旋转机械常见故障

合集下载

旋转机械故障诊断

旋转机械故障诊断

旋转机械故障诊断
旋转机械故障诊断主要是通过观察和分析机械运行过程中
的异常现象来判断故障原因。

以下是一些常见的旋转机械
故障诊断方法:
1. 震动分析:通过测量机械运行时的振动幅值和频率,分
析振动的特点和变化趋势,判断故障位置和类型。

常见的
故障类型包括不平衡、轴承损坏和轴承松动等。

2. 温度监测:通过测量机械的各个部件的温度,判断是否
存在过热的情况。

过高的温度可能是由于摩擦、润滑不良
或散热不良等原因引起的故障。

3. 声音分析:通过对机械工作过程中产生的声音进行分析,判断是否存在异响或噪音。

噪音可以是由于轴承损坏、齿
轮磨损或螺栓松动等引起的。

4. 润滑油分析:通过对机械润滑油的化学成分和物理性质
进行分析,判断是否存在金属粉末、水分或杂质等异常。

这些异常可能是由于零件磨损或润滑油质量不佳引起的故障。

5. 可视检查:通过对机械各个部件的外观进行检查,观察
是否存在磨损、裂纹或松动等现象。

这可以帮助诊断轴承、齿轮和联接件等部件的故障。

以上是常见的旋转机械故障诊断方法,诊断时可以结合多
种方法综合分析,准确判断和定位故障原因,以便及时进
行修复或更换有问题的部件。

5 旋转机械常见故障特征

5 旋转机械常见故障特征

特征频 常伴 振动稳 振动 相位 轴心 时域 率 频率 定性 方向 特征 轨迹 波形 1× 简谐 稳定 径向 稳定 椭圆 波形
转子不平衡振动敏感参数
1 振动 随转 速变 化 明显 2 振动 随负 荷变 化 不明 显 3 振动 随油 温变 化 不变 4 振动 随流 量变 化 不变 5 振动 随压 力变 化 不变 6 其它 识别 方法 低速 时趋 于零
转子不平衡产生的原因
转子不平衡产生的原因
转子不平衡类型
力不平衡
力偶不平衡
转子不平衡类型
动不平衡
悬臂转子不平衡
转子不平衡动力学特性
x = Acos(Ωt +θ )
me λ2 A= • M (1− λ2 )2 + 4ζ 2 λ2
2ζλ tanθ = 1− λ2
转子不平衡振动特征
1 2 3 4 5 6 7
转子不对中故障形式
轴线平行不对中
角度不对中
综合不对中
转子不对中故障轴心轨迹
∆α
∆y Z
∆α / 2
Z
∆L
(b)
Z
∆y
∆L
(a)
∆L
(c)
轴线平行不对中
角度不对中
综合不对中
转子不对中故障特征
1)齿式联轴器不对中故障的特征频率为轴转 角频率的2 角频率的2倍。 由不对中故障产生的对转子的激振力幅, 2)由不对中故障产生的对转子的激振力幅, 随转速的升高而加大,因此, 随转速的升高而加大,因此,高速旋转机 械应更加注重转子的对中要求。 械应更加注重转子的对中要求。 激励力幅与不对中量成正比, 3)激励力幅与不对中量成正比,随不对中量 的增加,激励力幅呈线性加大。 的增加,激励力幅呈线性加大。

总结旋转机械经常出现的故障有哪些

总结旋转机械经常出现的故障有哪些

旋转机械是主要依靠旋转动作来实现特定功能的机械设备,典型的旋转机械包括汽轮机、燃气轮机、离心式和轴流式压缩机等,这类机械在电力、石化、冶金和航空航天等部门都有着广泛的应用。

常见的旋转机械故障包括不平衡、不对中、轴弯曲以及油膜涡动和油膜振荡,下面我们对其作一个详细的介绍。

转子不平衡:转子不平衡是旋转机械最常发生的故障。

这一故障的产生原因是多方面的,包括转子本身的原因,如结构设计不合理、材料材质不均匀、机械加工质量没有达到要求、装配存在误差、动平衡精度差、零部件缺损等;也包括联轴器的原因,如运行中联轴器相对位置的改变等,这些原因都会造成转子旋转不平衡。

转子不对中:转子不对中指的是相邻两个转子的轴心线与轴承中心线发生了倾斜或者偏移。

具体来说又分为联轴器不对中和轴承不对中两种情况。

联轴器不对中又包括平行不对中、偏角不对中和平行偏角不对中三种情况。

平行不对中时,转子振动频率是工频的两倍。

偏角不对中会导致联轴器附加一个弯矩,以减小两个轴中心线的偏角。

轴每旋转一周,弯矩作用方向都会改变两次,这大大增加了转子的轴向力,使转子在轴向产生工频振动。

而平行偏角不对中是以上两种情况的综合,转子既发生径向振动又发生轴向振动。

轴承不对中实际上是由于轴承座标高和轴中心位置之间的偏差造成的,这回导致轴系的载荷重新进行分配。

负荷较大的轴承可能会出现高次谐波振动,负荷较轻的轴承则容易偏离稳定状态,同时还使轴系的临界转速发生改变。

转子轴弯曲:转子的中心线发生弯曲称为轴弯曲,会造成与质量偏心情况相类似的旋转矢量激振力。

轴弯曲分为永久性和临时性两种类型。

转子永久性弯曲是由转子结构不合理、加工误差大、材质不均匀、长期存放不当等因素造成的转子轴永久性的弯曲变形。

也有可能是由于热态停车时未及时盘车或盘车不当、转子的热稳定性差、长期运行后轴的自然弯曲加大等原因造成的。

转子临时性弯曲是因转子上存在较大预负荷、开机运行时的暖机操作不当、升速过快、转轴热变形不均匀等原因造成的,可以通过停止加工使转子回复正常。

第六章 旋转机械的故障诊断(第一讲)1

第六章  旋转机械的故障诊断(第一讲)1

1.1 转子不平衡概念
转子不平衡:设计错误、材料质量、加工、装配以及运行多因
素影响,转子质心与旋转中心之间存在一定的偏心距, 转子
工作时周期性受离心力干扰,轴承产生动载荷引起机器振动。 不平衡原因:旋转体质量沿旋转中心线分布不均匀。
转子不平衡产生的离心力
以带薄圆盘的刚性转子为例, 两轴承支承跨度为l, 转子质量 为m,质心M距旋转中心O偏心距为e,旋转角速度为。 假定 转子系统无阻尼,则转子产生的离心力为:
平衡质量 双面动平衡技术
(2)转子运行中的不平衡 ① 转子弯曲
临时性弯曲:转子受外部影响或外力作用引起,不需动平衡 ,采用简单措施,如盘车或调整操作方式即可恢复,主要由 转子受热不均,转子自重,气流冲击, 温度突变以及负荷变 化快等因素引起。
永久性弯曲:转子慢转无法恢复,需要热处理校直或精加工 消除。
止推轴承设计:承载面积、压缩机超压、密封损坏,轴向力 大,瓦块磨烧。
供油系统:润滑油量、供油清洁、油温度、油黏度、供油压 力、滤清滤网、油孔堵塞、轴承磨损,油冷效果、润滑油水 分, 更换过滤器,更换润滑。
(3)轴承疲劳
原因: ① 轴承过载:油膜破裂,应力集中,局部裂纹,裂纹扩展
② 轴瓦松动:轴承间隙,机器振动,轴承交变载荷,裂纹 扩展,瓦块表面开裂与松脱。 ③ 轴承摩擦和咬粘:表面高温,材料热应力和热裂纹 ④ 巴氏合金过厚:疲劳敏感,疲劳破坏
旋转轴线 质心 轴承中心 线
转子几种不平衡状态
1.2 临界转速对不平衡振动的影响
(1)临界转速的动力特性 临界转速现象:不平衡离心力引起共振现象。临界转速时, 转 子产生较大的弯曲变形,做弓状回旋运动(“涡动”或“进动 ”),转子质心远离轴承中心线,离心力剧增,转子产生更大 变形,离心力进一步放大,机器剧烈振动。 临界转速:一阶临界转速ncr1,多阶临界转速ncri (阶数i) 设计要求:工作转速n避开临界转速ncr。 一般规定:工作转速n<一阶临界转速ncr1,n 0.75 ncr1 工作转速n>一阶临界转速ncr1,1.4ncri<n <0.7ncr(i+1)

设备状态监测与故障诊断技术第5章-旋转机械故障诊断技术

设备状态监测与故障诊断技术第5章-旋转机械故障诊断技术

2024/8/1
图5.8 典型不对中谱图
可编辑课件PPT
பைடு நூலகம்
19
19
实例四: 转子不对中故障的诊断
MO MI PI PO
电机
水泵
出现2×频率成分。 轴心轨迹成香蕉形或8字形。 振动有方向性。 轴向振动一般较大。 本例中, 出现叶片通过频率。
2X频率 1X频率
叶片通 过频率
2024/8/1
可编辑课件PPT
转子不平衡故障包括: ①转子质量不平衡、 ②转子偏
心、 ③轴弯曲、 ④转子热态不平衡、 ⑤转子部件
脱落、 ⑥转子部件结垢、 ⑦ 联轴器不平衡等,不
同原因引起的转子不可编平辑课衡件P故PT 障规律相近,但也各有 3
2024/8/1
3
第一节 旋转机械典型故障的机理和特征
1.转子质量不平衡
力不平衡: 不平衡产生的振动幅值在转子第一临界转速以下随转速的 平方增大。例如,转速升高1倍,则振动幅值增大3倍。在转子重 心平面内只用一个平衡修正重量便可修正之。
4.转子热态不平衡: 在机组的启动和停机过程中,由于热交换速
度的差异,使转子横截面产生不均匀的温度分布,使转子发生
瞬时热弯曲,产生较大的不平衡。热弯曲引起的振动一般与负
荷有关。
可编辑课件PPT
5
2024/8/1
5
第一节 旋转机械典型故障的机理和特征
5. 转子部件脱落 可以将部件脱落失衡现象看作对工作状态的转子
掌握滚动轴承故障诊断技术、齿轮故障诊断技术;
了解电动机故障诊断技术、皮带驱动故障诊断技术;
2024/8/熟1 悉利用征兆的故障诊可断编辑方课件法PPT。
2
2
第一节 旋转机械典型故障的机理和特征

旋转机械常见振动故障及原因分析

旋转机械常见振动故障及原因分析

旋转机械常见振动故障及原因分析旋转机械是指主要依靠旋转动作完成特定功能的机械,典型的旋转机械有汽轮机、燃气轮机、离心式和轴流式压缩机、风机、泵、水轮机、发电机和航空发动机等,广泛应用于电力、石化、冶金和航空航天等部门。

大型旋转机械一般安装有振动监测保护和故障诊断系统,旋转机械主要的振动故障有不平衡、不对中、碰摩和松动等,但诱发因素多样。

本文就旋转设备中,常见的振动故障原因进行分析,与大家共同分享。

一、旋转机械运转产生的振动机械振动中包含着从低频到高频各种频率成分的振动,旋转机械运转时产生的振动也是同样的。

轴系异常(包括转子部件)所产生的振动频率特征如表1。

二、振动故障原因分析1、旋转失速旋转失速是压缩机中最常见的一种不稳定现象。

当压缩机流量减少时,由于冲角增大,叶栅背面将发生边界层分离,流道将部分或全部被堵塞。

这样失速区会以某速度向叶栅运动的反方向传播。

实验表明,失速区的相对速度低于叶栅转动的绝对速度,失速区沿转子的转动方向以低于工频的速度移动,这种相对叶栅的旋转运动即为旋转失速。

旋转失速使压缩机中的流动情况恶化,压比下降,流量及压力随时间波动。

在一定转速下,当入口流量减少到某一值时,机组会产生强烈的旋转失速。

强烈的旋转失速会进一步引起整个压缩机组系统产生危险性更大的不稳定气动现象,即喘振。

此外,旋转失速时压缩机叶片受到一种周期性的激振力,如旋转失速的频率与叶片的固有频率相吻合,将会引起强烈振动,使叶片疲劳损坏造成事故。

旋转失速故障的识别特征:1)振动发生在流量减小时,且随着流量的减小而增大;2)振动频率与工频之比为小于1X的常值;3)转子的轴向振动对转速和流量十分敏感;4)排气压力有波动现象;5)流量指示有波动现象;6)机组的压比有所下降,严重时压比可能会突降;7)分子量较大或压缩比较高的机组比较容易发生。

2、喘振旋转失速严重时可以导致喘振。

喘振除了与压缩机内部的气体流动情况有关,还同与之相连的管道网络系统的工作特性有密切的联系。

03旋转机械故障诊断-精选文档

03旋转机械故障诊断-精选文档

1、时域波形为近似的等幅正弦波。因为单纯的不平衡振动, 转速频率的高次谐波幅值很低。
2、轴心轨迹为比较稳定的圆或椭圆,意味着转轴同一截面上 相互垂直的两个探头,其信号相位差接近90°。椭圆是因为轴承 座及基础的水平刚度与垂直刚度不同所造成。
第三章 旋转机械故障诊断
本章内容
1、转子不平衡故障诊断,包括:转子不平衡概念、临界转速对不平衡 振动的影响、转子不平衡振动的故障特征、不平衡振动的故障原因和防 治措施、定向振动与不平衡振动故障的鉴别等。 2、转子不对中故障诊断,包括:转子不对中故障的特征、联轴节不对 中的振动频率、不对中故障的监测方法、故障诊断实例等。 3、滑动轴承故障诊断,包括:滑动轴承工作原理、滑动轴承常见故障 的原因和防治措施、高速滑动轴承不稳定故障的特征和防治措施等。 4、转子摩擦故障诊断,包括:干摩擦故障的机理和特征、转子内摩擦 引起失稳的机理等。 5、叶片式机器中流体激振故障诊断,包括叶片式机器中的气流不稳定 故障等。
上式的特解为:
cos( t ) x A sin( t ) y A
式中, 为离心力导前位移的角度,称为相位角;A为 振幅。
机械电子工程学院
3.1.2.2 阻尼对临界转速下转子振动的影响
n 1 n
。 实际情况表明,带有一个转子的轴系,可简化成具有一个自 由度的弹性系统,有一个临界转速;转轴上带有二个转子,可 简化成二个自由度系统,对应有二个临界转速,依次类推。
n c1 其中转速最小的那个临界转速称为一阶临界转速 ,比之大 的依次叫做二阶临界转速 、三阶临界转速 。 n c3 nc2
机械电子工程学院
机械电子工程学院
3.1.2 临界转速对不平衡振动的影响

旋转机械常见故障总结

旋转机械常见故障总结

旋转机械常见故障总结旋转机械的常见故障有很多,包括不平衡、不对中、轴弯曲和热弯曲、油膜涡动和油膜振荡、蒸汽激振、机械松动、转子断叶片与脱落、摩擦、轴裂纹、旋转失速与喘振、机械偏差和电气偏差等。

1不平衡不平衡是各种旋转机械中最普遍存在的故障。

引起转子不平衡的原因是多方面的,如转子的结构设计不合理、机械加工质量偏差、装配误差、材质不均匀、动平衡精度差;运行中联轴器相对位置的改变;转子部件缺损,如:运行中由于腐蚀、磨损、介质不均匀结垢、脱落;转子受疲劳应力作用造成转子的零部件(如叶轮、叶片、围带、拉筋等)局部损坏、脱落,产生碎块飞出等。

2不对中转子不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。

转子不对中可分为联轴器不对中和轴承不对中。

联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。

平行不对中时振动频率为转子工频的两倍。

偏角不对中使联轴器附加一个弯矩,以力图减小两个轴中心线的偏角。

轴每旋转一周,弯矩作用方向就交变一次,因此,偏角不对中增加了转子的轴向力,使转子在轴向产生工频振动。

平行偏角不对中是以上两种情况的综合,使转子发生径向和轴向振动。

轴承不对中实际上反映的是轴承座标高和轴中心位置的偏差。

轴承不对中使轴系的载荷重新分配。

负荷较大的轴承可能会出现高次谐波振动,负荷较轻的轴承容易失稳,同时还会使轴系的临界转速发生改变。

3轴弯曲和热弯曲轴弯曲是指转子的中心线处于不直状态。

转子弯曲分为永久性弯曲和临时性弯曲两种类型。

转子永久性弯曲是指转子的轴呈永久性的弓形,它是由于转子结构不合理、制造误差大、材质不均匀、转子长期存放不当而发生永久性的弯曲变形,或是热态停车时未及时盘车或盘车不当、转子的热稳定性差、长期运行后轴的自然弯曲加大等原因所造成。

转子临时性弯曲是指转子上有较大预负荷、开机运行时的暖机操作不当、升速过快、转轴热变形不均匀等原因造成。

转子永久性弯曲与临时性弯曲是两种不同的故障,但其故障的机理是相同的。

旋转机械常见的种故障原因

旋转机械常见的种故障原因

旋转机械常见的种故障原因旋转机械是指利用电能、燃料能、气压、水力等能源驱动转子进行动力传递和工作的机械装置。

由于旋转机械在长时间的运行中承受了较大的负荷和压力,因此容易出现各种故障。

以下是旋转机械常见的11种故障原因:1.润滑不良:润滑油的不足或质量不达标,会导致机械零件之间的摩擦增加,进而引发故障。

2.摩擦材料磨损:旋转机械中的摩擦材料,如轴承、齿轮、轮毂等,长时间的工作会造成磨损,从而降低机械的效率和寿命。

3.过载运行:过载运行会导致机械零件受力过大,容易引起机械结构的破坏。

4.裂纹和断裂:机械零件在长时间的运行或是受到冲击等外力作用后,容易出现裂纹和断裂,从而造成机械的故障。

5.动平衡不良:机械转子的不平衡会引起振动,使机械零件磨损加剧,并可能导致机械的进一步破坏。

6.轴承故障:轴承是旋转机械中重要的部件,承受了很大的压力和摩擦。

当轴承出现故障时,会导致机械的轴承磨损、失效及震动等问题。

7.齿轮啮合不良:旋转机械中的齿轮啮合不良会增加齿轮的磨损和噪音,甚至导致齿轮脱落,造成严重故障。

8.水质不良:旋转机械中的水泵、水轮机等设备在水质不良的环境中运行,会造成机械部件腐蚀、结垢及阻塞等故障。

9.温度过高:旋转机械长时间工作会产生热量,如果散热不良或系统冷却不足,会导致温度过高,进而引发各种故障。

10.缺乏维护:长期缺乏维护和保养,机械中的零部件容易老化、劣化,并且可能出现严重的故障。

11.设计和安装问题:旋转机械在设计和安装过程中存在问题,可能导致机械的运行不稳定、故障频发。

为避免以上故障,必须加强机械的维护、保养和定期检修,提高机械的可靠性和稳定性。

同时,在设计和安装过程中也要注意各个部件的匹配和安装准确性,以确保机械的正常运行和长久运行。

旋转机械的故障诊断

旋转机械的故障诊断

旋转机械的故障诊断1.不平衡不平衡是各种旋转机械中最普遍存在的故障。

引起转子不平衡的原因是多方面的,如转子的结构设计不合理、机械加工质量偏差、装配误差、材质不均匀、动平衡精度差;运行中联轴器相对位置的改变;转子部件缺损,如:运行中由于腐蚀、磨损、介质不均匀结垢、脱落;转子受疲劳应力作用造成转子的零部件(如叶轮、叶片、围带、拉筋等)局部损坏、脱落,产生碎块飞出等。

2.不对xx转子不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。

转子不对中可分为联轴器不对中和轴承不对中。

联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。

平行不对中时振动频率为转子工频的两倍。

偏角不对中使联轴器附加一个弯矩,以力图减小两个轴中心线的偏角。

轴每旋转一周,弯矩作用方向就交变一次,因此,偏角不对中增加了转子的轴向力,使转子在轴向产生工频振动。

平行偏角不对中是以上两种情况的综合,使转子发生径向和轴向振动。

轴承不对中实际上反映的是轴承座标高和轴中心位置的偏差。

轴承不对中使轴系的载荷重新分配。

负荷较大的轴承可能会出现高次谐波振动,负荷较轻的轴承容易失稳,同时还使轴系的临界转速发生改变。

3.轴弯曲和热弯曲轴弯曲是指转子的中心线处于不直状态。

转子弯曲分为永久性弯曲和临时性弯曲两种类型。

转子永久性弯曲是指转子的轴呈永久性的弓形,它是由于转子结构不合理、制造误差大、材质不均匀、转子长期存放不当而发生永久性的弯曲变形,或是热态停车时未及时盘车或盘车不当、转子的热稳定性差、长期运行后轴的自然弯曲加大等原因所造成。

转子临时性弯曲是指转子上有较大预负荷、开机运行时的暖机操作不当、升速过快、转轴热变形不均匀等原因造成。

转子永久性弯曲与临时性弯曲是两种不同的故障,但其故障的机理是相同的。

转子不论发生永久性弯曲还是临时性弯曲,都会产生与质量偏心情况相类似的旋转矢量激振力。

4.油膜涡动和油膜振荡油膜涡动和油膜振荡是滑动轴承中由于油膜的动力学特性而引起的一种自激振动。

转动机械常见故障的频率特征

转动机械常见故障的频率特征

PO 1X 频率 2X 频率 叶片通 过频率
出现 2X 频率成分。 轴心轨迹成香蕉形或8字形。 轴向振动一般较大。 本例中,出现叶片通过频率。
水泵
MO
PI
MI
电机
转子不对中的类型
综合不对中 e 0, 0
平行不对中 e 0, = 0
正确对中 e = 0, = 0
角度不对中 e = 0, 0
转动机械常见故障的频率特征
转子不平衡故障的频谱
波形为简谐波,少毛刺。 轴心轨迹为圆或椭圆。 1X频率为主。 轴向振动不大。 振幅随转速升高而增大。 过临界转速有共振峰。
透平
风机
TO
TI
齿轮箱
1X频率(水平)
1X频率(水平)
1X频率(铅垂)
1X频率(铅垂)
轴向很小
轴向很小
转子不平衡的类型
转子不对中故障的频谱
输入轴
啮合频率 GMF
上边频
下边频
2X
根据相应的国际标准、国家标准、行业标准等, 如: ISO, GB, API 等。
以机器正常状态的振动值作为基数,自己和自己比。
与同类机器的振动值作比较。
相对法
类比法
确定报警值和危险值的方法
转机振动标准举例(轴承振动) I测量频率范围 10~1000Hz
电机
离心泵
PI
PO
1X 2X 频率
故障基本 频率6.71X
基本频率的 四个谐波
带滚动轴承的机械的频谱特点
不平衡
不对中
松动
滚动轴承故障频率
0 5 10 15 20 25 30 35 40 45 50×R Frequency in order
mm/s pk

旋转机械的常见故障

旋转机械的常见故障

旋转机械的常见故障旋转机械的常见故障有很多,包括不平衡、不对中、轴弯曲和热弯曲、油膜涡动和油膜振荡、蒸汽激振、机械松动、转子断叶片与脱落、摩擦、轴裂纹、旋转失速与喘振、机械偏差和电气偏差等。

1、不平衡是各种旋转机械中最普遍存在的故障引起转子不平衡的原因是多方面的,如转子的结构设计不合理、机械加工质量偏差、装配误差、材质不均匀、动平衡精度差;运行中联轴器相对位置的改变;转子部件缺损,如:运行中由于腐蚀、磨损、介质不均匀结垢、脱落;转子受疲劳应力作用造成转子的零部件(如叶轮、叶片、围带、拉筋等)局部损坏、脱落,产生碎块飞出等。

2、转子不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。

转子不对中可分为联轴器不对中和轴承不对中。

联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。

平行不对中时振动频率为转子工频的两倍。

偏角不对中使联轴器附加一个弯矩,以力图减小两个轴中心线的偏角。

轴每旋转一周,弯矩作用方向就交变一次,因此,偏角不对中增加了转子的轴向力,使转子在轴向产生工频振动。

平行偏角不对中是以上两种情况的综合,使转子发生径向和轴向振动。

轴承不对中实际上反映的是轴承座标高和轴中心位置的偏差。

轴承不对中使轴系的载荷重新分配。

负荷较大的轴承可能会出现高次谐波振动,负荷较轻的轴承容易失稳,同时还会使轴系的临界转速发生改变。

3、轴弯曲是指转子的中心线处于不直状态。

转子弯曲分为永久性弯曲和临时性弯曲两种类型。

转子永久性弯曲是指转子的轴呈永久性的弓形,它是由于转子结构不合理、制造误差大、材质不均匀、转子长期存放不当而发生永久性的弯曲变形,或是热态停车时未及时盘车或盘车不当、转子的热稳定性差、长期运行后轴的自然弯曲加大等原因所造成。

转子临时性弯曲是指转子上有较大预负荷、开机运行时的暖机操作不当、升速过快、转轴热变形不均匀等原因造成。

转子永久性弯曲与临时性弯曲是两种不同的故障,但其故障的机理是相同的。

旋转机械振动故障诊断及分析

旋转机械振动故障诊断及分析
★ 影响旋转机械振动的因素
★ 汽轮发电机组的振源分析
★ 旋转机械的故障诊断
★ 旋转机械振动故障的处理方法
★ 旋转机械振动故障诊断及处理实例
一、影响旋转机械振动的因素 旋转机械,尤其是大型汽轮发电机组轴系的振 动十分复杂,影响因素较多,不但有静态的,而 且有动态的,并且这些因素往往综合作用,相互 影响。影响旋转机械(及其轴系)振动的主要因 素主要包括: 1、临界转速 当转子的工作转速接近其临界转速时,就要发 生共振,这是产生极大振动的主要原因之一。因 此,在转子设计时,应保证工作转速相对于其临 界转速有足够的避开率。
7各种转动机械一般振动故障分类机械种类部件一般故障原因转子机械部件主要用于机械功能冷却支承密封流体传输的旋转机械部件弯曲断裂裂纹摩擦不合适间隙腐蚀积垢共振密封松动弯曲断裂裂纹摩擦不合适间隙叶轮弯曲断裂裂纹摩擦不合适间隙汽蚀腐蚀积垢共振转轴热弯曲机械弯曲裂纹轴颈伤痕晃度超标圆盘轮盘耸起刮伤松动齿轮磨损裂纹表面剥落麻点断裂推力盘耸起刮伤裂纹断裂摩擦机械种类部件一般故障原因转子机械部件主要用于机械功能冷却支承密封流体传输的旋转机械部联轴器连接不良磨损断裂冷却风扇弯曲断裂裂纹摩擦不合适间隙腐蚀积垢共振活塞裂纹断裂松动曲轴弯曲断裂裂纹刮伤不合适间隙转子特性不平衡临界转速油膜涡动振荡气动液力电气部分的旋转机械部件转子线圈断裂短路集电环工作不正常转子定子间隙偏心间隙太大或过小机械种类部件一般故障原因轴承滚动轴承伤痕麻点松动龟裂表面剥落润滑不足滑动轴承刮伤磨损伤痕松动不对中推力轴承刮伤磨损伤痕松动不对中定子机械部件主要用于机械功能冷却支承密封流体传输的定子机械部轴承座共振松动裂纹机壳共振弯曲断裂裂纹不合适间隙松动积垢腐蚀气蚀阻塞隔板共振弯曲断裂裂纹不合适间隙松动积垢腐蚀阻塞喷嘴阻塞断裂密封松动弯曲断裂摩擦裂纹不合适间隙汽缸变形偏斜孔径偏斜共振裂纹机械种类部件一般故障原因定子电气部件电力机械转换电力传输的定子部件定子铁芯松动变形失园度大不对中定子线圈断裂短路发热端部线圈断裂短路共振定转子轴颈向间隙间隙过大非对称间隙电刷断裂打开结构支承用于支持机器的钢和混凝土结固定螺栓松动断裂基础共振变形刚度不足脱空松动共振变形刚度不够变形三旋转机械的故障诊断旋转机械的振动各种类型原因均有其固有属性

旋转机械故障诊断

旋转机械故障诊断

旋转机械故障诊断旋转机械故障指的是各种旋转设备在使用中出现的故障,例如电机、风扇、泵等。

为了确保机械设备的正常运转,需要及时检修旋转机械故障。

本文介绍了旋转机械故障的基本知识和常见故障处理方法。

旋转机械故障的基本知识旋转机械故障包括机械故障和电气故障两种。

机械故障主要指机械部分的损坏,例如轴承损坏、磨损、过热等;电气故障主要指电路部分的故障,例如电机烧毁、线路短路等。

为了保障机械设备的安全运行,需要及时检查机械设备中存在的故障并进行有效的处理。

常见的旋转机械故障1. 轴承故障轴承故障是旋转机械故障中最常见的一种故障。

轴承损坏的原因有很多,例如使用时间过长、润滑脂不足、使用温度过高等。

轴承受到过大的负荷或不正确的安装方式也会导致轴承故障。

轴承故障通常会导致机械设备的振动、噪音和温度升高等现象。

轴承故障的处理方法一般包括更换轴承、加强润滑等。

在更换轴承时,需要选择与原轴承参数相同的新轴承,并且必须正确安装、调整轴承预紧力和润滑方式。

2. 汽蚀汽蚀是液体在高速旋转设备内形成的气蚀现象。

汽蚀会导致机械设备的泵体、叶轮、轴承等部件受到损坏。

汽蚀的主要原因是设计不合理、液位过低、磨损等。

汽蚀的处理方法一般包括更换设备、改善设计、加大进口直管长度等。

在更换设备时,需要选择与原设备相同参数的新设备,并且必须正确安装。

3. 电气故障电气故障主要包括电机烧蚀、电路短路、线路老化等。

电气故障通常会造成设备的停止运转,需要及时检查机械设备中电气部分的故障。

电气故障的处理方法一般包括更换电机、修复电路等。

在更换电机时,需要选择与原电机参数相同的新电机,并且必须正确安装并接好电源。

检修旋转机械设备的步骤1. 确定故障部位在进行旋转机械设备的检修时,需要先确定故障部位。

通过观察、听到故障声音和故障所引起的振动等现象,可以初步判断故障部位。

2. 检查机械设备检查机械设备包括拆卸、清洁机械部件和更换损坏部件等。

在拆卸时,需要根据机械设备的结构图和工作原理,按照规范的步骤拆卸。

转动机械常见故障及其频率特征资料重点

转动机械常见故障及其频率特征资料重点

转动机械常见故障及其频率特征资料重点转动机械是指依靠旋转运动来完成工作的机械设备,包括电机、风机、泵等。

这些机械设备在长时间运行的过程中,常常会遇到一些故障。

了解并掌握这些故障及其频率特征,对于提高设备的可靠性和运行效率具有重要意义。

以下是一些转动机械常见故障及其频率特征的重点概述:1.轴承故障:轴承故障是转动机械中最常见的故障之一、轴承故障的频率特征包括频谱分析中的频谱峰值,通常以倍频为特征。

其他可能的特征包括振动加速度、速度和位移等参数的变化。

2.不平衡故障:不平衡是指转动机械在运行过程中由于质量不均匀分布导致的问题。

不平衡故障的频率特征主要包括由于不平衡引起的径向振动频率。

此外,还应注意检查频谱中的谐波振动频率,这些频率通常会出现在不平衡故障的频谱中。

3.错位故障:错位故障是指转动机械中轴心与旋转件中心不重合的问题。

错位故障的频率特征主要表现为以旋转频率为中心的低频分量。

同时,对于大型机械设备,还可能会出现由于错位引起的回转频率。

4.轮齿故障:对于齿轮传动的转动机械,轮齿故障是常见的问题之一、轮齿故障的频率特征主要包括齿轮传动频率及其倍频,以及其谐波振动频率。

5.润滑故障:润滑故障包括油液流量问题、油液质量问题和油温过高等。

润滑故障的频率特征主要体现在振动和声音信号中的周期性模式变化上。

以上仅是一些转动机械常见故障及其频率特征的重点概述。

在实际应用过程中,具体的故障和频率特征可能会有所不同,需要根据具体设备的特点进行分析和判断。

对于转动机械的故障诊断和预防,可以借助振动分析、声学分析、热成像等技术手段来进行监测和判断。

及早发现并处理这些故障,可以提高设备的可靠性和运行效率,减少意外停机和维修成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转机械常见故障
1. 转子质量不平衡
转子质量不平衡是汽轮发电机组最常见的振动故障,它约占故障总数的80%。

转子质量不平衡的一般特征
(1)量值上,工频振幅的绝对值通常在30μm以上,相对于通频振幅的比例大于80%
(2)频振幅为主的状况应该是稳定的,这包括:
1) 各次启机
2) 升降速过程
3) 不同的工况(负荷,真空,油温,氢压,励磁电流等)
(3)工频振动同时也是稳定的
1.1原始质量不平衡
原始质量不平衡指的是转子开始转动之前在转子上已经有的不平衡。

它通常是在加工制造过程中产生的,或是在检修时更换转动部件造成的。

这种不平衡的特点除了上面介绍的振幅和相位的常规特征外,它的最显著特征是“稳定”,这个稳定是指在一定的转速下振动特征稳定,振幅和相位受机组参数影响不大,与升速或带负荷的时间延续没有直接的关联,也不受启动方式的影响。

具体所测数据中,在同一转速下,工况相差不大时,振幅波动约20%,相位在10°~20°范围内变化的工频振动均可视为是稳
定的。

1.2松动
发生松动的部件可能有转子线圈.槽楔.联轴器等。

这类松动包括设备底脚、基础平板和混凝土基础强度刚度不够,出现变形或开裂,地脚螺栓松动等。

这类松动的振动频谱中占优势的是工频(或转速频率),这与不平衡状态相同,但振动幅值大的部位很确定,有局限性,这点与不平衡或不对中情况不同。

另外,还要进一步比较各方向之间的相对幅值,观察它们的相位特性。

如轴承座水平与垂直方向振幅、相位差,这类松动的振动具有方向性,在松动方向振动较大,如垂直方向振动远大于水平方向,水平和垂直方向相位差为0°或180°(而不平衡故障中水平和垂直方向相位差约为90°)。

详见《振动故障松动》pdf文档
1.3 部件缺损、飞脱
振动发生转动部件飞脱可能有叶片、围带、拉金以及平衡质量块。

飞脱时产生的工频振动是突发性的,在数秒内以某一瓦振或轴振为主,振幅迅速增大到一个固定值,相位也同时出现一个固定的变化。

相邻轴承振动也会增大,但变化的量值不及前者大。

这种故障一般发生在机组带有某一负荷的情况。

1.4 转子热弯曲
转子热弯曲引起的质量不平衡的主要特征是工频振动随时间的变化,随机组参数的提高和高参数下运行时间的延续,工频振幅逐渐增大,相位也随之缓慢变化,一定时间内这种变化趋缓,基本保持不变。

存在热弯曲的转子降速过程的振幅,尤其是过临界转速时的振幅,要比转子温度低启机升速是的振幅大。

两种情况下的波特图可以用来判断是否存在热弯曲。

新机转子的热弯曲一般来自材质热应力。

这种热弯曲是固有的,可重复的,因而可用平衡的方法处理。

有时运行原因也会导致热弯曲,如汽缸进水.进冷空气.动静摩擦等。

只要没有使转子发生永久朔性变行,这类热弯曲都是可以恢复的,引起热弯曲的根源消除后,工频振动大的现象也会随之自行消失。

2. 不对中
不对中是汽轮发电机组振动常见故障关于机组轴线的几何形状有两个定义,一个是轴承的对中,它是指轴承内孔几何中心在横截面的垂直和水平方向上与转子轴颈中心预定位置的重合程度。

另一个是联轴器的对中,也就是轴系转子个轴线的对中。

联轴器不对中是指相邻两根转轴轴线不在同一直线上;或不是一根光滑的曲线,在联轴器部位存在拐点或阶跃点。

3. 动静摩擦
转动部件与静止部件的碰摩是运行中常见故障。

随着现代机向着高性能.高效率发展.动静间隙变小,碰摩的可能性随之增加。

碰摩使转子产生非常复杂的振动,是转子系统发生失稳的一个重要原因轻者使得机组出现强烈振动,严重的可以造成转轴永久弯曲,甚至整个轴系毁坏。

机组动静碰摩通常有下列起因
(1)转轴振动过大。

造成振动过大可以是质量不平衡.转子弯曲.轴系失稳等,不管何种起因,大振动下的转轴振幅一旦大到动静间隙植,都可
能与静止部位发生碰摩。

因此,和动静碰摩有关的机组故障中,碰摩常常是中间过程,而非根本原因。

(2)由于不对中等原因使轴颈处于极端的位置,使转子偏斜。

非转动部件的不对中或翘曲也会导致碰摩。

(3)动静间隙不足。

有时设计上的缺陷所造成的,设计人员将间隙定为过小的量值,向安装部门提供的间隙要求同样太小。

它也是安装.检修的原因,动静间隙调整不符合规定所致。

(4)缸体跑偏,弯曲或变形。

国产200MW机组高压转子前汽封比较长,启机中参数不当容易造成这个部位发生摩擦,进而造成大轴朔性弯曲。

全国大约有30多台机组发生过这样的故障。

开机过程中,上下缸温差过大,造成缸体弯曲变形,是碰摩弯轴的主要运行原因之一。

4. 油膜涡动,震荡
油膜的楔形按油的平均流速绕轴瓦中心运动的现象称为油膜涡动,因其平均速度为轴颈圆周速度的一半,故又称为半速涡动。

油润滑滑动轴承工作时,以薄的油膜支承轴颈。

在轴瓦表面的油膜速度为零(轴瓦静止),而在轴颈表面的油膜速度与轴颈表面相同(轴颈高速旋转)。

因此,不论在圆周上的任何剖面,油膜的平均速度均为轴颈圆周速度的一半。

轴颈高速旋转时,油膜厚度随楔形变化,但油的平均流速却相对不变。

由于油的不可压缩性,多出的油将从轴承两端流出,或者油膜的楔形按油的平均流速绕轴瓦中心运动。

油膜涡动产生后就不消失,随着工作转速的升高,其涡动频率也不断
增强,振幅也不断增大,如果转子的转速继续升高到第一临界转速的2倍时,其涡动频率与一阶临界转速相同,产生共振,振幅突然骤增,振动非常剧烈,轴心轨迹突然变成扩散的不规则曲线,半频谐波振幅值就增加到接近或超过基频振幅,若继续提高转速,则转子的涡动频率保持不变,始终等于转子的一阶临界转速,这种现象称为油膜振荡。

(当转子转速升至两倍于第一临界转速时,涡动频率与转子固有频率重合,使转子一轴承系统发生共振性振荡而引起。


5. 转轴裂纹
石油化工行业的旋转机械一般转速都非常高,载荷也较大,长期运转后,转轴上易出现横向疲动裂纹,导致断轴的严重事故。

转轴裂纹对振动的响应与裂纹所处的轴向位置、裂纹深度及受力情况有关。

视裂纹所处部位应力状态的不同,裂纹会呈现出三种不同的形态。

(1)闭裂纹
转轴在压应力情况下旋转时,裂纹始终处于闭合状态。

例如,转子重量不大、不平衡离心力较小或不平衡力正好处于裂纹的对侧时就是这种情况。

闭裂纹对转轴振动影响不大,难以察觉。

(2)开裂纹
当裂纹区处于拉应力状态时,轴裂纹始终处于张开状态。

开裂纹会造成轴刚度不对称,使振动带有非线性性质,伴有2×、3×、…等高频成分,随着裂纹的扩展,l×、2×、等频率的幅值也随之增大。

(3)开闭裂纹
当裂纹区的应力是由自重或其他径向载荷产生时,轴每旋转一周,裂
纹就会开闭一次,对振动的影响比较复杂。

理论分析表明,带有裂纹的转子的振动响应可分别按偏心及重力两种影响因素考虑,再作线性叠加。

由于偏心因素的影响,振动峰值会出现在与两个不对称刚度相应的临界转速之间;而重力因素的影响结果,是在转速约为无裂纹转轴的临界转速处时,会出现较大峰值。

裂纹的张开或闭合与裂纹的初始状态、偏心、重力的大小及涡动的速
度有关,同时也与裂纹的深度有关。

若转子是同步涡动,裂纹会只保持一种状态,即张开或闭合,这与其初始态有关。

在非同步涡动时,裂纹在一定条件下也可能会一直保持张开或闭合状态,但通常情况下,转轴每旋转一周,裂纹都会有开有闭。

在这种情况下,裂纹越深,其在一周内张开的时间会越长,会超过一半周期长度,同时裂纹张开的时间也会越晚。

这可以作为判断裂纹深度的一个定性标准。

6. 轴承损伤
详细资料参见《轴承损坏原因分析》.ppt
装配不当16%
润滑不当
36%
污染
14%
疲劳
34%轴承损伤原因
7. 旋转失速与喘振
旋转失速的形成过程大致如下。

离心压缩机的叶轮结构、尺寸都是按额定流量设计的,当压缩机在正常流量下工作时,气体进入叶轮的方向β1与叶片进口安装角βS一致,气体可以平稳地进人叶轮,如图(a)所示,此时,气流相对速度为ω1,入口径向流速为C1。

当进人叶轮的气体流量小于额定流量时,气体进人叶轮的径向速度减少为C1′气体进人叶轮的相对速度的方向角相应的减少到β1′,因而与叶片进口安装角βS不相一致。

此时气体将冲击叶片的工作面(凸面),在叶片的凹面附近形成气流旋涡,旋涡逐渐增多使流道有效流通面积减小。

如果某一流道中[图(b)中的流道2]气流旋涡较多,则通过这个流道的气量就要减少,多余的气量将转向邻近流道(流道1和3)。

在折向前面的流道(流道1)时,因为进人的气体冲在叶片的凹面上,原来凹面上的气流旋涡有一部分被冲掉,这个流道里的气流会趋于畅通。

而折向后面流道(流道3)的气流则冲在叶片的凸面上,使得叶片凹面处的气流产生更多的旋涡,堵塞了流道的有效流通面积,迫使流道中的气流又折向邻近的流道。

如此轮番发展,由旋涡组成的气流堵塞团(称为失速团或失速区)将沿着叶轮旋转的相反方向轮流在各个流道内出现。

喘振是旋转失速在流量进一步减少后的结果。

相关文档
最新文档