土的渗透性及渗透稳定确定

合集下载

土力学第三章土的渗透性

土力学第三章土的渗透性

土体的临界状 态-2
• 土体中的有效应力: 当土体处于临界状态时,渗流方向从下往上,这时,渗透 力等于土样的浮容重,土体中的有效应力为:
=h2-h
=h2-h/i=h2-h/i=h2-h2=0
说明: 有效应力为0,表明土颗粒间不存在接触应力,在渗流作用 下,试样处于即将被浮动的临界状态。 所以,土体的渗透变形取决于土的浮容重与向上的渗透力的 大小。
vk(iib)
粘性土的渗透性:
相同水力坡降条件下,水在 砂土中可以流动,
而在粘性土中只有水力坡降 大于起始水力坡降时才流动
起始水力坡降ib:
由于粘性土的颗粒之间存在连接 力所致。
渗透系数的测 定
试验方法:
常水头试验:
常水头试验、变水头 试验
k
QL
Aht
在试验过程中水头始终 保持不变,适用于粗粒 土。
有效应力和孔 隙水压力
• 外荷载分担: 外加荷载作用在土体上,一部分由土颗粒承担,一部分由孔 隙水承担,一部分由孔隙气体承担。 对于饱和土,外加荷载只由土颗粒和水承担。
• 总应力: 指外荷载作用在土体上的总的应力。
• 有效应力: 指土体中的土颗粒所承担的外荷载部分所产生的应力。
• 孔隙水压力: 指土体中的水所承担的外荷载部分所产生的应力。
成正比;
渗透力的方向与渗 流方向一致;
3
当渗流方向与土体的重力
方向相反时,渗流的运动 5
对土体的稳定有影响。
2
单位体积渗透力是 一的重心处。
渗透变形
• 渗透变形:指渗透水流导致土体发生变形或破坏的现象。 • 渗透变形的形式: 流土、管涌 • 流土:
指粘性土或非粘性土在渗透水流作用下,土中某一部分 土体同时发生移动的现象,发生于渗流出逸处。 • 管涌: 非粘性土在渗透水流作用下,土中细小颗粒沿着粗大颗 粒间的孔 隙被带出到土体外面的现象,发生于土体内 部或渗流出逸处。

《土的渗透性 》课件

《土的渗透性 》课件

土的渗透性对城 市发展的影响: 土的渗透性影响 城市排水系统的 运行,对城市可 持续发展具有重 要影响
土的渗透性对生 态环境的影响: 土的渗透性影响 地下水的补给和 排泄,对生态环 境的可持续发展 具有重要影响
THANKS
汇报人:
室内测定方法
渗透仪法:通 过测量渗透仪 中的水压变化 来测定土的渗
透性
渗透仪法:通 过测量渗透仪 中的水压变化 来测定土的渗
透性
渗透仪法:通 过测量渗透仪 中的水压变化 来测定土的渗
透性
渗透仪法:通 过测量渗透仪 中的水压变化 来测定土的渗
透性
渗透系数的确定
渗透系数的定义:表示土体允许水通过的能力 测定方法:通过测定土体的水头梯度和水流量,计算渗透系数 影响因素:土体的颗粒大小、孔隙率、渗透率等 应用:用于工程设计、地下水研究等领域
土的渗透性
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 影 响 土 的 渗 透 性 的 因 素 05 土 的 渗 透 性 的 测 定 方 法 07 土 的 渗 透 性 与 可 持 续 发 展
的关系
02 土 的 渗 透 性 定 义 04 土 的 渗 透 性 与 系
Part One
单击添加章节标题
Part Two
土的渗透性定义
土的渗透性概念
土的渗透性是 指土体允许水 或其他液体通
过的能力
渗透性是土的 重要物理性质 之一,影响土
的工程性质
渗透性受土的 颗粒大小、形 状、排列方式
等因素影响
渗透性是土力 学、水文学、 环境科学等领 域的重要研究
内容
渗透性的物理意义
渗透系数的应用
水利工程:计算地下水渗流、水库渗漏等 环境工程:评估土壤污染风险、地下水污染防治等 土木工程:地基处理、地下工程设计等 农业工程:土壤水分管理、灌溉系统设计等

土石坝渗透及稳定性分析探讨

土石坝渗透及稳定性分析探讨

土石坝渗透及稳定性分析探讨摘要:渗流问题是土石坝安全的关键,渗流控制是土石坝建设的重中之重。

在渗流控制措施上,随着渗流控制理论的发展,由原来的以防为主逐渐向防渗、排渗和反滤层三者相结合。

本文从土石坝渗漏问题、防渗措施、有限元渗流场计算的基本数学模型三个方面进行介绍。

关键词:土石坝渗透稳定性随着我国水利水电建设的快速发展和“西电东输”水电项目的实施,众多高土石坝的建设被提上了日程,特别在深厚覆盖层河谷,地质条件差,地震烈度高,多数坝高较大(尤其200m以上)的大坝选择或拟选择建土石坝。

渗流和渗透控制是土石坝工程中的一项极其重要的课题,直接关系到工程的安全和投资。

土石坝施工简便,地质条件要求低,造价便宜,并可就地取材且料源丰富,是水利水电工程中极为重要的一种坝型。

土石坝坝体用散粒材料填筑,挡水后上下游的水头差引起了水流渗过坝体、坝基及两岸坡向下游排出。

由于勘测设计缺陷、施工不良、管理运行不当以及渗流、地震等,都会使土石坝体及其坝基发生缺陷病害,甚至垮坝失事。

在土石坝中,坝体和坝基的渗漏较为频繁,许多中、小型病库,就是因为坝身、坝基等产生渗漏造成险情。

一、土石坝渗漏问题(一)坝基渗漏。

坝基渗漏主要有以下两种渗漏方式:一是铺盖裂缝产生的渗漏。

铺盖裂缝一般是由于施工时防渗土料碾压不严,达不到所要求的容重或铺土时含水量过大, 固结时干缩而产生裂缝;或基础不均匀沉陷时铺盖被拉裂;或铺盖下没有做好反滤层,水库蓄水后在高扬压力下被顶穿破坏;也有施工时就近取土,破坏了覆盖层作为天然铺盖的防渗作用。

二是心墙下截水墙与基础接触冲刷破坏。

截水墙与基础的接触边界是最容易形成渗流通道的薄弱环节。

在截水墙下游与基础接触边界处设置反滤层失效,导致接触冲刷,坝体和基础土料被带走,就会造成坝体严重破坏。

(二)坝身渗漏。

土石坝常因斜墙、心墙等防渗体裂缝形成渗流的集中通道,导致管涌的发生,甚至引起坝体的失事破坏。

具体地讲有以下几种情况:一是心、斜墙裂缝漏水。

土的渗透性

土的渗透性
管涌
原因:
内因:有足够多的粗 颗粒形成大于细粒直 径的孔隙
管涌破坏
外因:渗透力足够大
渗透变形(渗透破坏)的基本类型
管涌
特点: (1)可以发生在土体的所有部位; (2)发生一般是渐进式的破坏模式; (3)发生在一定级配的无粘性土中。 当渗透力带动土颗粒在土体孔隙中移动或滚动时,即为管 涌的临界状态;发生管涌的水力坡降计算公式至今尚无成 熟的理论计算公式。对于重要的工程,需要通过渗透试验 确定。对于中小型工程,可借助一些经验公式和经验数值 来确定。
渗透变形
渗透力
渗透变形
a b
一. 渗透力
试验观察
贮水器 hw L 土样
Δh h1 h2
0
滤网
0
Δh=0 静水中,土骨架会受到浮力作用。 Δh>0 水在流动时,水流受到来自土骨架的阻力,同时流动的 孔隙水对土骨架产生一个摩擦、拖曳力。 渗透力 j ——渗透作用中,孔隙水对土骨架的作用力,方向与渗 流方向一致。
可发生于土体内部和 渗流溢出处
一般发生于特定级配的 无粘性土或分散性粘土 破坏过程相对较长 导致结构发生塌陷或 溃口
历时 后果
渗透破坏防治措施
防渗斜墙及铺盖 土石坝
浸润线
透水层 不透水层
防治流土
减小i
i i
icr Fs
防治管涌
改善几何条件:设反滤层等 :上游延长渗径; 下游减小水压 改善水力条件:减小渗透坡ቤተ መጻሕፍቲ ባይዱ 设置垂直防渗帷幕
u h2 wh
小结
工程实例
渗流问题 土的渗透性 及渗透规律 二维渗流 及流网 渗透力与 渗透变形
渗流中的水头与水力坡降
渗透试验与达西定律

土力学课件 2.土的渗透性与渗透问题

土力学课件 2.土的渗透性与渗透问题

2.1 土的渗透定律渗定律2.2 渗透系数及其测定22渗透系数及其测定2.3 渗透力与渗透变形土的渗透问题概述浸润线上游土坝蓄水后水透过下游坝身流向下游流线等势线H隧道开挖时,地下水向隧道内流动水在土孔隙通道中流动的现象叫做水的;土可以被水透过的性质水在土孔隙通道中流动的现象,叫做水的渗流;土可以被水透过的性质,称为土的渗透性或透水性。

212.1土的渗透定律一、土中渗流的总水头差和水力梯度、土中渗流的总水头差和水力梯度vw h h z h ++=伯努利方程v u AA2gz h w A 21++=γv2gu z h Bw BB 22++=γhh h Δ=−21h ΔLi =达定律二、达西定律1856年法国学者Darcy 对砂土的渗透性进行研究qv A=v=ki达西定律'v A ==vq vA'A v v v ==v A n三达西定律适用范围与起始水力坡降三、达西定律适用范围与起始水力坡降讨论:砂土的渗透速度与水力梯度呈线性关系v=ki v密实的粘土,需要克服结合水的粘滞阻力后才能发0生渗透;同时渗透系数与水力坡降的规律还偏离达西定律而呈非线性关系i砂土v虚直线简化达西定律适用于层−=i b流,不适用于紊流i密实粘土)(b i i k v 起始水力坡降2.2 渗透系数及其测定一、渗透试验(室内)1.常水头试验————整个试验过程中水头保持不变适用于透水性大)的土适用于透水性大(k >10-3cm/s )的土,例如砂土。

Athk kiAt qt 时间t内流出的水量LQ ===QL hAtk=2.变水头试验————整个试验过程水头随时间变化适用于透水性差,渗透系数小的截面面积a任一时刻t 的水头差为h ,经时段后细玻璃管中水位降落粘性土dt 后,细玻璃管中水位降落dh ,在时段dt 内流经试样的水量=-dQ adh在时段dt 内流经试样的水量dQ =kiAdt =kAh/Ldt1h aL=管内减少水量=流经试样水量()212lnh t t A k −dh 积-adh=kAh/Ldt分离变量dtaL kA h=−分二、渗透试验(原位)在现场打口试验井并安装z 在现场打一口试验井,并安装好抽水机具z 距井中心r 1、r 2处打两个观测水位的观测孔z 在井内不断抽水,并观测另两个观测孔的水位高度h 1、h 2,同时记录单位时间内的排水量2r )()ln(21221h h r q k −=π假定z 水沿水平方向流向抽水孔rh A π2=z 过水断面积上各点i 相等drdh i =dhdrdrrhkrhv Av q ππ22===khdh r q π2=22dr h r =)(ln 22122211h h k r q hdh k r q h r −=∫∫ππ1r 2ln r q ⎟⎟⎞⎜⎜⎛()21221h h r k −⎠⎝=π三影响渗透系数的因数三、影响渗透系数的因数z 土颗粒的粒径、级配和矿物成分z 土的孔隙比或孔隙率z 土的结构和构造z 土的饱和度z 水的动力粘滞度动力粘滞系数随水温发生明显的变化。

土的渗透性和渗透变形

土的渗透性和渗透变形
土的渗透性和渗透变形
目录
• 土的渗透性 • 渗透变形 • 渗透变形的防治 • 渗透变形的影响 • 案例分析
01 土的渗透性
定义与特性
定义
土的渗透性是指水在压力差的作用下 通过土体的能力,是描述土体透水性 能的指标。
特性
与土的颗粒大小、形状、排列、孔隙 大小和连通性等因素有关。
影响渗透性的因素
生态平衡
土的渗透变形可能影响土壤中的微生物和植物生长, 破坏生态平衡。
对人类生活的影响
居住安全
土的渗透变形可能影响居民住宅的安全,如地基下沉、房屋开裂 等,影响居住质量。
公共安全
在公共设施中,如学校、医院等,土的渗透变形可能对人员安全 造成威胁。
经济影响
土的渗透变形可能对建筑、道路、水利等基础设施造成严重破坏, 导致巨大的经济损失。
粘土心墙
在土体中建造混凝土防渗墙,以阻止 水分渗透。
在土体中建造粘土心墙,以增加土体 的不透水性。
帷幕灌浆
通过向土体中注入水泥浆,形成一道 阻水帷幕。
排水措施
排水沟
在土体周围设置排水沟,以引导 水分流出。
排水井
在土体中设置排水井,以降低地下 水位。
排水垫层
在土体底部设置排水垫层,以排出 水分。
改变边界条件
某矿山的渗透变形问题
总结词
矿山开采过程中,由于地下水位的下降 和采空区的形成,容易导致矿山发生渗 透变形问题,如地面塌陷、裂缝等。
VS
详细描述
在矿山开采过程中,随着地下水位的下降 和采空区的形成,矿山周围的岩土体受到 较大的应力作用。当应力超过岩土体的抗 剪强度时,容易出现地面塌陷、裂缝等问 题。这些问题不仅会影响矿山的生产安全 ,还可能对周边地区的生态环境和居民安 全造成威胁。

2.土的渗透性与渗透问题讲解

2.土的渗透性与渗透问题讲解

说明:渗透力j是渗流对单位土体的作用力,是一种体积力,其大 小与水力坡降成正比,作用方向与渗流方向一致,单位为kN/m3 渗透力的存在,将使土体内部受力发生变化,这种变化对 土体稳定性有显著的影响
渗透力方向与 重力一致,促 使土体压密、 强度提高,有 利于土体稳定 渗流方向近乎水平,使 土粒产生向下游移动的 趋势,对稳定不利
二级抽水后水位
多级井点降水
要求地下水位降得较深, 采用井点降水。在基坑周 围布臵一排至几排井点, 从井中抽水降低水位
②设臵板桩 沿坑壁打入板桩,它一方面可以加固坑壁,同时增加了地 下水的渗流路径,减小水力坡降
钢板桩
③水下挖掘 在基坑或沉井中用机械在水下挖掘,避免因排水而造成流 砂的水头差。为了增加砂的稳定性,也可向基坑中注水, 并同时进行挖掘
qy q1y q2 y qny
各土层的相应的水力坡降为i1、 i2、…、in,总的水力坡降为i
k y iA k1i1 A k 2i2 A k n in A
总水头损失等于各层 h h1 h2 h n 水头损失之和 hn h1 h2 h k y k1 k2 kn H H1 H2 Hn 垂直渗 透系数 H ky 整个土层与层面垂直 H1 H 2 Hn 的等效渗透系数 k1 k2 kn
3.流砂
流砂在工程施工中能造成大量的土体流动,使地表塌陷或建 筑物的地基破坏,给施工带来很大的困难,影响建筑工程的稳定。 通常易在粉细砂和粉土地层中产生,在地下水位以下的基坑开挖、 埋设地下管道、打井等工程活动中常出现
4.基坑突涌
当基坑下部有承压水层时,开挖基坑减小了底板隔水层的厚 度,当隔水层较薄经受不住承压水头压力,承压水头压力就会冲 毁基坑底板,这种现象称为基坑突涌

《土力学》教案——第二章 土的渗透性和渗透问题

《土力学》教案——第二章  土的渗透性和渗透问题

教学内容设计及安排第一节达西定律【基本内容】渗透——在水位差作用下,水透过土体孔隙的现象。

渗透性——土具有被水透过的性能。

一、达西定律v =ki =k Lh或用渗流量表示为q =vA =kiA式中 v ――渗透速度,cm/s 或m/d ;q ――渗流量,cm 3/s 或m 3/d ;i =h /L ――水力坡降(水力梯度),即沿渗流方向单位距离的水头损失,无因次; h ――试样两端的水头差,cm 或m ; L ――渗径长度;cm 或m ;k ――渗透系数,cm/s 或m/d ;其物理意义是当水力梯度i 等于1时的渗透速度; A ――试样截面积,cm 2或m 2。

【注意】由上式求出的v 是一种假想的平均流速,假定水在土中的渗透是通过整个土体截面来进行的。

水在土体中的实际平均流速要比达西定律采用的假想平均流速大。

二、达西定律的适用范围与起始水力坡降对于密实的粘土:由于结合水具有较大的粘滞阻力,只有当水力梯度达到某一数值,克服了结合水的粘滞阻力后才能发生渗透。

起始水力梯度――使粘性土开始发生渗透时的水力坡降。

(a ) 砂土 (b ) 密实粘土 (c )砾石、卵石粘性土渗透系数与水力坡降的规律偏离达西定律而呈非线性关系,如图(b )中的实线所示,常用虚直线来描述密实粘土的渗透规律。

()b i i k v -= (2-3)式中 i b ――密实粘土的起始水力坡降;对于粗粒土中(如砾、卵石等):在较小的i 下,v 与i 才呈线性关系,当渗透速度超过临界流速v cr 时,水在土中的流动进入紊流状态,渗透速度与水力坡降呈非线性关系,如图(c )所示,此时,达西定律不能适用。

第二节 渗透系数及其确定方法【基本内容】一、渗透试验1.常水头试验常水头试验适用于透水性大(k >10-3cm/s )的土,例如砂土。

常水头试验就是在整个试验过程中,水头保持不变。

试验时测出某时间间隔t 内流过试样的总水量V ,根据达西定律At LhkkiAt qt V === 即 hAtVL k =2.变水头试验粘性土由于渗透系数很小,流经试样的总水量也很小,不易准确测定。

土的渗透性及渗透试验

土的渗透性及渗透试验

土的渗透性及渗透试验影响渗透性的因素是很复杂的,主要有粘粒含量,矿物成分,溶液性质,孔隙大小、形状、连通性。

并且由于一些原因会使土的渗流规律出现偏离达西定律的现象。

渗透系数——液体在单位压力梯度下渡过单位土截面的量。

假设与压力梯度和液体流量q 成线性关系,从而可有达西定律:iA q k 水力梯度流体所流过的面积液体流量渗透系数⨯=A qv 截面面积流量渗透速度=然而需要注意的是截面面积A 为所考虑的整个土体的截面面积,但是其中的一部分是土颗粒,因此水实际流过的面积要小的多。

实际的平均渗透速度t v 应该比v 更大,可以用下式解出:nv e e v v t =+⋅=1其中,孔隙比e :土中孔隙体积与土颗粒体积之比,s v V V =e 孔隙率n :土中孔隙体积与土总体积之比,(%)100⨯=VV n v 土的渗透性主要受土体宏观结构的影响:如果黏土有裂隙或者含有细砂都会导致其渗透性增大到黏土本身渗透性的数倍。

水平向渗透性与竖向渗透性水的渗透会沿着阻力最小的方向,实验室试样尺寸很小以及试样的获得和制备方法,在大尺寸时的性质并不能体现,并且试验结果并不能完全代表拥有显著宏观结构原位土的性质。

另外,实验室试验往往是采用外力强迫水在土样中发生竖向流动,然而在现场最为关心的重要因素为水平向渗透性,因为它在实际中表现得更为显著,原位试验就可以克服这种缺点。

土渗透性的影响因素:土的粒度成分及矿物成分、合水膜厚度、土的结构构造、水的粘滞度、土中气体渗透水流施于单位土体内土粒上的力称为渗流力、动水压力。

当渗流力和土的有效重度相同且方向相反时,土颗粒间的压力等于零,土颗粒将处于悬浮状态而失去稳定。

这种现象称为流土,此时的水头梯度成为临界水头梯度icr。

流土:是指在渗流作用下局部土体表面隆起,或土粒群同时起动而流失的现象。

它主要发生在地基或土坝下游渗流逸出处。

管涌:指在渗流作用下土体的细土粒在粗土粒形成的孔隙通道中发生移动并被带出的现象。

(完整版)第二章土的渗透性和渗流问题要点

(完整版)第二章土的渗透性和渗流问题要点

第二章 土的渗透性和渗流问题第一节 概 述土是多孔介质,其孔隙在空间互相连通。

当饱和土体中两点之间存在能量差时,水就通过土体的孔隙从能量高的位置向能量低的位置流动。

水在土体孔隙中流动的现象称为渗流;土具有被水等液体透过的性质称为土的渗透性。

土的渗透性是土的重要力学性质之一。

在水利工程中,许多问题都与土的渗透性有关。

渗透问题的研究主要包括以下几个方面:1.渗流量问题。

例如对土坝坝身、坝基及渠道的渗漏水量的估算(图2-la 、b ),基坑开挖时的渗水量及排水量计算(图2-1C ),以及水井的供水量估算(图2-1d )等。

渗流量的大小将直接关系到这些工程的经济效益。

2.渗透变形(或称渗透破坏)问题。

流经土体的水流会对土颗粒和土体施加作用力,这一作用力称为渗透力。

当渗透力过大时就会引起土颗粒或土体的移动,从而造成土工建筑物及地基产生渗透变形。

渗透变形问题直接关系到建筑物的安全,它是水工建筑物和地基发生破坏的重要原因之一。

由于渗透破坏而导致土石坝失事的数量占总失事工程数量的25%~30%。

3.渗流控制问题。

当渗流量和渗透变形不满足设计要求时,要采用工程措施加以控制,这一工作称为渗流控制。

渗流会造成水量损失而降低工程效益;会引起土体渗透变形,从而直接影响土工建筑物和地基的稳定与安全。

因此,研究土的渗透规律、对渗流进行有效的控制和利用,是水利工程及土木工程有关领域中的一个非常重要的课题。

第二节 土的渗透性一、土的渗透定律—达西定律(一)渗流中的总水头与水力坡降液体流动除了要满足连续原理外,还必须要满足液流的能量方程,即伯努里方程。

在饱和土体渗透水流的研究中,常采用水头的概念来定义水体流动中的位能和动能。

水头是指单位重量水体所具有的能量。

按照伯努里方程,液流中一点的总水头h ,可用位置水头Z 、压力水头w uγ和流速水头g v 22之和表示,即 1)-(2 22g v uz h w ++=γ 式(2—1)中各项的物理意义均代表单位重量液体所具有的各种机械能,其量纲为长度。

土力学课件第三章土的渗透性

土力学课件第三章土的渗透性

第三章 土的渗透性
【例题3-3】如图所示,若地基上的土粒 比重Gs为2.68,孔隙率n为38.0%, 试求:
(1)a点的孔隙水应力和有效应力; (2)渗流逸出处1-2是否会发生流土? (3)图中网格9,10,11,12上的渗流
力是多少?
【解】 (1)由图中可知,上下游的水位差h=8m,等势线的间隔数N=10,则相
于是,根据有效应力原理,a-a平面上的有效应力为
与静水情况相比,当有向下渗流作用时,a-a平面上的总应力保持不 变,孔隙水应力减少了γwh。因而,证明了总应力不变的条件下孔 隙水应力的减少等于有效应力的等量增加。
第三章 土的渗透性
向上渗流的情况: a-a平面上的总应力
a-a平面上的孔隙水应力
a-a平面上的有效应力为 u h2 wh
第三章 土的渗透性
三、在稳定渗流作用下水平面上的孔隙水应力和有效应力
图3-23(a)表示在水位差作用下发生由上向下的渗流情况。此时在 土层表面b-b上的孔隙水应力与静水情况相同,仍等于γwh1,面a-a 平面上的孔隙水应力将因水头损失而减小,其值为
第三章 土的渗透性
a-a平面上的总应力仍保持不变,等于
Ww wVw wVs wV wab
(2) U1 w (h1 h2 )b
(3)
U w wh0a
(4)土粒对水流的总阻力Fs
渗流力的大小与水力梯度成正比,其作用方向与渗流(或流 向)方向一致,是一种体积力。
第三章 土的渗透性
沿水流方向力的平衡
U1 Ww sin Fs 0
形的能力就强。
如果透水性弱,抵抗渗透变
防止渗透变形发生的措施: (1)减小水力梯度;
压重、反滤层、减压井
(2)加盖

土力学 2土的渗透性与渗透问题

土力学  2土的渗透性与渗透问题

流砂
粉细沙随地下水流入基 坑,产生流砂
在基坑开挖和地下结构施工中,必须防止流砂,以 免发生重大基坑坍塌事故。
流砂形成条件:i < icr : i > icr : i = icr :
土体处于稳定状态 土体发生流土破坏 土体处于临界状态
工程经验判断:
➢粘性土中,渗透力的作用往往使渗流逸出处某一范围内的土体出现 表面隆起变形 ;
γwhw+ γwL + j L= γwh1
P2
结论: 渗透力是一种体积力,
其大小与水力梯度成正比。 其方向与渗透方向一致。
j
w (h1
hw L
L)
w h L
wi
二.流砂破坏及其防治
j
w (h1
hw L
L)
w h L
wi
流砂(流土):渗流力的方向自下而上时,若渗流力大 于向下的重力,土发生浮起、悬浮并随水流移动的现象。
i 1
达西定律 qx k xiH
n
qix k1iH1 k2iH 2 kniH n
i 1
整个土层与层面平
行的等效渗透系数
1n
kx
H
ki Hi
i 1
1
q1x q2x q3x
1 L
2 Δh x
z k1 k2
H1 H2 H
k3 2
H3
不透水层
与土层平行向渗流时,平均渗透系数的大小受渗透系数最大的控制
为防止发生渗透破坏,采取适当的措施,进行控制。 所以:主要内容为:渗透规律、渗透系数测定、工程中渗 透破坏类型及控制。
主要内容
2.1 概述 2.2 土的渗透系数及其确定方法 2.3 土的渗流和流网 (只讲概念) 2.4 渗透破坏与控制

土力学土的渗透性与渗透问题

土力学土的渗透性与渗透问题
第17页/共26页
设饱和土体内某一研究平面的 总面积为A,其中粒间接触面积之 和为As ,则该平面内由孔隙水所占 面积为 Aw =A-As.若由外荷(和/或 自重)在该研究平面上所引起的法 向总应力为,如图所示,那么,它 必将由该面上的孔隙水和粒间接触 面共同来分担,即该面上的总法向 力等于孔隙水所承担的力和粒间所 承担的力之和,于是可以写成:
式中,右端第一项Psv/A为全部竖向 粒间作用力之和除以横断面积A,它 代表全面积A上的平均竖直向粒间应力,并定义为有效应力,习惯上用 ‘ 表示。有端第二项中的As/A,试验研究表明,粒间接触面积As不超过 0.03A,故 As/A可忽略不计。于是上式可简化为:
=‘ 十 u 即为著名的有效应力原理
第18页/共26页
(1)几何条件 土中粗颗粒所构成的孔隙直径必须大于细颗粒的直径,才可能让细 颗粒在其中移动,这是管涌产生的必要条件。 (2)水力条件 渗透力能够带动细颗粒在孔隙间滚动或移动是发生管涌的水力条件, 可用管涌的水力坡降表示。 流土现象发生在土体表面渗流渗出处,不发生在土体内部。而管涌 现象可以发生在渗流逸出处,也可以发生于土体的内部。
渗流量之和,即 将达西定律代入上式可得沿水平方向的等效渗透系数kx:
(二)竖直向渗流 竖直渗流的特点: (1)根据水流连续原理,流经各土层的流速与流经等效土层的流速
相同,即 (2)流经等效土层H的总水头损失h等于各层上的水头损失之和,即 将达西定律代入上式可得沿竖直方向的等效渗透系数kz:
第9页/共26页
测管水头:位置水头与压力水头之和 h= z+ u/w
测管水头代表的是单位重量液体所具有的总势能
伯努里方程用于土中渗流时有两点需要指出: (1)饱和土体中两点间是否出现渗流,完全是由总水头差决定。只有当 两点间的总水头差时,才会发生水从总水头高的点向总水头低的点 流动。 (2)由于土中渗流阻力大,故流速 v 在一般情况下都很小,因而形成的 流速水头也很小,为简便起见可以忽略。渗流中任一点的总水头就可 用测管水头来代替。 水力坡降

土力学第二章土的渗透性和渗透问题

土力学第二章土的渗透性和渗透问题
三.渗透系数的测定及影响因素
§2.1 土的渗透性与渗透规律 Permeability and seepage law of soil
Ch2 土的渗透性和渗流问题 Permeability and seepage problem of soil
Ch2 土的渗透性和渗流问题 Permeability and seepage problem of soil
A
B
L
h1
h2
zA
zB
Δh
0
0
基准面
水力坡降线
总水头-单位质量水体所具有的能量
流速水头≈0
A点总水头:
B点总水头:
总水头:
水力坡降:
一.渗流中的水头与水力坡降
§2.1 土的渗透性与渗透规律 Permeability and seepage law of soil
概述
Ch2 土的渗透性和渗流问题 Permeability and seepage problem of soil
概述
Teton坝
渗流量
渗透变形
渗水压力
渗流滑坡
土的渗透性及渗透规律
二维渗流及流网
渗透力与渗透变形
扬压力
土坡稳定分析
挡水建筑物 集水建筑物 引水结构物 基坑等地下施工 边坡渗流
§2.3 渗透力与渗透变形 Seepage force and seepage deformaton
学习目标
学习基本要求
参考学习进度
学习指导
学习目标
掌握土的渗透定律与渗透力计算方法,具备对地基渗透变形进行正确分析的能力。
掌握土的渗透定律
01
掌握二维渗流及流网绘制

《工程地质与土力学》第七章:土的渗透性

《工程地质与土力学》第七章:土的渗透性

一、渗流的概念
水在重力作用下,通过土中的孔隙发生流动的现象叫水的渗透。土 体能被水透过的性质,叫土的渗透性, 它是土的力学性能之一。流动的水叫渗流,如图1所示。 土坝在挡水后,水在浸润线以下的坝体中产生渗流;水闸挡水后, 在上下游水位差作用下,水从上游经过闸基渗透到下游.
第七章 土的渗透性
图1 坝、闸渗透示意图 (a)土坝渗透: (b)闸基渗透
——土样的横截面积,cm2;
第七章 土的渗透性
(3)水的动力粘滞系数 水温愈高,水的动力粘滞系数η 愈小,渗透系数 k 值愈大,试验 时某一温度下测定的渗透系数,应按下式换算为标准温度20°C下的渗透 系数 T 即 k 20 kT
20
式中
kT k 20
——ToC和20oC时土的渗透系数;
第七章 土的渗透性
QL k Aht
式中:
k
Q
――土样的渗透系数,cm/s; ——时间
t 秒内流经土样的水量,cm3;
L ——土样厚度(即渗透路径),cm;
A
——土样的横截面积,cm2;
——试验时的水头差, cm; ——时间,s。
h
t
第七章 土的渗透性 2、变水头试验法
变水头试验就是在试验过程中,渗透水头随时间而变化的一种试验 方法,如图4
见图11;12;13。
第七章 土的渗透性
图11 心墙坝的粘土截水槽示意图
第七章 土的渗透性
图12 心墙坝混凝土防渗墙示意图
第七章 土的渗透性
图13 水平粘土铺盖示意图
第七章 土的渗透性
2、下游设置反滤层、盖重或减压井,滤土排水,使渗流逸出,又防止 细小颗粒被带走。 见图14
图7.14 水闸防渗示意图

土的渗透性(最终确定1)

土的渗透性(最终确定1)

主题重要性
在农业中,了解土壤的渗透性有 助于合理安排灌溉和排水,提高
水分利用效率和作物产量。
在水土保持工程中,土壤的渗透 性对于控制土壤侵蚀、降低地表 径流、防止水土流失等方面具有
关键作用。
在水利工程中,土壤的渗透性对 于水库、堤防等水利设施的设计、
施工和维护具有重要意义。
02 土的渗透性定义
定义与概念
05 土的渗透性的测量与评估
渗透试验方法
01
02
03
室内渗透试验
在实验室条件下,对土样 进行渗透试验,以测量土 的渗透系数、临界水力梯 度和渗透性等参数。
野外现场渗透试验
在现场对土体进行渗透试 验,常用的方法有压实桶 法、常水头法和变水头法 等。
数值模拟方法
利用计算机软件模拟土体 的渗透过程,通过输入土 的物理参数,可以预测土 体的渗透性能。
渗透性的评估标准与分类
渗透性等级
根据土的渗透系数大小,可以将 土的渗透性分为若干等级,如低 透水性、中等透水性和高透水性
等。
评估标准
不同国家和地区根据实际情况制定 了不同的渗透性评估标准,如美国 ASTM标准和我国国家标准等。
分类应用
根据土的渗透性等级和评估标准, 可以将其应用于不同工程领域,如 水利工程、土木工程和环境工程等。
土的渗透性是指土体允许水通 过其孔隙向下方或侧面流动的 性能。
渗透性是土的基本性质之一, 与土的粒度、级配、孔隙率和 结构等因素有关。
渗透性的大小通常用渗透系数 来表示,渗透系数越大,表示 土的渗透性越好。
渗透性的物理意义
01
渗透性是评价土的透水能力 的重要指标,对于工程设计 和施工具有重要意义。
04 土的渗透性与工程实践的 关系

土的渗透性及渗透力解读

土的渗透性及渗透力解读

渗透力及渗透破坏
渗流力(动水力)
定义:当土中发生向下或向上的渗流时, 渗透水流作用在土颗粒上的与渗流方向相 同的体积力,使土骨架应力相应地增加或 减小,此体积力称为渗流力,用J表示。
渗流力
渗流变形
10
在稳定渗流情况下,饱和土体中的土骨架应力和孔隙水应 力与静水条件中的不同 1. 试验装置:可产生垂直渗 流的试验装置,如图所示。 2. 试验假设 土是均匀的,土中的渗流 不论向上还是向下,土中 的水头损失沿渗流方向都 是均匀变化的,即假设渗 流引起的应力改变量沿渗 流方向是直线变化的。 土的渗流试验简图
管涌
土体内细颗粒通过粗粒形成 的孔隙通道移动
可发生于土体内部和渗流 溢出处 一般发生在特定级配的 无粘性土或分散性粘土 破坏过程相对较长
破坏过程短
导致下游坡面产生局部滑动等
导致结构发生塌陷或溃口
21
3.4
有效应力原理及计算
3.4.1 有效应力的基本概念
粒间应力(interparticle stress) ——由土骨架颗粒间接触点传递的应力。 有效应力(effective stress) ——对土体的变形和强度变化有效的粒间应力。 孔隙水压力(pore water pressure) ——由孔隙水传递的应力,它不能直接引起土体的变形和强度变化, 又称为中性应力。它不随时间而变化。 超静孔隙水压力(excess pore water pressure) ——由外荷载引起的超出静水位以上的那部分孔隙水压力。
w h0 sat L w h1 ' L b b面 : u w h2 w (h1 h) u0 w h ' ' u w h1 ' L w (h1 h) ' L w h 0 w h
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2-2 达西定律及其适用范围
可以用粒径来描述Darcy定律的范围
层流(线性流) ——大部分砂土,粉土;疏松的粘土及砂性较 重的粘性土
两种特例
上限:粗粒土 v>vcr
①砾石类土中的渗流不符合达西定律 ②砂土中渗透速度 vcr=0.3-0.5cm/s
下限:粘性土
致密的粘土 i>i0, v=k(i - i0 )
2.毛细网状水带
位于毛细水带的中部
3.毛细悬挂水
位于毛细水带的上部
土中毛细现象
第二章 土的渗透性及渗透稳定 §2-1 土的毛细性
二、毛细压力
毛细压力:土粒接触面上存在毛 细水,由于土粒表面的润湿作用,使 毛细水形成弯面。在水和空气的分界 面上产生表面张力是沿弯液面切线方 向作用,它促使土粒互相靠拢,在土 粒接触面上产生压力,称为毛细压力
水井渗流
Q
天然水面
不透水层
透水层 渗流量
第二章 土的渗透性及渗透稳定
渠道渗流
原地下水位
渗流量
渗流时地下水位
第二章 土的渗透性及渗透稳定
渗流滑坡
渗流滑坡
第二章 土的渗透性及渗透稳定
土的渗透性及渗透规律 二维渗流及流网
渗透力与渗透变形
渗流量 渗水压力 渗透变形 渗流滑坡
挡水建筑物 集水建筑物 引水结构物 基坑等地下施工 边坡渗流
常水头法仅适用于:透水性较大的砂性土
透水性较小的粘性土
2.室内试验方法2—变水头试验法
(k 10 3cm / s)
试验装置:如图 试验条件: Δh变化,A,L=const 量测变量: Δh ,t
第二章 土的渗透性及渗透稳定 一.渗透试验简介
§2-3 渗透系数及其确定方法
理论依据:
t时刻: Δh Δt dh
h2
LL
第二章 土的渗透性及渗透稳定 §2-2 达西定律及其适用范围
注意:
V:假想渗流速度,土体试样全断面的平均渗流速度
Vs:实际平均渗流速度,孔隙断面的平均渗流速度
A
n Av A
A > Av
Av
Q=VA = VsAv
v v vs n
第二章 土的渗透性及渗透稳定 二. 达西定律适用条件
流入量:dQ adh 流出量:dQ kiAdt k h Adt L
连续性条件: dQ dQ
adh k h Adt
L
t2
h2 aLdh
dt
t1
h1 kAh
dt aLdh kAh
t

t2

t1

aL ln kA
h1 h2
k aL ln h1 At h2
v vcr o
v
o i0
v k im (m 1)
i
i
第二章 土的渗透性及渗透稳定
§2-3渗透系数及其确定方法
一.渗透试验简介
常水头试验法
室内试验测定方法
变水头试验法
野外试验测定方法 井孔抽水试验
井孔注水试验
第二章 土的渗透性及渗透稳定 一.渗透试验简介
§2-3 渗透系数及其确定方法
1. 室内试验方法1—常水头试验法
§2-2 达西定律及其适用范围
Darcy 定律:在层流状态的渗流中,渗透速度v与水力坡降i的一次方成正比。
V ki
k: 反映土的透水性能的比例系数,称为渗透系数 物理意义:水力坡降i=1时的渗流速度 单位:mm/s, cm/s, m/s, m/day
h1 L
水力坡降const 量测变量: Q,t 结果整理
Q qt
q vA
V ki
k QL Aht
i h
L
适用土类:透水性较大的砂性土 (k 103cm / s)
第二章 土的渗透性及渗透稳定 一.渗透试验简介
§2-3 渗透系数及其确定方法
Δh变化 a,A,L Δh,t k aL ln h1
At h2
不同时段试验,取均值
粗粒土
粘性土
第二章 土的渗透性及渗透稳定 一.渗透试验简介
§2-3 渗透系数及其确定方法
土坡稳定分析
第二章 土的渗透性及渗透稳定
§2.1土的毛细性
毛细现象:土中的水在表面张力作用下沿细的孔 隙向上以及向其他地方移动的现象。
毛细水:细微孔隙中的水
一、土层中的毛细水带
——土层中由于毛细现象所润湿的范围
第二章 土的渗透性及渗透稳定 §2-1 土的毛细性
1.正常毛细水带(毛细饱和带)
位于毛细水带的下部,与地下潜 水连通。随地下水位的升降而做 相应的移动
结果整理:
选择几组Δh1, Δh2, t ,计算相应的k,取平均值
t t+ Δt
第二章 土的渗透性及渗透稳定 一.渗透试验简介
§2-3 渗透系数及其确定方法
3. 室内试验方法
条件 已知 测定 算定 取值 适用
常水头试验
Δh=const Δh,A,L
Q,t k QL
Aht
重复试验后,取均值
变水头试验
第二章 土的渗透性及渗透稳定
碎散性
多孔介质
三相体系
孔隙流体流动
能量差
水在土体孔隙中流动的现象
渗流
土体被水透过的性能
渗透性
渗透特性 强度特性 变形特性
第二章 土的渗透性及渗透稳定
土的渗透性研究主要包括以下三个方面
渗漏 (渗流量问题) 因渗透而引起的水量损失,影响闸坝蓄水等经济效益。 如:坝、围堰、水库、集水建筑物等。
渗透稳定(渗透变形问题): 土的稳定性受到渗流破坏,土体颗粒流失,关系工程成 败。如:水工建筑物地基、挡水建筑物等。
渗流控制问题: 当渗流量或渗透变形不满足设计要求时,要研究如何采 取工程措施进行渗流控制。
渗流模型: 1、不考虑渗流路径的迂回曲折,只分析它的主 要流向;
2、不考虑土体中颗粒的影响,认为孔隙和土粒 所占的空间之和均为渗流所充满。
2πrTcosα+ucπr2 = 0 • 假定α= 0, 毛细压力
uc hc
对砂土强度的影响:毛细边 角水, 假凝聚力
第二章 土的渗透性及渗透稳定
§2-2 达西定律及其适用范围
一.Darcy定律
水在土中渗透的基本规律
二.Darcy定律的适用范围
第二章 土的渗透性及渗透稳定 一. Darcy定律
滑 坡
溃 坝
管 涌
防渗墙
防渗墙射水法施工
防渗墙
管涌的治理
反滤围井
蓄水反压
反滤倒渗
第二章 土的渗透性及渗透稳定
土石坝坝基坝身渗流
防渗斜墙及铺盖 不透水层
土石坝
浸润线
透水层
渗流量 渗透变形
第二章 土的渗透性及渗透稳定
板桩围护下的基坑渗流
板桩墙
基坑
透水层 不透水层
渗水压力 渗流量 渗透变形
第二章 土的渗透性及渗透稳定
相关文档
最新文档