塔吊计算书

合集下载

塔吊计算书

塔吊计算书

QTZ80塔吊格构基础设计计算书基本参数1、塔吊基本参数塔吊型号:QTZ80;塔吊自重Gt:490kN;最大起重荷载Q:60kN;塔吊起升高度H:40.50m;塔身宽度B: 1.6m;2、格构柱基本参数格构柱计算长度lo:5.9m;格构柱缀件类型:缀板;格构柱缀件节间长度a1:0.6m;格构柱分肢材料类型:L160x14;格构柱基础缀件节间长度a2:0.6m;格构柱钢板缀件参数:宽420mm,厚10mm;格构柱截面宽度b1:0.50m;格构柱基础缀件材料类型:L160x14;3、基础参数桩中心距a:2.8m;桩直径d:0.9m;桩入土深度l:18.5m;桩型与工艺:泥浆护壁钻(冲)孔灌注桩;桩混凝土等级:C30;桩钢筋型号:HRB400;桩钢筋直径:25mm;承台宽度Bc:4.6m;承台厚度h:1.35m;承台混凝土等级为:C35;承台钢筋等级:HRB400;承台钢筋直径:25;承台保护层厚度:100mm;承台箍筋间距:200mm;4、塔吊计算状态参数地面粗糙类别:B类田野乡村;风荷载高度变化系数:2.09;主弦杆材料:角钢/方钢;主弦杆宽度c:140mm;非工作状态:所处城市:福建莆田市,基本风压ω0:0.70 kN/m2;额定起重力矩Me:800kN·m;基础所受水平力P:74kN;塔吊倾覆力矩M:1712kN·m;工作状态:所处城市:福建莆田市,基本风压ω0:0.7 kN/m2,额定起重力矩Me:800kN·m;基础所受水平力P:18.9kN;塔吊倾覆力矩M:1718kN·m;非工作状态下荷载计算一、塔吊受力计算1、塔吊竖向力计算承台自重:G c=25×Bc×Bc×h=25×4.60×4.60×1.35=714.15kN;作用在基础上的垂直力:F k=Gt+Gc=490.00+714.15=1204.15kN;2、塔吊倾覆力矩总的最大弯矩值M kmax=1712.00kN·m;3、塔吊水平力计算挡风系数计算:φ = (3B+2b+(4B2+b2)1/2)c/Bb挡风系数Φ=0.46;水平力:V k=ω×B×H×Φ+P=0.70×1.60×40.50×0.46+74.00=94.87kN;4、每根格构柱的受力计算作用于承台顶面的作用力:F k=1204.15kN;M kmax=1712.00kN·m;V k=94.87kN;图中x轴的方向是随时变化的,计算时应按照倾覆力矩Mmax最不利方向进行验算。

塔吊计算书

塔吊计算书

塔吊计算书【计算书】矩形板式基础计算书一、塔机属性二、塔机荷载塔机竖向荷载简图1、塔机自身荷载标准值2、风荷载标准值ωk(kN/m2)3、塔机传递至基础荷载标准值4、塔机传递至基础荷载设计值三、基础验算矩形板式基础布置图基础及其上土的自重荷载标准值:G k=blhγc=5×5×2×25=1250kN基础及其上土的自重荷载设计值:G=1.2G k=1.2×1250=1500kN荷载效应标准组合时,平行基础边长方向受力:M k''=G1R G1+G2R Qmax-G3R G3-G4R G4+0.9×(M2+0.5F vk H/1.2)=37.4×26+6.2×13-163×6.7-106×11.8+0.9×(630+0.5×17.34×43/1.2)=-443.29kN·mF vk''=F vk/1.2=17.34/1.2=14.45kN荷载效应基本组合时,平行基础边长方向受力:M''=1.2×(G1R G1+G2R Qmax-G3R G3-G4R G4)+1.4×0.9×(M2+0.5F vk H/1.2) =1.2×37.4×26+6.2×13-163×6.7-106×11.8)+1.4×0.9×(630+0.5×17.34×43/1.2)=-362.63kN·mF v''=F v/1.2=24.28/1.2=20.23kN基础长宽比:l/b=5/5=1≤1.1,基础计算形式为方形基础。

W x=lb2/6=5×52/6=20.83m3W y=bl2/6=5×52/6=20.83m3相应于荷载效应标准组合时,同时作用于基础X、Y方向的倾覆力矩:M kx=M k b/(b2+l2)0.5=387.37×5/(52+52)0.5=273.91kN·mM ky=M k l/(b2+l2)0.5=387.37×5/(52+52)0.5=273.91kN·m1、偏心距验算相应于荷载效应标准组合时,基础边缘的最小压力值:P kmin=(F k+G k)/A-M kx/W x-M ky/W y=(664.5+1250)/25-273.91/20.83-273.91/20.83=50.28kPa≥0偏心荷载合力作用点在核心区内。

QTZ-315塔吊的计算书

QTZ-315塔吊的计算书

一. 参数信息QTZ-315塔吊天然基础的计算书塔吊型号:QTZ315,自重(包括压重)F1=250.00kN,最大起重荷载F2=30.00kN,塔吊倾覆力距M=315.40kN.m,塔吊起重高度H=28.00m,塔身宽度B=1.40m,混凝土强度等级:C35,基础埋深D=1.30m,基础最小厚度h=1.30m,基础最小宽度Bc=5.00m,二. 基础最小尺寸计算基础的最小厚度取:H=1.30m基础的最小宽度取:Bc=5.00m三. 塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。

计算简图:当不考虑附着时的基础设计值计算公式:当考虑附着时的基础设计值计算公式:当考虑偏心距较大时的基础设计值计算公式:式中F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=1.2×280=336.00kN;G──基础自重与基础上面的土的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc×Bc×D) =1275.00kN;Bc──基础底面的宽度,取Bc=5.00m;W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.83m3;M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×315.40=441.56kN.m;a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=5.00/2-441.56/(336.00+1275.00)=2.23m。

经过计算得到:无附着的最大压力设计值 Pmax=(336.00+1275.00)/5.002+441.56/20.83=85.63kPa无附着的最小压力设计值 Pmin=(336.00+1275.00)/5.002-441.56/20.83=43.25kPa有附着的压力设计值 P=(336.00+1275.00)/5.002=64.44kPa偏心距较大时压力设计值Pkmax=2×(336.00+1275.00)/(3×5.00×2.23)=96.50kPa四. 地基基础承载力验算地基基础承载力特征值计算依据《建筑地基基础设计规范》GB 50007-2002第5.2.3条。

塔吊QTZ80计算书

塔吊QTZ80计算书

浙江宝业建设集团有限公司 第1页 共7页塔吊基础计算书(QTZ80)本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《地基基础设计规范》(GB50007-2002)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《混凝土结构设计规范》(GB50010-2002)、《建筑桩基技术规范》(JGJ94-2008)等编制。

一、塔吊的基本参数信息塔吊型号:QTZ80, 塔吊起升高度H :95.000m ,塔身宽度B :1.6m , 基础埋深D :-5.500m ,自重F 1:480.5kN , 基础承台厚度Hc :1.200m ,最大起重荷载F 2:80kN , 基础承台宽度Bc :6.000m ,桩钢筋级别:HRB335, 桩直径或者方桩边长:0.400m , 桩间距a :3.4m , 承台箍筋间距S :200.000mm ,承台混凝土的保护层厚度:50mm , 空心桩的空心直径:0.20m 。

二、塔吊基础承台顶面的竖向力和弯矩计算塔吊自重(包括压重)F 1=480.5kN ;塔吊最大起重荷载F 2=80.00kN ;作用于桩基承台顶面的竖向力F k =F 1+F 2=560.50kN ;1、塔吊风荷载计算依据《建筑结构荷载规范》(GB50009-2001)中风荷载体型系数:地处江苏苏州,基本风压为ω0=0.45kN/m 2;查表得:荷载高度变化系数μz =1.86;挡风系数计算:φ=[3B+2b+(4B 2+b 2)1/2]c/(Bb)=[(3×1.6+2×2.5+(4×1.62+2.52)0.5)×0.13]/(1.6×2.5)=0.45;因为是角钢/方钢,体型系数μs =2.049;高度z 处的风振系数取:βz =1.0;浙江宝业建设集团有限公司 第2页 共7页所以风荷载设计值为:ω=0.7×βz ×μs ×μz ×ω0=0.7×1.00×2.049×1.86×0.45=1.2kN/m 2;2、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:M ω=ω×φ×B×H×H×0.5=1.2×0.45×1.6×85×65×0.5=1827.523kN·m ;M kmax =Me +M ω+P ×h c =630+1827.523+85×1.2=2559.52kN ·m ;三、承台弯矩及单桩桩顶竖向力的计算1. 桩顶竖向力的计算依据《建筑桩技术规范》(JGJ94-2008)的第5.1.1条,在实际情况中x 、y 轴是随机变化的,所以取最不利情况计算。

塔吊天然基础的计算书

塔吊天然基础的计算书

QTZ80(TC5610-6)塔吊天然基础的计算书依据《塔式起重机混凝土基础工程技术规程》一.参数信息塔吊型号:QTZ80( TC5610-6)起重荷载标准值:Fqk=58.8kN塔吊计算高度:H=45.9m非工作状态下塔身弯矩:M=1552kN.m钢筋级别:HRB400承台宽度:Bc=6m1) 塔机自重标准值Fk1 =464.1kN2) 基础以及覆土自重标准值G<=6X 6X 1.35 X 25=1215kN3) 起重荷载标准值Fqk=58.8kN2. 风荷载计算附件一计算简图:二.荷载计算1.自重荷载及起重荷载(JGJ/T 187-2009)。

塔机自重标准值:Fk1=464.10kN塔吊最大起重力矩:M=1335kN.m塔身宽度:B=1.6m承台混凝土等级:C30地基承载力特征值:350kPa1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值(Wo=0.2kN/m2) 叫=0-昭丛口凯=0.8 X 1.59 X 1.95 X 1.349 X 0.2=0.67kN/m 2字止=f H=1. 2X 0.67 X 0.35 X 1.6=0.45kN/mb. 塔机所受风荷载水平合力标准值F v k=q s k X H=0.45X 45.9=20.64kNc. 基础顶面风荷载产生的力矩标准值Mjk=°.5Fvk X H=0.5X 20.64 X 45.9=473.73kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值(本地区Wo=0.35kN/mi2)Wjt =2=0.8 X 1.63 X 1.95 X 1.349 X 0.35=1.20kN/m- m f H=1.2 X 1.20 X 0.35 X 1.6=0.81kN/mb. 塔机所受风荷载水平合力标准值F v k=q s k X H=0.81 X 45.9=37.03kNc. 基础顶面风荷载产生的力矩标准值Mjk=0.5F vk X H=0.5X 37.03 X 45.9=849.88kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值l\^=1552+0.9X( -1335+473.73)=776.85kN.m非工作状态下,标准组合的倾覆力矩标准值l\^=1552+849.88=2401.88kN.m三.地基承载力计算依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)第4.1.3条承载力计算塔机工作状态下:当轴心荷载作用时:22=(464.1+58.8+1215)/(6 X 6)=48.28kN/m 2 当偏心荷载作用时:肚二(代十旳隅訂陆=(464.1+58.8+1215)/(6 X 6) -2X (776.85 X 1.414/2)/36.002=17.76kN/m 2由于P kmin》0所以按下式计算Pkmax:2 =(垃十曳)"+亚化+甌訂陷=(464.1+58.8+1215)/(6 X 6)+2 X (776.85 X 1.414/2)/36.002=78.79kN/m 2塔机非工作状态下:当轴心荷载作用时:2 =(464.1+1215)/(6 X 6)=46.64kN/m 2当偏心荷载作用时:肚严以十翼山- 叭-M訂%=(464.1+1215)/(6 X 6)-2X (2401.88 X 1.414/2)/36.00=-47.70kN/m由于P kmin<0所以按下式计算Pkmax:二近+兀顾爲心=(2401.88+37.03 X 1.35)/(464.10+1215.00)=1.46m < 0.25b=1.50m载力满足要求!—12-X 忑f2=3-1.03=1.97m=(464.1+1215.00)/(3 X 1.97 X 1.97)=144.57kN/m四.地基基础承载力验算修正后的地基承载力特征值为:f a=570.00kPa非工作状态地基承轴心荷载作用:由于f a》Pk=48.28kPa,所以满足要求!偏心荷载作用:由于1.2 Xf a》P kma>=144.57kPa,所以满足要求! 五•承台配筋计算依据《建筑地基基础设计规范》GB 50007-2011第8.2条。

塔吊计算书

塔吊计算书

塔吊固定式基础的设计一、工程概况本工程为 ------------- 大楼,地下一层,地上十八层,框剪结构,建筑高度60.8m,最高点为66.2m,建筑面积为36505讥本工程建筑合理使用年限为50年,防火设计为一类高度,其耐火等级为地上一级、地下室一级,屋面防水等级为二级,地下室防水等级为一级。

二、塔机设置1、根据工程实际情况,设置一台塔吊,型号为TC5613A塔式起重机,位于本工程车道区域,详细在图中3-1~3-2/1-10~1-12 之间(详见塔吊平面布置图),塔吊基础直接设置在底板下部,底板与塔吊基础连接做法详做法说明。

2、塔机用电独立设置配电箱,并设置在离塔机5米以外处。

3、地基周围,已清理场地,平整障碍物。

三、塔基计算1、T C5613A塔式起重机主要技术性能最大起重量8T最大工作幅度56m最小工作幅度 2.5m回转速度0~0.8R/min2、根据塔吊说明书中基础承受的荷载如表:3、岩土工程勘察报告关于地基土资料1-1层为素土层,层厚0~1m左右;1-2层为粘土层,黄一一灰黄色,可塑,层厚0.7~1m;2层为淤泥层,灰~褐灰色,可塑~软塑壮,层厚1.3~1.7m ;3层为淤泥质粘土,灰色,饱和,流塑,层厚3.9~6.6m4层为粘土层,灰黄色,可塑,层厚1.1~4m;5-1层为淤泥质粘土,灰色,饱和,流塑,层厚11.7~18.1m ,5-2层为粉质粘土层,灰色~青灰色,饱和,软塑,层厚11.2~20.7m。

根据地质勘察报告中勘察点位置,塔吊可参照Z16 Z17点,根据地下室底板标高为-4.800,塔吊基础设计为1.35m,可以知道塔吊基础位于第3层淤泥质粘土。

由于建筑物最高度为66.2m,地下室标高为-4.8m,塔吊的独立高度为72.8m c 塔吊采用附着式,分别在塔吊自下而上30.5m和52m设置附着架。

塔吊基础拟采用水泥搅拌桩基础,承台为 5.0m x5.0m x 1.35m,基础混凝土等级为C3Q4) 水泥搅拌桩根数的选择本工程水泥搅拌桩桩长按从自然地面向下15m考虑,上部按开挖5m考虑,水泥搅拌桩有效长度按10m考虑,桩端进入5-1层淤泥质粉质粘土层2m根据地质勘察报告资料估算单桩竖向承载力如下:层号土层名称层厚m 地基承载力特征值桩周土摩擦力标准值qsia (Kpa)3淤泥质粘土 5.8603 4粘土 2.81409 5-1淤泥质粉质粘土 1.4906 1、单桩竖向承载力确定N=qs>Up>L =2 X 3.14X 0.3X (3X 5.8+9X 2.8+6X 1.4)=96.1KN K――水泥加固土强度折减系数(0.3〜0.4)Q u――水泥加固土桩身抗压强度(kPa)A P――粉喷桩截面积(m2)q s――桩周土的平均摩阻力标准值(kPa)U p――粉喷桩周长(m)L——粉喷桩桩长(m)a——桩端土支承力的折减系数,一般可取0.5,当桩为摩察型桩时取0f k ――桩地基承载力标准值(kPa)2、在基础底面范围内,桩的面积置换率确定m=(f sp B *fs)/(N/Ap- B *S)= (151.97-0.5X 86.6) / (96.1/0.28-0.5X 86.6)=108.67/300=0.3623、总桩数的确定n=(m*A)/(Ap)= (0.362*5*5) /(3.14*0.3*0.3)=32.02 根n ----- 总桩数A ---- 基础底面积(m2)根据本工程实际情况,共设置水泥搅拌桩49根,水泥掺入量15%,设置详见平面图。

塔吊基础计算书

塔吊基础计算书

塔吊分项参数计算塔吊是施工场地最重要的施工机械之一,其使用贯穿了整个工程。

在这过程中间隔时间长,不可预见性因素多,为确保塔吊的安全,以下计算都按极限苛刻条件下能保证塔吊正常工作计算。

即:塔吊设置在最大开挖深度处;型钢柱与混凝土灌注桩连接按光滑面锚固。

(计算详值见计算表格) 1. 基础竖向极限承载力计算F=F1+ F2F ——基础竖向极限承载力kn F1——塔吊自重(包括压重)kn F2最大起吊重量kn 2.单桩抗压承载力、抗拔力计算桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第条)F 十。

iV V-A- M =1.2 —±士 弱尹2" Z* ("+”计算结果为抗压,“-”为抗拔)其中 N i ——单桩桩顶竖向力设计值kNn 单桩个数,n=4;F ——作用于桩基承台顶面的竖向力设计值TG ——塔吊基础重量KNMx,My 承台底面的弯矩设计值kN.mxi,yi 单桩相对承台中心轴的XY 方向距离mM ——塔吊的倾覆力矩kN.m3.桩长以及桩径计算 桩采用钻孔灌注桩R =f A +U £ f l >R = N xgk 实际 ppp s ii1U P =n d其中Rk 实际一一实际钻孔灌注桩承载能力KN桩端面承载能力KN桩侧摩擦阻力总和IUp£fsliKNR——单桩轴向承力安全值KN孔一一桩安全系数取2d桩直径m4.桩抗拔验算Ok=入RQk八k实际5.桩配筋计算桩身配筋率可取0.20%〜0.65% (计算取上限0.65%),抗压主筋不应少于6①10,箍筋采用不少于①6@3mm的螺旋箍筋,在桩顶5倍桩身直径范围内箍筋①6@1mm,每隔2m设一道2①12焊接加强箍筋。

As = S桩截面*配筋率n = 4As/ (n 巾2)其中n ——竖筋根数根As ——钢筋总截面积m①一一竖筋直径m6.桩上部钢支柱计算钢支柱采用 hxbxtwxt = 350 * 350 x 12 x 19, H 型钢。

塔吊施工专项方案 计算书

塔吊施工专项方案 计算书

塔吊基础计算书一、参数信息塔吊型号:QTZ63,塔吊起升高度H:70.00m,塔身宽度B:2.5m,基础埋深d:2.00m,自重G:1350kN,基础承台厚度hc:1.50m,最大起重荷载Q:60kN,基础承台宽度Bc:6.00m,混凝土强度等级:C30,钢筋级别:RRB400,基础底面配筋直径:18mm额定起重力矩Me:630kN·m,基础所受的水平力P:30kN,标准节长度b:2.8m,主弦杆材料:角钢/方钢,宽度/直径c:120mm,所处城市:广州,基本风压ω0:0.25kN/m2,地面粗糙度类别:B类田野乡村,风荷载高度变化系数μz:1.86。

二、塔吊对交叉梁中心作用力的计算1、塔吊竖向力计算塔吊自重:G=1350kN;塔吊最大起重荷载:Q=60kN;作用于塔吊的竖向力:F k=G+Q=1350+60=1410kN;2、塔吊风荷载计算依据《建筑结构荷载规范》(GB50009-2001)中风荷载体型系数:地处广州,基本风压为ω0=0.25kN/m2;查表得:风荷载高度变化系数μz=1.86;挡风系数计算:φ=[3B+2b+(4B2+b2)1/2]c/(Bb)=[(3×2.5+2×2.8+(4×2.52+2.82)0.5)×0.12]/(2.5×2.8)=0.323;因为是角钢/方钢,体型系数μs=2.354;高度z处的风振系数取:βz=1.0;所以风荷载设计值为:ω=0.7×βz×μs×μz×ω0=0.7×1.00×2.354×1.86×0.25=0.766kN/m2;3、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:Mω=ω×φ×B×H×H×0.5=0.766×0.323×2.5×70×70×0.5=1515.435kN·m;M kmax=Me+Mω+P×h c=630+1515.435+30×1.5=2190.44kN·m;三、塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e=M k/(F k+G k)≤Bc/3式中e──偏心距,即地面反力的合力至基础中心的距离;M k──作用在基础上的弯矩;F k──作用在基础上的垂直载荷;G k──混凝土基础重力,G k=25×6×6×1.5=1350kN;Bc──为基础的底面宽度;计算得:e=2190.44/(1410+1350)=0.794m<6/3=2m;基础抗倾覆稳定性满足要求!四、地基承载力验算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。

塔吊计算书

塔吊计算书

工作状态下,标准组合的倾覆力矩标准值
M k 5128 0.9 (3027 69493.8) 13696.7KN.m
非工作状态下,标准组合的倾覆力矩标准值

M k 5128 24964 30092KN.m
三、桩竖向力计算 非工作状态下:
Qk ( Fk Gk ) / n (2210 750) / 4 740KN
承台最大负弯矩:
Mx =My =2 (-7564.5) 0.75=-11346.8KN.m
3、配筋计算 根据«混凝土结构设计规程»GB50010-2002 第 7.2.1 条
s =
M =1- 1-2s 2 1f c bh 0
s =1-

2
As =
M s h 0f y
式中 1 --------系数,当混凝土强度不超过 C50 时, 1 取为 1.0,当混凝 土强度等级为 C80 时, 1 取为 0.94,期间按线性内插法确定;
其中 Mx,My-----计算截面处 XY 方向的弯矩设计值(KN.m) Xi,yi------单桩相对承台中心轴的 XY 方向距离(m) Ni------不计承台自重及其上土重,第 i 桩的竖向反力设计值(KN) 由于非工作状态下,承台正弯矩最大:
Mx =My =2 9650.2 0.75=14475.3KN.m
最大拔力
N2 1.35 ( Fk Fqk ) / n-1.35 ( M k Fvk h) / L 1.35 (2210 120) / 4-1.35 ( 13696.7+82.2 1.2)/4.95 =-2976KN
非工作状态下 最大压力
N1 1.35 Fk / n 1.35 (M k Fvk h) / L 1.35 2210 / 4 1.35 (30092+316 1.2)/4.95 =9056.2KN

塔吊专项方案计算书

塔吊专项方案计算书

一、工程概况本工程位于我国某城市,项目名称为“XX住宅小区”。

该住宅小区占地面积约12万平方米,总建筑面积约30万平方米,包含多层住宅、小高层住宅和配套设施等。

为确保施工过程中的垂直运输需求,本项目拟采用QTZ80型塔吊进行施工。

二、塔吊选型及基础设计1. 塔吊选型:根据施工现场实际情况,塔吊型号选为QTZ80型,其主要参数如下:- 起重量:80t- 起升高度:120m- 跨度:60m2. 基础设计:- 基础类型:独立基础- 基础尺寸:长×宽×高= 6m×6m×1.5m- 混凝土强度等级:C30- 混凝土用量:约18.6m³三、计算依据1. 《建筑地基基础设计规范》(GB50007-2011)2. 《塔式起重机设计规范》(GB/T5031-2010)3. 《混凝土结构设计规范》(GB50010-2010)四、计算内容1. 地基承载力计算:- 根据地质勘察报告,地基承载力特征值fak=180kPa。

- 基础底面积A = 6m×6m = 36m²。

- 基础埋深d = 0.75m。

- 计算基础承载力Fk = fak × A = 180kPa × 36m² = 6480kN。

2. 塔吊基础配筋计算:- 基础顶面配筋:主筋4Φ20,箍筋Φ10@150。

- 基础底面配筋:主筋4Φ20,箍筋Φ10@150。

- 计算混凝土受压区高度x:- 混凝土强度等级C30,f'c = 14.3N/mm²。

- 抗拉强度设计值f_t = 1.43N/mm²。

- 计算混凝土截面面积A = 6m×6m = 36m²。

- 计算配筋率ρ = (4×4×3.14×20²×1.43) / (36×1000) = 0.033。

- 计算受压区高度x = (0.5 × 14.3 × 36 × 0.033) / (1.43 × 20²) = 0.26m。

QTZ80塔吊计算书

QTZ80塔吊计算书

一.参数信息1. 塔吊参数:塔吊型号: QTZ80塔身宽度B=1.7m,未采用附着装置前,基础受力为最大,有关资料如下表:工况塔机垂直力F v(kN)水平力F h(kN)倾覆力矩M(kN﹒m)工作状态663.4 38.36 1286.59非工作状态603.4 98.2 2546.642. 承台参数:承台厚度:h=1.25m承台宽度:b=3m混凝土强度等级: C30承台主筋:双层双向20﹫150承台箍筋:10﹫200mm保护层厚度:25mm3. 桩参数:桩型:泥浆护壁钻(冲)孔灌注桩桩间距:a=1.7m桩直径:0.8m桩混凝土强度:C30桩身配筋:1216保护层厚度:100mm桩入土深度:38.26m4. 荷载参数:钢筋自重 1kN/m3;混凝土自重 24kN/m3;5. 地质参数:序号土名称土厚度(m) 土侧阻力特征值(kPa) 土端阻力特征值(kPa)1 3淤泥 5.16 6 02 4-2粉质粘土夹粉土 3.8 18 03 6粘土 13.7 30 04 7粉质粘土 6.2 25 05 7-夹含砾粉砂 5.3 32 06 8-1粉砂 1.3 31 07 8-2圆砾 1.6 55 08 10-1全风化粉砂质泥岩 1.2 42 09 10-3中风化粉砂质泥岩 1 0.9 14006. 塔吊计算简图二.工作状态时验算1. 塔吊承台设计验算1) 承台截面主筋验算A. 矩形承台弯矩的计算(依据《建筑桩基技术规范》JGJ94-94)ii x y N m ∑=11 II y X N m ∑=11其 中恒载分项系数取1.2,活载分项系数取1.4;Mx1,My1---计算截面处XY 方向的弯矩设计值(KN.m ); xi,yi----单桩相对承台中心轴的XY 方向距离(m ); Ni1-----扣除承台自重的单桩桩顶竖向力设计值(KN)。

N=1.2×663.4/4+(1.4×1286.59+1.4×38.36×1.25)×(1.7/2)/[4×(1.7/2)2]=748.54kN经计算得到弯矩设计值:Mx1=My1=2×748.54×(1.7/2-1.7/2)=0kN.mB. 承台截面主筋的计算a 依据《混凝土结构设计规范》(GB50010-2002)受弯构件承载力计算。

塔吊基础计算书

塔吊基础计算书

塔吊基础计算书一、塔吊基本参数(按起重臂下自由高度40m计算)1.塔帽、驾驶室、转盘等合计:G1=90KN2.起重臂重合计:G2=75KN3.平衡臂重合计:G3=60KN4.配重合计:G4=120KN5.标准节14节合计:G5=168KN6.起重量1.3—6吨:即Q1=13—60KN7.起升速度:V=1m/秒8.起重机旋转速度:n=0.6r/min9.制动时间:按0.2秒计算10.起重机倾斜按3‰考虑11.Q2 基础自重:5*5*1.35*2450kg*10=827kN12.根据建设单位提供的地质勘察报告地基承载力满足要求二、工作状态下稳定性验算:(倾覆点O1)1、起重机重力矩M1=G4*16.5+G3*9.5+(G1+G5)*2.5-G2*20=120*16.5+60*9.5+(90+168)*2.5+960*2.5-75*20=4095KN.m2、起重力矩M2=870KN.m3、工作力矩M3=M2V/gt=870*1/(900-40*0.62)=770KN.m4、旋转力矩M4=M2n2h/(900-Hn2)=870*0.62*40/(900-40*0.62)=14.14KN.m5、风压力矩M5=10.2*20+5*40=404KN.m6、倾斜力矩M6=(G1+G2+G3+G4+G5+Q2)*3‰*∑G/(Q2+∑G)*40=(90+75+60+120+168+827)*3‰*513/(827+513)*40=61.56KN.m K=(M1-M3-M4-M5-M6)/M2=(4095-770-14.1-404-61.56)/870=3.27>1.15 稳定三、工作状态(倾覆点Q2)1、M=(G1+G5+Q2)*2.5+G2*25-G3*4.5-G4*11.5=2937.5KN.m2、其余同第二节K=(M-M3-M4-M5-M6)/M2=(2937.5-637-14.14-404-61.56)/870=2.09>1.15 稳定四、非工作状态(倾覆点O2)1.M1=2850—2937.5KN.m 取M1=2850KN.m(最低高度)2.M5按0.6KN/m2计算:N1=40.8KN M5=40.8*14.14=576.9KN.m3.M6=61.56KN.m4.K=M1/(M5+M6)=2850/(576.9+61.56)=4.46>1.15 稳定。

塔吊计算书

塔吊计算书

塔吊天然基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。

一. 参数信息二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值F k1=700kN2) 基础以及覆土自重标准值G k=7.5×7.5×1.4×25=1968.75kN3) 起重荷载标准值F qk=60kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2)=0.8×0.7×1.95×1.54×0.2=0.34kN/m2=1.2×0.34×0.35×1.51=0.21kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.21×70=14.93kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×14.93×70=522.60kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.30kN/m2)=0.8×0.7×1.95×1.54×0.3=0.50kN/m2=1.2×0.50×0.35×1.51=0.32kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.32×70=22.40kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×22.40×70=783.89kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k=1930+0.9×(950+522.60)=3255.34kN.m非工作状态下,标准组合的倾覆力矩标准值M k=1930+783.89=2713.89kN.m三. 地基承载力计算依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)第4.1.3条承载力计算。

塔吊计算书

塔吊计算书

附塔机基础及平衡重和塔吊计算书○1基础计算书一、参数信息塔吊型号:QTZ80,塔吊起升高度H:50.00m,塔身宽度B:1.6m,基础埋深d:1.60m,自重G:600kN,基础承台厚度hc:1.00m,最大起重荷载Q:60kN,基础承台宽度Bc:5.50m,混凝土强度等级:C35,钢筋级别:HRB400,基础底面配筋直径:25mm二、塔吊对交叉梁中心作用力的计算1、塔吊竖向力计算塔吊自重:G=600kN;塔吊最大起重荷载:Q=60kN;作用于塔吊的竖向力:Fk=G+Q=600+60=660kN;2、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:Mkmax=960kN·m;三、塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e=Mk /(Fk+Gk)≤Bc/3式中 e──偏心距,即地面反力的合力至基础中心的距离; Mk──作用在基础上的弯矩;Fk──作用在基础上的垂直载荷;Gk ──混凝土基础重力,Gk=25×5.5×5.5×1=756.25kN;Bc──为基础的底面宽度;计算得:e=960/(660+756.25)=0.678m < 5.5/3=1.833m;基础抗倾覆稳定性满足要求!四、地基承载力验算依据《建筑地基基础设计规范》(GB50007-2011)第5.2条承载力计算。

计算简图:混凝土基础抗倾翻稳定性计算: e=0.678m < 5.5/6=0.917m 地面压应力计算: P k =(F k +G k )/A P kmax =(F k +G k )/A + M k /W式中:F k ──塔吊作用于基础的竖向力,它包括塔吊自重和最大起重荷载,F k =660kN ; G k ──基础自重,G k =756.25kN ; Bc ──基础底面的宽度,取Bc=5.5m ;M k ──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M k = 960kN ·m ; W ──基础底面的抵抗矩,W=0.118Bc 3=0.118×5.53=19.632m 3; 不考虑附着基础设计值:P k =(660+756.25)/5.52=46.818kPaP kmax =(660+756.25)/5.52+960/19.632=95.717kPa ; P kmin =(660+756.25)/5.52-960/19.632=0kPa ; 实际计算取的地基承载力设计值为:f a =160.000kPa ;地基承载力特征值f a 大于压力标准值P k =46.818kPa ,满足要求!地基承载力特征值1.2×f a 大于无附着时的压力标准值P kmax =95.717kPa ,满足要求!五、基础受冲切承载力验算依据《建筑地基基础设计规范》(GB 50007-2011)第8.2.7条。

塔吊方案计算书

塔吊方案计算书

塔吊方案计算书1. 引言本文档旨在提供一份塔吊方案计算书,用于确定塔吊在施工现场的合适位置和参数设置。

该计算书将涵盖以下内容:1.施工现场概述2.各种塔吊方案的选择和计算3.安全因素考虑4.执行方案和预算估计2. 施工现场概述施工现场位于某某市某某区的建筑工地,地理位置便利,周边环境较为开阔。

计划在该施工现场使用塔吊进行吊装作业,以提高工作效率和安全性。

3. 塔吊方案的选择与计算目前市场上存在多种类型的塔吊,我们需要根据施工现场的具体情况进行选择和计算。

以下是一些建议的方案:3.1 方案一:XX型塔吊•额定起重量:100吨•最大起重距离:80米•最大高度:120米•塔吊自重:50吨•地基承载能力:XXX根据施工现场的具体情况,我们进行了以下计算和选择:1.预计吊装物体重量为50吨,远小于塔吊的额定起重量,因此该塔吊可以满足需求。

2.最大起重距离和最大高度都能够覆盖施工现场的范围。

3.塔吊自重可由塔吊制造商提供的技术参数得知,属于合适范围。

4.地基承载能力需要进行具体的地质勘测和计算,以确保施工现场能够承受塔吊的重量。

4. 安全因素考虑在选择和计算塔吊方案时,安全因素是至关重要的。

以下是我们在考虑安全性方面的一些建议:1.塔吊操作员需要具备相关的资质和经验,以确保吊装作业的安全进行。

2.施工现场需要进行周围环境的分析和评估,以确保塔吊操作不会对周边建筑物和人员造成风险。

3.定期对塔吊设备进行维护和检修,以确保设备的正常运行和安全性。

4.建立紧急预案,以应对突发情况和事故。

5. 执行方案和预算估计在选择和计算塔吊方案之后,需要制定具体的执行方案和预算估计,以确保项目的顺利实施。

1.确定塔吊的放置位置和基础设计,以满足安全和效率要求。

2.与塔吊制造商或供应商协商,制定详细的施工方案,包括起重物体的安装和拆卸过程。

3.制定物料运输和吊装过程的时间表,并考虑可能的风险和延误因素。

4.结合当前市场价格和预计工期,估计项目的总预算和成本。

塔吊计算书

塔吊计算书

一、塔吊的基本参数信息塔吊型号:JL5613,塔吊起升高度H=39.000m,塔吊倾覆力矩M=1378.600fkN.m,混凝土强度等级:C35,塔身宽度B=1.500m,基础以上土的厚度D=1.500m,自重F1=390.000kN,基础承台厚度Hc=1.400m,最大起重荷载F2=60.000kN,基础承台宽度Bc=5.000m,桩钢筋级别:II级钢,桩直径或者方桩边长=0.500m,桩间距a=4.000m,承台箍筋间距S=200.000mm,承台砼的保护层厚度=50.000mm,空心桩(采用的预应力管桩)的空心直径:0.30m。

二、塔吊基础承台顶面的竖向力和弯矩计算塔吊自重(包括压重)F1=390.00kN,塔吊最大起重荷载F2=60.00kN,作用于桩基承台顶面的竖向力F=1.2×(F1+F2)=540.00kN,塔吊的倾覆力矩M=1.4×1378.60=1930.04kN。

三、矩形承台弯矩及单桩桩顶竖向力的计算图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。

1. 桩顶竖向力的计算依据《建筑桩技术规范》JGJ94-94的第5.1.1条。

其中n──单桩个数,n=4;F──作用于桩基承台顶面的竖向力设计值,F=540.00kN;G──桩基承台的自重G=1.2×(25×Bc×Bc×Hc/4+20×Bc×Bc×D/4)=1.2×(25×5.00×5.00×1.40+20×5.00×5.00×1.50)=1950.00kN;Mx,My──承台底面的弯矩设计值,取1930.04kN.m;xi,yi──单桩相对承台中心轴的XY方向距离a/2=2.00m;Ni──单桩桩顶竖向力设计值(kN);经计算得到单桩桩顶竖向力设计值,最大压力:N=(540.00+1950.00)/4+1930.04×2.00/(4×2.002)=863.75kN。

塔吊基础计算书

塔吊基础计算书

QTZ80塔吊基础计算书QTZ80塔吊型号性能参数表QTZ80塔吊基础计算一. 参数信息塔吊型号: QTZ80塔吊自重标准值:Fk1=449.00kN起重荷载标准值:Fqk=60.00kN塔吊最大起重力矩:M=1039.00kN.m塔吊计算高度: H=98m 塔身宽度: B=1.60m 非工作状态下塔身弯矩:M1=-1668kN.m桩混凝土等级: C30承台混凝土等级:C35保护层厚度: 50mm矩形承台边长: 3.50m承台厚度: Hc=1.250m承台箍筋间距: S=200mm承台钢筋级别: HRB400承台顶面埋深: D=0.000m桩直径: d=800.000m 桩间距: a=2.500m桩钢筋级别: HRB400桩入土深度: 16.00m桩型与工艺: 泥浆护壁钻(冲)孔灌注桩二. 荷载计算1. 自重荷载及起重荷载1) 塔吊自重标准值 Fk1=449kN2) 基础以及覆土自重标准值 Gk=3.5×3.5×1.25×25=382.8125kN3) 起重荷载标准值 Fqk=60kN2. 塔吊的倾覆力矩工作状态下,标准组合的倾覆力矩标准值Mk=-1668+0.9×(1039+2294.71)=1332.34kN.m 非工作状态下,标准组合的倾覆力矩标准值Mk=-1668+4097.15=2429.15kN.m三. 桩竖向力计算非工作状态下:Qk=(Fk+Gk)/n=(449+382.81)/4=207.95kNQkmax=(Fk+Gk)/n+(Mk+Fvk×h)/L=(449+382.8125)/4+(2429.15+83.62×1.25)/3.54=924.69kNQkmin=(Fk+Gk-Flk)/n-(Mk+Fvk×h)/L=(449+382.8125-0)/4-(2429.15+83.62×1.25)/3.54=-508.78kN工作状态下:Qk=(Fk+Gk+Fqk)/n=(449+382.81+60)/4=222.95kNQkmax=(Fk+Gk+Fqk)/n+(Mk+Fvk×h)/L=(449+382.8125+60)/4+(1332.34+46.83×1.25)/3.54=616.41kNQkmin=(Fk+Gk+Fqk-Flk)/n-(Mk+Fvk×h)/L=(449+382.8125+60-0)/4-(1332.34+46.83×1.25)/3.54=-170.51kN四. 承台受弯计算1. 荷载计算不计承台自重及其上土重,第i桩的竖向力反力设计值:工作状态下:最大压力 Ni=1.35×(Fk+Fqk)/n+1.35×(Mk+Fvk×h)/L=1.35×(449+60)/4+1.35×(1332.34+46.83×1.25)/3.54=702.96kN最大拔力 Ni=1.35×(Fk+Fqk)/n-1.35×(Mk+Fvk×h)/L=1.35×(449+60)/4-1.35×(1332.34+46.83×1.25)/3.54=-359.38kN非工作状态下:最大压力 Ni=1.35×Fk/n+1.35×(Mk+Fvk×h)/L =1.35×449/4+1.35×(2429.15+83.62× 1.25)/3.54=1119.13kN最大拔力 Ni=1.35×Fk/n-1.35×(Mk+Fvk×h)/L =1.35×449/4-1.35×(2429.15+83.62× 1.25)/3.54=-816.06kN 2. 弯矩的计算依据《塔式起重机混凝土基础工程技术规程》第6.4.2 条其中 Mx,My1——计算截面处XY方向的弯矩设计值(kN.m); xi,yi——单桩相对承台中心轴的XY方向距离(m);Ni——不计承台自重及其上土重,第i桩的竖向反力设计值(kN)。

塔吊基础计算书

塔吊基础计算书
5.00
配重高度hp(m)
0.70
基础混凝土强度
C35
3、计算简图
二、计算过程:
1. 修正地基承载力设计值:(本基础设计不考虑上部覆土)
f = fk+ηb×r×( b-3)+ηd×rm×( d-0.5)=
208.12
kN/m2
其中:
基础宽度的地基承载力修正系数ηb=
0.3
基础深度的地基承载力修正系数ηd=
fy为钢筋的抗拉、抗压强度设计值查规范
fy=
300
N/mm2
最小配筋面积
Asmin=ρbh=
9375
mm2
其中:
ρ为基础最小配筋率
0.0015
查表得配筋
Φ28 @ 125双向
截面积As(mm2)
13816
mm2
满足要求
冲击承载力Fl≤0.7βhpft×bm×ho=
3512507
N
其中:
βhp为受冲切承载力截面高度影响系数
0.94
ft为混凝土的抗拉强度设计值查表得ft=
1.57
N/mm2
c的取值:
1.6
m
bm为冲切破坏最不利一侧计算长度
bm=(c+bb)/2=
2.81
m
bb==c+2h0=
4.02
m
h0为截面有效高度h0=h-as=
Pmax=2×(F2+G1+G2+G3)/(3×l×a)=
165.01
kN/m2
Pmax

1.2f=
249.75
kN/m2
基础底面处的平均压力值Pk
Pk=Pmax/2=
82.50
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北面塔吊计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑桩基技术规范》JGJ94-20084、《建筑地基基础设计规范》GB50007-20115、《钢结构设计规范》GB50017-2003一、塔机属性二、塔机荷载1、塔机传递至基础荷载标准值2、塔机传递至基础荷载设计值基础布置图承台及其上土的自重荷载标准值:G k=bl(hγc+h'γ')=4×4××25+0×19)=500kN承台及其上土的自重荷载设计值:G==×500=600kN桩对角线距离:L=(a b2+a l2)=+=1、荷载效应标准组合轴心竖向力作用下:Q k=(F k+G k+G p2)/n=(449+500+20)/4=荷载效应标准组合偏心竖向力作用下:Q kmax=(F k+G k+G p2)/n+(M k+F Vk(H0-h r+h/2))/L=(449+500+20)/4+(1668+71×+ Q kmin=(F k+G k+G p2)/n-(M k+F Vk(H0-h r+h/2))/L =(449+500+20)/4-(1668+71×+2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F+G+×G p2)/n+(M+F v(H0-h r+h/2))/L=+600+×20)/4++×+ Q min=(F+G+×G p2)/n-(M+F v(H0-h r+h/2))/L =+600+×20)/4-+×+四、格构柱计算整个格构柱截面对X、Y轴惯性矩:I=4[I0+A0(a/2-Z0)2]=4×[+×2]=整个构件长细比:λx=λy=H0/(I/(4A0))=1035/(4×)=分肢长细比:λ1=l01/i y0==分肢毛截面积之和:A=4A0=4××102=15028mm2格构式钢柱绕两主轴的换算长细比:λ0 max=(λx2+λ12)=+=λ0max=≤[λ]=1502、格构式钢柱分肢的长细比验算λ1=≤minλ0max,40)=min×,40)=满足要求!3、格构式钢柱受压稳定性验算λ0max(f y/235)=×(235/235)=查表《钢结构设计规范》GB50017附录C:b类截面轴心受压构件的稳定系数:φ=Q max/(φA)=×103/×15028)=mm2≤f=215N/mm2满足要求!4、缀件验算缀件所受剪力:V=Af(f y/235)85=15028×215×10-3×(235/235)85=格构柱相邻缀板轴线距离:l1=l01+30=+30=60cm作用在一侧缀板上的弯矩:M0=Vl1/4=×4=·m分肢型钢形心轴之间距离:b1=a-2Z0=×=作用在一侧缀板上的剪力:V0=Vl1/(2·b1)=×(2×=σ= M0/(bh2/6)=×106/(10×3002/6)=mm2≤f=215N/mm2满足要求!τ=3V0/(2bh)=3××103/(2×10×300)=mm2≤τ=125N/mm2满足要求!角焊缝面积:A f==×10×530=3710mm2角焊缝截面抵抗矩:W f=6=×10×5302/6=327717mm3垂直于角焊缝长度方向应力:σf=M0/W f=×106/327717=17N/mm2平行于角焊缝长度方向剪应力:τf=V0/A f=×103/3710=8N/mm2((σf /2+τf2)=((17/2+82)=16N/mm2≤f tw=160N/mm2满足要求!根据缀板的构造要求缀板高度:300mm≥2/3 b1=2/3××1000=247mm缀板厚度:10mm≥max[1/40b1,6]= max[1/40××1000,6]=9mm 满足要求!缀板间距:l1=600mm≤2b1=2××1000=741mm满足要求!线刚度:∑缀板/分肢=4×10×3003/(12×(450-2×)/×104/600)=≥6满足要求!五、桩承载力验算1、桩基竖向抗压承载力计算桩身周长:u=πd=×=桩端面积:A p=πd2/4=×4=R a=ψuΣq sia·l i+q pa·A p=×××16+×26+×26+×28+×30+×35+1×50)+1800×=Q k=≤R a=Q kmax=≤=×=满足要求!2、桩基竖向抗拔承载力计算Q kmin=<0按荷载效应标准组合计算的桩基拔力:Q k'=桩身位于地下水位以下时,位于地下水位以下的桩自重按桩的浮重度计算,桩身的重力标准值:G p=l t(γz-10)A p=×(25-10)×=R a'=ψuΣλi q sia l i+G p=××××16+××26+××26+××28+××30+××35+×1×50)+=Q k'=≤R a'=满足要求!3、桩身承载力计算纵向普通钢筋截面面积:A s=nπd2/4=12××162/4=2413mm2 (1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=ψc f c A p+'A s'=×××106 + ×(300×)×10-3=Q=≤ψc f c A p+'A s'=满足要求!(2)、轴心受拔桩桩身承载力荷载效应基本组合下的桩顶轴向拉力设计值:Q'=-Q min=f y A S=300××10-3=Q'=≤f y A S=满足要求!4、桩身构造配筋计算A s/A p×100%=×106))×100%=%≥%满足要求!5、裂缝控制计算裂缝控制按三级裂缝控制等级计算。

(1)、纵向受拉钢筋配筋率有效受拉混凝土截面面积:A te =d2π/4=8002π/4=502655mm2ρte=(A s+A ps)/A te=+0)/502655=<取ρte=(2)、纵向钢筋等效应力σsk=Q k'/A s=×103/=mm2(3)、裂缝间纵向受拉钢筋应变不均匀系数ψ= 取ψ=(4)、受拉区纵向钢筋的等效直径d ep=Σn i d i2/Σn iνi d i=(12×162+0×182)/(12×1×16+0××18)=16mm(5)、最大裂缝宽度ωmax=αcrψσsk+ρte)/E s=××××35+×16//200000=≤ωlim=满足要求!六、承台计算承台有效高度:h0=1250-50-22/2=1189mmM=(Q max+Q min)L/2=+)×2=·mX方向:M x=Ma b/L=×=·mY方向:M y=Ma l/L=×=·m2、受剪切计算V=F/n+M/L=4 + =受剪切承载力截面高度影响系数:βhs=(800/1189)1/4=塔吊边缘至角桩内边缘的水平距离:a1b=(a b-B-d)/2=a1l=(a l-B-d)/2= 剪跨比:λb'=a1b/h0=200/1189=,取λb=;λl'= a1l/h0=200/1189=,取λl=;承台剪切系数:αb=(λb+1)=+1)=αl=(λl+1)=+1)=βhsαb f t bh0=×××103×4×=βhsαl f t lh0=×××103×4×=V=≤min(βhsαb f t bh0,βhsαl f t lh0)=满足要求!3、受冲切计算塔吊对承台底的冲切范围:B+2h0=+2×=a b=≤B+2h0=,a l=≤B+2h0=角桩位于冲切椎体以内,可不进行角桩冲切的承载力验算!4、承台配筋计算(1)、承台底面长向配筋面积αS1= M y/(α1f c bh02)=×106/××4000×11892)=ζ1=1-(1-2αS1)=1-(1-2×=γS1=1-ζ1/2=2=A S1=M y/(γS1h0f y1)=×106/×1189×300)=2433mm2最小配筋率:ρ=%承台底需要配筋:A1=max(A S1, ρbh0)=max(2433,×4000×1189)=7134mm2承台底长向实际配筋:A S1'=8828mm2≥A1=7134mm2满足要求!(2)、承台底面短向配筋面积αS2= M x/(α2f c bh02)=×106/××4000×11892)=ζ2=1-(1-2αS2)=1-(1-2×=γS2=1-ζ2/2=2=A S2=M x/(γS2h0f y1)=×106/×1189×300)=2433mm2最小配筋率:ρ=%承台底需要配筋:A2=max(2433, ρlh0)=max(2433,×4000×1189)=7134mm2承台底短向实际配筋:A S2'=8828mm2≥A2=7134mm2满足要求!(3)、承台顶面长向配筋面积承台顶长向实际配筋:A S3'=6598mm2≥'=×8828=4414mm2满足要求!(4)、承台顶面短向配筋面积承台顶长向实际配筋:A S4'=6598mm2≥'=×8828=4414mm2满足要求!(5)、承台竖向连接筋配筋面积承台竖向连接筋为双向Φ10@500。

相关文档
最新文档