高中数学必修五不等式测试题及答案
数学必修五基本不等式测试卷含答案
![数学必修五基本不等式测试卷含答案](https://img.taocdn.com/s3/m/fdebe40728ea81c759f57844.png)
数学必修五基本不等式测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________ 一、选择题(本题共计 12 小题,每题 5 分,共计60分,)1. 若a<0,−1<b<0,则有()A.a>ab>ab2B.ab2>ab>aC.ab>a>ab2D.ab>ab2>a2. 已知奇函数f(x)在(0, +∞)上的图象如图所示,则不等式f(x)x−1<0的解集为( )A.(−3, −1)∪(0, 1)∪(1, 3)B.(−3, −1)∪(0, 1)∪(3, +∞)C.(−∞, −3)∪(−1, 0)∪(3, +∞)D.(−∞, −3)∪(−1, 0)∪(0, 1)3. 不等式1x <12的解集是( )A.(2, +∞)B.(−∞,2)C.(0,2)D.(−∞, 0)∪(2, +∞)4. 不等式x−2x−1≥0的解集是()A.[2, +∞)B.(−∞, 1]∪(2, +∞)C.(−∞, 1)D.(−∞, 1)∪[2, +∞)5. 若两个正实数x,y满足13x +3y=1,且不等式x+y4−n2−13n12<0有解,则实数n的取值范围是()A.(−2512,1) B.(−∞,−2512)∪(1,+∞)6. 已知a >−3,b >−4,(a +3)(b +4)=25,则a +b 的最小值是( ) A.2 B.3 C.5 D.107. 下列命题中的真命题是( ) A.若a >b >0,a >c ,则a 2>bc B.若a >b >c ,则a c >bc C.若a >b ,n ∈N ∗,则a n >b n D.若a >b >0,则1na <1nb8. 设a ,b ,c 大于0,则3个数a +1b ,b +1c ,c +1a 的值( ) A.都大于2 B.至少有一个不大于2 C.都小于2 D.至少有一个不小于29. 不等式10x+5(x−1)2≥100的解集是( )A.[−3,12] B.[−12,3] C.[12,1)∪(1,3]D.[−12,1)∪(1,3]10. 已知 x >0,y >0,x +2y =1,x 2+y xy内最小值是( ) A.3−2√2 B.2√2+1C.√2−1D.√2+111. 设正实数x ,y ,z 满足x 2−7xy +16y 2−z =0,则当zxy 取得最小值时,x +2y −z的最大值为( ) A.0 B.98C.94D.212. 若关于x 的不等式ax −2>0的解集是(2,+∞),则关于x 的不等式ax−1x+2≥0的解集是( )C. (−∞,−2)∪[1,+∞)D. (−∞,−2]∪[1,+∞)二、填空题(本题共计 4 小题,每题 5 分,共计20分,)13. 不等式x2x−1<0的解为________<12.14. 已知正数x,y满足x2+2xy+4y2=1,则x+y的取值范围是________.15. 已知不等式x+2ax+1<0的解集为(−2,−1),则a=________.16. 函数y=log2x+4log2x(x∈[2,4])的最大值是________.三、解答题(本题共计 6 小题,共计70分,)17. (10分)已知两个正数a,b满足a+2b=1,求1a +2b的最小值.18.(12分) 已知过原点O作函数f(x)=e x(x2−x+a)的切线恰好有三条,切点分别为(x1, y1),(x2, y2),(x3, y3),且x1<x2<x3.(1)求实数a的取值范围.(2)求证:x1<−3.19.(12分) 求满足下列条件的实数x的范围:(1)2x>8;(2)3x<127;(3)(12)x>√2.20. (12分)某公司建造一间背面靠墙的房屋,地面面积为36m2,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,屋顶的造价为6000元,如果墙高为3m,且不计房屋背面和地面的费用,那么怎样设计房屋能使总造价最低?最低总>0.21. (12分)设a>−1,解关于x的不等式x2−x−2ax−122. (12分)党的十九大报告指出,建设生态文明是中华民族持续发展的千年大计.而清洁能源的广泛使用将为生态文明建设提供更有力的支撑.沼气作为取之不尽、用之不竭的生物清洁能源.在保护绿水青山方面具有独特功效.通过办沼气带来的农村“厕所革命”,对改善农村人居环境等方面,起到立竿见影的效果.为了积极响应国家推行的“厕所革命”.某农户准备用一万元建造一个深为3米,容积为48立方米的长方体沼气池,如果池底每平万米的造价为150元,池壁每平方米的造价为120元,沼气池盖子的造价为1000元.问怎样设计沼气池能使总造价最低?最低总造价超出该农户的预算吗?参考答案与试题解析 数学必修五基本不等式测试卷一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 ) 1.【答案】 D【考点】 基本不等式 【解析】 此题暂无解析 【解答】∵ a <0,−1<b <0, ∴ ab >0,ab 2<0. ∴ ab >a ,ab >ab 2.∵ a −ab 2=a (1−b 2)=a (1+b )(1−b )<0, ∴ a <ab 2.∴ a <ab 2<ab . 2.【答案】 A【考点】 不等式的综合 【解析】由f(x)是奇函数得函数图象关于原点对称,可画出y 轴左侧的图象,利用两因式异号相乘得负,得出f(x)的正负,由图象可求出x 的范围得结果. 【解答】解:不等式f(x)x−1<0转化为(x −1)f(x)<0, 则{x −1>0f(x)<0,或{x −1<0f(x)>0,∴ 1<x <3,0<x <1,或−3<x <−1,∴ 不等式f(x)x−1<0的解集为(−3, −1)∪(0, 1)∪(1, 3), 故选A . 3.【答案】 D【考点】其他不等式的解法 【解析】将不等式1x ≤12转化为x−22x ≥0⇔{x −2≥0x >0或{x −2≤0x <0,从而可得答案.【解答】∴ 1x−12=2−x 2x<0,∴ x−22x >0,∴ {x −2>0,x >0,或{x −2<0,x <0,解得:x >2或x <0,∴ 不等式1x <12的解集是:(−∞, 0)∪(2, +∞). 故选D .4.【答案】 D【考点】其他不等式的解法 【解析】直接转化分式不等式为二次不等式组,然后求解即可. 【解答】 解:因为不等式x−2x−1≥0的解集,等价于{(x −1)(x −2)≥0x −1≠0, 解得x <1或x ≥2.所以不等式的解集为:(−∞, 1)∪[2, +∞). 故选D . 5.【答案】 B【考点】基本不等式在最值问题中的应用 基本不等式 【解析】 此题暂无解析 【解答】解:因为不等式x +y4−n 2−13n 12<0有解,所以(x +y4)min<n 2+13n 12.因为x >0,y >0,且13x +3y =1,所以x +y4=(x +y4)(13x +3y )=1312+3x y+y12x ≥1312+2√3xy ⋅y12x =2512,当且仅当3x y=y 12x 时取等号,所以(x +y4)min=2512.故n 2+13n 12−2512>0,解得n <−2512或n >1,所以实数n 的取值范围是(−∞,−2512)∪(1,+∞). 故选B .6. 【答案】基本不等式在最值问题中的应用基本不等式【解析】此题暂无解析【解答】解:由a>−3,b>−4,可得a+3>0,b+4>0,则a+b=(a+3)+(b+4)−7≥2√(a+3)(b+4)−7=3,当且仅当a+3=b+4=5,即a=2,b=1时取等号.故选B.7.【答案】A【考点】命题的真假判断与应用不等式的综合【解析】A不等式两边同乘以一个正数,不等号的方向不变,所以A是正确的;B当不等式两边同乘以一个负数时,不等号的方向要改变,这里c题目中没指出是正数、负数带是0,所以B是错误的;C没有考虑到,不等式性质成立的条件,a>b>0,所以C是错误的;D因为f(x)=ln x在定义域内是增函数,所以D是错误的.【解答】解:A、∵a>c且b>0,∴ab>bc,又∵a>b且a>0,∴a2>ab,∴a2>bc,A正确;B、∵a>b,当c>0时,有ac >bc,当c<0时,有ac<bc,B错误;C、取a=2,b=−2,n=2时有,22=(−2)2,∴a n>b n不对;当a>b>0,n∈N∗,有a n>b n,C错误;D、∵f(x)=ln x是增函数,∴当a>b>0,有1na>1nb,D错误.故选:A.8.【答案】D【考点】基本不等式在最值问题中的应用【解析】假设3个数a+1b <2,b+1c<2,c+1a<2,则a+1b+b+1c+c+1a<6,又利用基本不等式可得a+1b +b+1c+c+1a≥6,这与假设所得结论矛盾,故假设不成立.从而得出正确选项.解:假设3个数a+1b <2,b+1c<2,c+1a<2,则a+1b +b+1c+c+1a<6,利用基本不等式可得a+1b +b+1c+c+1a=b+1b +c+1c+a+1a≥2+2+2=6,这与假设所得结论矛盾,故假设不成立,所以3个数a+1b ,b+1c,c+1a中至少有一个不小于2.故选D.9.【答案】D【考点】指、对数不等式的解法【解析】根据指数函数的单调性和特殊点,原不等式即x+5(x−1)2≥2,即2x2−5x−3≤0且x≠1,由此求得不等式的解集.【解答】解:由不等式10x+5(x−1)2≥100可得x+5(x−1)2≥2,即2x2−5x−3≤0且x≠1,解得−12≤x<1,或1<x≤3,故选D.10.【答案】B【考点】基本不等式在最值问题中的应用【解析】本题考查利用基本不等式求最值,依题意x 2+yxy可化成xy+2yx+1,由基本不等式求解即可.【解答】解:∵ x>0,x+2y=1,∴x2+yxy=xy+1x=xy+x+2yx=xy +2yx+1≥2√xy⋅2yx+1=2√2+1,当xy =2yx时取等号.∴x2+yxy的最小值为2√2+1.C【考点】基本不等式在最值问题中的应用 【解析】将z =x 2−7xy +16y 2代入zxy ,利用基本不等式化简,即可得到当zxy 取得最小值时的条件,用x ,z 表示y 后利用配方法求得x +2y −z 的最大值. 【解答】解:∵ x 2−7xy +16y 2−z =0,∴ z =x 2−7xy +16y 2,又x ,y ,z 为正实数, ∴z xy=x y+16y x−7≥2√x y⋅16y x−7=1(当且仅当x =4y 时取“=”),即x =4y(y >0),∴ x +2y −z =4y +2y −(x 2−7xy +16y 2) =6y −4y 2=−4(y −34)2+94≤94.∴ x +2y −z 的最大值为94. 故选C . 12.【答案】 C【考点】其他不等式的解法 【解析】 此题暂无解析 【解答】 此题暂无解答二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13.【答案】 0<x 【考点】其他不等式的解法 【解析】根据两数相除商为负,得到x 与2x −1异号,将原不等式化为两个一元一次不等式组,求出不等式组的解集即可得到原不等式的解集. 【解答】原不等式化为{x >02x −1<0 或{x <02x −1>0 ,解得:0<x <12, 14.不等式性质的应用不等式的综合【解析】由题意可得x2+2xy+y2=1−3y2<1,即(x+y)2<1,解关于x+y的不等式可得.【解答】解:∵正数x,y满足x2+2xy+4y2=1,∴x2+2xy+y2=1−3y2<1,即(x+y)2<1,解得−1<x+y<1,结合x,y为正数可得x+y>0,故x+y的取值范围为(0, 1).故答案为:(0, 1).15.【答案】1【考点】其他不等式的解法【解析】此题暂无解析【解答】解:原不等式等价于(x+2)(ax+1)<0,∵不等式的解集为(−2,−1),∴−2,−1是方程(x+2)(ax+1)=0的根.将x=−1代入得a=1.故答案为:1.16.【答案】5【考点】基本不等式【解析】x,依题意,1≤t≤2,利用双钩函数的单调性质即可求得答案.令t=log2【解答】解:∵2≤x≤4,∴1≤logx≤2,2x,(1≤t≤2),令t=log2(1≤t≤2),则y=t+4t在[1, 2]上单调递减,由双钩函数的性质得:y=t+4t∴当t=1时,y max=5.故答案为:5.三、解答题(本题共计 6 小题,共计70分)17.【答案】解:因为a,b为正数,且a+2b=1,=1+2b a+2a b+4≥5+2√2b a⋅2a b=9,当且仅当2ba=2a b,即a =b =13时,等号成立,故1a+2b的最小值为9.【考点】基本不等式在最值问题中的应用 【解析】根据题意,得到1a +2b =(1a +2b )(a +2b)=5+2b a+2a b,由基本不等式,即可求出结果.【解答】解:因为a ,b 为正数,且a +2b =1, 所以1a +2b =(1a +2b )(a +2b) =1+2b a +2a b+4≥5+2√2b a ⋅2a b=9,当且仅当2ba =2ab,即a =b =13时,等号成立, 故1a +2b 的最小值为9. 18.【答案】解:(1)f′(x)=e x (x 2+x +a −1),设切点为(x 0, y 0),则切线方程为:y −e x 0(x 02−x 0+a)=e x 0(x 02+x 0+a −1)(x −x 0),代入(0, 0)得x 03+ax 0−a =0,由题意知满足条件的切线恰有三条, 则方程x 3+ax −a =0有三个不同的解. 令g(x)=x 3+ax −a ,g′(x)=3x 2+a .当a ≥0时,g′(x)≥0,g(x)是(−∞, +∞)上增函数,则方程x 3+ax −a =0有唯一解. 当a <0时,由g′(x)=0得x =±√−a3,g(x)在(−∞,−√−a3)和(√−a3,+∞)上是增函数,在(−√−a3,√−a3)上是减函数要使方程x 3+ax −a =0有三个不同的根, 只需{ g(−√−a3)>0g(√−a 3)<0.{ (−√−a3)3−a(√−a3)−a >0(√−a 3)3+a √−a 3−a <0.解得a <−274.(2)∵ g(x)=x 3+ax −a ,x →∞g(x)→∞g(−√−a3)>0, 由函数连续性知−∞<x 1<−√−a3,∵ a <−274,∴ g(−3)=−27−4a >0,且−3<−√−a3,∴ x 1<−3. 【考点】利用导数研究曲线上某点切线方程 不等式的综合【解析】(1)设切点为(x 0, y 0),根据导数的几何意义求出函数f(x)在x =x 0处的导数,从而求出切线的斜率,即可表示出切线方程,然后减(0, 0)代入得x 03+ax 0−a =0,根据切线恰有三条,转化成方程x 3+ax −a =0有三个不同的解,最后利用导数研究即可; (2)根据g(x)=x 3+ax −a ,x →−∞,g(x)→−∞,g(−√−a3)>0,根据函数连续性知−∞<x 1<−√−a3,根据a 的范围可知g(−3)=−27−4a >0,即可求出x 1的范围. 【解答】 解:(1)f′(x)=e x (x 2+x +a −1),设切点为(x 0, y 0),则切线方程为:y −e x 0(x 02−x 0+a)=e x 0(x 02+x 0+a −1)(x −x 0),代入(0, 0)得x 03+ax 0−a =0,由题意知满足条件的切线恰有三条, 则方程x 3+ax −a =0有三个不同的解. 令g(x)=x 3+ax −a ,g′(x)=3x 2+a .当a ≥0时,g′(x)≥0,g(x)是(−∞, +∞)上增函数,则方程x 3+ax −a =0有唯一解. 当a <0时,由g′(x)=0得x =±√−a3,g(x)在(−∞,−√−a3)和(√−a3,+∞)上是增函数,在(−√−a3,√−a3)上是减函数要使方程x 3+ax −a =0有三个不同的根, 只需{ g(−√−a3)>0g(√−a 3)<0.{ (−√−a3)3−a(√−a3)−a >0(√−a 3)3+a √−a 3−a <0.解得a <−274.(2)∵ g(x)=x 3+ax −a ,x →∞g(x)→∞g(−√−a3)>0,由函数连续性知−∞<x 1<−√−a3, ∵ a <−274,∴ g(−3)=−27−4a >0, 且−3<−√−a 3,∴ x 1<−3. 19.解:(1)∵ 2x >8=23,且函数y =2x 在R 上是单调增函数, ∴ x >3.故x 的取值范围为{x|x >3}. (2)∵ 3x <127=3−3,且函数y =3x 在R 上是单调增函数,∴ x <−3.故x 的取值范围为{x|x <−3}. (3)∵(12)x>√2=212=(12)−12,且函数y =(12)x 在R 上是单调减函数,∴ x <−12.故x 的取值范围为{x|x <−12}.【考点】指、对数不等式的解法 【解析】(1)由题意,考查函数y =2x 在R 上的单调性,可得x 的取值范围; (2)考查函数y =3x 在R 上的单调性,结合不等式,可得x 的取值范围; (3)由题意,考查函数y =(12)x 在R 上的单调性,可得x 的取值范围. 【解答】 解:(1)∵ 2x >8=23,且函数y =2x 在R 上是单调增函数, ∴ x >3.故x 的取值范围为{x|x >3}. (2)∵ 3x <127=3−3,且函数y =3x 在R 上是单调增函数,∴ x <−3.故x 的取值范围为{x|x <−3}. (3)∵(12)x >√2=212=(12)−12,且函数y=(12)x 在R 上是单调减函数,∴ x <−12.故x 的取值范围为{x|x <−12}. 20.【答案】解:设房屋正面和侧面的长分别为xm ,ym ,则xy =36,房屋总造价为z 元. 则z =1200×3x +800×3y ×2+6000 =1200(3x +4y)+6000≥1200×2√3x ⋅4y +6000 =28800√3+6000≈55881.6.当且仅当3x =4y =12√3时,等号成立.故房屋正面长4√3m ,侧面长3√3m 时造价最低,最低约为55881.6元. 【考点】基本不等式在最值问题中的应用 基本不等式此题暂无解析【解答】解:设房屋正面和侧面的长分别为xm,ym,则xy=36,房屋总造价为z元.则z=1200×3x+800×3y×2+6000=1200(3x+4y)+6000≥1200×2√3x⋅4y+6000=28800√3+6000≈55881.6.当且仅当3x=4y=12√3时,等号成立.故房屋正面长4√3m,侧面长3√3m时造价最低,最低约为55881.6元.21.【答案】解:不等式即:(x+1)(x−2)ax−1>0,可转化为高次不等式:(ax−1)(x+1)(x−2)>0,由a>−1可得1a∈(0,+∞)∪(−∞,−1),分类讨论有:当1a<−1,−1<a<0时,不等式即:(−ax+1)(x+1)(x−2)<0,其解集为:(−∞,1a)∪(−1,2);当a=0时,不等式的解集为:−1<x<2;当0<1a <2,a>12时,不等式的解集为:(−1,1a)∪(2,+∞);当1a =2,a=12时,不等式的解集为:(−1, 2)∪(2, +∞);当1a >2,0<a<12时,不等式的解集为:(−1,2)∪(1a,+∞).【考点】其他不等式的解法【解析】将分式不等式转化为高次不等式,然后分类讨论即可求得最终结果.【解答】解:不等式即:(x+1)(x−2)ax−1>0,可转化为高次不等式:(ax−1)(x+1)(x−2)>0,由a>−1可得1a∈(0,+∞)∪(−∞,−1),分类讨论有:当1a<−1,−1<a<0时,不等式即:(−ax+1)(x+1)(x−2)<0,其解集为:(−∞,1a)∪(−1,2);当a=0时,不等式的解集为:−1<x<2;当0<1a <2,a>12时,不等式的解集为:(−1,1a)∪(2,+∞);当1a =2,a=12时,不等式的解集为:(−1, 2)∪(2, +∞);当1a >2,0<a<12时,不等式的解集为:(−1,2)∪(1a,+∞).22.【答案】解:设沼气池的底面长为x米,沼气池的总造价为y元,因为沼气池的深为3米,容积为48立方米,所以底面积为16平方米,因为底面长为x米,所以底面的宽为16x米.依题意有y=1000+150×16+120×2(3x+3×16x)=3400+720(x+16x),因为x>0,由基本不等式可得:y=3400+720×(x+16 x )≥3400+720×2√x×16x,即y≥3400+720×2√16,所以y≥9160.当且仅当x=16x,即x=4时,等号成立,所以当沼气池的底面是边长为4米的正方形时,沼气池的总造价最低,最低总造价是9160元,最低的总造价没有超出该农户的预算.【考点】基本不等式在最值问题中的应用【解析】【解答】解:设沼气池的底面长为x米,沼气池的总造价为y元,因为沼气池的深为3米,容积为48立方米,所以底面积为16平方米,因为底面长为x米,所以底面的宽为16x米.依题意有y=1000+150×16+120×2(3x+3×16x)=3400+720(x+16x),因为x>0,由基本不等式可得:y=3400+720×(x+16 x )≥3400+720×2√x×16x,即y≥3400+720×2√16,所以y≥9160.当且仅当x=16x,即x=4时,等号成立,所以当沼气池的底面是边长为4米的正方形时,沼气池的总造价最低,最低总造价是9160元,最低的总造价没有超出该农户的预算.。
不等式必修5试题及答案
![不等式必修5试题及答案](https://img.taocdn.com/s3/m/0d931adbed3a87c24028915f804d2b160b4e86ac.png)
不等式必修5试题及答案一、选择题1. 若不等式\(ax^2 + bx + c > 0\)的解集为\((-1, 2)\),则a的值是:A. 1B. -1C. 0D. 2答案:B2. 已知\(x^2 - 5x + 6 < 0\),求x的取值范围。
A. \((-\infty, 2) \cup (3, +\infty)\)B. \((2, 3)\)C. \((-\infty, 1) \cup (4, +\infty)\)D. \((1, 4)\)答案:B二、填空题1. 已知\(\frac{1}{x} > 0\),则x的取值范围是________。
答案:\(x > 0\) 或 \(x < 0\)(x不能为0)2. 若不等式\(2x - 3 > 5\)的解集为\((4, +\infty)\),则x的取值范围是________。
答案:\(x > 4\)三、解答题1. 解不等式\(3x^2 - 5x - 2 < 0\)。
答案:首先,找到方程\(3x^2 - 5x - 2 = 0\)的根,通过求解得到\(x = \frac{5 \pm \sqrt{25 + 24}}{6} = \frac{5 \pm 7}{6}\),即\(x = 2\)和\(x = -\frac{1}{3}\)。
因此,不等式的解集为\((-\frac{1}{3}, 2)\)。
2. 已知\(a > 0\),\(b > 0\),且\(a + b = 2\),求\(\frac{1}{a} + \frac{1}{b}\)的最小值。
答案:利用基本不等式,我们有\(\frac{1}{a} + \frac{1}{b} =\frac{1}{2}(a + b)(\frac{1}{a} + \frac{1}{b}) = \frac{1}{2}(2 + \frac{b}{a} + \frac{a}{b})\)。
必修五不等式练习题及参考答案
![必修五不等式练习题及参考答案](https://img.taocdn.com/s3/m/fc50363caa00b52acec7ca9e.png)
必修五不等式练习题及参考答案一、选择题。
1.一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是( )。
A. 10B. 10-C. 14D. 14-2.下列各函数中,最小值为2的是 ( D )A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈C.2y = D.1y x =3、一元二次不等式02>++n mx mx 的解集是{}12|<<-x x ,则m ,n 的值分别是() A 、3,23=-=n m B 、3,23==n mC 、3,23-==n m D 、3,23-=-=n m4、不等式0322>-+x x 的解集是 ( )A.{x|-1<x <3}B.{x|x >3或x <-1}C.{x|-3<x <1}D.{x|x>1或x <-3}5、若对于任何实数,二次函数y=a x 2-x+c 的值恒为负,那么a 、c 应满足 ( )A 、a >0且a c ≤41B 、a <0且a c <41C 、a <0且a c >41D 、a <0且a c <06、在坐标平面上,不等式组⎪⎩⎪⎨⎧≥+-≥+≤020,3y x y x x 所表示的平面区域的面积为( )A .28B .16C .439D .1217、不等式6)23)(5(-≥-+x x 的解集是( )A 、}29,1|{≥-≤x x x 或B 、}291|{≤≤-x xC 、}1,29|{≥-≤x x x 或 D 、}129|{≤≤-x x8.如果实数,x y 满足221x y +=,则(1)(1)xy xy +-有 ( ) A .最小值21和最大值 1 B .最大值1和最小值43 C .最小值43而无最大值 D .最大值2而无最小值 9、不等式1213≥--xx 的解集是( ) A .⎭⎬⎫⎩⎨⎧≤≤243|x x B .⎭⎬⎫⎩⎨⎧<≤243|x x C .⎭⎬⎫⎩⎨⎧≤>432|x x x 或D .{}2|<x x 10、关于x 的方程ax 2+2x -1=0至少有一个正的实根,则a 的取值范围是( )A .a ≥0B .-1≤a <0C .a >0或-1<a <0D .a ≥-111、、对于任意实数x ,不等式04)2(2)2(2<----x a x a 恒成立,则实数a 取值范围是( )A 、()2,∞-B 、(]2,∞-C 、(-2,2)D 、(]2,2- 12、的取植范围是的两侧,则)在直线,)和(,点(a a y x 0236413=+--( ) A .24,7>-<a a 或 B. 24,7=-=a a 或C. 247<<-aD. 724<<-a二填空题。
(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)
![(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)](https://img.taocdn.com/s3/m/d108f2252cc58bd63086bd47.png)
一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .62.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-13.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .107.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( )A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.18.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.19.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.20.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.已知m R ∈,命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若p q ∨为真,p q ∧为假,求m 的取值范围. 23.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.24.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围. 25.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 26.某单位计划建造一间背面靠墙的小屋,其地面面积为12m 2,墙面的高度为3m ,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为x m ,房屋背面和地面的费用不计. (1)用含x 的表达式表示出房屋的总造价; (2)当x 为多少时,总造价最低?最低造价是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.3.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()2222a b a b ab a b a b a b a b+-+==-+≥---,当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.B解析:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法7.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。
高中数学必修5基本不等式精选题目(附答案)
![高中数学必修5基本不等式精选题目(附答案)](https://img.taocdn.com/s3/m/e5606ef6960590c69ec3769c.png)
高中数学必修5基本不等式精选题目(附答案)1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a=b 时等号成立).题型一:利用基本不等式比较大小1.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定2.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.题型二:利用基本不等式证明不等式3.已知a ,b ,c 均为正实数, 求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.4.已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8.题型三:利用基本不等式求最值5.已知lg a +lg b =2,求a +b 的最小值.6.已知x >0,y >0,且2x +3y =6,求xy 的最大值.7.已知x >0,y >0,1x +9y =1,求x +y 的最小值.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5题型四:利用基本不等式解应用题9.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?巩固练习:1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x ≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<x ≤2时,x -1x 无最大值2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x ≥23.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥24.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bcB.a +d2<bcC.a+d2=bc D.a+d2≤bc5.若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值1 64C.最小值12D.最小值646.若a>0,b>0,且1a+1b=ab,则a3+b3的最小值为________.7.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.8.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.9.(1)已知x<3,求f(x)=4x-3+x的最大值;参考答案:1.解:因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m≥2(a-2)·1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.2.解:因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lga+b2=R.所以P<Q<R.3.[证明]∵a,b,c均为正实数,∴2ba+a2b≥2(当且仅当a=2b时等号成立),3c a+a3c≥2(当且仅当a=3c时等号成立),3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴⎝ ⎛⎭⎪⎫2b a +a 2b -1+⎝ ⎛⎭⎪⎫3c a +a 3c -1+⎝ ⎛⎭⎪⎫3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).4.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bc a . 同理,1b -1≥2ac b ,1c -1≥2abc . 上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2abc =8,当且仅当a =b =c =13时,取等号.5.解:由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. 6.解:∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32. 7.解:∵1x +9y =1, ∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x +9xy +10, 又∵x >0,y >0, ∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立. 由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎨⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.8.解析:选C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝ ⎛⎭⎪⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a 时等号成立,∴9m ≤54,即m ≤6,故选C.9.[解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy , =120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0, 故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100, 求得x =15,即铁栅的长是15米. 练习:1.解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab ≥214=1.4.解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.解析:选D 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab ,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.7.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.8.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号, 所以有xx 2+3x +1=1x +1x +3≤12+3=15, 即x x 2+3x +1的最大值为15,故a ≥15. 答案:⎣⎢⎡⎭⎪⎫15,+∞(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值. 9.解:(1)∵x <3, ∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x=3-x , 即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32.。
高中必修5不等式练习题及答案
![高中必修5不等式练习题及答案](https://img.taocdn.com/s3/m/b01543903c1ec5da50e270e0.png)
[基础训练A组]一、选择题1.若一2/+5兀一2>0,则丁4/-4・丫 + 1+2卜-2|等于()A. 4x —5B. — 3C. 3D. 5 —4兀2.函数y=log丄(x+古+1)(x > 1)的最大值是()A. —2B. 2C. —3D. 33人一13.不等式一的解集是()2—x3 3 3A. {x|—WxW2}B. {x| —Wx V2}C・ {x|x>2 或x W —} D. {x|xV2}4 4 44.设a>l>b>-l,则下列不等式中恒成立的是()A. — < —B. — > —C・ a>b* D・ £>2ba h a b5.如果实数x,y 满足x2 3+y J=l,则(1—xy)(1+xy)有()1 3A.最小值一和最大值1B.最大值1和最小值二2 43C.最小值;而无最大值D.最大值1而无最小值46.二次方程/+ (a s+l)x+a-2=0,有一个根比1尢另一个根比一1小,则a的取值范围是()A・一3 <a<l B. -2<a<0 C. -l<a<0 D. 0<a<2二、填空题(五个小题,每题6分,共30分)x > -21.不等式组、r的负整数解是______________________O兀>一3■2.一个两位数的个位数字比十位数字大2,若这个两位数小于30,则这个两位数为__________ oV2 +13.不等式一<0的解集是 _______________________ o2-x4.当尤= ____________ 时,函数y =,(2-小)有最_______值,其值是___________ 。
5・若f(n) = V«2+l 一亿g(n)=舁一J宀1,0(〃)=丄⑺已N),用不等号连结起来为______2n2 不等式---------- ----------- V0的解集为R,求实数m的取值范围。
(压轴题)高中数学必修五第三章《不等式》测试(有答案解析)(3)
![(压轴题)高中数学必修五第三章《不等式》测试(有答案解析)(3)](https://img.taocdn.com/s3/m/b17fd5aac850ad02df8041ba.png)
一、选择题1.已知实数x ,y 满足221x y x m -≤-≤⎧⎨≤≤⎩且2z y x =-的最小值为-6,则实数m 的值为( ). A .2B .3C .4D .82.已知()22log 31ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围为( ) A .()0,4B .[)0,4C .()0,2D .[)0,23.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( )A .53-B .15-C .13D .954.若x ,y 满足约束条件32100260220x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩,则6z x y =+的最大值为( )A .30B .14C .25D .365.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-16.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D7.当0x >时,不等式290x mx -+>恒成立,则实数m 的取值范围是( )A .(6)∞-,B .(6]∞-,C .[6)∞,+D .(6)∞,+8.已知变量,x y 满足约束条件5021010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩,则目标函数=21z x y =+-的最大值为( ) A .6 B .7 C .8 D .99.设0a >,0b >,则下列不等式中不.恒成立的是( ). A .12a a+≥B .222(1)a b a b +≥+- C≥D .3322a b ab +≥10.下列函数中最小值为4 的是( ) A .4y x x=+ B .4sin sin y x x=+(0πx << ) C .343xx y -=+⨯D .lg 4log 10x y x =+11.已知实数x ,y 满足260,{0,2,x y x y x -+≥+≥≤若目标函数z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是( ) A .[]2,1-B .[]1,3-C .[]1,2-D .[]2,312.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-二、填空题13.已知实数x y ,,正实数a b ,满足2x y a b ==,且213x y+=-,则2a b +的最小值为__________.14.123,,x x x 为实数,只要满足条件1230x x x >>>,就有不等式121233log 20202log 2020log 2020x x x x x x k +≥恒成立,则k 的最大值是__________.15.已知110,0,1x y x y >>+=,则2236x y y xy++的最小值是_________.16.满足关于x 的不等式()()20ax b x -->的解集为1{|2}2x x <<,则满足条件的一组有序实数对(),a b 的值可以是______. 17.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141xy x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.18.若x ,y 满足约束条件10,20,220,x y x y x y -+≤⎧⎪-≤⎨⎪+-≤⎩则z x y =+的最大值为______.19.已知正实数,x y 满足 20x y xy +-=,则2x y +的最小值为 ,y 的取值范围是 .20.某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元.甲、乙产品都需要在A ,B 两种设备上加工,在每台A ,B 设备上加工1件甲产品所需工时分别为1h 、2h ,加工1件乙产品所需工时分别为2h 、1h ,A ,B 两种设备每月有效使用时数分别为400h 和500h .若合理安排生产可使收入最大为______元. 三、解答题21.在平面直角坐标系中,圆C 是以(1,1)为圆心、半径为1的圆,过坐标原点O 的直线l 的斜率为k ,直线l 交圆C 于P ,Q 两点,点A(1)写出圆C 的标准方程; (2)求△APQ 面积的最大值. 22.已知函数()f x =(1)若()f x 的定义域为2,13⎡⎤-⎢⎥⎣⎦,求实数a 的值;(2)若()f x 的定义域为R ,求实数a 的取值范围.23.已知关于x 的不等式2430ax x -+<的解集为{}|1x x b <<. (1)求a ,b 的值;(2)求关于x 的不等式()20ax ac b x bc +--<的解集.24.已知关于x 的不等式23240x ax -++>. (1)当2a =时,求此不等式的解集;(2)若此不等式的解集为()4,m -,求实数a ,m 的值.25.已知函数2(4)()x f x x +=(0)x >. (1)解不等式:f (x )>503; (2)求函数f (x )的最小值.26.培养某种水生植物需要定期向培养植物的水中加入物质N ,已知向水中每投放1个单位的物质N ,x (单位:天)时刻后水中含有物质N 的量增加mol/L y ,y 与x 的函数关系可近似地表示为关系可近似地表示为168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩.根据经验,当水中含有物质N 的量不低4mol/L 时,物质N 才能有效发挥作用.(1)若在水中首次投放1个单位的物质N ,计算物质N 能持续有效发挥作用几天? (2)若在水中首次投放1个单位的物质N ,第8天再投放1个单位的物质N ,试判断第8天至第12天,水中所含物质N 的量是否始终不超过6mol/L ,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 作出不等式组221x y x m -≤-≤⎧⎨≤≤⎩对应的区域,利用数形结合平移直线即可得到结论 .【详解】由题意可作图:当2z y x =-经过点P 时,z 取最小值6, 此时P 符合:2x my x =⎧⎨=-⎩,即(,2)P m m -代入2z y x =-得:m -2-2m =-6,解得m =4 故选:C 【点睛】简单线性规划问题的解题步骤: (1)画出可行域;(2)作出目标函数所表示的某条直线(通常选作过原点的直线),移动此直线并观察此直线经过可行域的哪个(些)点时,函数有最大(小)值; (3)求(写)出最优解和相应的最大(小)值; (4)下结论.2.B解析:B 【分析】由对数函数的单调性可得210ax ax ++>对于任意的x ∈R 恒成立,讨论0a =和0a ≠求解. 【详解】()22log 31ax ax ++>对于任意的x ∈R 恒成立,即232ax ax ++>,即210ax ax ++>对于任意的x ∈R 恒成立, 当0a =时,10>恒成立,满足题意, 当0a ≠时,则240a a a >⎧⎨∆=-<⎩,解得04a <<, 综上,a 的取值范围为[)0,4. 故选:B. 【点睛】本题考查一元二次不等式的恒成立问题,解题的关键是得出210ax ax ++>对于任意的x ∈R 恒成立. 3.D解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C , 250270x y x y -+=⎧⎨-+=⎩ ,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242x y z x +-=-,并理解z 的几何意义,利用数形结合分析问题.4.A解析:A 【分析】画出约束条件所表示的平面区域,结合目标函数确定出最优解,代入即可求解. 【详解】画出约束条件32100260220x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩所标示平面区域,把目标函数6z x y =+,化为直线166z y x =-+,当直线166zy x =-+平移到点A 时, 此时直线在y 轴上的截距最大,目标函数取得最大值,又由32100220x y x y --=⎧⎨-+=⎩,解得()6,4A ,所以目标函数的最大值为666430z x y =+=+⨯=. 故选:A.【点睛】根据线性规划求解目标函数的最值问题的常见形式:(1)截距型:形如z ax by =+ .求这类目标函数的最值常将函数z ax by =+ 转化为直线的斜截式:a z y x b b =-+ ,通过求直线的截距zb的最值间接求出z 的最值; (2)距离型:形如()()22z x a y b =-+-,转化为可行域内的点到定点的距离的平方,结合点到直线的距离公式求解; (3)斜率型:形如y bz x a-=-,转化为可行域内点与定点的连线的斜率,结合直线的斜率公式,进行求解.5.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】 作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得1x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.6.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.7.A解析:A 【分析】当x>0时,不等式x2﹣mx+9>0恒成立⇔m<(x9x+)min,利用基本不等式可求得(x9x+)min=6,从而可得实数m的取值范围.【详解】当x>0时,不等式x2﹣mx+9>0恒成立⇔当x>0时,不等式m<x9x+恒成立⇔m<(x9x+)min,当x>0时,x9x+≥=6(当且仅当x=3时取“=”),因此(x9x+)min=6,所以m<6,故选A.【点睛】本题考查函数恒成立问题,分离参数m是关键,考查等价转化思想与基本不等式的应用,属于中档题.8.C解析:C【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件5021010x yx yx+-≤⎧⎪-+≤⎨⎪-≥⎩作出可行域如图,联立150xx y=⎧⎨+-=⎩,解得A(1,4),化目标函数z=x+2y﹣1为y1222x z=-++,由图可知,当直线y1222x z=-++过A时,z有最大值为8.故选C.【点睛】本题考查简单的线性规划,考查了目标函数的几何意义,考查数形结合的解题思想方法,是中档题.9.D解析:D 【解析】分析:根据基本不等式、作差法、分析法论证A,B,C 正确,举反例得D 错误. 详解:332222()()a b ab a b a ab b +-=-+-, 51a b -<<有3322a b ab <+, 故D 项错误,其余恒成立:11122,a a a a a a+≥⋅=⇒+≥ 2222222(1)(1)(1)02(1),a b a b a b a b a b +-+-=-+-≥⇒+≥+-当a b ≥时2220a b a b ab a b a b b a b a b ---+≥---+=⇒-当a b <0a b a b ->>D .点睛:本题考查根据基本不等式、作差法、分析法论证等知识点,考查推理论证能力.10.C解析:C 【解析】 A. 4y x x=+,定义域为()(),00,-∞⋃+∞,故A 的最小值不为4; B .令2440110sinx t y t y tt(,),,<,=∈∴=+'=- 因此函数单调递减,5y ∴>,不成立.C .244x x y e e -≥⋅=, 当且仅当0x =时取等号,成立.D .01x ∈(,)时,330x log x log ,<, 不成立. 故选C .11.C解析:C 【解析】试题分析:画出可行域如下图所示,依题意可知,目标函数在点()2,10取得最大值,在点()2,2-取得最小值.由图可知,当0m ≥时,[]0,2m ∈,当0m <时,[)1,0m ∈-,故取值范围是[]1,2-.考点:线性规划.12.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.二、填空题13.【分析】由条件化简可得利用均值不等式求最小值即可【详解】正实数满足取对数可得所以所以由均值不等式知当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(解析:2【分析】由条件化简可得218a b =,利用均值不等式求最小值即可.【详解】正实数a b ,满足2x y a b ==, 取对数可得log 2,log 2a b x y ==, 所以2222212log log log 3a b a b x y+=+==-, 所以218a b =,由均值不等式知,2a b +≥=,当且仅当2a b =,即a =,b =.故答案为:2【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】根据对数的运算性质可得设原不等式可化为由可得令小于等于的最小值即可【详解】由题意设则又所以原不等式可化为由可得则原不等式可化为又当且仅当时等号成立所以即的最大值为故答案为:【点睛】关键点点睛解析:3+【分析】根据对数的运算性质,可得1212lg 2020log 2020lg lg x x x x =-,23232lg 20202log 2020lg lg x x x x =-,1313lg 2020log 2020lg lg x x k k x x =-,设12lg lg a x x =-,23lg lg b x x =-,原不等式可化为12k a b a b +≥+,由0,0a b >>,可得()12k a b a b ⎛⎫≤++ ⎪⎝⎭,令k 小于等于()12a b a b ⎛⎫++ ⎪⎝⎭的最小值即可. 【详解】 由题意,121122lg 2020lg 2020log 2020lg lg lg x x x x x x ==-,2322332lg 20202lg 20202log 2020lg lg lg x x x x x x ==-,131133lg 2020lg 2020log 2020lg lg lg x x k k k x x x x ==-, 设12lg lg a x x =-,23lg lg b x x =-,则13lg lg x x a b -=+, 又lg 20200>,所以原不等式可化为12ka b a b+≥+, 由1230x x x >>>,可得0,0a b >>,则原不等式可化为()12k a b a b ⎛⎫≤++ ⎪⎝⎭, 又()1221233b a a b a b a b ⎛⎫++=+++≥+=+⎪⎝⎭2b a a b =时,等号成立,所以3k ≤+k的最大值为3+故答案为:3+ 【点睛】关键点点睛:本题考查不等式恒成立问题,解题关键是将原不等式转化为()12k a b a b ⎛⎫≤++ ⎪⎝⎭.本题中利用对数的运算性质,将三个对数转化为以10为底的对数,进而设12lg lg a x x =-,23lg lg b x x =-,可将原不等式化为12k a b a b+≥+,进而结合,a b 的范围可得到()12k a b a b ⎛⎫≤++ ⎪⎝⎭.考查学生的逻辑推理能力,计算求解能力,属于中档题.15.【分析】由题得化简整理得再利用基本不等式可得解【详解】由得则当且仅当时等号成立此时或;则的最小值是故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一解析:11【分析】 由题得1x yx y xy xy+=⇒+=,化简整理得()2223636361xy xy x y y xy xy xy xy-+++==+-再利用基本不等式可得解.【详解】由110,0,1x y x y >>+=, 得1x yx y xy xy+=⇒+=, 则()2223636x y x y x y y xy xy+++++=()2223636x y xy x xy y xy xy+-++++==()236361111xy xy xy xy xy -+==+-≥=,当且仅当6xy =时等号成立,此时33x y ⎧=+⎪⎨=⎪⎩33x y ⎧=-⎪⎨=+⎪⎩则2236x y y xy++的最小值是11.故答案为:11. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.【分析】根据题意知不等式对应方程的实数根由此求出写出满足条件的一组有序实数对即可【详解】不等式的解集为方程的实数根为和2且即则满足条件的一组有序实数对的值可以是故答案为【点睛】本题考查了一元二次不等 解析:()2,1--【分析】根据题意知,不等式对应方程的实数根,由此求出20a b =<,写出满足条件的一组有序实数对即可. 【详解】不等式()()20ax b x -->的解集为1{|2}2x x <<, ∴方程()()20ax b x --=的实数根为12和2,且012a b a <⎧⎪⎨=⎪⎩,即20a b =<,则满足条件的一组有序实数对(),a b 的值可以是()2,1--. 故答案为()2,1--. 【点睛】本题考查了一元二次不等式与对应方程的关系应用问题,是基础题.17.①③【分析】结合基本不等式对四个函数逐个分析可得出答案【详解】对于①函数是定义域为的偶函数当时当且仅当时等号成立根据对称性可知函数的最小值为2满足题意;对于②因为所以则当且仅当即时等号成立所以即函数解析:①③ 【分析】结合基本不等式,对四个函数逐个分析,可得出答案. 【详解】对于①,函数1y x x=+是定义域为()(),00,-∞+∞的偶函数,当()0,x ∈+∞时,12x x +≥=,当且仅当1x =时等号成立, 根据对称性可知,函数1y x x=+的最小值为2,满足题意; 对于②,11123214124212112y x x x x x x ⎛⎫=++=-++=--+- ⎪---⎝⎭, 因为12x <,所以120x ->, 则11244212x x -+-≥=--,当且仅当11212x x -=-,即0x =时等号成立, 所以1124212y x x ⎛⎫=--+-≤ ⎪-⎝⎭,即函数1123212y x x x ⎛⎫=++< ⎪-⎝⎭的最大值为2,没有最小值,不满足题意;对于③,222114144141x x xy x x x x x +⎛⎫=++=+ ⎪++⎝⎭,因为1x >,所以2104x x+>,所以2214241x x y x x +=+≥=+,当且仅当221441x x x x +=+,即2x =所以()2114141xy x x x x ⎛⎫=++> ⎪+⎝⎭的最小值为2,符合题意; 对于④,22221sin cos sin cos y x x x x=+,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以sin cos 0x x >,所以22221sin cos 2sin cos x x x x +≥=,当且仅当22221sin cos sin cos x x x x=,即sin cos 1x x =时等号成立,因为11sin cos sin 222x x x =≤,所以sin cos 1x x ≠, 即函数22221sin cos sin cos y x x x x=+的最小值不是2,不符合题意;故答案为:①③. 【点睛】本题考查函数的最值,考查基本不等式的应用,考查学生的推理能力与计算能力,属于中档题.18.1【分析】画出可行域和目标函数根据目标函数的几何意义得到答案【详解】如图所示:画出可行域和目标函数则表示直线在轴的截距当直线过点时即时有最大值为故答案为:【点睛】本题考查了线性规划问题意在考查学生的解析:1 【分析】画出可行域和目标函数,根据目标函数的几何意义得到答案. 【详解】如图所示:画出可行域和目标函数,z x y =+,则y x z =-+,z 表示直线在y 轴的截距,当直线过点()0,1时,即0,1x y ==时,z 有最大值为1. 故答案为:1.【点睛】本题考查了线性规划问题,意在考查学生的应用能力,画出图像是解题的关键.19.【解析】试题分析:因故又因为因故即所以故应填答案考点:基本不等式的运用【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知 解析:()8,1,+∞【解析】试题分析:因20x y xy +-=,故,又因为.因,故,即,所以.故应填答案.8,1y >.考点:基本不等式的运用.【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一.本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知识去分析问题解决问题的能力.求解时先将已知20x y xy +-=,变形为,然后将其代入可得,最后达到获解之目的.关于的范围问题,则借助题设条件,推得,解之得.20.800000【分析】设每月生产甲产品件生产乙产品件每月收入为元列出实际问题中xy 所需满足的条件作出可行域数形结合求出目标函数的最大值【详解】设每月生产甲产品件生产乙产品件每月收入为元目标函数为需要满解析:800000 【分析】设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,列出实际问题中x 、y 所需满足的条件,作出可行域,数形结合求出目标函数30002000z x y =+的最大值. 【详解】设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是2400250000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,作出可行域如图所示,目标函数30002000z x y =+可转化直线3122000y x z =-+,数形结合知当直线经过点A 时z 取得最大值.解方程组24002500x y x y +=⎧⎨+=⎩,可得点()200,100A ,则z 的最大值为30002002000100z =⨯+⨯=800000元. 故答案为:800000 【点睛】本题考查线性规划解决实际问题,属于基础题.三、解答题21.(1)()()22111x y -+-=;(2)212+ 【分析】(1)根据圆心和半径,即可直接写出圆C 的方程;(2)联立直线l 方程和圆方程,求得k 的范围,结合弦长公式,求得PQ ,再利用点到直线的距离公式,即可求得点A 到直线l 的距离,结合基本不等式,即可求得面积的最大值.【详解】(1)根据题意可得,圆C 的圆心为()1,1,半径1r =, 故圆方程为:()()22111x y -+-=;(2)设直线l 的方程为y kx =,联立圆C 方程可得:()()2212210k x k x +-++=,因为直线l 圆交于两点,故可得()()22Δ22410k k =+-+>,解得0k >;又圆心()1,1到直线l的距离d =故可得PQ ==;又点A 到直线l的距离h =故三角形APQ的面积)()21112212121k S PQ h k k k +=⨯⨯==≤=++++-+. 当且仅当1k=时取得面积的最大值12+. 【点睛】本题考查圆方程的求解,涉及直线截圆的弦长求解,涉及基本不等式的应用,属综合中档题.22.(1) 2a = (2) 7,19a ⎡⎤∈-⎢⎥⎣⎦【分析】(1)根据题意定义域为2,13⎡⎤-⎢⎥⎣⎦,可知不等式()()221120a x a x ---+≥的解集为2,13⎡⎤-⎢⎥⎣⎦,根据一元二次不等式解集与一元二次方程根的关系即可求解. (2)()f x 的定义域为R ,可知不等式()()221120a x a x ---+≥恒成立,然后讨论二次项系数,借助二次函数的性质即可求解. 【详解】解:(1)()f x 的定义域为2,13⎡⎤-⎢⎥⎣⎦,即()()221120a x a x ---+≥的解集为2,13⎡⎤-⎢⎥⎣⎦, 故()()()()22210221*********a a a a a ⎧-<⎪⎪⎛⎫-⋅---+=⎨ ⎪⎝⎭⎪⎪---+=⎩,解得2a =;(2)()f x 的定义域为R ,即()()221120ax a x ---+≥恒成立,当210a -=时,1a =±,经检验只有1a =满足条件;当210a -≠时,()()222101810a a a ⎧->⎪⎨∆=---≤⎪⎩,解得7,19a ⎡⎫∈-⎪⎢⎣⎭, 综上,7,19a ⎡⎤∈-⎢⎥⎣⎦. 【点睛】本题主要考查函数的定义域、一元二次不等式的解法、一元二次不等式与二次函数的关系,综合性比较强. 23.(1)13a b =⎧⎨=⎩;(2)分类讨论,答案见解析. 【分析】(1)根据题意利用根与系数的关系列方程求出a 、b 的值;(2)不等式化为2(3)30x c x c +--<,求出对应方程的解,利用分类讨论写出不等式的解集. 【详解】(1)由题意知:0a >且b 和1是方程2430ax x -+=的两根,由根与系数的关系有4131b ab a⎧=+⎪⎪⎨⎪=⨯⎪⎩,解得13a b =⎧⎨=⎩.(2)不等式2()0axac b x bc +--<可化为2(3)30x c x c +--<,即(3)()0x x c -+<.其对应方程的两根为13x =,2x c =-①当3c ->即3c <-时,原不等式的解集为{|3}x x c <<-; ②当3c -<即3c >-时,原不等式的解集为{|3}x c x -<<; ③当3c -=即3c =-时,原不等式的解集为∅;综上所述:当3c <-时,原不等式的解集为{|3}x x c <<-;当3c >-时,原不等式的解集为{|3}x c x -<<;当3c =-时,原不等式的解集为∅;【点睛】本题考查一元二次不等式的解法与应用问题,考查运算求解能力,求解时注意进行分类讨论.24.(1)223x x ⎧⎫-<<⎨⎬⎩⎭;(2)13m =,112a =-. 【分析】(1)当2a =时,不等式为23440x x -++>,即23440x x --<,利用一元二次不等式求解.(2)根据不等式的解集为()4,m -,则由4-,m 为方程23240x ax -++=的两根求解.【详解】(1)当2a =时,不等式为23440x x -++>,所以23440x x --<, 所以()23203x x ⎛⎫+-< ⎪⎝⎭, 解得223x -<<, 所以不等式23440x x -++>的解集为223x x ⎧⎫-<<⎨⎬⎩⎭; (2)由已知得4-,m 为方程23240x ax -++=的两根, 则有243a m -+=--且443m -=-, 解得13m =,112a =-. 【点睛】本题主要考查一元二次不等式的解法以及一元二次不等式与一元二次方程的关系,属于中档题.25.(1)8|03x x ⎧<<⎨⎩或}6x >;(2)16 【分析】 (1)令2(4)503x x +>,解得x 的范围与0x >求交集即可得解集. (2)将2(4)()x f x x+=展开整理,然后用基本不等式求最值. 【详解】(1)220(4)50()(4)5033x x f x x x x >⎧+⎪=>⇔⎨+>⎪⎩, 208|03264803x x x x x >⎧⎧⇔⇔<<⎨⎨-+>⎩⎩或}6x >. (2)22(4)81616()8816x x x f x x x x x +++===++≥=, 当且仅当16x x =,即4x =时函数2(4)()x f x x+=取得最小值16. 【点睛】本题主要考查了分式不等式的解法,和基本不等式求最值,属于基础题.26.(1)6天.(2)第8天至第12天,水中所含物质N 的量始终不超过6mol/L .见解析【分析】(1)由题可知168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩,分类讨论求解满足4y ≥时的x 的范围,即可得出在水中首次投放1个单位的物质N ,物质N 能持续有效发挥作用的天数; (2)根据已知求出函数解析式()16162014666y x x x x ⎡⎤=--=--+⎢⎥--⎣⎦,利用基本不等式即可求得当10x =时,max 6y =,从而得出结论.【详解】解:(1)由题意,x (单位:天)时刻后水中含有物质N 的量为:168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩,由于当水中含有物质N 的量不低4mol/L 时,物质N 才能有效发挥作用,即需4y ≥,则当06x ≤≤时,16842x -≥+且当612x <≤时,124x -≥, 解得:28x ≤≤,所以若在水中首次投放1个单位的物质N ,物质N 能持续有效发挥作用的时间为:8-2=6天.(2)设第()812x x ≤≤天水中所含物质N 的量为mol/L y ,则()1220(8)26 16168y x x x x ⎡⎤-⎢⎣=-+=--+⎦--⎥, ()161461466y x x ⎡⎤=--+≤-=⎢⎥-⎣⎦,当且仅当1666x x -=-,即[]108,12x =∈时,等号成立, 即当10x =时,max 6y =,所以第8天至第12天,水中所含物质N 的量始终不超过6mol/L .【点睛】本题考查利用函数解决实际问题,考查分段函数和基本不等式的应用,确定函数的解析式是关键.。
高中数学必修5(解一元二次不等式)同步测试精选(含答案)
![高中数学必修5(解一元二次不等式)同步测试精选(含答案)](https://img.taocdn.com/s3/m/e3af9dd5a5e9856a57126086.png)
高中数学必修5(解一元二次不等式)同步测试精选(含答案)一、选择题1.下列不等式:①x 2>0;②-x 2-x ≤5;③ax 2>2;④x 3+5x -6>0;⑤mx 2-5y <0;⑥ax 2+bx +c >0.其中是一元二次不等式的有( ) A .5个 B .4个 C .3个D .2个2.二次不等式ax 2+bx +c <0的解集为全体实数的条件是( )A.⎩⎪⎨⎪⎧ a >0Δ>0B.⎩⎪⎨⎪⎧ a >0Δ<0C.⎩⎪⎨⎪⎧a <0Δ>0D.⎩⎪⎨⎪⎧a <0Δ<03.已知不等式ax 2+3x -2>0的解集为{x |1<x <b },则a ,b 的值等于( ) A .a =1,b =-2 B .a =2,b =-1 C .a =-1,b =2D .a =-2,b =14.若不等式f (x )=ax 2-x -c >0的解集为(-2,1),则函数y =f (x )的图象为( )5.已知一元二次不等式f (x )<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >12,则f (10x )>0的解集为( )A .{x |x <-1或x >-lg 2}B .{x |-1<x <-lg 2}C .{x |x >-lg 2}D .{x |x <-lg 2} 二、填空题6.不等式-x 2-3x +4>0的解集为________.(用区间表示)7.设函数f (x )=⎩⎨⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是________.8.已知集合A ={x |3x -2-x 2<0},B ={x |x -a <0},且B ⊆A ,则a 的取值范围为________.三、解答题9.求下列不等式的解集: (1)x 2-5x +6>0; (2)-12x 2+3x -5>0.10.解关于x 的不等式x 2-(2m +1)x +m 2+m <0.[能力提升]1.已知0<a <1,关于x 的不等式(x -a )⎝ ⎛⎭⎪⎫x -1a >0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <a 或x >1a B .{x |x >a }C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1a 或x >a D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1a 2.设0<b <1+a .若关于x 的不等式(x -b )2>(ax )2的解集中的整数解恰有3个,则a 的取值范围为( )A .[1,3)B .(1,3)C .(-∞,1)D .(3,+∞)3.不等式2x 2-x <4的解集为______.4.已知M 是关于x 的不等式2x 2+(3a -7)x +3+a -2a 2<0的解集,且M 中的一个元素是0,求实数a 的取值范围,并用a 表示出该不等式的解集.参考答案与解析1【解析】 根据一元二次不等式的定义知①②正确. 【答案】 D2【解析】 结合二次函数的图象(略),可知若ax 2+bx +c <0,则⎩⎨⎧a <0,Δ<0.【答案】 D3【解析】 因为不等式ax 2+3x -2>0的解集为{x |1<x <b },所以方程ax 2+3x -2=0的两个根分别为1和b ,根据根与系数的关系,得1+b =-3a ,b =-2a ,所以a =-1,b =2.【答案】 C4【解析】 因为不等式的解集为(-2,1),所以a <0,排除C ,D ,又与坐标轴交点的横坐标为-2,1,故选B. 【答案】 B5【解析】 由题意知,一元二次不等式f (x )>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <12. 而f (10x )>0, ∴-1<10x <12,解得x <lg 12,即x <-lg 2. 【答案】 D6【解析】 由-x 2-3x +4>0得x 2+3x -4<0,解得-4<x <1. 【答案】 (-4,1)7【解析】 f (1)=12-4×1+6=3, 当x ≥0时,x 2-4x +6>3, 解得x >3或0≤x <1; 当x <0时,x +6>3, 解得-3<x <0.所以f (x )>f (1)的解集是(-3,1)∪(3,+∞). 【答案】 (-3,1)∪(3,+∞)8【解析】 A ={x |3x -2-x 2<0}={x |x 2-3x +2>0}={x |x <1或x >2},B ={x |x <a }.若B ⊆A ,如图,则a ≤1.【答案】 (-∞,1]9【解】 (1)方程x 2-5x +6=0有两个不等实数根x 1=2,x 2=3,又因为函数y =x 2-5x +6的图象是开口向上的抛物线,且抛物线与x 轴有两个交点,分别为(2,0)和(3,0),其图象如图(1).根据图象可得不等式的解集为{x |x >3,或x <2}.(2)原不等式可化为x 2-6x +10<0,对于方程x 2-6x +10=0,因为Δ=(-6)2-40<0,所以方程无解,又因为函数y =x 2-6x +10的图象是开口向上的抛物线,且与x 轴没有交点,其图象如图(2).根据图象可得不等式的解集为∅.10【解】 ∵原不等式等价于(x -m )(x -m -1)<0, ∴方程x 2-(2m +1)x +m 2+m =0的两根分别为m 与m +1. 又∵m <m +1.∴原不等式的解集为{x |m <x <m +1}. 1【解析】 方程两根为x 1=a ,x 2=1a , ∵0<a <1,∴1a >a .相应的二次函数图象开口向上,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <a 或x >1a .【答案】 A2【解析】 原不等式转化为[(1-a )x -b ][(1+a )x -b ]>0.①当a ≤1时,结合不等式解集形式知不符合题意;②当a >1时,b 1-a <x <b a +1,由题意知0<ba +1<1,∴要使原不等式解集中的整数解恰有3个,则需-3≤b1-a<-2.整理,得2a -2<b ≤3a -3.结合题意b <1+a ,有2a -2<1+a .∴a <3,从而有1<a <3.综上可得a ∈(1,3).【答案】 B3【解析】 ∵2x 2-x <4, ∴2x 2-x <22,∴x 2-x <2,即x 2-x -2<0, ∴-1<x <2.【答案】 {x |-1<x <2}4【解】 原不等式可化为(2x -a -1)(x +2a -3)<0, 由x =0适合不等式得(a +1)(2a -3)>0, 所以a <-1或a >32.若a <-1,则-2a +3-a +12=52(-a +1)>5, 所以3-2a >a +12,此时不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a +12<x <3-2a; 若a >32,由-2a +3-a +12=52(-a +1)<-54, 所以3-2a <a +12,此时不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪3-2a <x <a +12. 综上,当a <-1时,原不等式的解集为⎝⎛⎭⎪⎫a +12,3-2a ,当a >32时,原不等式的解集为⎝⎛⎭⎪⎫3-2a ,a +12.。
高中数学必修五第三章《不等式》单元测试题含答案
![高中数学必修五第三章《不等式》单元测试题含答案](https://img.taocdn.com/s3/m/2673bde152ea551811a68758.png)
高中数学必修五第三章单元测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出以下四个命题:①若a >b ,则1a <1b; ②若ac 2>bc 2,则a >b ;③若a >|b |,则a >b ; ④若a >b ,则a 2>b 2. 其中正确的是( )A .②④B .②③C .①②D .①③2.设a ,b ∈R ,若a -|b |>0,则下列不等式中正确的是( ) A .b -a >0 B .a 3+b 2<0 C .b +a >0D .a 2-b 2<03.设集合U =R ,集合M ={x |x >1},P ={x |x 2>1},则下列关系中正确的是( )A .M =PB .PMC .MP D .∁U M ∩P =∅4.设集合A ={x |x >3},B ={x |x -1x -4<0},则A ∩B =( )A .∅B .(3,4)C .(-2,1)D .(4,+∞)5.在下列函数中,最小值是2的是( )A .y =x 2+2xB .y =x +2x +1(x >0)C .y =sin x +csc x ,x ∈(0,π2)D .y =7x +7-x6.已知log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1) B .(12,1)C .(0,12)D .(1,+∞)7.已知点P (x ,y )在不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -2≥0表示的平面区域内运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]8.不等式(x -2y +1)(x +y -3)<0表示的区域为( )9.f (x )=ax 2+ax -1在R 上满足f (x )<0,则a 的取值范围是( ) A .(-∞,0] B .(-∞,-4) C .(-4,0)D .(-4,0]10.由⎩⎪⎨⎪⎧x +2y +1≤0,x +y +2≥0,y ≥0组成的平面区域的面积为( )A .2B .1C.4 D.1 211.函数y=3x2+6x2+1的最小值是( )A.32-3 B.-3 C.6 2 D.62-312.设a>0,b>0.若3是3a与3b的等比中项,则1a+1b的最小值为( )A.8 B.4C.1 D.1 4二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13.点(-2,t)在直线2x-3y+6=0的上方,则t的取值范围是________.14.函数y=13-2x-x2的定义域是________.15.如下图,有一张单栏的竖向张贴的海报,它的印刷面积为72 dm2(图中阴影部分),上下空白各2 dm,左右空白各1 dm,则四周空白部分面积的最小值是________dm2.16.已知当x >0时,不等式x 2-mx +4>0恒成立,则实数m 的取值范围是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}. (1)若AB ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.18.(12分)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.19.(12分)已知a ,b ,c 都是正数,且a +b +c =1. 求证:(1-a )(1-b )(1-c )≥8abc .20.(12分)某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A厂每小时可完成1辆甲型车和2辆乙型车;B厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工时最少?21.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/时)与汽车的平均速度v(千米/时)之间的函数关系为y=144v(v>0).v2-58v+1 225(1)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量为多少?(2)若要求在该时段内车流量超过9千辆/时,则汽车的平均速度应在什么范围内?22.(12分)甲、乙两公司同时开发同一种新产品,经测算,对于函数f(x)和g(x),当甲公司投入x万元作宣传时,若乙公司投入的宣传费小于f(x)万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风险;当乙公司投入x万元作宣传时,若甲公司投入的宣传费小于g(x)万元,则甲公司对这一新产品的开发有失败的风险,否则没有失败的风险.(1)试解释f(0)=10,g(0)=20的实际意义;(2)设f (x )=14x +10,g (x )=x +20,甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司应投入多少宣传费?高中数学必修五第三章单元测试题《不等式》参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出以下四个命题:①若a >b ,则1a <1b; ②若ac 2>bc 2,则a >b ;③若a >|b |,则a >b ; ④若a >b ,则a 2>b 2. 其中正确的是( )A .②④B .②③C .①②D .①③答案 B2.设a ,b ∈R ,若a -|b |>0,则下列不等式中正确的是( ) A .b -a >0 B .a 3+b 2<0 C .b +a >0 D .a 2-b 2<0 答案 C解析 由a -|b |>0⇒|b |<a ⇒-a <b <a ⇒a +b >0,故选C.3.设集合U =R ,集合M ={x |x >1},P ={x |x 2>1},则下列关系中正确的是( )A .M =PB .P MC .MP D .∁U M ∩P =∅答案 C4.设集合A ={x |x >3},B ={x |x -1x -4<0},则A ∩B =( )A .∅B .(3,4)C .(-2,1)D .(4,+∞)答案 B解析 ∵x -1x -4<0⇔(x -1)(x -4)<0,∴1<x <4,即B ={x |1<x <4},∴A ∩B =(3,4),故选B.5.在下列函数中,最小值是2的是( )A .y =x 2+2xB .y =x +2x +1(x >0) C .y =sin x +csc x ,x ∈(0,π2)D .y =7x +7-x 答案 D解析 y =x 2+2x 的值域为(-∞,-2]∪[2,+∞);y =x +2x +1=x +1+1x +1>2(x >0);y =sin x +csc x =sin x +1sin x>2(0<sin x <1);y =7x +7-x ≥2(当且仅当x =0时取等号).6.已知log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1) B .(12,1)C .(0,12)D .(1,+∞)答案 B7.已知点P (x ,y )在不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -2≥0表示的平面区域内运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]答案 C解析 画可行域如图:当直线y =x -z 过A 点时,z min =-1. 当直线y =x -z 过B 点时,z max =2. ∴z ∈[-1,2].8.不等式(x -2y +1)(x +y -3)<0表示的区域为( )答案 C9.f (x )=ax 2+ax -1在R 上满足f (x )<0,则a 的取值范围是( ) A .(-∞,0] B .(-∞,-4) C .(-4,0) D .(-4,0]答案 D10.由⎩⎪⎨⎪⎧x +2y +1≤0,x +y +2≥0,y ≥0组成的平面区域的面积为( )A .2B .1C .4D.12答案 D 11.函数y =3x 2+6x 2+1的最小值是( ) A .32-3B .-3C .6 2D .62-3答案 D 12.设a >0,b >0.若3是3a 与3b 的等比中项,则1a +1b的最小值为( ) A .8B .4C .1D.14 答案 B解析 3是3a 与3b 的等比中项⇒3a ·3b =3a +b =3⇒a +b =1,∵a >0,b >0,∴ab ≤a +b 2=12⇒ab ≤14. ∴1a +1b =a +b ab =1ab ≥114=4. 二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13.点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是________.答案 (23,+∞) 14.函数y =13-2x -x2的定义域是________. 答案 {x |-3<x <1}15.如下图,有一张单栏的竖向张贴的海报,它的印刷面积为72 dm 2(图中阴影部分),上下空白各2 dm ,左右空白各1 dm ,则四周空白部分面积的最小值是________dm 2.答案 56解析 设阴影部分的高为x dm ,宽为72xdm ,则四周空白部分面积是y dm 2,由题意,得y =(x +4)(72x +2)-72=8+2(x +144x )≥8+2×2x ×144x =56.16.已知当x >0时,不等式x 2-mx +4>0恒成立,则实数m 的取值范围是________.答案 (-∞,4)解析 由题意得当x >0时,恒有m <x +4x 成立.设f (x )=x +4x,x >0,则有f (x )=x +4x ≥2x ×4x =4,当且仅当x =4x ,即x =2时,等号成立.所以f (x )=x +4x ,x >0的最小值是4.所以实数m 的取值范围是(-∞,4).三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.(1)若A B ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.答案 (1)(2,+∞) (2)[1,2]18.(12分)已知x >0,y >0,且1x +9y=1,求x +y 的最小值. 答案 16解析 由于x >0,y >0,1x +9y=1, 所以x +y =(x +y )(1x +9y )=y x +9x y+10 ≥2y x ·9x y +10=16. 当且仅当y x =9x y 时,等号成立,又由于1x +9y=1. 所以当x =4,y =12时,(x +y )min =16.19.(12分)已知a ,b ,c 都是正数,且a +b +c =1.求证:(1-a )(1-b )(1-c )≥8abc .证明 ∵a 、b 、c 都是正数,且a +b +c =1,∴1-a =b +c ≥2bc >0,1-b =a +c ≥2ac >0,1-c =a +b ≥2ab >0.∴(1-a )(1-b )(1-c )≥2bc ·2ac ·2ab =8abc .∴原不等式成立.20.(12分)某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A 厂每小时可完成1辆甲型车和2辆乙型车;B 厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工时最少?解析 设A 厂工作x 小时,B 厂工作y 小时,总工作时数为t 小时,则目标函数t =x +y ,x ,y 满足⎩⎪⎨⎪⎧ x +3y ≥40,2x +y ≥20,x ≥0,y ≥0.可行域如图所示,而符合题意的解为此内的整点,于是问题变为要在此可行域内,找出整点(x ,y ),使t =x +y 的值最小.由图知当直线l :y =-x +t 过Q 点时,纵截距t 最小.解方程组⎩⎪⎨⎪⎧ x +3y =40,2x +y =20,得Q (4,12).答:A 厂工作4小时,B 厂工作12小时,可使所费的总工时最少.21.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/时)与汽车的平均速度v (千米/时)之间的函数关系为y =144v v 2-58v +1 225(v >0). (1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(2)若要求在该时段内车流量超过9千辆/时,则汽车的平均速度应在什么范围内?思路分析 (1)利用基本不等式求最大车流量,(2)转化为解不等式.解析 (1)依题意,有y =144v +1 225v-58≤1442 1 225-58=12, 当且仅当v =1 225v,即v =35时等号成立, ∴y max =12,即当汽车的平均速度v 为35千米/时,车流量最大为12.(2)由题意,得y =144v v 2-58v +1225>9. ∵v 2-58v +1225=(v -29)2+384>0,∴144v >9(v 2-58v +1225).∴v 2-74v +1225<0.解得25<v <49.即汽车的平均速度应在(25,49)内.22.(12分)甲、乙两公司同时开发同一种新产品,经测算,对于函数f (x )和g (x ),当甲公司投入x 万元作宣传时,若乙公司投入的宣传费小于f (x )万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风险;当乙公司投入x 万元作宣传时,若甲公司投入的宣传费小于g (x )万元,则甲公司对这一新产品的开发有失败的风险,否则没有失败的风险.(1)试解释f (0)=10,g (0)=20的实际意义;(2)设f (x )=14x +10,g (x )=x +20,甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司应投入多少宣传费?解析 (1)f (0)=10表示当甲公司不投入宣传费时,乙公司要避免新产品的开发有失败风险,至少要投入10万元宣传费;g (0)=20表示当乙公司不投入宣传费时,甲公司要避免新产品的开发有失败的风险,至少要投入20万元宣传费.(2)设甲公司投入宣传费x 万元,乙公司投入宣传费y 万元,依题意,当且仅当⎩⎪⎨⎪⎧ y ≥f x =14x +10, ①x ≥g y =y +20, ②成立,双方均无失败的风险.由①②得y ≥14(y +20)+10⇒4y -y -60≥0, ∴(y -4)(4y +15)≥0.∵4y +15>0,∴y ≥4.∴y ≥16.∴x ≥y +20≥4+20=24.∴x min =24,y min =16.即要使双方均无失败风险,甲公司至少要投入24万元,乙公司至少要投入16万元.。
人教版高中数学必修5不等式练习题及答案
![人教版高中数学必修5不等式练习题及答案](https://img.taocdn.com/s3/m/f8ae96d0a5e9856a5712608c.png)
第三章 不等式一、选择题1.假设a =2,b =log π3,c =log πsin 52π,则( ). A .a >b >cB .b >a >cC .c >a >bD .b >c >a2.设a ,b 是非零实数,且a <b ,则以下不等式成立的是( ). A .a 2<b 2B .ab 2<a 2bC .21ab<b a 21 D .a b <ba3.假设对任意实数x ∈R ,不等式|x |≥ax 恒成立,则实数a 的取值范围是( ). A .a <-1B .|a |≤1C .|a |<1D .a ≥14.不等式x 3-x ≥0的解集为( ). A .(1,+∞)B .[1,+∞)C .[0,1)∪(1,+∞)D .[-1,0]∪[1,+∞)5.已知f (x )在R 上是减函数,则满足f (11-x )>f (1)的实数取值范围是( ). A .(-∞,1)B .(2,+∞)C .(-∞,1)∪(2,+∞)D .(1,2)6.已知不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为图中( ).A B C D7.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧yx y x y x 2++- 则目标函数z =5x +y 的最大值是( ). A .2 B .3 C .4 D .58.设变量x ,y 满足⎪⎩⎪⎨⎧5--31+-3-+y x y x y x 设y =kx ,则k 的取值范围是( ).A .[21,34] B .[34,2] C .[21,2] D .[21,+∞) ≥0 ≤1≥1 ≥0≥1 ≤1 (第6题)9.已知a ,b ∈R ,则使|a |+|b |≥1成立的一个充分不必要条件是( ). A .|a +b |<1 B .a ≤1,且b ≤1 C .a <1,且b <1D .a 2+b 2≥110.假设lg x +lg y =2,则x1+y 1的最小值为( ). A .201B .51 C .21 D .2二、填空题11.以下四个不等式:①a <0<b ,②b <a <0,③b <0<a ,④0<b <a ,其中使a 1<b1成立的充分条件是 .12.设函数f (x )=⎩⎨⎧-11 则不等式xf (x )+x ≤4的解集是____________.13.假设不等式(-1)na <2+nn 1)1(+-对任意正整数n 恒成立, 则a 的取值范围是 .14.关于x 的不等式x 2-(a +a 1+1)x +a +a1<0(a >0)的解集为__________________. 15.假设不等式x 2-2x +3≤a 2-2a -1在R 上的解集是空集,则a 的取值范围是 .三、解答题16.已知函数f (x )=x 2-2x +2194)(x -,x ∈(-∞,1)∪(1,+∞),求f (x )的最小值.(x >0),(x <0).17.甲乙两人同时同地沿同一路线走向同一地点,甲有一半时间以速度m行走,另一半时间以速度n行走;乙有一半路程以速度m行走,另一半路程以速度n行走,假设m≠n,问甲乙两人谁先到达指定地点?18*.已知关于x的不等式(ax-5)(x2-a)<0的解集为M.(1)当a=4时,求集合M;(2)当3∈M,且5∈M时,求实数a的取值范围.第三章不等式参考答案一、选择题 1.A解析:三个以上的实数比较大小,可以先估算,进行分类(与0比较或与1比较),再应用不等式性质或作差法.因为π>1,0<sin52π<1,所以c =log π sin 52π<0. 又因为3>1,所以b =log π3>0,而a =2>0,故c 最小,只需再比较a 与b 的大小. 由指数函数的性质知,2>1而且0<log π 3<log π π=1,所以a >b ,即a >b >c . 2.C解析:比较两个实数的大小,可采用作差法,也可用特殊值排除法,以下用作差法. ∵a 2-b 2=(a +b )(a -b ),当a <b ,且a ,b 均为负数时,(a +b )( a -b )>0,a 2 >b 2,排除A . ∵ab 2-a 2b =ab (b -a ),由于b -a >0,当a ,b 同号时(比方a =1,b =2),ab (b -a )>0,ab 2>a 2b ,排除B .∵21ab -b a 21=22-b a b a <0,即21ab <b a 21. 同样可以用作差法判断a b <ba是错误的. 3.B解析:由于不等号两边的函数比较熟悉,可以尝试数形结合法. 令f (x )=|x |,g (x )=ax ,画出图象如右图, 由图可以看出|a |≤1. 4.D解析:用数轴标根法求解. x 3-x ≥0可化为 x (x -1)(x +1)≥0,如图,原不等式的解集为{x |-1≤x ≤0,或x ≥1}. 5.C解析:关键是利用单调性去掉“f ”,转化为不含“f ”的不等式求解.(第3题)(第4题)∵f (x )在R 上是减函数, ∴f (11-x )>f (1)⇔11-x <1⇔12--x x >0⇔x <1或x >2. 6.B解析:首先根据方程ax 2-x -c =0的根确定a ,c ,再求出f (-x ). 由已知,方程ax 2-x -c =0的两个实根为-2和1,则(-2)+1=a 1,(-2)×1=ac -,解得a =-1,c =-2,则f (x )=-x 2-x +2,f (-x )=-x 2+x +2=-(x -21)2+49,由开口方向和对称轴位置判断为B .7.D解:先画可行域如图.作直线l 0:5x +y =0,平行移动直线l 0至直线l ,从图形中可以发现,当直线l 经过平面区域内的点A 时,直线在y 轴的截距最大,此时z 最大.由⎩⎨⎧1=+1=2+y x y x ,解得⎩⎨⎧0=1=y x ,即A (1,0), ∴z =5×1+0=5.(第7题)8.C解析:k 的几何意义是可行域内的点与原点连线的斜率.解: 先画出题中不等式组所表示的区域(如图),可以看出k OA 最小,k OB 最大.由⎩⎨⎧⇔⎩⎨⎧1=2=0=3-+0=5--3y x y x y x 得A (2,1), k OA =-20-1=21; 由⎩⎨⎧⇔⎩⎨⎧2=1=0=3-+0=1+-y x y x y x 得B (1,2), k OB =0-10-2=2.∴21≤k ≤2,即k ∈[21,2].9.D分析:如果①:某选项能推出|a |+|b |≥1,则充分性成立;还需要②:|a |+|b |≥1不能推出该选项,①和②满足,该选项就是充分不必要条件.解:假设a 2+b 2≥1,则(|a |+|b |)2=a 2+2|ab |+b 2≥a 2+b 2≥1,|a |+|b |≥1,充分性成立.但|a |+|b |≥1时,未必有a 2+b 2≥1,例如21+21=1,然而221⎪⎭⎫ ⎝⎛+221⎪⎭⎫⎝⎛<1.10.B解:∵lg x +lg y =2,∴xy =100,且x >0,y >0, ∴x 1+y 1≥2y x 11⋅=xy2,即x 1+y 1≥51, 当且仅当⎩⎨⎧100==xy yx x =10,y =10时取等号.二、填空题 11.①②④. 解:a <0<b ⇒a 1<0<b1,充分性成立; b <a <0⇒ab >0,b -a <0⇒aba b -<0,即a 1<b 1,充分性成立;b <0<a ⇒b 1<0,a1>0⇒a 1>b 1,充分性不成立; (第8题)0<b <a ⇒ab >0,b -a <0⇒a 1<b1,充分性成立. 12.{x |0<x ≤2,或x <0}.解析:由于f (x )是分段函数,所以要分别对每一段(分别在x >0,x <0条件下)解不等式.由⎩⎨⎧ ⇔⎩⎨⎧ ⇔0<x ≤2, 由⎩⎨⎧ ⇔⎩⎨⎧ ⇔x <0, ∴0<x ≤2或x <0. 13.[-2,23). 解析:首先处理(-1)n ,需要对n 的奇偶性进行讨论. 假设n 为奇数,原不等式⇔-a <2+n 1⇔ a >-(2+n 1),即a >-(2+n1)对任意正奇数n 恒成立,因为-(2+n 1)=-2-n1<-2,所以只需a ≥-2. 假设n 为偶数,原不等式⇔a <2-n 1,即a <2-n1对任意正偶数n 恒成立, 只需a <(2-n 1)最小值=2-21=23,即a <23. 所以假设对任意正整数n 不等式恒成立,以上应同时满足, 故-2≤a <23. 14.{x |1<x <a +a1}. 解析:首先判断方程x 2-(a +a 1+1)x +a +a1=0(a >0)是否有实数根,实数根大小是否确定.x 2-(a +a 1+1)x +a +a 1<0可化为(x -1)[x -(a +a1)]<0, ∵a >0,a +a 1≥2>1,∴1<x <a +a1. 15.{x |-1<a <3}.解析:把问题等价转化为“恒成立”问题. x 2-2x +3≤a 2-2a -1在R 上的解集是空集, ⇔ x 2-2x +3>a 2-2a -1在R 上恒成立,x >0 xf (x )+x ≤4 x >0x ·1+x ≤4 x <0 xf (x )+x ≤4 x <0x ·(-1)+x ≤4⇔ x 2-2x -a 2+2a +4>0在R 上恒成立.因为抛物线y =x 2-2x -a 2+2a +4开口向上,故只需△=4-4(-a 2+2a +4)<0, 即x 2-2x +3<0⇔-1<a <3. 三、解答题16.解析:f (x )=(x -1)2+2194)(x --1≥294-1=31. 当x -1=2194)(x -时,即x =1±36时,f (x )取到最小值31. 17.分析:行走时间短者先到达指定地点,问题的实质是比较两个实数(式子)的大小,用作差法.解:设从出发地到指定地点的路程是s ,甲乙两人走完这段路程所用的时间分别为t 1,t 2,则s n t m t =2+211,2=2+2t n s m s ,所以t 1=n m s +2,t 2=mnsn m 2+)(. t 1-t 2=mns n m n m s 2+-+2)(=)(])([n m mn s n m mn +2+-42)()(n m mn s n m +2-=-2, 因为s ,m ,n 均为正数且m ≠n ,所以t 1-t 2<0,即t 1<t 2, 所以甲比乙先到达指定地点.18*.解:(1)当a =4时,(ax -5)(x 2-a )<0⇔(x -45)(x -2)(x +2)<0,由数轴标根法得x <-2,或45<x <2. 故M ={x |x <-2,或45<x <2}. (2)3∈M ,且5∈M⎪⎩⎪⎨⎧⇔ ⎪⎩⎪⎨⎧⇔))(())((25-1-9-35-a a a a ⎪⎩⎪⎨⎧⇔ ⇔1≤a <35,或9<a ≤25.故实数a 的取值范围是{x |1≤a <35,或9<a ≤25}. (3a -5)(9-a )<0(5a -5)(25-a )≥0 ≤0 a <35,或a >9 1≤a ≤25>0 (第18题)。
必修五不等式练习题含答案
![必修五不等式练习题含答案](https://img.taocdn.com/s3/m/a73963b6fc4ffe473368abf9.png)
不等式练习题 第一部分1. 下列不等式中成立的是()A. 若a b ,则 2 ac bc 2B.若 a b ,则 a 2b 2 C. 若a b 0, 则a 2 abb 2D.若a b 0,则1 1 a b1 13已知 3 33 43 42. a,b,c,则a,b,c 的大小关系是( )552(A) .c a b (B) a b c (C) b a c (D) c b a 3.已知a,b,c 满足c b a 且ac 0,下列选项中不一.定.成立的是( )(A ) ab ac (B ) c b a0 (C ) cb 2 ab 2(D ) ac(a c) 0 4. 规定记号表示--种运算, 定义 a © b= . ab ab (a , b为正实数),若1O k 2<3,则k 的取值范围为 ( )A. 1 k 1 B .0 k1C1 k 0D . 0 k 25. 若a,b,c 为实数,则下列命题正确的是()A. 若 a b ,则 ac 2 bc 2B. 若a b 0,则a 2 ab b 2C. 若a b 0,则丄1a bD. 若a b 0,则baab6. 设 a 2 0.5, b log 3 ,c log 4 2,则( )A. b a cB. b ca C. abc D. a c b7.在R 上定义运算 :x y x(1 y ),若不等式(x a ) (x a ) 1对任意实数x成 、立 ,则实数a 的取值范围是( ).A. {a| 1 a 1} B .{a| 0 a 2}C. 13、{a^- a -} D.{a|311 a ~}2 2228. 已知正实数x,y 满足 x 2y 4,则丄丄 的最小值为4x y9. 设x, y 为正实数,a..x 2 xy y 2,bp.、xy,c xy . 试比较 a 、c 的大小.6.10 •已知不等式ax 2 5x 2 0的解集是M •(1) 若2 M ,求a 的取值范围; (2)若M x\2 x 2,求不等式ax 2 5x a 2 1 0的解集第二部分1 •给出以下四个命题:1 12 2①若a>b ,则-<匚; ②若ac >bc ,则a>b ;a b ③若 a>| b|,则 a>b ; ④若 a>b ,则 a 2>b 2. 其中正确的是(1 1 7•设a>0, b>0.若•.3是3a 与3b 的等比中项,则b 的最小值为( )A. 82 6A.②④B •②③C .①② D.①③2.设 a , b € R, A. b -a>0 B若a — | b|>0,贝U 下列不等式中正确的是()C . b + a>0D . a 2— b 2<0 3.在下列函数中,最小值是 2的是()A.x + 2 .y = x +1(x >0)C. y = sin x + cscx , x € (0 ,4. 已知log a (a 2+ 1)<log a 2a<0,则a 的取值范围是( A. (0,1) 1)C.+ x)5. f (x) = ax 2+ ax — 1在R 上满足f (x)<0,则a 的取值范围是( )A. (",0]B. (—x,— 4)C. (—4,0)D. (—4,0]B. D.B. 41C. 1 D48. ________________________________________________________________ 已知当x>0时,不等式x2—m灶4>0恒成立,则实数m的取值范围是_________ .9. 已知A= {x| x2—3x + 2<0}, B= {x| x2—(a+ 1)x + a<0}.(1)若A B,求a的取值范围;⑵若B? A,求a的取值范围1 910. 已知x>0, y>0,且- + -= 1,求x+ y的最小值.x y11. 已知a, b, c都是正数,且a+ b+ c = 1.求证:(1 —a)(1 —b)(1 —c) >8abc.证明••• a、b、c都是正数,且a+ b+ c= 1,/. 1 —a= b+ c>2 bc>0,1 —b = a+ c>2 ac>0,1 —c = a+ b>2 ab>0.(1 —a)(1 —b)(1 —c) >2 bc ・2 . ac ・2 ab= 8abc.212. 不等式kx —2x+ 6k<0(k工0).(1) 若不等式的解集为{x|x< —3或x> —2},求k的值;(2) 若不等式的解集为R,求k的取值范围.2. D 【解析】C 选项不一定成立.故选C. 4. A【解析】根据题意1e k 2 魔2 1 k 2 3化简为k 2 k 2 0,对k 分情况去 绝对值如下:当k 0时,原不等式为k k 2 0解得2 k 1,所以 0 k 1 ; 当k 0时, 原不等式为 2 0成立,所以k0 ;当k 0时, 原不等式为k 2k 2 0,解得1 k 2,所以 1 k 0 ;综上, 1 k 1,所以选择 A. 5. B【解析】对于A,当c 0时,不等式不成立,故 A 错;对于C,因为a b 0 ,111 1两边同时除以ab 0,所以丄丄,故C 错;对于D,因为a b 0 , --0 ,a bba所以a b ,故D 错,所以选B.b a6. A【解析a 2 0.5, b log 3 , c log 42 , 1> 2°.5 =丄 > -,罷21. D.【解析】对于A ,若c 不成立;对于C,若a1所以丄a参考答案 第一部分0 ,显然ac 2 b 0,则 a 2 ;故选Dbc 2不成立;对于B ,若b a 0,则a 2 ab b 2,所以C 错;对于D,若a bb 233 4 2 3. C 【解析】1所以c综上,所以答案为: D.c, ac 0,0,a (1) Qbc,a0,ab ac;⑵Qba, 0,0, c b0 ;(3)Q c a,,Q ac 0, ac a•⑷b a 且c 0, a 0, 0或b 0或b 0,cb 2和ab 2的大小不能确定,即1 、log3>1, log42= - b>a>c .故选:A.27. C【解析】根据题意化简不等式为(x a)(1 (x a)) 1,即x2 x (a2 a 1) 0对任意实数x成立,所以根据二次恒成立0,解得1 a -.2 28. 1【解析】由x 2y 4 化为y 4 x代入y 1得2 4x y4 x 1 1 1 1 1 1 x 2y 12 4x y 2x y 8 2x y 4 81 y x 51 ,因为x 0,y 0,所以4 x y 2 8y 1 1 y x 5 1 1亠1厂x 5 12-g 14x y 4 x y 2 8 4 V x y 2 8(当且仅当“ x y - ”时,取“ ”),故最小值为1.32 2 2 2 2 2 2 29. a2 x2 xy y2, c2 x2 2xy y2 c2 a2 xy ;x 0, y 0, xy 0,即 c a ;110. (1) a 2 (2) x 3 x 1【解析】(1)由2 M,说明元素2满足不等式ax2 5x 2 0,代入即可求出a 的取值范围;(2)由M xg x 2,i,2是方程ax2 5x 2 0的两个根,由韦达定理即可求出a 2,代入原不等式解一元二次不等式即可;2(1)v 2 M,二 a 2 5 2 2 0,••• a 22 v M x|1 x 2 ,二1,2是方程ax2 5x 2 0 的两个根,1•••由韦达定理得21 2a解得a 22第二部分由 a —|b|>0? |b|va? — a<b<a? a + b>0,故选 C. x 2y = 2+ —的值域为(一x,— 2] U [2 ,+x );2 Xx + 2 ------ 1 y = x +1= x + 1+ x + 1>2(x >0); 1 y =sinx +cscx =sinx +snr 2(0<sin x <1);y = 7x + 7一x >2(当且仅当x = 0时取等号).a +b 1 = 2?1 1=二》匚=4.ab 1 4所以 x + y = (x + y)( 1+ 9) = y + 翌 + 10>2x y x y y 9x 1 9当且仅当x =「时,等号成立,又因为x +-=1.入 y入 y4•不等式ax 2 5xa 20即为:2x 2 5x 3 0其解集为x7.解析 .3是 3a 与3b 的等比中项? 3a ・3b = 3a +b =3? a + b = 1, •/ a>0,b>0, /. ab2.解析3.解析 1 1 a + b …a + b = ab11.解析因为 x>0, y>0, x + 9=1,9x-9-+ 10= 16. y1所以当x = 4, y = 12 时,(x + y)min= 16.函数y = 3x + x^+1的最小值是()A.C.。
高中数学必修5不等式训练(含详细答案)
![高中数学必修5不等式训练(含详细答案)](https://img.taocdn.com/s3/m/be22ca13f01dc281e43af03b.png)
高中数学必修5不等式训练(含详细答案)第三章 不等式一、选择题.1. 若 a ∈R ,则下列不等式恒成立的是( ).A. a 2 + 1>aB.112+a <1C. a 2 + 9>6aD. lg (a 2 +1)>lg|2a |2. 下列函数中,最小值为 2 是( ).A. y =xx 55+,x ∈R ,且 x ≠0 B. y = lg x+x lg 1,1<x <10C. y = 3x + 3-x ,x ∈RD. y = sin x+x sin 1,2π0<<x3. 不等式组 表示的平面区域的面积等于( ).A. 28B. 16C.439 D. 1214. 不等式 lg x 2<lg 2x 的解集是( ).x ≤3 x + y ≥0 x - y + 2≥0A. ⎪⎭⎫⎝⎛11001, B. (100,+∞)C.⎪⎭⎫⎝⎛11001,∪(100,+∞)D. (0,1)∪(100,+∞)5. 不等式(x 4 - 4)-(x 2 - 2)≥0 的解集是( ).A. x ≥2,或 x ≤-2B. -2≤x ≤2C. x <-3,或 x >3D. -2<x <2 6. 若 x ,y ∈R ,且 x + y = 5,则 3x + 3y 的最小值是( ).A. 10B.C.D. 7. 若 x >0,y >0,且 281x y+=,则 xy 有( ).A. 最大值 64B. 最小值164C. 最小值12D. 最小值648. 若 ,则目标函数 z = 2x + y 的x ≤2 y ≤2x + y ≥1取值范围是( ).A. [0,6] B . [2,4] C. [3,6] D. [0,5] 9. 若不等式 ax 2 + bx + c >0 的解是 0<α<x <β,则不等式 cx 2 - bx + a >0 的解为( ).A. α1<x <β1B. -β1<x <-α1C. -α1<x <-β1D. β1<x <α110. 若 a >0,b >0 ,且1a b +=,则⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-111122b a 的最小值是( ).A. 9B. 8C.7D. 6二、填空题. 1. 函数y 的定义域是 .2. 若 x ,y 满足 ,则x y 的最大值为____________________,最小值x + 2y - 5≤0x ≥1y ≥0 x + 2y - 3≥0为_________________.3. 函数y=的最大值为.4. 若直角三角形斜边长是1,则其内切圆半径的最大值是.5. 若集合A = {(x,y)| |x| + |y|≤1},B = {(x,y)|(y-x)(y+x)≤0},M = A∩B,则M的面积为___________.6. 若不等式2x - 1>m(x2 - 1)对满足-2≤m≤2 的所有m都成立,则x的取值范围是.三、解答题.1. 若奇函数f(x)在其定义域(-2,2)上是减函数,且f(1 - a)+ f(1 - a2)<0,求实数a的取值范围.2. 已知 a >b >0,求216()a b a b +-的最小值.3. 设实数 x ,y 满足不等式组 .(1)作出点(x ,y )所在的平面区域; (2)设 a >-1,在(1)所求的区域内,求f (x ,y )= y – ax 的最大值和最小值.1≤x + y ≤4y + 2≥|2x - 3|4. 某工厂拟建一座平面图形为矩形,且面积为200 m2 的三级污水处理池(平面图如右). 如果池外圈周壁建造单价为每米400 元,中间两条隔墙建筑单价为每米248 元,池底建造单价为每平方米80 元,池壁的厚度忽略不计. 试设计污水池的长和宽,使总造价最低,并求出最低造价.参考答案一、选择题. 1. A【解析】A :a 2 - a + 1 = a 2- a +4341+=221⎪⎭⎫ ⎝⎛-a +43>0. a 2 + 1>a 恒成立.B :当 a = 0 时,左 = 右.C :当 a = 3 时,左 = 右.D :当 a = ±1 时,左 = 右. 2. C【解析】A :y 没有最小值. B :∵ 1<x <10, ∴ 0<lg x <1. ∴ y ≥2.lg x =1,即x =10时,y min = 2. 此时不符合1<x <10. C :∵ 3x >0, ∴ y = 3x +x31≥2.x = 0时,y min = 2. D :∵ 0<x <2π, ∴ sin x >0. ∴ y ≥2.当 sin x =xsin 1时,此时 sin x = 1,x =2π,不符合 0<x <2π. 3. B【解析】由不等式组,画出符合条件的平面区域(下图阴影部分).解两两直线方程组成的方程组,可得 A (3,5),B (3,-3), C (-1,1).∴ S 阴 =21· |AB | · |x A - x c | = 21×8×4 = 16. 4. D 【解析】∵∴ x >0. ∵ lg x 2<lg 2x , ∴ lg 2x - 2lg x >0. ∴ lg x >2 ,或 lg x <0, ∴ x >100 ,或 0<x <1. 5. A【解析】∵(x 4 - 4)-(x 2 - 2)≥ 0,∴ x 4 - x 2 - 2≥0,∴(x 2 - 2)(x 2 + 1)≥0.x 2>0,x >0,∴ x 2≥2.∴ x ≥2,或 x ≤-2. 6. D【解析】 3x + 3y ≥2yx33⋅= 2yx +3,∴ 3x + 3y ≥2×9×3= 183,当 x = y =25时,等号成立.7. D 【解析】 yx 82+≥2yx 82⋅= 8xy 1,当yx 82=,即 时,8xy1取最大值,即 xy取最小值 64. 8. A【解析】 据不等式组画出可行域.易知 A (-1,2),B (2,2).将 y = -2x 进行平移,当直线过 A 点时,z min = 0,当直线过 B 点时,z max = 6. 9. Cx = 4, y = 16【解析】由题知, 且 a <0.∴ b = -a (α + β ), c = a (αβ ).∴ 所求不等式可代为 a (αβ )x 2 + a (α + β )x + a >0.∴(αβ )x 2 +(α + β )x + 1<0. ∴(αx + 1)(βx + 1)<0. ∵ 0<α<β,∴ -α1<-β1. ∴ -α1<x <-β1. 10. A 【解析】⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-111122b a =22221b a b a --+ 1 =22222)(b a b a b a --++ 1=ab 2+1≥222⎪⎭⎫⎝⎛+b a + 1 = 9.∴ 当 a = b=21时,原式取最小值 9.二、填空题. 1. (-8,8).【解析】∵ 64 - x 2>0 ∴ x 2<64,-8<xα + β = ab- α β = ac<8,即(-8,8).2. 2,0.【解析】 据不等式组画出可行域.由图可知,2max=⎪⎭⎫⎝⎛xy ,=⎪⎭⎫ ⎝⎛m inxy 0.3. 21. 【解析】设 x = cos , ∈[0,π]. ∴ y = cos sin =21sin 2 . ∵ ∈[0,π],∴ 2 ∈[0,2π],∴ y max =21,此时 =4π,x = cos 4π=22. 4. 21-.【解析】如图,r =21-+b a =212-+b a ≤21222-+b a =2122-=212-. 当且仅当 a = b =22时, r max =212-.5. 1.【解析】如图,M 为阴影部分. M 的面积为()2221⨯= 1.6. 271+-<x <231+. 【解析】令 f (m )= m (x 2 - 1)-(2x - 1)(x ≠±1),把它看作关于 m 的一次函数.由于 -2≤m ≤2 时,f (m )<0 恒成立,x 2 - 1>0 x 2 - 1<0 ∴ 或f (2)<0 f (-2)<0解得 1<x <231+,或271+-<x <1,又x = 1 时,亦符合题意.∴ 271+-<x <231+. 三、解答题.1. 由f (1 - a )+ f (1 - a 2)<0,得 f (1 - a )<- f (1 - a 2). 又因为函数f (x )为奇函数,所以- f (1 - a 2) = f (a 2 - 1).∴ f (1 - a )< f (a 2 - 1). 又∵ 函数 f (x ) 在其定义域(-2,2)上是减函数,1 - a >a2 – 1 -2<a <1 ∴ -2<1 - a <2 解得 -1<a <3-2<a 2 - 1<2 -3<a <3∴ a ∈(-1,1).2. 由 a >b >0 知,a - b >0,∴ b (a - b )≤4222a b a b =⎪⎭⎫⎝⎛-+.∴ a 2 +)(16b a b -≥a 2 +264a ≥22264a a ⋅= 16.当且仅当 a 2 =264a,b = a - b , 即当 a = 22,b =2时,a 2 +)(16b a b -取得最小值 16.3. (1)(-3,7) 【解析】(2) 最大值为7+3a ,最小值为4. 【解】设污水池总造价为 y 元,污水池长为 x m. 则宽为x200m ,水池外圈周壁长2x + 2 · x 200(m ),中间隔墙长2 · x200(m ),池底面积200(m 2).∴ y = 400⎪⎭⎫⎝⎛+⋅x x 20022+ 248 · x 200 · 2 + 80×200 = 800⎪⎭⎫⎝⎛+x x 324+ 16 000- 1- 2a , -1<a ≤2 1 - 3a , a >2≥1 600xx 324+ 16 000 = 44 800.当且仅当 x =x324,即 x = 18,x 200=9100时,y min = 44 800.答:当污水池长为 18 m ,宽为9100m 时,总造价最低,最低为 44 800元.。
(压轴题)高中数学必修五第三章《不等式》测试题(含答案解析)(1)
![(压轴题)高中数学必修五第三章《不等式》测试题(含答案解析)(1)](https://img.taocdn.com/s3/m/7ac76cbf804d2b160a4ec0d5.png)
一、选择题1.若正数x ,y 满足21y x+=,则2x y +的最小值为( )A .2B .4C .6D .82.已知2244x y +=,则2211x y +的最小值为( ) A .52B .9C .1D .943.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-4.设x ,y 满足约束条件4100,20,0,0,x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩则23z x y =-的最大值为( )A .10B .8C .5D .6-5.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .16.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R7.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( ) A.B.C .6D .88.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<- 9.已知实数x ,y 满足210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,则221z x y =--的取值范围是( )A .5,53⎡⎤⎢⎥⎣⎦B .5,53⎡⎤-⎢⎥⎣⎦C .5,53⎡⎫⎪⎢⎣⎭D .5,53⎡⎫-⎪⎢⎣⎭10.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( )A .1a <1bB .a 2>b 2C .21ac +>21b c + D .a |c |>b |c |11.设,,a b c ∈R ,且a b >,则( ) A .ac bc >B .11a b< C .22a b > D .33a b >12.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝二、填空题13.已知实数,x y 满足约束条件222,22x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩则2z x y =-的最大值为___.14.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________. 15.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.已知0x >,0y >,且212+=x y ,若2322+≥-x y m m 恒成立,则实数m 的取值范围_______.18.已知2z y x =-,式中变量x ,y 满足下列条件:213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩,若z 的最大值为11,则k 的值为______.19.已知a >0,b >0,则p =2b a﹣a 与q =b ﹣2a b 的大小关系是_____.20.若(0,1)x ∈时,不等式111m x x≤+-恒成立,则实数m 的最大值为________. 三、解答题21.设函数2()(2)3(0)f x ax b x a =+-+≠. (1)若不等式()0f x >的解集为(1,3)-,求,a b 的值; (2)若(1)2,0,0f a b =>>,求19a b+的最小值.22.已知函数()21f x x x =-++. (1)求不等式()5f x ≤的解集; (2)若()f x 的最小值是m ,且3m a b +=,求212a b +的最小值.23.已知函数2()12af x x x =-+ (1)若()0f x ≥,在R 上恒成立,求实数a 的取值范围; (2)若[]1,2,()2x f x ∃∈≥成立,求实数a 的取值范围. 24.已知关于x 的不等式23240x ax -++>. (1)当2a =时,求此不等式的解集;(2)若此不等式的解集为()4,m -,求实数a ,m 的值. 25.已知a R ∈,若关于x 的不等式2(1)460a x x 的解集是(3,1)-.(1)求a 的值;(2)若关于x 的不等式230ax bx ++≥在[0,2]上恒成立,求实数b 的取值范围. 26.已知关于x 的一元二次不等式()22600kx x k k -+<≠.(1)若不等式的解集是{|3x x <-或}2x >-,求k 的值; (2)若不等式的解集是R ,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 由21y x +=,对2x y +乘以21y x+=,构造均值不等式求最值 .【详解】22242248x y x xy y x y xy ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当421xy xy y x ⎧=⎪⎪⎨⎪+=⎪⎩,即412x y =⎧⎪⎨=⎪⎩时,等号成立,∴min 28x y ⎛⎫+= ⎪⎝⎭.故选:D 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正、二定、三相等” (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.2.D解析:D 【分析】利用22222211111(4)4x y x y xy ⎛⎫+=++ ⎪⎝⎭,展开后应用基本不等式可得最小值. 【详解】由题意22222211111(4)4x y x y x y ⎛⎫+=++ ⎪⎝⎭2222141955444y x x y ⎛⎛⎫=++≥+= ⎪ ⎝⎭⎝,当且仅当22224y x x y =,即2242,33x y ==时等号成立.故选:D . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.A解析:A 【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.4.C解析:C 【分析】作出不等式对应的平面区域,利用目标函数的几何意义,求目标函数的最大值即可. 【详解】画出约束条件所表示的平面区域,如图所示, 由23z x y =-得到233zy x =-, 平移直线233zy x =-,当过A 时直线截距最小,z 最大,由4100yx y=⎧⎨--=⎩得到5(,0)2A,所以23z x y=-的最大值为max523052z=⨯-⨯=,故选C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.5.C解析:C【分析】作出约束条件的可行域,将目标函数转化为122zy x=-,利用线性规划即可求解.【详解】解:由2z x y=-得122zy x=-,作出x,y满足约束条件424x yx yx+≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC):平移直线122z y x =-, 由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小, 420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.6.A解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.7.D解析:D 【分析】运用基本不等式2422x y +≥=【详解】因为20,40xy>>,所以224228x y x y ++≥===,(当且仅当24x y =时取“=”). 故答案为D. 【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③等号取得的条件.8.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题9.D解析:D 【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围. 【详解】 作出可行域如下:由221z x y =--得12zy x +=-, 平移直线12zy x +=-,由平移可知当直线12zy x +=-,经过点C 时, 直线12zy x +=-的截距最小,此时z 取得最大值, 由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -, 此时2214215z x y =--=+-=, 可知当直线12zy x +=-,经过点A 时, 直线12zy y x +==-的截距最大,此时z 取得最小值, 由21010x y x y -+=⎧⎨+-=⎩,得1323x y ⎧=⎪⎪⎨⎪=⎪⎩,即1(3A ,2)3代入221z x y =--得125221333z =⨯-⨯-=-,故5[3z ∈-,5)故选:D . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中档题.10.C解析:C 【分析】首先利用特值法排除A 、B 两项,利用不等式的性质可确定C 项是正确的,再举出反例判断D 项是错误的,从而得到答案. 【详解】当a =1,b =-2时,满足a >b ,但11a b>,a 2<b 2,排除A 、B ; 因为211c +>0,a >b ⇒2211a b c c >++,故C 是正确的;当c =0时,a |c |>b |c |不成立,排除D , 故选:C. 【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用不等式的性质比较式子的大小,利用特值法排除不正确的选项,坚持做到小题小做的思想,属于简单题目.11.D解析:D【分析】结合不等式的性质、特殊值判断出错误选项,利用差比较法证明正确选项成立. 【详解】A 选项,当0c ≤ 时,由a b >不能得到ac bc >,故不正确;B 选项,当0a >,0b <(如1a =,2b =-)时,由a b >不能得到11a b<,故不正确; C 选项,由()()22a b a b a b -=+-及a b >可知当0a b +<时(如2a =-,3b =-或2a =,3b =-)均不能得到22a b >,故不正确;D 选项,()()()233222324b a b a b a ab b a b a b ⎡⎤⎛⎫-=-++=-⋅++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,因为,a b 不同时为0,所以223024b a b ⎛⎫++> ⎪⎝⎭,所以可由a b >知330a b ->,即33a b >,故正确.故选:D 【点睛】本小题主要考查不等式的性质以及差比较法,属于中档题.12.A解析:A 【分析】由约束条件作出可行域,由yz x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案. 【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式yz x=表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.二、填空题13.1【分析】作出不等式组对应的平面区域利用目标函数的几何意义进行求最值即可【详解】由z=x-2y 得作出不等式组对应的平面区域如图(阴影部分):平移直线的截距最小此时z 最大由得A (10)代入目标函数z=解析:1 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可. 【详解】 由z=x-2y 得1122y x z =-,作出不等式组对应的平面区域如图(阴影部分):平移直线1122y x z =-,,1122y x z =-,的截距最小, 此时z 最大,由2222x y x y -⎧⎨+⎩== ,得A (1,0).代入目标函数z=x-2y , 得z=1-2×0=1, 故答案为1. 【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.14.【分析】利用正弦定理将化为然后利用三角形内角和定理将用代换再利用两角和的正弦公式展开整理可得再由同角三角函数关系可得将其代入展开式消去结合基本不等式即可求出的最大值【详解】解:∵由正弦定理边角互化得 解析:612【分析】利用正弦定理将3cos 2cos a C c A b ⋅=⋅+化为3sin cos 2sin cos sin A C C A B ⋅=⋅+,然后利用三角形内角和定理将B 用()A C π-+代换,再利用两角和的正弦公式展开整理可得2sin cos 3sin cos A C C A ⋅=⋅,再由同角三角函数关系可得3tan tan 2A C =,将其代入()tan A C -展开式消去tan A ,结合基本不等式即可求出()tan A C -的最大值. 【详解】解:∵ 3cos 2cos a C c A b ⋅=⋅+由正弦定理边角互化得3sin cos 2sin cos sin A C C A B ⋅=⋅+,又∵ ()()sin sin sin sin cos cos sin B A C A C A C A C π=-+=+=+⎡⎤⎣⎦,∴ 3sin cos 2sin cos sin cos cos sin A C A C C A A C +⋅=⋅+, ∴ 2sin cos 3sin cos A C C A ⋅=⋅∵ 当cos 0C ≤或cos 0A ≤时,等式不成立, ∴ ,0,2A C π⎛⎫∈ ⎪⎝⎭,3tan tan 2A C =, ∴ ()22tan tan tan tan tan tan 112tan ==32123132tan tan tan tan CA C C A C C C A C CC-==++++-,又∵ tan 0C >,∴2tan tan 3C C ≥=+当且仅当23tan tan C C ==,即tan C =等号成立, ∴()tan tan tan tan tan tan 1tan =21123A CA CC CA C -≤++-=.故答案为:12【点睛】本题主要考查正弦定理,两角差的正切公式及基本不等式的应用,需要注意的是在利用基本不等式时,要根据条件确定tan 0C >.15.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.16.【分析】根据题意令分析可以将不等式在x ∈12上恒成立转化为二次函数的性质列出不等式组解可得m 的取值范围即可得答案【详解】根据题意令若不等式在x ∈12上恒成立则有△=m2﹣4m≤0或或解可得实数m 的最解析:12-【分析】根据题意,令()2f x x mx m ++=,分析可以将不等式20x mx m ++≥在x ∈[1,2]上恒成立转化为二次函数的性质列出不等式组,解可得m 的取值范围,即可得答案. 【详解】根据题意,令()2f x x mx m ++=,若不等式20x mx m ++≥在x ∈[1,2]上恒成立,则有△=m 2﹣4m ≤0或()121120m f m ⎧-≤⎪⎨⎪=+≥⎩或()222430m f m ⎧-≥⎪⎨⎪=+≥⎩,解可得1,2m ⎡⎫∈-+∞⎪⎢⎣⎭,实数m 的最小值为:12-, 故答案为12-. 【点睛】本题考查二次函数的性质,关键是将x 2+mx +m ≥0在x ∈[1,2]上恒成立转化为二次函数y =x 2+mx +m 在x ∈[1,2]上的最值问题.17.【分析】利用1的替换求出的最小值再解不等式即可【详解】因为当且仅当即时等号成立所以解得故答案为:【点睛】本题主要考查基本不等式求最值涉及到解一元二次不等式是一道中档题解析:3,32⎡⎤-⎢⎥⎣⎦【分析】利用“1”的替换求出2x y +的最小值92,再解不等式23922m m -≤即可.【详解】 因为121122192()(2)(5)(54)2222y x x y x y x y x y +=++=++≥+=,当且仅当22y xx y=, 即32x y ==时等号成立,所以23922m m -≤,解得332m -≤≤.故答案为:3,32⎡⎤-⎢⎥⎣⎦【点睛】本题主要考查基本不等式求最值,涉及到解一元二次不等式,是一道中档题.18.23【分析】先画出约束条件所表示的可行域结合图象确定目标函数的最优解代入最优解的坐标即可求解【详解】画出不等式组所表示的可行域如图所示可得交点又由解得目标函数可化为当直线过点C 时直线在轴上的截距最大解析:23 【分析】先画出约束条件所表示的可行域,结合图象确定目标函数的最优解,代入最优解的坐标,即可求解. 【详解】画出不等式组213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩所表示的可行域,如图所示,可得交点(0,1),(7,1)A B , 又由21211x y y x -=-⎧⎨-=⎩,解得(3,7)C ,目标函数2z y x =-可化为122zy x =+, 当直线122zy x =+过点C 时,直线在y 轴上的截距最大,此时目标函数取得最大值, 将C 代入直线320x y k +-=,解得23k =.故答案为:23【点睛】本题主要考查了简单的线性规划的应用,其中解答中正确作出不等式组所表示的平面区域,结合图象得出目标函数的最优解是解答的关键,着重考查数形结合法,以及计算能力.19.【分析】由已知结合作差法进行变形后即可比较大小【详解】因为与所以时取等号所以故答案为:【点睛】本题主要考查了不等式大小的比较作差法的应用是求解问题的关键 解析:p q【分析】由已知结合作差法进行变形后即可比较大小. 【详解】因为0a >,0b >,2b p a a =-与2a qb b=-,所以2222222()()()()0b a b a b a b a b a b a p q a b ab ba-----+-=-==,b a =时取等号, 所以p q .故答案为:p q . 【点睛】本题主要考查了不等式大小的比较,作差法的应用是求解问题的关键.20.【分析】根据题意只需小于等于的最小值即可利用基本不等式可得的最值进而即可得到结论【详解】由则所以当且仅当即时取等号所以即的最大值为故答案为:【点睛】本题主要考查了基本不等式求最值以及恒成立问题同时考 解析:4【分析】根据题意,只需m 小于等于111x x +-的最小值即可,利用基本不等式可得111x x+-的最值,进而即可得到结论. 【详解】由()0,1x ∈,则()10,1x -∈,11x x +-=, 所以,()11111124111x x x x x x x x x x-⎛⎫+=++-=++≥ ⎪---⎝⎭, 当且仅当11x xx x -=-,即12x =时取等号, 所以,4m ≤,即m 的最大值为4.故答案为:4. 【点睛】本题主要考查了基本不等式求最值,以及恒成立问题,同时考查了转化的思想和运算求解的能力,属于基础题.三、解答题21.(1)14a b =-⎧⎨=⎩;(2)16.【分析】(1)由不等式()0f x >的解集(1,3)-.1-,3是方程()0f x =的两根,由根与系数的关系可求a ,b 值;(2)由()12f =,得到1a b +=,将所求变形为1(9)()a ba b ++展开,利用基本不等式求最小值. 【详解】解:(1)∵()2230ax b x +-+>的解集为()1,3-,1,3∴-是()2230ax b x +-+=的两根,21313413b a a b a -⎧-+=-⎪=-⎧⎪∴⇒⎨⎨=⎩⎪-⨯=⎪⎩.(2)由于()12f =,0a >,0b >, 则可知232a b +-+=, 得1a b +=,所以199()()101016b a a b a b a b ++=++≥+=, 当且仅当9b aa b=且1a b +=, 即1434a b ⎧=⎪⎪⎨⎪=⎪⎩时成立,所以19a b +的最小值为16. 【点睛】易错点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.22.(1)[]23,-;(2)92. 【分析】(1)将()f x 解析式中绝对值符号去掉,求得分段函数解析式;再在每一段中求得()5f x ≤时的解集;从而得出答案;(2)先由(1)求出()f x 的最小值3m =,所以得1a b +=;再将212a b+构造成符合基本不等式的形式,从而求其最小值. 【详解】解:(1)21,1()213,1221,2x x f x x x x x x -+≤⎧⎪=-++=-<<⎨⎪-≥⎩,()5f x ≤等价于1,215x x ≤-⎧⎨-+≤⎩或1235x -<<⎧⎨≤⎩或2215x x ≥⎧⎨-≤⎩,解得21x -≤≤-或12x -<<或23x ≤≤.故不等式()5f x ≤的解集为[]23,-.(2)由(1)可知3m =,则1a b +=, 则21212559()2222222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭(当23a =,13b =时,等号成立). 故212a b +最小值为92. 【点睛】本题主要考查分段函数和基本不等式的相关性质,考查运算求解能力,属于基础题型.23.(1)[]44-,;(2)(],3∞-. 【分析】(1)由二次不等式()0f x ≥恒成立可得0∆≤,于是可求得a 的取值范围;(2)分离参数得12a x x ≤-在区间[]1,2上有解,转化为求1y x x=-在区间[]1,2上的最大值求解即可. 【详解】(1)由题意得()2102af x x x =-+≥在R 上恒成立, ∴2404a ∆=-≤,解得44a -≤≤,∴实数a 的取值范围为[]4,4-. (2)由题意得[]21,2,122ax x x ∃∈-+≥成立, ∴[]11,2,2a x x x ∃∈≤-成立. 令()[]1,?1,2g x x x x=-∈, 则()g x 在区间[]1,2上单调递增, ∴()()322max g x g ==, ∴322a ≤, 解得3a ≤,∴实数a 的取值范围为(],3∞-. 【点睛】解题时注意以下结论的运用:(1)()a f x >恒成立等价于()max a f x >,()a f x >有解等价于()min a f x >;(2)若函数()f x 的最值不存在,则可利用函数值域的端点值来代替. 24.(1)223x x ⎧⎫-<<⎨⎬⎩⎭;(2)13m =,112a =-.【分析】(1)当2a =时,不等式为23440x x -++>,即23440x x --<,利用一元二次不等式求解.(2)根据不等式的解集为()4,m -,则由4-,m 为方程23240x ax -++=的两根求解. 【详解】(1)当2a =时,不等式为23440x x -++>, 所以23440x x --<, 所以()23203x x ⎛⎫+-< ⎪⎝⎭, 解得223x -<<, 所以不等式23440x x -++>的解集为223x x ⎧⎫-<<⎨⎬⎩⎭; (2)由已知得4-,m 为方程23240x ax -++=的两根, 则有243a m -+=--且443m -=-, 解得13m =,112a =-.【点睛】本题主要考查一元二次不等式的解法以及一元二次不等式与一元二次方程的关系,属于中档题.25.(1)3;(2)6b ≥- 【分析】(1)将1x =代入方程2(1)460a x x ,即可求出a 的值;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,利用分离参数即可求出b 的取值范围. 【详解】(1)1和3-是2(1)460a x x 的两根,将1x =代入方程解得3a =;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,即233bx x -≤+在[0,2]上恒成立, 当0x =时,03≤恒成立,此时a R ∈;当2(]0,x ∈时,不等式可转化为13()b x x-≤+在[0,2]上恒成立,因为13()36x x +≥⨯=,当且仅当1x x =,即1x =时,等号成立, 所以6b -≤,所以6b ≥-,综上,实数b 的取值范围为6b ≥-.【点睛】本题主要考查三个二次式关系的应用,不等式恒成立问题的求法,属于中档题.26.(1)25-;(2)⎛-∞ ⎝⎭,. 【分析】(1)由不等式的解集为{}32x x x <->-或知0k <,且3-,2-是方程2260kx x k -+=的两根,代入可解.(2)不等式的解集为R ,知二次函数图像恒在x 轴下方,则利用0k <且24240k ∆=-<可解【详解】(1)∵不等式的解集为{}32x x x <->-或∴3-,2-是方程2260kx x k -+=的两根,且0k < ∴25k =- (2)∵不等式的解集为R∴0k <且24240k ∆=-<∴6k <-∴k 的取值范围是(-∞, 【点睛】解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式∆与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式.。
高中数学必修5不等式精选题目(附答案)
![高中数学必修5不等式精选题目(附答案)](https://img.taocdn.com/s3/m/c878eba7102de2bd9605889c.png)
高中数学必修5不等式精选题目(附答案)一、一元二次不等式(1)确定ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0)在判别式Δ>0时解集的结构是关键.在未确定a 的取值情况下,应先分a =0和a ≠0两种情况进行讨论.(2)若给出了一元二次不等式的解集,则可知二次项系数a 的符号和方程ax 2+bx +c =0的两个根,再由根与系数的关系就可知a ,b ,c 之间的关系.(3)解含有参数的一元二次不等式,要注意对参数的取值进行讨论:①对二次项系数与0的大小进行讨论;②在转化为标准形式的一元二次不等式后,对判别式与0的大小进行讨论;③当判别式大于0,但两根的大小不确定时,对两根的大小进行讨论.1. (1)已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A.⎩⎨⎧⎭⎬⎫x -1<x <12B.⎩⎨⎧⎭⎬⎫xx <-1或x >12 C .{x |-2<x <1} D .{x |x <-2或x >1}(2)解关于x 的不等式ax 2-2ax +a +3>0.1.[解析] (1)由题意知x =-1,x =2是方程ax 2+bx +2=0的根.由根与系数的关系得⎩⎪⎨⎪⎧ -1+2=-b a ,(-1)×2=2a ⇒⎩⎨⎧a =-1,b =1. ∴不等式2x 2+bx +a <0,即2x 2+x -1<0.解得-1<x <12.[答案] A(2)解:当a =0时,解集为R ;当a >0时,Δ=-12a <0,∴解集为R ;当a <0时,Δ=-12a >0,方程ax 2-2ax +a +3=0的两根分别为a +-3a a ,a --3a a ,∴此时不等式的解集为x a +-3a a <x <a --3a a. 综上所述,当a ≥0时,不等式的解集为R ;a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ a +-3a a <x <a --3a a . 注:解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.2.函数f (x )=1ln (-x 2+4x -3)的定义域是( ) A .(-∞,1)∪(3,+∞) B .(1,3)C .(-∞,2)∪(2,+∞)D .(1,2)∪(2,3) 解析:选D 由题意知⎩⎨⎧ -x 2+4x -3>0,-x 2+4x -3≠1, 即⎩⎨⎧ 1<x <3,x ≠2,故函数f (x )的定义域为(1,2)∪(2,3).3.若关于x 的不等式ax 2-6x +a 2<0的解集是(1,m ),则m =________.解析:根据不等式与方程之间的关系知1为方程ax 2-6x +a 2=0的一个根,即a 2+a -6=0,解得a =2或a =-3,当a =2时,不等式ax 2-6x +a 2<0的解集是(1,2),符合要求;当a =-3时,不等式ax 2-6x +a 2<0的解集是(-∞,-3)∪(1,+∞),不符合要求,舍去.故m =2.答案:24.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }.(1)求a ,b 的值;(2)解不等式ax 2-(ac +b )x +bc <0.解:(1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,b >1且a >0.由根与系数的关系,得⎩⎪⎨⎪⎧ 1+b =3a ,1×b =2a .解得⎩⎨⎧a =1,b =2. (2)不等式ax 2-(ac +b )x +bc <0,即x 2-(2+c )x +2c <0,即(x -2)(x -c )<0.当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c };当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2};当c =2时,不等式(x -2)(x -c )<0的解集为∅.所以,当c >2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |2<x <c };当c <2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |c <x <2};当c =2时,不等式ax 2-(ac +b )x +bc <0的解集为∅.二、简单的线性规划问题1.确定二元一次不等式表示平面区域的方法与技巧确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法.2.利用线性规划求最值,一般用图解法求解,其步骤是(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.5.(1)设变量x ,y 满足约束条件:⎩⎨⎧ x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =y +1x 的最小值为( )A .1B .2C .3D .4 (2)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元.对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )A .36万元B .31.2万元C .30.4万元D .24万元5.[解析] (1)不等式组所表示的平面区域如图中的△ABC ,目标函数的几何意义是区域内的点与点P (0,-1)连线的斜率,显然图中AP 的斜率最小.由⎩⎨⎧x +y =3,2x -y =3解得点A 的坐标为(2,1),故目标函数z =y +1x 的最小值为1+12=1.(2)设对项目甲投资x 万元,对项目乙投资y 万元, 则⎩⎪⎨⎪⎧ x +y ≤60,x ≥23y ,x ≥5,y ≥5.目标函数z =0.4x +0.6y .作出可行域如图所示,由直线斜率的关系知目标函数在A 点取最大值,代入得z max =0.4×24+0.6×36=31.2,所以选B.[答案] (1)A (2)B注:(1)求目标函数最值的一般步骤为:一画、二移、三求.其关键是准确作出可行域,理解目标函数的意义.(2)在约束条件是线性的情况下,线性目标函数只有在可行域的顶点或者边界上取得最值.在解答选择题或者填空题时也可以根据可行域的顶点直接进行检验.6.不等式组⎩⎨⎧ 2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域的面积为( ) A .4B .1C .5D .无穷大解析:选B 不等式组⎩⎨⎧ 2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域如图所示(阴影部分),△ABC 的面积即为所求.求出点A ,B ,C 的坐标分别为(1,2),(2,2),(3,0),则△ABC 的面积为S =12×(2-1)×2=1.7.已知实数x ,y 满足⎩⎨⎧ x ≥0,y -x +1≤0,y -2x +4≥0,若z =y -ax 取得最大值时的最优解(x ,y )有无数个,则a =________. 解析:依题意,在坐标平面内画出题中的不等式组表示的平面区域,如图所示.要使z =y -ax 取得最大值时的最优解(x ,y )有无数个,则直线z =y -ax 必平行于直线y -x +1=0,于是有a =1.答案:18.某公司用两种机器来生产某种产品,第一种机器每台需花3万日元及人民币50元的维护费;第二种机器则需5万日元及人民币20元的维护费.第一种机器的年利润每台有9万日元,第二种机器的年利润每台有6万日元,但政府核准的外汇日元为135万元,并且公司的总维护费不得超过1 800元,为了使年利润达到最大值,第一种机器应购买________台,第二种机器应购买________台.解析:设第一种机器购买x 台,第二种机器购买y 台,总的年利润为z 万日元,则⎩⎨⎧ 3x +5y ≤135,50x +20y ≤1 800,x ,y ∈N ,目标函数为z=9x +6y . 不等式组表示的平面区域如图阴影部分中的整点.当直线z =9x +6y 经过点M ⎝ ⎛⎭⎪⎫63019,13519,即到达l 1位置时,z 取得最大值,但题目要求x ,y 均为自然数,故进行调整,调整到与M 邻近的整数点(33,7),此时z =9x +6y 取得最大值,即第一种机器购买33台,第二种机器购买7台获得年利润最大.答案:33 7三、基本不等式基本不等式的常用变形(1)a +b ≥2ab (a >0,b >0),当且仅当a =b 时,等号成立;(2)a 2+b 2≥2ab ,ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R),当且仅当a =b 时,等号成立; (3)b a +a b ≥2(a ,b 同号且均不为零),当且仅当a =b 时,等号成立;(4)a +1a ≥2(a >0),当且仅当a =1时,等号成立;a +1a ≤-2(a <0),当且仅当a =-1时,等号成立.9.(1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285 C .5 D .6(2)若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( )A.43B.53 C .2 D.54[解析] (1)由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )⎝ ⎛⎭⎪⎫15y +35x =95+45+3x 5y +12y 5x ≥135+125=5当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立, ∴3x +4y 的最小值是5.(2)由x >0,y >0,得4x 2+9y 2+3xy ≥2×(2x )×(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2.[答案] (1)C (2)C注:条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.10.已知2x +2y =1(x >0,y >0),则x +y 的最小值为( )A .1B .2C .4D .8解析:选D ∵x >0,y >0,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫2x +2y =4+2⎝ ⎛⎭⎪⎫x y +y x ≥4+4 x y ·yx =8.当且仅当x y =y x ,即x =y =4时取等号.11.设x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2的最小值为________. 解析:⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时“=”成立.答案:912.某种商品原来每件售价为25元,年销售8万件. (1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.解:(1)设每件定价为t 元,依题意,有[8-(t -25)×0.2]t ≥25×8,整理得t 2-65t +1 000≤0,解得25≤t ≤40.因此要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x>25时,a≥150x+16x+15有解.∵150x+16x≥2150x·16x=10(当且仅当x=30时,等号成立),∴a≥10.2.因此当该商品明年的销售量a至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的定价为每件30元.巩固练习:1.若1a<1b<0,则下列不等式不正确的是()A.a+b<ab B.ba+ab>0C.ab<b2D.a2>b2解析:选D由1a<1b<0,可得b<a<0,故选D.2.已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集为B,不等式x2+ax+b<0的解集是A∩B,那么a+b等于()A.-3 B.1C.-1 D.3解析:选A由题意:A={x|-1<x<3},B={x|-3<x<2}.A∩B={x|-1<x<2},由根与系数的关系可知:a=-1,b=-2,∴a+b=-3.3.函数y=x2+2x-1(x>1)的最小值是()A.23+2 B.23-2 C.2 3 D.2解析:选A∵x>1,∴x-1>0.∴y=x2+2x-1=x2-2x+2x+2x-1=x2-2x+1+2(x-1)+3x-1=(x-1)2+2(x-1)+3x-1=x -1+3x -1+2≥23+2当且仅当x -1=3x -1,即x =3+1时等号成立. 4.(2017·浙江高考)若x ,y 满足约束条件⎩⎨⎧ x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞) 解析:选D 作出不等式组所表示的平面区域如图中阴影部分所示,由z =x +2y ,得y =-12x +z 2,∴z 2是直线y =-12x +z 2在y 轴上的截距,根据图形知,当直线y =-12x +z 2过A 点时,z 2取得最小值.由⎩⎨⎧ x -2y =0,x +y -3=0,得x =2,y =1,即A (2,1),此时,z =4,∴z =x +y 的取值范围是[4,+∞).5.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎨⎧ x +y -7≤0,x -y +3≥0,y ≥0.若圆心C∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49解析:选C 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y=1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.故选C.6.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( )A .0B .1C.94 D .3 解析:选B 由x 2-3xy +4y 2-z =0,得z =x 2-3xy +4y 2, ∴xy z =xy x 2-3xy +4y 2=1x y +4yx -3. 又x ,y ,z 为正实数,∴x y +4y x ≥4,即xy z ≤1,当且仅当x =2y 时取等号,此时z =2y 2.∴2x +1y -2z =22y +1y -22y2 =-⎝ ⎛⎭⎪⎫1y 2+2y =-⎝ ⎛⎭⎪⎫1y -12+1, 当1y =1,即y =1时,上式有最大值1.7.若x ,y 满足约束条件⎩⎨⎧ x -1≥0,x -y ≤0,x +y -4≤0,则y x 的最大值为________.解析:画出可行域如图阴影部分所示, ∵y x 表示过点(x ,y )与原点(0,0)的直线的斜率,∴点(x ,y )在点A 处时y x 最大.由⎩⎨⎧ x =1,x +y -4=0,得⎩⎨⎧ x =1,y =3.∴A (1,3).∴y x 的最大值为3.答案:38.设正数a ,使a 2+a -2>0成立,若t >0,则12log a t ________log a t +12(填“>”“≥”“≤”或“<”).解析:因为a 2+a -2>0,所以a <-2或a >1,又a >0,所以a >1,因为t >0,所以t +12≥ t ,所以log a t +12≥log a t =12log a t .答案:≤9.(2017·全国卷Ⅲ)若x ,y 满足约束条件⎩⎨⎧ x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.解析:作出约束条件表示的可行域如图中阴影部分所示,作出直线l :3x -4y =0,平移直线l ,当直线z =3x -4y 经过点A (1,1)时,z 取得最小值,最小值为3-4=-1.答案:-110.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5 min ,生产一个骑兵需7 min ,生产一个伞兵需4 min ,已知总生产时间不超过10 h .若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润W (元).(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?解:(1)依题意每天生产的伞兵个数为100-x -y ,所以利润W =5x +6y +3(100-x -y )=2x +3y +300.(2)约束条件为:⎩⎨⎧ 5x +7y +4(100-x -y )≤600,100-x -y ≥0,x ∈N ,y ∈N ,整理得⎩⎨⎧ x +3y ≤200,x +y ≤100,x ∈N ,y ∈N ,目标函数为W =2x +3y +300,如图所示,作出可行域.初始直线l 0:2x +3y =0,平移初始直线经过点A 时,W 有最大值,由⎩⎨⎧x +3y =200,x +y =100,得⎩⎨⎧x =50,y =50.最优解为A (50,50),所以W max =550(元).故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,为550元.11.某外商到一开发区投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元.设f (n )表示前n 年的纯利润总和.(注:f (n )=前n 年的总收入-前n 年的总支出-投资额)(1)从第几年开始获利?(2)若干年后,外商为开发新项目,有两种处理方案:①年平均利润最大时以48万美元出售该厂;②纯利润总和最大时,以16万美元出售该厂;问哪种方案最合算?为什么?解:由题意知,每年的经费是以12为首项,4为公差的等差数列,∴f (n )=-2n 2+40n -72.(1)获利就是要求f (n )>0,所以-2n 2+40n -72>0,解得2<n <18.由n ∈N 知从第三年开始获利.(2)①年平均利润=f (n )n =40-2⎝ ⎛⎭⎪⎫n +36n ≤16. 当且仅当n =6时取等号.故此方案共获利6×16+48=144(万美元),此时n =6.②f (n )=-2(n -10)2+128.当n =10时,f (n )max =128.故第②种方案共获利128+16=144(万美元),故比较两种方案,获利都是144万美元.但第①种方案只需6年,而第②种方案需10年,故选择第①种方案最合算.12.已知α,β是方程x 2+ax +2b =0的两根,且α∈[0,1],β∈[1,2],a ,b ∈R ,求b -3a -1的最大值和最小值. 解:设f (x )=x 2+ax +2b ,由题意f (x )在[0,1]和[1,2]上各有一个零点,∴⎩⎨⎧ f (0)≥0,f (1)≤0,f (2)≥0,即⎩⎨⎧ b ≥0,a+2b +1≤0,a +b +2≥0,建立平面直角坐标系aOb ,则上述不等式组表示的平面区域如图.由⎩⎨⎧ a +2b +1=0,a +b +2=0,解得⎩⎨⎧ a =-3,b =1,即C (-3,1).令k =b -3a -1,可以看成动点P (a ,b )与定点A (1,3)的连线的斜率.又B (-1,0),C (-3,1),则k AB =32,k AC =12,∴12≤b -3a -1≤32.故b -3a -1的最大值是32,最小值是12.。