t)|t=π /4

−∞
e− jω0t [δ (t +T) −δ (t −T)]dt = e− jω0 (−T ) − e− jω0 (T )
= 2 j sin(ω0T)
2-5: (4)
x(t)
2 0 2 3 5

∴ y zi (t ) = 2e −2 t − e −5t , t ≥ 0 −
3:求零状态响应: 求零状态响应: 求零状态响应
yzs (t ) = x(t ) ∗ h(t ) = ∫ x(τ )h(t − τ )dτ
−∞

4:求全响应: 求全响应: 求全响应
1 −2τ 7 −5τ = ∫ [− e u (τ ) + e u (τ )]e− (t −τ )u (t − τ )dτ −∞ 3 3 ∞ 1 −2τ 7 −5τ − (t −τ ) = ∫ [− e + e ]e dτ 0 3 3 1 −t 1 −2t 7 −5t = ( e + e − e )u (t ) 4 3 12
第二步:求差分方程的齐次 解: 2 求差分方程的齐次 第二步 h [ 0 ] = C 1 + C 2 r −5r /6 +1/ 6 = 0 1 k1 1 k 1 特征方程为: [ ( + 特征方程为=hCk1 ] = )[3 (C 2) ( −) 2 ( 求 ] u [ C ] = 3, C 2 = − 2 h [1] ⇒ ) 出 k1 ∴r =1/ 2, r2 =1/3 2 3 3 1 2
x[k ] = 0.9k {u[k ] − u[k − 5]} = 0.9k ,0 ≤ k ≤ 4
2-13:(3)
x[3k ]
2 1 1
2
k
-1 0 1 2
2-13:(4)
3-2
g (t ) = r (t ) − 2r (t − 1) + r (t − 2)
Q x ( −1) (t ) = r (t ) − r (t − 1)
k 1 k 1 n 1 k ∴ y 2 [ k ] = 2( ) u [ k ] + ∑ ( ) =[2+( ) ]u [ k ] 2 2 n=0 2
n =−∞ k
∑ y [n + 1]
1
k
3-14(1)
[δ (t +1) + 2δ (t −1)]∗[δ (t −1) −δ (t −3)] = δ (t) + 2δ (t − 2) −δ (t − 2) − 2δ (t − 4)
∴x(−1) (t) = (e−1 − e−t )[u(t −1) − u(t − 2)] + (e−1 − e−2 )u(t − 2) + 3u(t −3)
2-9:
x(t) = e [u(t −1) −u(t − 2)]+tδ (t −3),求x (t), x'(t)
−t (−1)
∴x'(t) = e−t [δ (t −1) −δ (t − 2)]−e−t [u(t −1) −u(t − 2)]+3δ '(t −3)
y (t ) = yzi (t ) + yzs (t )

3-28:
x(−1) =−3 x (0) = 4 h(0) = 1 −3 4
−3 −3 −3
4
x (1) = 6 x (2) = 0 x (3) = −1 6 0 −1 6
6
h (1) = 1
h(2) = 1
0
0
−1) = 1
Qh[−1] = 0, h[−2] = 0
2 3 h 等 效 初 始 条 件 1]/6 代 入 [1] = 5h[0]/6 − h[−: +δ[1] = 5/6
∴h[0]C 1 5h[)−1]/6 −(h1−2]/6k ]δ[0] =1 = ( 1 k + C 2 [ ) k ]u [ + h[ k ] = [
y[ − 2] = 4C1 + 9C 2 = 1 ⇒ C1 = − 1 / 2, C 2 = 1 / 3
1 1 k 1 1 k 则 y zi [ k ] = − ( ) + ( ) , k ≥ 0 2 2 3 3 1 k + 1 1 k +1 = − ( ) + ( ) ,k ≥ 0 2 3
(2) (b)计算零状态响应 计算零状态响应: 计算零状态响应
(3) 计算固有响应与强迫响应 计算固有响应与强迫响应:
1 7 1 k 4 1 k y[k ] = [ − ( ) + ( ) ]u[k ] 完全响应: 完全响应 2 2 2 3 3 7 1 k 4 1 k 固有响应: yh [k ] = [− ( ) + ( ) ]u[ k ] 固有响应 2 2 3 3 1 强迫响应: 强迫响应 y p [k ] = u[k ] 2 (4) 计算瞬态响应与稳态响应 计算瞬态响应与稳态响应:

1 k −n k 1 k −n = ∑ 3( ) − ∑ 2( ) 2 3 n =0 n=0 1 k 1 k = [ 3 − 3( ) + ( ) ]u[k ] 2 3
完全响应: 完全响应
k
y[k ] = y zi [k ] + yzs [k ] 1 7 1 k 4 1 k = [ − ( ) + ( ) ]u[k ] 2 2 2 3 3
x(t )
1
2-1: (7)
x(t) = e−2t [u(t) −u(t − 4)]
0
4
t
2-2: (2)
x(t) = sin(πt / 2)u(t −1)
0
1
1

2-3: (2)
t
(t + 2t + 3)δ (t − 2) = (8 +8 + 3)δ (t − 2) =19δ (t − 2)
3 2
求零输入响应: 2:求零输入响应: 求零输入响应
特征根为s1 = −2, s2 = −5; 所以: 则 y zi (t ) = K1e −2t + K 2 e −5t , t ≥ 0 −
利用初始条件,有 利用初始条件 有:
y(0− ) = K1 + K 2 = 1 y '(0 ) = −2 K1 − 5K 2 = 1 ⇒ K1 = 2, K 2 = −1
∴x
x
(−1)
(t) = ∫ { −τ [u(τ −1) −u(τ − 2)] + 3δ (τ −3)}dτ e
−∞
t −∞
t
(−1)
(t) = ∫
e−τ [u(τ −1) −u(τ − 2)]dτ + 3u(t −3)
0, t <1 t t −τ −τ ∫−∞ e [u(τ −1) −u(τ − 2)]dτ = ∫1 e dτ ,1< t < 2 2 e−τ dτ , t > 2 ∫1 0, t <1 t −1 −t −τ ,1 ∫−∞ e [u(τ −1) −u(τ − 2)]dτ = e −−e −2 < t < 2 e 1 −e ,t > 2
信号与系统(陈后金)
课后习题答案完整版
2-1: (1) x(t) = [u(t +1) −u(t)] −[u(t) −u(t −1)]
x(t)
1
2-1: (2)
x(t) = r(t +1) − r(t −1) − u(t −1) +δ (t +1)
-1
0
1
t
−1
x(t)
(1)
-1 0 0 1 t
t
t
2 -1 0
x(t+1)
1 2 4
t
2 -3 0
x(t/3+1)
3 6 12
t
2-9:
x(t) = e−t [u(t −1) −u(t − 2)] + tδ (t −3), 求 (−1) (t), x '(t) x Qx(t) = e−t [u(t −1) −u(t − 2)] + 3δ (t −3)
1 k 1 k yzs [k ] = ∑ x[n]h[k − n] = u[k ] ∗ 3( ) − 2( ) u[k ] 3 2 n =−∞ ∞ 1 1 = ∑ u[n] ⋅ 3( ) k − n − 2( ) k − n u[k - n] 3 2 n =−∞ k 1 k −n 1 k −n = ∑ 3( ) − 2( ) 2 3 n=0
∴ g (t ) = x
( −1)
(t ) − x
( −1)
(t − 1)
根据系统积分特性:输入信号积分 输出也积分,有: 根据系统积分特性 输入信号积分,输出也积分 有 输入信号积分 输出也积分
相关文档
最新文档