面面垂直的判定定理课件资料
高考数学复习 面面垂直 ppt
定义
如果两个平面所成的二面角是 直二面角,则这两个平面垂直
判定定
如如果果一一个个平平面面经经过过理另另一一个个平平面面的的一一 条条垂垂线线,,则则这这两两个个平平面面互互相相垂垂直直
A
D
B
E
C
线面垂直 面面垂直
l β 判定定理符号: l αα β
如如果果一一个个平平面面经经过过另另一一个个平平面面的的一一 条条垂垂线线,,则则这这两两个个平平面面互互相相垂垂直直
D C
P A B
面PAC⊥面ABCD 面PAB⊥面ABCD 面PAD⊥面ABCD
面PAD⊥面PAB 面PAD⊥面PCD 面PBC⊥面PAB 面PBD⊥面PAC
如图,三棱锥P-ABC中,PB⊥底面ABC, ∠ACB= 90°,PB=BC=CA,E为PC中点,
① 求证: 平面PAC ⊥面PBC ② 求异面直线PA与BE所成角的大小
l
A PB
四面体ABCD中,面ADC⊥面BCD,面 ABD ⊥面BCD,设DE是BC边上的高, 求证: 平面ADE ⊥面ABC
A D
面面垂直
面ADC⊥面BCD
① 面ABD ⊥面BCD
B
AD ⊥面BCD
②
CE
AD ⊥BC
③ DE ⊥BC
④ BC ⊥面ADE
面ABC ⊥面ADE
①
②
线面垂直
线线垂直
④
③
⊿ABC是直角三角形, ∠ACB=90°, P为 平面外一点,且PA=PB=PC 求证: 平面PAB ⊥面ABC
P
B
O
A
C
如图,四棱锥P-ABCD的底面是菱形, PA⊥底面ABCD,∠BAD= 120°,E为 PC上任意一点,
面面垂直的判定和性质定理课件
例1:已知平面,, ,直线a满足 a ,a ,试判断直线a与平面的
位 置 关 系.
解:在内作垂直于 与交线的直线b,
, b . 又 a , a // b.
又 a , a //.
即直线a与平面平行。
证明:如果两个相交平面都垂直于第三个 平面,则它们的交线也垂直于该平面。
作直线b⊥ c,根据上面的定理有 b⊥因β为. 经过一点只能有一条直线与平面β垂直,
所以直线a应与直线b重合.所以a .
P
b
a
c
β
a
bc
β
P
两个平面垂直的性质定理1 两个平面垂直,则一个平面内垂直于交线
的直线与另一个平面垂直.
两个平面垂直的性质定理2 如果两个平面互相垂直,那么经过第一个平
面内一点且垂直于第二个平面的直线必在第一个 平面内.
两个平面垂直的性质定理1 两个平面垂直,则一个平面内垂直于交线的直 线与另一个平面垂直.
思考3:
设平面 α ⊥平面β,点P在平面α内,过 点P作平面β的垂线a,直线a与平面α具有 什么位置关系?
已知: ⊥β,P∈ ,P∈a , a ⊥β.
求证:a
证明:设 ∩ β= c,过点P在平面内,
①若a⊥b,a∥α,则b⊥α; ②若a∥α,α⊥β,则a⊥β; ③若β∥γ,α∥γ,则α⊥β; ④若α⊥β,a⊥β,则a∥α。
其中不正确的命题的个数是( D ).
A.1 D.4
B.2
C.3
3.已知两个平面垂直,下列命题
①一个平面内已知直线必垂直于另一个平面内
的任意一条直线;
②一个平面内的已知直线必垂直于另一个平
在平面β内过点B作直线BE⊥CD,则
面面垂直的判定定理课件
Part
04
面面垂直的判定定理在几何中 的应用
应用场景一:多面体
在多面体中,如果一个平面与多面体的一个面相交,并且交线与多面体的一个顶 点垂直,则该平面与多面体的所有面都垂直。这个判定定理在证明多面体的性质 和解决相关问题时非常有用。
例如,利用面面垂直的判定定理可以证明正方体的六个面都是正方形,也可以证 明长方体的相对两面平行。
复杂几何问题的思考
问题1
在长方体中,如果一个顶点上的 三条棱分别与另一个顶点上的三 条棱垂直,那么这两个顶点是否
在同一平面上?
问题2
在四面体中,如果一个顶点上的三 条棱分别与另一个顶点上的三条棱 垂直,那么这两个顶点是否在同一 平面上?
问题3
在球体中,是否存在两个点,使得 从一个点出发的三条射线分别与从 另一个点出发的三条射线垂直?
符号表示
设平面α内有两条相交直线$a$和$b$, 平面β内有一直线$c$,若$a ⊥ c$,$b ⊥ c$,则平面α与平面β互相垂直,记 作α⊥β。
定理证明
• 证明过程:首先,由于直线$a$和$b$在平面α内相交,且都与直线$c$垂直,根据空间几何的性质,我们知道两条相 交的直线确定一个平面。因此,我们可以确定直线$a$和$b$确定的平面记作γ。接下来,由于直线$c$与平面γ内的 两条相交直线$a$和$b$都垂直,根据面面垂直的判定定理,我们可以得出结论:平面α与平面γ互相垂直。
相关定理与公式的关联性探讨
定理1
如果一个平面内的两条相交 直线分别与另一个平面垂直 ,那么这两个平面垂直。
定理2
如果一个平面内的任意一条 直线都与另一个平面垂直, 那么这两个平面垂直。
公式1
在直角三角形中,斜边的 平方等于两直角边的平方 和。
线面垂直面面垂直的性质与判定定理课件
学习目标
学习者能够理解面面 垂直的性质与判定定 理的基本概念。
学习者能够通过实际 案例分析,提高解决 实际问题的能力。
学习者能够掌握面面 垂直的性质与判定定 理的应用方法。
02
线面垂直的性质
定义与性质
01
02
03
定义
线面垂直是指一条直线与 某一平面内的任意一条直 线都垂直。
性质1
线面垂直,则该直线与平 面内任意直线都垂直,且 线段与平面所成的角为直 角。
06
实例分析
线面垂直实例
总结词
线面垂直的判定定理
详细描述
若一条直线与平面内两条相交直线都垂直,则该 直线与该平面垂直。
实例
一个长方体,其一条棱与底面垂直,则该棱与底 面所在的平面垂直。
面面垂直实例
总结词
面面垂直的判定定理
详细描述
若两个平面内各有一条相交直线互相垂直,则这两个平面互相垂直 。
实例
证明2
根据判定定理2,如果一个平面$alpha$与另一个平面$beta$的垂线$c$平行,那么可以证明平面$alpha$与平面 $beta$垂直。设过直线$c$作平面$gamma$与$beta$相交于直线$d$,由于$c parallel d$,且$c perp beta$ ,则$d perp beta$。又因为直线$d$在平面$alpha$内,所以平面$alpha perp beta$。
平面与平面垂直的判定定理证明
假设平面β内有一条直线m与平面α垂直,那么可以通过平面的性质证明平面β与平面α 互相垂直。
05
面面垂直的判定定理
判定定理
判定定理1
如果一个平面内的两条相交直线与另一个平面垂直,则这两 个平面垂直。
面面垂直的判定与性质课件
如果两个平面都与同一直线垂直,那 么这两个平面之间的夹角为90度,即 这两个平面互相垂直。
性质3:垂直于同一平面的两条直线互相平行
总结词
如果两条直线都垂直于同一个平面,则这两条直线互相平行。
详细描述
如果两条直线都与同一个平面垂直,那么这两条直线之间的夹角为0度,即这两 条直线互相平行。
应用场景1:建筑学中的面面垂直
逆定理的表述
• 逆定理:如果一个平面内的两条相交直线与另一 个平面垂直,则这两个平面互相垂直。
逆定理的证明
• 证明:设两条相交直线为$a$和$b$,它们与平面$\alpha$垂直。根据直线与平面垂直的性质,有$a \perp \alpha$和$b \perp \alpha$。由于$a$和$b$相交,根据平面的性质,过$a$和$b$的平面$\beta$与平面$\alpha$垂直。因此,逆定理 得证。
推论
总结词
如果两个平面都垂直于同一个平面,则这两个平面之间的距离相等。
详细描述
根据面面垂直的性质,如果两个平面都与第三个平面垂直,那么这两个平面之间的距离 是相等的。这是因为它们都与第三个平面形成相同的角度,所以它们之间的距离也是相
等的。
推论
总结词
如果两个平面都垂直于同一条直线,则 这两个平面之间的距离相等。
电子设备设计中,面面垂直的应用有助于提高设备的性能和稳定性。
详细描述
在电子工程中,电路板和电子元件的布局都需要遵循面面垂直的判定与性质。例如,在制造手机的过程中,利用 面面垂直的判定方法可以确保屏幕与机壳之间的垂直度,从而提高手机的显示效果和使用寿命。此外,在制造高 精度传感器的过程中,也需要利用面面垂直的判定方法来确保传感器的精确度和稳定性。
面面垂直的判定公开课课件
方法2:利用面面平行的性质判定面面垂直
总结词
通过证明两个平面平行,然后利用面面平行的性质判定两个平面垂直
详细描述
首先证明两个平面平行,然后利用面面平行的性质,即如果两个平面平行,那么其中一个 平面内的任意一条直线都与另一个平面垂直,从而得出两个平面垂直的结论。
证明过程
利用三垂线定理证明一个平面内的两 条相交直线分别与另一个平面垂直, 从而得出两个平面垂直的结论。
要点三
证明过程
设直线a、b为平面α内的两条相交直 线,直线c为平面β外的一条直线,我 们需要证明直线a、b与平面β垂直, 进而证明平面α与平面β垂直。根据三 垂线定理,如果直线c与平面β的斜线 c'在点A处相交,那么c'在点A处的垂 足d在直线a、b上,且直线c、a、b 都与直线d垂直。由此可知,直线a、 b与平面β垂直。由此可知,平面α与 平面β垂直。
设平面α与平面β平行,直线a在平面α内,我们需要证明直线a与平面β垂直。由于平面α 与平面β平行,根据面面平行的性质,平面α内的任意一条直线都与平面β垂直。因此,直 线a与平面β垂直。由此可知,平面α与平面β垂直。
方法3:利用三垂线定理判定面面垂直
要点过三垂线定理证明两个平面垂直
面面垂直的判定公开课课件
$number {01}
目录
• 面面垂直的判定定理 • 面面垂直的性质 • 面面垂直的判定方法 • 面面垂直的实例分析 • 面面垂直的习题与解答
01
面面垂直的判定定理
判定定理的陈述
• 判定定理:如果一个平面内的一条直线与另一个平面垂直,那么这两个平面互 相垂直。
判定定理的证明
• 证明:假设平面α内有直线l,且l与平面β垂直。为了证明平面α 与平面β垂直,我们需要证明平面α上的任意一条直线m都与平 面β垂直。设直线m在平面α上并与直线l相交于点P。由于l与β 垂直,根据直线与平面垂直的性质定理,l与β上的任意一条直 线(包括m)都垂直。因此,m与β也垂直。由于m是平面α上 的任意一条直线,所以我们可以得出结论:平面α与平面β垂直 。
面面垂直的性质_讲课课件人教新课标
α β
两个平面垂直,其 中一个平面的直线 不一定垂直于另一 个平面。
问题2:如图,长方体ABCD—A1B1C1D1中,平面A1ADD1与平 面ABCD垂直,其交线为AD,直线A1A,D1D都在平面A1ADD1 内,且都与交线AD垂直,这两条直线与平面ABCD垂直吗?
C1
D1
B1
A1
C
D
B
A
两个平面垂直,其中
α A
β B
新知探究
思考:平面⊥平面β,点P在平面内, 过点P作平面β的垂线PC, 直线PC与平面具有什么位置关系?
α
P B
DC
A
结论:直线PC在平面内
β ⊥β,∩β=AB,P∈,
PC ⊥ β, PC
说明: 这个结论是面面垂直的另一个性质,
α
P B
β
DC
文字语言: A
如果两个平面垂直,那么经过第一个平面内的一 点垂直于第二个平面的直线,在第一个平面内.
(1)判断BC与平面PAC的位置关系,并证明。
(2)判断平面PBC与平面PAC的位置关系。
P
(1)证明:∵ AB是⊙O的直径,C是圆周上不 同于A,B的任意一点 ∴∠ACB=90°
∴BC⊥AC 又∵平面PAC⊥平面ABC,
平面PAC∩平面ABC=AC, BC 平面ABC
C
∴BC⊥平面PAC
A
B
(2)又∵ BC 平面PBC ,∴平面PBC⊥平面PAC
①若a⊥b,a∥α,则b⊥α;
②若a∥α,α⊥β,则a⊥β;
③若β∥γ,α∥γ,则α⊥β;
④若α⊥β,a⊥β,则a∥α。
其中不正确的命题的个数是( D ).
A.1 B.2
《面面垂直的判定》课件
《面面垂直的判定》ppt课件目录CONTENCT •引言•面面垂直的定义•面面垂直的判定定理•面面垂直的判定方法•实例分析•总结与思考01引言主题介绍垂直关系在几何学中的重要性垂直关系是几何学中的基本概念之一,它在许多实际问题中有广泛的应用。
面面垂直的判定定理面面垂直的判定定理是“如果一个平面内的两条相交直线与另一个平面垂直,则这两个平面垂直”。
理解面面垂直的判定定理会应用面面垂直的判定定理解决问题培养空间想象能力和逻辑思维能力通过本课件的学习,学生应能够理解并掌握面面垂直的判定定理。
学生应能够运用所学知识解决一些实际问题,如建筑物的垂直度测量、机械零件的设计等。
通过本课件的学习,学生应能够培养空间想象能力和逻辑思维能力,为后续学习打下基础。
学习目标02面面垂直的定义两个平面互相垂直,当且仅当一个平面内的任意直线都与另一个平面垂直。
文字定义文字定义给出了面面垂直的充分必要条件,即一个平面内的任意直线与另一个平面垂直。
解释两个平面互相垂直,当且仅当一个平面与另一个平面的法线垂直。
图形定义01020304性质1性质2定理解释性质与定理如果一个平面内的两条相交直线分别与另一个平面垂直,那么这两个平面互相垂直。
如果一个平面内的任意直线都与另一个平面垂直,那么这两个平面互相垂直。
如果两个平面互相垂直,那么其中一个平面内的任意直线都与另一个平面垂直。
性质和定理进一步阐述了面面垂直的判定条件,为解决实际问题提供了理论依据。
03面面垂直的判定定理总结词简洁明了地概括了面面垂直的判定定理。
详细描述面面垂直的判定定理是,如果一个平面内的两条相交直线与另一个平面垂直,则这两个平面互相垂直。
定理内容总结词详细说明了面面垂直的判定定理的证明过程。
详细描述首先,假设两个平面$alpha$和$beta$,且$alpha$内的两条相交直线$a$和$b$与$beta$垂直。
我们需要证明$alpha perp beta$。
根据直线与平面垂直的判定定理,如果一条直线与平面内的两条相交直线都垂直,则这条直线与这个平面垂直。
《面面垂直判定》课件
判定定理的间接应用
总结词
通过其他性质或定理推导
详细描述
除了直接应用判定定理,还可以通过其他性质或定理来推导两个平面是否垂直。 例如,如果两个平面在某一直线上有共同的垂线,且该直线与其中一个平面内的 两条相交直线分别垂直,则这两个平面互相垂直。
两个平面相交,如果它们 的法线互相垂直,则这两 个平面互相垂直。
面面垂直的性质
如果两个平面互相垂直,则一 个平面内的任何直线都与另一 个平面垂直。
如果一个平面与另一个平面垂 直,则这个平面的法线与另一 个平面的法线也互相垂直。
如果两个平面互相垂直,则其 中一个平面上的一条直线与另 一个平面的交点处形成的线面 角是直角。
工程实践中的面面垂直
总结词:实践操作
详细描述:通过一些工程实践案例,如高层建筑的施工、机械零件的设计等,让学生了解如何运用面 面垂直的判定定理来解决实际问题,提高学生的实践操作能力。
Part
05
练习与思考
判定定理的练习题
总结词:巩固理解
详细描述:提供一系列关于面面垂直判定定理的练习题,帮助学生理解和掌握这一重要 概念。
面面垂直的判定定理
如果一个平面内的两条相交直线 与另一个平面垂直,则这两个平
面互相垂直。
如果一个平面内的两条平行直线 与另一个平面垂直,则这两个平
面互相垂直。
如果一个平面与另一个平面的法 线垂直,则这两个平面互相垂直
。
Part
03
面面垂直的判定方法
判定定理的直接应用
总结词
高中数学——面面垂直的性质 PPT课件 图文
垂直于第二个平面的直线,在第一个平面内.
练习.在互相垂直的两个平面中,下列命题中正
确命题的个数为 [ ]
①一个平面内的已知直线必垂直于另一个平面内
的任意一条直线;
②一个平面内的已知直线必垂直于另一个平面内
的无数多条直线;
③一个平面内的任意一条直线必垂直于另一个平
已知: α⊥γ ,β ⊥γ ,α ∩ β =l 求证:l ⊥γ
α
β
lB
γ
A
例 4:如图,平面 AED⊥平面 ABCD,⊿AED 是等边
三角形,四边形 ABCD 矩形,且 AD= a ,AB= 2a ,
(1) 求证:EA⊥CD (2) 求 EC 与平面 ABCD 所成的角
E 解(1)∵平面AED⊥平面ABCD 又CD⊥AD ∴CD⊥平面AED ∵AE在平面AED内 ∴CD⊥EA
(2) 若E、F分别是AB、BC的中点,
D
求证: 平面A1C1FE⊥平面B1D
(3) 若G是BB1的中点
A
E
求证:平面A1C1G⊥平面B1D
D1
A1
C
F B G GG G
C1
B1
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想 找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她 说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原 因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相
面面垂直的性质PPT课件
思考4:对于三个平面α、β、γ,
如果α⊥γ,β⊥γ, l ,那
么直线l与平面γ的位置关系如何? 为什么?
β l α
γ
已知: , , =l 求证:l
β l
α
a
b
γ
SUCCESS
THANK YOU
2020/10/1
思考5:若一个平面与另一个平面的垂线 平行,那么这两个平面是什么位置关系?
性质定理
面面垂直
线面垂直
判定定理
3、平面与平面垂直的性质定理:
l
b
b
bl
4、证明线面垂直的两种方法:
线线垂直→线面垂直;
面面垂直→线面垂直
5、线线、线面、面面之间的关系的转化 是解决空间图形问题的重要思想方法。
SUCCESS
THANK YOU
2020/10/1
P
A
C
B
练习:1、四棱锥P-ABCD的底面是矩形, 侧面PAD是正三角形,且侧面PAD⊥底面 ABCD,E 为侧棱PD的中点 P
求证:AE⊥平面PCD;
新疆 源头学子小屋
/wxc/ 特级教师
王新敞 wxckt@ 新疆 源头学子小屋 /wxc/ 特级教师 王新敞 wxckt@
l
α
β
已知:l ,l ∥ 求证:
例1 如图,四棱锥P-ABCD的底面是 矩形,AB=2,BC 2 ,侧面PAB是 等边三角形,且侧面PAB⊥底面ABCD. (1)证明:侧面PAB⊥侧面PBC; (2)求侧棱PC与底面ABCD所成的角.
P
A
D
E
B
C
例2 如图,已知PA⊥平面ABC,平面 PAB⊥平面PBC,求证:BC⊥平面PAB
面面垂直的判定和性质.pptx
平面与平面垂直的性质定理是:
如果两个平面相互垂直,那么在 一个平面内垂直于它们交线的直线 垂直于另一个平面。
α A
D
β
B C
问题 发现 猜想 证明 证第明12过页/程共21页结论 注
性质定理
• 面面垂直线面垂直; (线是一个平面内垂直于两平面交线的一条直线)
• 平面 ⊥平面β,要过平面 内一点引平
P
证明: 正方形ABCD中 C,BDA
P B
A平 D平
面 面
AA BBPCCA DDB
D
A
D
A
C平
面
P
AC平 ,面 P AP A
C
B
O
C
A C P AA
B D平 面 P A C平 面 PA平C面。 P B D B D平 面 P B D
例1题目 解答
第15页/共21页
例2已知直线PA垂直于O所在的平面, A为垂足,AB为O的直径,C是圆周上 异于A、B的一点。求证:平面PAC平
已知:直线AB平面,直线AB平面。 求证:平面 平面。
α A
D
β
E B C
判定定理 证证明明 证明过程第判6页定/共2方1页法
判定定理
已知:直线AB平面,直线AB平面。求证:平面 平面。
证明:设 β=CD,则AB β=B ,在平面β内过B点作BE⊥CD。
AB
CD
β β
A
B
EB CCDDA
由平面 平面,平面 内的直线AB不一定
能与平面垂直。
α A
D
β
α A
D
β
B
B
C
C
那么在已有条件的基础上,再添加什么条件,
《面面垂直的性质》课件
两条垂线之间的夹角是90°。
2 垂线交线
垂直面的交线是垂线。
面面垂直的定理
垂直平分线定理
垂直于同一直线的两条线段互相垂直且相等。
垂直四边形定理
四条边互相垂直的四边形是垂直四边形。
垂直二分线定理
垂直于同一直线的两条线段等分,它们互相垂 直。
正方形的性质
正方形的四条边互相垂直。
应用示例
建筑设计中的垂直性质应用
垂直性质在建筑设计中的重要性,例如垂直墙面的 稳定性。
实际生活中的垂直性质应用
展示了实际生活中垂直性质的应用,例如垂直建筑 的优势。
总结
1 基本性质总结
快速总结面面垂直的基本性质。
2 定理汇总
回顾并总结了主要的垂直性质定理。
3 应用总结
强调垂直性质在实际应用中的重要性,并总结了其应用场景。
《面面垂直的性质》PPT 课件
本PPT课件介绍了面面垂直的性质,包括定义、基本性质、相关的定理以及应 用场景。深入浅出地解释了垂直性质在建筑设计和实际生活中的重要性。
概述
面面垂直的定义,以及这种性质与垂直相关的定理。解释了垂直性质在建筑垂直连线
垂直的两个面上任意两点之间的连线都是垂直的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ι
观 察 生 活
注意观察:
1.门轴与地 面的关系
2.门轴与门 面的关系
3.门面与地 面的关系
你发现了什么?
二、两个平面垂直的判定定理:
如果一个平面经过了另一个平面的一 条垂线,那么这两个平面互相垂直.
符号:AB
简记:线面垂直,则面面垂直
线线垂直
α
A
B
D
β E
C
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
α
线面垂直
证明两个平面垂直有那些方法? 1.定义法
2.两平面垂直的判定定理
B
面面垂直
建筑工人砌墙时, 如何使所砌的墙和水平面垂直?
应 用 于 生 活
如果一个平面经过了另一个平面的 一条垂线,那么这两个平面互相垂直.
如果:AB⊥β, α经过AB ,
那么:α⊥β
证明: ∵AB⊥β,CD 是交线 ∴AB⊥CD 在平面β内过点B作直线BE⊥CD ∴ ∠ABE是二面角α—CD — β的平面角 ∵ AB⊥β BE在β内 ∴AB⊥BE 即∠ABE=90。 ∴二面角α—CD — β是直二面角 ∴α⊥β