智能寻迹小车设计报告
智能循迹小车___设计报告
智能循迹小车___设计报告设计报告:智能循迹小车一、设计背景智能循迹小车是一种能够通过感知地面上的线条进行导航的小型机器人。
循迹小车可以应用于许多领域,如仓库管理、物流配送、家庭服务等。
本设计旨在开发一款功能强大、性能稳定的智能循迹小车,以满足不同领域的需求。
二、设计目标1.实现循迹功能:小车能够准确地识别地面上的线条,并按照线条进行导航。
2.提供远程控制功能:用户可以通过无线遥控器对小车进行控制,包括前进、后退、转向等操作。
3.具备避障功能:小车能够识别和避开遇到的障碍物,确保行驶安全。
4.具备环境感知功能:小车能够感知周围环境,包括温度、湿度、光照等参数,并将数据传输给用户端。
5.高稳定性和可靠性:设计小车的硬件和软件应具备较高的稳定性和可靠性,以保证长时间的工作和使用。
三、设计方案1.硬件设计:(1) 采用Arduino控制器作为主控制单元,与传感器、驱动器等硬件模块进行连接和交互。
(2)使用红外传感器作为循迹传感器,通过检测地面上的线条来实现循迹功能。
(3)使用超声波传感器来检测小车前方的障碍物,以实现避障功能。
(4)添加温湿度传感器和光照传感器,以提供环境感知功能。
(5)将无线模块与控制器连接,以实现远程控制功能。
2.软件设计:(1) 使用Arduino编程语言进行程序设计,编写循迹、避障和远程控制的算法。
(2)设计用户界面,通过无线模块将控制信号发送给小车,实现远程控制。
(3)编写数据传输和处理的程序,将环境感知数据发送到用户端进行显示和分析。
四、实施计划1.硬件搭建:按照设计方案中的硬件模块需求,选购所需元件并进行搭建。
2.软件开发:根据设计方案中的软件设计需求,编写相应的程序并进行测试。
3.功能调试:对小车的循迹、避障、远程控制和环境感知功能进行调试和优化。
4.性能测试:使用不同场景和材料的线条进行测试,验证小车的循迹性能。
5.用户界面开发:设计用户端的界面,并完成与小车的远程控制功能的对接。
循迹小车实验报告数据
一、实验目的1. 掌握循迹小车的基本原理和设计方法。
2. 熟悉红外传感器在循迹中的应用。
3. 提高单片机编程和调试能力。
二、实验原理循迹小车通过红外传感器检测地面上的黑线,根据黑线的位置控制小车的转向,使小车沿着既定路线前进。
三、实验器材1. 单片机:51单片机或Arduino2. 红外传感器:红外对管3. 电机驱动模块:L298N4. 电机:直流电机5. 车架及车轮6. 电源:可充电锂电池7. 连接线、电阻、电容等四、实验步骤1. 搭建电路将单片机、红外传感器、电机驱动模块、电机等连接起来,搭建循迹小车的电路。
2. 编程编写单片机程序,实现以下功能:(1)读取红外传感器的状态;(2)根据红外传感器的状态控制电机驱动模块,使小车转向;(3)实现小车的前进、后退、左转、右转等动作。
3. 调试调试程序,使小车能够沿着黑线稳定行驶。
五、实验数据1. 红外传感器参数| 传感器编号 | 阻值(Ω) | 电压(V) || :---------: | :-------: | :-------: || 1 | 10k | 5V || 2 | 10k | 5V || 3 | 10k | 5V || 4 | 10k | 5V |2. 电机参数| 电机型号 | 额定电压(V) | 额定电流(A) | 额定转速(r/min) || :-------: | :-----------: | :-----------: | :--------------: || 12V | 12V | 0.5A | 1000r/min |3. 程序运行数据| 指令类型 | 代码行数 | 运行时间(ms) || :-------: | :-------: | :------------: || 读取传感器 | 20 | 1ms || 控制电机 | 50 | 2ms || 其他指令 | 30 | 1ms |4. 实验结果在黑线宽度为10mm、小车与黑线距离为5cm的情况下,小车能够稳定行驶,转向灵活。
智能寻迹小车设计报告
目录1.项目设计目的 (1)2.项目设计正文 (3)2。
1.项目分析及方案制定 (3)2。
2.设计步骤及流程图 (4)2。
2.1.寻迹设计步骤 (4)2。
2。
2.流程图 (4)2.3.主要模块介绍 (4)2。
3。
1.LM393 (4)2。
3.1.1 LM393的主要特点 (4)2.3。
1。
2 LM393引脚图及内部框图 (5)2。
3。
1.3 LM393 功能简介 (5)2。
3。
2.89C2051 (5)2.3.2。
1 89C2051简介 (5)2.3.2.2 89C2051 主要性能参数 (5)2.3。
2.3 89C2051 功能特性概述 (6)2.4.电路设计及PCB绘制 (6)2。
4。
1.电源电路 (6)2.4。
2.红外收发电路 (6)2。
4.3.电机驱动电路 (7)2。
4。
4.单片机最小系统 (7)2。
4。
5. 整体电路 (8)2。
4.6。
PCB板的绘制 (8)2.5. 成品展示 (9)3.项目设计总结 (9)4.参考文献 (10)智能寻迹小车——CDIO三级项目王君杰(电子信息工程1501 150070116)一、项目设计目的在科技飞速发展的今天,智能化的概念已经渗入到各行各业,自动控制系统也出现在生活的方方面面,早到工厂的机械化生产,近到目前的自动驾驶.越来越多的领域涉及到电控制技术。
特别是使用单片机一类的MCU的控制,在生活中越来越常见。
因此,基于单片机控制的电路的学习和时间对于我们来说就显得尤为重要。
同时,对于单片机作为软件主控单元,结合模电数电的硬件电路支持的综合项目开发,也是作为大学生需要了解并且熟练运用的基础。
掌握了这些知识,对于我们以后的职业发展也有着莫大的帮助。
二、项目设计正文2.1、项目分析及方案制定首先对于“智能寻迹小车”这个标题而言,我们可以分为两个部分:小车和智能寻迹。
“小车"决定了硬件电路的大致构成:电源、电容、电阻、开关、电机、LED.而“智能”则决定了一些高级电路的选用:MCU、传感器、电机驱动、电位器及一些IC。
智能循迹小车课程设计报告
智能循迹小车课程设计报告一、课程设计目标:本次智能循迹小车课程设计的目标是让学生了解智能硬件的基础知识,掌握基本电子元器件的原理及使用方法,学习控制系统的组成和运行原理,并通过实践操作设计出一款功能齐全的智能循迹小车。
二、课程设计内容及步骤:1. 调研与分析——首先要对市面上现有的智能循迹小车进行调研与分析,了解各种类型的循迹小车的特点和优缺点,为后续的设计提供参考。
2. 硬件选型——根据课程设计目标和实际需要,选择合适的主控芯片、电子元器件和传感器等硬件。
3. 原理图设计——根据硬件选型,设计出对应的原理图,并在硬件上进行布局与焊接。
4. 程序设计——先在电路板上测试硬件是否正常,随后进行程序设计,根据传感器的反馈控制小车的运动,让小车能够沿着黑线自动循迹行驶,同时加入避障功能和自动寻迹功能。
5. 调试与优化——完成程序设计后,要对小车进行全面验收测试,发现问题及时解决并优化相关程序。
三、设计思路:本次课程设计基于树莓派电路板,利用循迹模块实现小车的自动循迹和自动寻迹。
同时将超声波模块结合避障算法实现小车的自动避障。
小车的外壳采用3D打印技术制作,操作简单实用。
四、课程设计效果:通过本课程设计,学生们从理论到实践,了解了智能硬件的基础知识,掌握了基本电子元器件的原理及使用方法,学习了控制系统的组成和运行原理。
同时,实践操作过程中,学生们培养了动手能力和实际操作的技能。
通过制作一台智能循迹小车,学生们对智能硬件的认识更加深入,并获得了较高的设计满足感。
五、课程设计展望:智能循迹小车是智能硬件应用领域的一项重要发明,具有广泛的应用前景。
未来,可以将循迹小车应用于快递、物流等行业,实现自动化送货、配送。
同时可以将遥控技术与循迹技术相结合,设计出更加高效、实用的智能循迹小车,推动智能化生产和工作环境。
2024年度-智能循迹小车设计
智能循迹小车设计目录•项目背景与意义•系统总体设计•循迹算法研究•控制系统设计•调试与测试•项目成果展示•总结与展望01项目背景与意义智能循迹小车概述定义智能循迹小车是一种基于微控制器、传感器和执行器等技术的自主导航小车,能够按照预定路径进行自动循迹。
工作原理通过红外、超声波等传感器感知周围环境信息,将感知数据传输给微控制器进行处理,微控制器根据预设算法控制执行器调整小车行驶状态,实现循迹功能。
随着工业自动化的发展,智能循迹小车在生产线、仓库等场景中的应用需求不断增加。
自动化需求教育领域需求娱乐领域需求智能循迹小车作为教学实验平台,在高等教育、职业教育等领域具有广泛应用前景。
智能循迹小车可以作为玩具或模型车进行娱乐竞技活动,满足消费者休闲娱乐需求。
030201市场需求分析通过本项目的研究与实践,掌握智能循迹小车的核心技术,包括传感器技术、微控制器技术、控制算法等。
技术目标将智能循迹小车应用于实际场景中,提高生产效率、降低成本、提升产品品质等方面的效益。
应用目标通过智能循迹小车的研发与教学应用,培养学生动手实践能力、创新精神和团队协作能力。
教育意义推动智能循迹小车相关产业的发展,促进就业和经济增长,提升国家科技竞争力。
社会意义项目目标与意义02系统总体设计主控制器传感器模块电机驱动模块电源管理模块总体架构设计01020304负责接收和处理传感器数据,控制小车运动。
包括红外传感器、超声波传感器等,用于感知环境和障碍物。
驱动小车前进、后退、转弯等动作。
为整个系统提供稳定可靠的电源。
硬件选型及配置选用高性能、低功耗的微控制器,如STM32系列。
选用高灵敏度、低误差的传感器,如红外反射式传感器、超声波测距传感器等。
选用高效、稳定的电机驱动器,如L298N电机驱动板。
选用合适的电池和电源管理芯片,确保系统长时间稳定运行。
主控制器传感器模块电机驱动模块电源管理模块初始化模块传感器数据处理模块运动控制模块调试与测试模块软件功能划分负责系统启动时的初始化工作,包括硬件初始化、参数设置等。
智能寻迹小车实验报告
智能寻迹小车实验报告
实验目的:
设计一个智能寻迹小车,能够依据环境中的黑线自主行驶,并避开障碍物。
实验材料:
1. Arduino开发板
2. 电机驱动模块
3. 智能车底盘
4. 红外传感器
5. 电源线
6. 杜邦线
7. 电池
实验步骤:
1. 按照智能车底盘的说明书将车底盘组装起来。
2. 将Arduino开发板安装在车底盘上,并与电机驱动模块连接。
3. 连接红外传感器到Arduino开发板上,以便检测黑线。
4. 配置代码,使小车能够依据红外传感器检测到的黑线自主行驶。
可以使用PID控制算法来控制小车的速度和方向。
5. 测试小车的寻迹功能,可以在地面上绘制黑线,观察小车是否能够准确地跟随黑线行驶。
6. 根据需要,可以添加避障功能。
可以使用超声波传感器或红外避障传感器来检测障碍物,并调整小车的行驶路线。
实验结果:
经过实验,可以发现小车能够依据红外传感器检测到的黑线自主行驶,并能够避开障碍物。
小车的寻迹功能和避障功能能够实现预期的效果。
实验总结:
本次实验成功设计并实现了智能寻迹小车。
通过使用Arduino 开发板、电机驱动模块和红外传感器等材料,配合合适的代码配置,小车能够准确地跟随黑线行驶,并能够避开障碍物。
该实验展示了智能小车的基本原理和应用,为进一步研究和开发智能车提供了基础。
智能循迹小车实验报告
智能循迹小车实验报告第一篇:智能循迹小车实验报告摘要本设计主要有单片机模块、传感器模块、电机驱动模块以及电源模块组成,小车具有自主寻迹的功能。
本次设计采用STC公司的89C52单片机作为控制芯片,传感器模块采用红外光电对管和比较器实现,能够轻松识别黑白两色路面,同时具有抗环境干扰能力,电机模块由L298N芯片和两个直流电机构成,组成了智能车的动力系统,电源采用7.2V的直流电池,经过系统组装,从而实现了小车的自动循迹的功能。
关键词智能小车单片机红外光对管 STC89C52 L298N 1 绪论随着科学技术的发展,机器人的设计越来越精细,功能越来越复杂,智能小车作为其的一个分支,也在不断发展。
在近几年的电子设计大赛中,关于小车的智能化功能的实现也多种多样,因此本次我们也打算设计一智能小车,使其能自动识别预制道路,按照设计的道路自行寻迹。
设计任务与要求采用MCS-51单片机为控制芯片(也可采用其他的芯片),红外对管为识别器件、步进电机为行进部件,设计出一个能够识别以白底为道路色,宽度10mm左右的黑色胶带制作的不规则的封闭曲线为引导轨迹并能沿该轨迹行进的智能寻迹机器小车。
方案设计与方案选择3.1 硬件部分可分为四个模块:单片机模块、传感器模块、电机驱动模块以及电源模块。
3.1.1 单片机模块为小车运行的核心部件,起控制小车的所有运行状态的作用。
由于以前自己开发板使用的是ATMEL公司的STC89C52,所以让然选择这个芯片作为控制核心部件。
STC89C52是一种低损耗、高性能、CMOS八位微处理器,片内有4k字节的在线可重复编程、快速擦除快速写入程序的存储器,能重复写入/擦除1000次,数据保存时间为十年。
其程序和数据存储是分开的。
3.1.2 传感器模块方案一:使用光敏电阻组成光敏探测器采集路面信息。
阻值经过比较器输出高低电平进行分析,但是光照影响很大,不能稳定工作。
方案二:使用光电传感器来采集路面信息。
智能循迹小车-电子设计大赛优选全文
智能寻迹小车总结报告08电本3袁坤朱昊汪武杰1.设计任务:设计并制作了一个智能电动车,通过车前方的感光模块引导小车沿黑色路径运行,并记录小车整个运动过程的时间。
(1)感光模块引导小车运动:小车黑色轨迹白色背景图1如图1,小车运行在以白色背景的黑色轨迹上。
小车在整个运行过程中沿黑色轨迹运动,当黑色轨迹向左转时,小车能够自动左转弯,左转弯灯亮;当黑色轨迹向右转时,小车能够自动右转弯,右转弯灯亮。
(2)小车能记录整个运行过程的时间:在小车开始运行时,单片机控制计时,当小车收到停止指令后,计时器停止计时,并通过小车上的数码管显示小车整个运行过程的时间。
2.程序框图寻迹小车的主程序如下3.系统的具体设计与实现根据设计任务要求,并且根据我们自己的需要而附加的功能,该电路的总体框图可分为几个基本的模块,框图如(图2)所示:红外传感模块3.1设计中选用红外传感器来准确检测黑色寻迹线。
共设置2个传感器,传感器检测到黑色的寻迹线时,输出逻辑电平1,检测不到黑色寻迹线时,输出逻辑电平0。
在小车正前方中间安装两个标号是1号和2号的传感器用于定位寻迹线中心线,如图。
实物图:由电路图可以看出,在整个运行过程中,红外线发射管一直工作,发出红外线,由于黑色对红外线的反射量很小,而白色背景对红外的反射量很大,这样经过红外接收管的电压值的不同,可以判断出小车的运行情况。
当小车在黑色轨迹上正常运行时,1号和2号传感器输出1,当小车右偏时,2号由输出1转变为0,此时单片机驱动电机模块,调控小车左右两轮的转速,调整车身向左转;当小车左偏时,1号由输出1转变为0,单片机调控小车车身向右转。
传感器部分是小车的“眼睛”,只有通过它的引导小车才能正常在轨道上运行。
在小车的调试过程中,遇到了一些问题。
第一,两个传感器中的红外管有时一直感光,有时感光很差;第二,在黑线上运行时,在一些弯路传感器可以判断出来,一些反应迟钝,并且恢复直行的时候,传感器却依然保持上一状态运行。
智能循迹避障小车报告书精选全文完整版
可编辑修改精选全文完整版电子科协竞赛项目报告书参赛作品:基于51单片机的智能寻迹避障小车小组成员:盛博专业班级:电信1205班报告提交日期: 2013年 4 月12日目录1设计要求与功能 (3)1.1设计基本要求 (3)2 硬件设计 ................................................. (3)2.1主控系统及所需主要元件 (3)2.2机械系统 (4)2.3电机驱动模块 (5)2.4 循迹模块 (6)2.5避障模块 (6)2.6电源模块 (7)2.7报警模块 (7)2.8远程操控模块 (8)3 软件设计 (8)3.1主程序及框图 (8)3.2电机驱动程序 (9)3.3循迹程序 (9)3.4避障程序 (10)3.5报警及远程操控程序 (10)4调试过程 (11)5总结 (11)附录总C程序 (11)一设计要求与功能设计并制作一个能自动循迹壁障的智能小车。
可沿不规则黑色轨迹行驶,遇到障碍可自动绕行,遇到黑色停止线自动停止,轨迹、通道、障碍现场如图。
1.基本要求(1)小车启动沿着轨迹行驶,遇到终点线停车;(2)小车遇到行驶轨迹范围内的障碍物应自动绕行,脱离轨迹后能自动寻找轨迹并形式到终点。
2.发挥部分(1)增加声、光报警功能,增加无线遥控启动、停止功能;(2)利用Protel或者Alitum Designer等软件进行PCB设计。
二硬件设计2.1主控系统及所需主要元件主控系统由STC89C52单片机负责,通过接收并分析信号模块传输过来的信号对各模块下达指令,使各模块能持续并稳定地共同工作,形成有机的整体,从而实现小车的各种功能。
所需主要元件:STC89C52单片机,减速电机,红外对管等。
各口功能:P0.0-P0.2是红外传感器信号输入口;P0.3-P0.6是四路红外对管信号输入口;P1.0-P1.1是无线信号输入口;P2.0-P2.7是四路减速电机控制信号输出口。
智能循迹小车实验报告
智能循迹小车实验报告一、实验目的本次实验旨在设计并实现一款能够自主循迹的智能小车,通过传感器检测路径信息,控制小车的运动方向,使其能够沿着预定的轨迹行驶。
通过本次实验,深入了解自动控制、传感器技术和单片机编程等方面的知识,提高实际动手能力和问题解决能力。
二、实验原理1、传感器检测本实验采用红外传感器来检测小车下方的黑线轨迹。
红外传感器由红外发射管和接收管组成,当发射管发出的红外线照射到黑色轨迹时,反射光较弱,接收管接收到的信号较弱;当照射到白色区域时,反射光较强,接收管接收到的信号较强。
通过比较接收管的信号强度,即可判断小车是否偏离轨迹。
2、控制算法根据传感器检测到的轨迹信息,采用 PID 控制算法(比例积分微分控制算法)来计算小车的转向控制量。
PID 算法通过对误差(即小车偏离轨迹的程度)进行比例、积分和微分运算,得到一个合适的控制输出,使小车能够快速、准确地回到轨迹上。
3、电机驱动小车的动力由直流电机提供,通过电机驱动芯片(如 L298N)来控制电机的正反转和转速。
根据控制算法计算出的转向控制量,调整左右电机的转速,实现小车的转向和前进。
三、实验器材1、硬件部分单片机开发板(如 STM32 系列)红外传感器模块直流电机及驱动模块电源模块小车底盘及车轮杜邦线、面包板等2、软件部分Keil 等单片机编程软件串口调试助手四、实验步骤1、硬件搭建将红外传感器模块安装在小车底盘下方,使其能够检测到黑线轨迹。
将直流电机与驱动模块连接,并安装在小车底盘上。
将单片机开发板、传感器模块、驱动模块和电源模块通过杜邦线连接起来,搭建好实验电路。
2、软件编程使用单片机编程软件,编写传感器检测程序、控制算法程序和电机驱动程序。
通过串口调试助手,将编写好的程序下载到单片机开发板中。
3、调试与优化启动小车,观察其在轨迹上的行驶情况。
根据小车的实际行驶情况,调整 PID 控制算法的参数,优化小车的循迹性能。
不断测试和改进,直到小车能够稳定、准确地沿着轨迹行驶。
智能循迹小车设计报告(总17页)
智能循迹小车设计报告(总17页)一、设计目的本项目旨在设计一款运用机器视觉技术的智能循迹小车,能够自主寻找指定路径并行驶,可用于实现自动化物流等应用场景。
二、设计方案2.1 系统概述本系统基于STM32F103C8T6单片机和PiCamera进行设计。
STM32F103C8T6单片机负责循迹小车的控制和编码器的反馈信息处理,PiCamera则用于实现图像识别和路径规划,两者之间通过串口进行通讯。
2.2 硬件设计2.2.1 循迹模块循迹模块采用红外传感器对黑线进行探测,通过检测黑线与白底的反差判断小车的行驶方向。
本设计采用5个红外传感器,每个传感器分别对应小车行驶时的不同位置,通过对这5个传感器的读取,可以获取小车所在的实际位置和前进方向。
电机驱动模块采用L298N电机驱动模块,通过PWM信号来控制电机的转速和方向。
左右两侧的电机分别接到L298N模块的IN1~IN4引脚,电机转向由模块内部的电路通过PWM 信号控制。
2.2.4 Raspberry PiRaspberry Pi用于图像处理和路径规划。
本设计使用PiCamera进行图像采集,在RPi 上运行OpenCV进行图像处理,识别道路上的黑线,并通过路径规划算法计算出循迹小车当前应该行驶的方向,然后将该方向通过串口传输给STM32单片机进行控制。
本设计的系统结构分为三个层次:传感器驱动层、控制层、应用层。
其中,传感器驱动层实现对循迹小车上的传感器的读取和解析,生成对应的控制指令;控制层对控制指令进行解析和执行,控制小车的运动;应用层实现图像处理和路径规划,将路径信息传输给控制层进行控制。
在应用层,本设计采用基于灰度阈值的图像处理算法,通过寻找图像中的黑色线条,将黑色线条和白色背景分离出来,以便进行路径规划。
路径规划采用最短路径算法,计算出循迹小车当前应该行驶的方向,然后将该方向发送给控制层进行控制。
2.4 可行性分析本设计的硬件设计采用常见的模块化设计,采用Arduino Mega作为基础模块,通过模块之间的串口通信实现对整个系统的控制,扩展性和可维护性良好。
循迹小车课程设计报告
循迹小车课程设计报告
一、概述
本课程是针对中小学电子爱好者,设计一款基于Arduino开发
板的循迹小车。
课程分为两部分,理论学习和实战操作。
二、理论学习
1. 基础知识学习
学习Arduino开发板的基本用法,了解循迹传感器的原理和应用。
2. 循迹算法学习
介绍循迹控制算法,如PID控制,模糊控制等。
3. 电路原理图学习
通过示例电路,学习循迹小车的电路原理,理解各个组件的作
用与连接方式。
三、实战操作
1. 简单循迹小车搭建
学生通过教师提供的视频教程,自行搭建一个简单的循迹小车。
2. 电路焊接操作
学生进行电路焊接操作,提高电路实际操作能力。
3. 循迹小车控制程序编写
学生通过Arduino开发板,编写循迹小车控制程序,实现小车的运动。
四、实施效果
本课程的实施效果如下:
1. 学生提高Arduino开发板的使用能力。
2. 学生通过理论学习,了解循迹控制算法的原理。
3. 学生通过实战操作,提高电路焊接和程序编写能力。
4. 学生通过小车的装配,加深对电子学原理的理解能力。
五、总结
本课程以实战为主,理论为辅,充分利用学生的动手能力和创造能力,锤炼学生的动手能力和团队合作精神。
在实施中,教师应注意保障学生的安全,严格要求学生的动作规范。
通过开展此
课程,旨在激发学生对电子技术的兴趣,培养学生的科学实验精神。
智能小车循迹报告
电工电子实习报告学院:专业班级:学生姓名:指导教师:完成时间:成绩:智能循迹小车设计报告一. 设计要求(1).通过理论学习掌握基本的焊接知识以及电子产品的生产流程。
(2).熟悉掌握手工焊接的方法与技巧。
(3).完成循迹智能小车的安装与调试二. 设计的作用、目的1.利用所学过的基础知识,通过本次电子实习培养独立解决实际问题的能力;2.巩固本课程所学的理论知识和实验技能;3.掌握常用电子电路的一般设计方法,提高设计能力和实验、动手能力,为今后从事电子电路的设计、研制电子产品打下基础。
三.设计的具体实现1. 系统概述智能机器人小车的设计中我们使用的是一体反射式红外对管,所谓一体就是发射管和接受管固定在一起,反射式的工作原理就是接收管接收到的信号是发射管发出的红外光经过反射物的反射后得到的,所以使用红外对管进行循迹时必须是白色地板红外寻迹是利用红外光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。
(为简化操作,本次实习只安装了两侧的探头)1)行驶直线的控制:利用红外传感器的左右最外端的探头检测黑线,如果全白则说明在道中间,没有偏离轨道,走直线;一旦右侧探头检测到黑线,说明小车外侧探头已跑出轨道,让车左拐;同理一旦左侧检测到黑线,说明左侧探头已经出线,执行右拐命令。
2)拐直角弯的控制:当车前探头检测到黑线,执行直走,让车中心探头去检测,一旦探头检测到黑线开始左拐,直到车位探头检测到跳出左拐命令,继续开始执行循迹,通过设置车中间探头与车尾探头的间距,便可以实现拐弯的角度,进而顺利入弯。
小车的硬件主要包括4大模块:即电源模块、电机驱动模块、红外循迹模块、简易控制模块。
系统工作框图如下:2.单元电路设计与分析1)电源模块电源模块电路板LM2596 开关电压调节器是降压型电源管理单片集成电路,能够输出3A 的驱动电流,同时具有很好的线性和负载调节特性。
智能汽车制作实验报告
一、实验目的随着科技的不断发展,智能汽车已经成为汽车行业的重要发展方向。
本实验旨在通过设计和制作一款智能汽车,让学生深入了解智能汽车的工作原理、控制系统以及相关技术,提高学生的创新能力和实践能力。
二、实验原理智能汽车是一种集成了传感器、控制器、执行器等部件的汽车,能够通过感知周围环境,自主规划行驶路径,实现自动驾驶。
本实验以循迹小车为基础,通过摄像头采集图像信息,利用图像处理技术识别道路线,进而控制小车行驶。
三、实验器材1. 循迹小车模型车2. MC68S912DG128微控制器3. CMOS摄像头4. 电机驱动模块5. 舵机6. 电池7. 电源线8. 连接线9. 实验台四、实验步骤1. 硬件连接将MC68S912DG128微控制器、CMOS摄像头、电机驱动模块、舵机等硬件设备连接到循迹小车模型车上,确保各部件之间连接牢固。
2. 系统设计(1)系统分析:分析智能汽车的功能需求,包括循迹、避障、速度控制等。
(2)系统设计:根据系统分析,设计智能汽车的结构和控制系统。
(3)硬件电路设计:设计微控制器、摄像头、电机驱动模块、舵机等硬件电路。
(4)软件设计:编写微控制器程序,实现循迹、避障、速度控制等功能。
3. 系统调试(1)调试摄像头:调整摄像头角度,使其能够捕捉到道路线。
(2)调试循迹:调整循迹算法,使小车能够准确跟随道路线行驶。
(3)调试避障:调整避障算法,使小车能够避开障碍物。
(4)调试速度控制:调整速度控制算法,使小车能够稳定行驶。
4. 实验验证在实验台上进行实验,验证智能汽车各项功能的实现情况。
五、实验结果与分析1. 循迹实验:小车能够准确跟随道路线行驶,实现循迹功能。
2. 避障实验:小车能够检测到前方障碍物,并绕行通过。
3. 速度控制实验:小车能够根据设定的速度行驶,实现速度控制功能。
4. 系统稳定性实验:小车在行驶过程中,能够保持稳定的姿态,不会出现失控现象。
六、实验总结通过本次实验,我们成功制作了一款智能汽车,实现了循迹、避障、速度控制等功能。
循迹小车设计概述总结报告
循迹小车设计概述总结报告一. 引言循迹小车是指通过光电传感器感知地面上的黑线,并根据黑线的位置来调整车身方向,从而实现沿着黑线自动行驶的一种智能小车。
本篇报告旨在总结循迹小车设计的整体思路、实施过程以及遇到的问题与解决方案。
二. 设计思路循迹小车的设计主要包含以下几个关键要点:1. 感应模块选择选择合适的光电传感器作为感应模块,用于检测地面上的黑线。
常见的光电传感器有红外线传感器、RGB传感器等,可以根据实际需求选择适合的传感器。
2. 控制模块选择选择合适的控制模块,负责接收感应模块的数据,并控制小车的电机进行相应的运动。
常见的控制模块有单片机、树莓派等,可以根据需求和个人技术储备来选择。
3. 算法设计设计循迹算法,根据光电传感器的反馈数据,判断车身当前位置与黑线的位置关系,并根据判断结果来调整小车的行驶方向。
常见的算法有PID控制算法、模糊控制算法等,可以根据实际需求选择适合的算法。
4. 机械结构设计设计小车的机械结构,包括底盘、电机、车轮等。
确保机械结构的稳定性和可靠性,同时要考虑小车的大小、重量和外观等因素。
三. 实施过程在设计循迹小车的过程中,我们按照以下步骤逐步实施:1. 硬件搭建首先,搭建循迹小车的硬件系统,包括连接光电传感器、控制模块和电机等。
确保各个模块之间的连接正确无误,以及硬件系统的稳定性和可靠性。
2. 程序编写根据设计思路和需求,编写程序实现循迹小车的控制逻辑。
涉及到光电传感器数据的读取、算法的实现和电机控制等方面的内容。
在编写过程中,需要进行调试和测试,确保程序的准确性和稳定性。
3. 测试和优化在完成程序编写后,对循迹小车进行测试和优化。
通过实际测试,了解小车在各种情况下的表现,并根据实际情况对程序进行优化和调整,以提高小车的稳定性和自动化程度。
四. 遇到问题与解决方案在循迹小车设计的过程中,我们遇到了一些问题,但通过不断努力和寻找解决方案,最终都得到了解决。
以下是我们遇到的一些问题及解决方案的总结:1. 光照干扰在室外测试时,光照强度的变化会对光电传感器的检测结果产生影响。
循迹小车课设报告
循迹小车课设报告一、引言循迹小车作为自动控制领域的研究热点之一,具有很高的应用价值。
本文旨在介绍循迹小车的设计原理、硬件配置和软件实现,以及实验结果和分析。
二、设计原理循迹小车的设计原理基于反射光线的特性。
通过使用光敏传感器,可以感知地面上的光强度,从而判断小车应该如何行驶。
当地面上的光强度较高时,代表小车离开了黑色轨迹,需要调整方向。
当地面上的光强度较低时,代表小车仍在黑色轨迹上,可以继续沿着当前方向行驶。
三、硬件配置为了实现循迹小车的功能,需要以下硬件配置:1. 电机驱动模块:用于控制小车的速度和方向。
2. 光敏传感器模块:用于感知地面上的光强度。
3. 微控制器:作为控制中心,接收传感器的信号并控制电机驱动模块。
四、软件实现循迹小车的软件实现主要包括以下几个方面:1. 信号采集和处理:通过光敏传感器采集地面上的光强度信号,并对信号进行处理,得到小车应该采取的行动。
2. 控制算法:根据信号处理的结果,通过控制算法计算小车需要调整的方向和速度。
3. 电机控制:将控制算法得到的结果转化为电机的控制信号,控制小车的运动。
五、实验结果和分析在实验中,我们使用了一个简化的迷宫轨迹作为测试场景。
通过对循迹小车的实际测试,我们得到了以下结果和分析:1. 小车能够准确地沿着迷宫轨迹行驶,避免偏离轨迹。
2. 在遇到环形轨迹时,小车能够正确地判断出前进的方向,避免进入死循环。
3. 在遇到多个分支轨迹时,小车能够根据光强度的变化选择正确的分支。
六、总结通过本次循迹小车课设,我们深入了解了循迹小车的设计原理和实现方式。
循迹小车具有广泛的应用前景,可以在工业自动化、智能仓储等领域发挥重要作用。
同时,本次实验也展示了我们团队的合作能力和创新思维。
希望今后能够进一步完善循迹小车的性能,并将其应用于实际生产中。
以上就是本次循迹小车课设报告的内容,通过对循迹小车的设计原理、硬件配置和软件实现的介绍,以及实验结果和分析,我们对循迹小车有了更深入的了解。
循迹小车报告精选全文完整版
可编辑修改精选全文完整版创新制作循迹小车制作报告班级:学号:姓名:一、设计方案路面检测模块电路检测路面信息,区分黑色与白面,并形成相对应的高电平与低电平提供给单片机;单片机对路面循迹模块提供的高低电平进行分析,并形成相应的对策(直行、左转、右转和停止等),并将其转化成对应的电压输出给电机驱动模块;电机驱动模块根据单片机提供的电压信号驱动对应的电机,得到与对策相同的执行动作;电源模块电路为三个模块提供所需要的电。
电路框图如下图所示:电路框图二、路面检测模块工作原理一对光电开光的发射管不停的发射红外光,经过路面发射回来的被接受管接收到。
因为白色路面和黑线对光的反射不同,所以正对白色路面的光电对管的接收管接收到更多的红外光,而正对黑线的光电对管的接收管收到较少的红外光。
经过光电开关的接收电路将接收到红外光的多少转化为正相关的电流大小,并进一步转化成接收电路的输出电压(A点电压)的较小值和较大值。
输出电压的较小值和较大值进一步与一个居中的基准电压分别进行比较,对应比较器的输出端(C点)分别为高电平还是低电平,并进一步输出给单片机,同时对应指示发光管的不亮与亮。
路面循迹模块电路如下图所示:D1路面循迹模块电路三、单片机最小系统单片机最小系统包括了时钟电路和复位电路。
时钟电路为单片机工作提供基本时钟,复位电路用于将单片机内部各电路的状态恢复到初始值。
单片机是一个复杂的同步时序电路,为了保证同步工作方式的实现,电路应在唯一的时钟信号下严格地按时序进行工作。
时钟电路用于产生单片机工作所需要的时钟信号。
时钟信号的产生是在MCS-51系列单片机内部有一个高增益反相放大器,其输入端引脚为XTAL1,其输出端引脚为XTAL2。
只要在XTAL1和XTAL2之间跨接晶体振荡器和微调电容,就可以构成一个稳定的自己振荡器。
复位电路由一个按键、电解电容和电阻组成,它是使CPU 和系统中的其他功能部件都恢复到一个确定的初始状态,并从这个状态开始工作。
循迹小车课程设计报告
循迹小车课程设计报告一、课程背景随着科技的不断发展,机器人技术已经成为现代教育中的重要组成部分。
循迹小车作为机器人教育的一种形式,不仅可以帮助学生学习编程和机械原理,还可以培养学生的动手能力和创造力。
因此,设计一门循迹小车课程,对学生的综合素质培养具有重要意义。
二、课程目标1. 帮助学生了解循迹小车的基本原理和结构,掌握循迹小车的工作原理;2. 培养学生的动手能力和团队合作精神;3. 培养学生的创新意识和解决问题的能力;4. 培养学生的编程能力和逻辑思维能力。
三、课程内容1. 循迹小车的基本原理和结构通过讲解循迹小车的基本原理和结构,帮助学生了解循迹小车是如何工作的,包括传感器、电机、控制器等组成部分。
2. 循迹小车的制作与调试学生将分成小组,每个小组制作一辆循迹小车,并进行调试。
通过实际操作,学生将掌握循迹小车的制作过程和调试方法。
3. 循迹小车的编程学生将学习如何为循迹小车编写程序,包括控制小车的前进、后退、转向等动作。
通过编程,学生将提高他们的逻辑思维能力和解决问题的能力。
4. 循迹小车的比赛与应用在课程结束时,学生将参加循迹小车比赛,通过比赛,学生将展示他们的成果,并学会如何改进循迹小车的性能。
同时,学生还将学习循迹小车在实际生活中的应用。
四、课程教学方法1. 理论讲解通过课堂讲解,帮助学生了解循迹小车的基本原理和结构。
2. 实践操作学生将分成小组,进行循迹小车的制作、调试和编程。
通过实践操作,学生将更好地掌握课程内容。
3. 案例分析通过案例分析,引导学生思考循迹小车在实际生活中的应用,并激发学生的创新意识。
4. 比赛演示在课程结束时,学生将参加循迹小车比赛,通过比赛,学生将展示他们的成果,并学会如何改进循迹小车的性能。
五、课程评估1. 学生考核通过学生的课堂表现、课后作业和循迹小车比赛成绩等方面进行评定。
2. 教师评价教师将对学生的课堂表现、实践操作和项目成果进行评价,及时发现问题并给予指导。
(完整word版)智能循迹避障小车报告(word文档良心出品)
摘要:本智能识别小车以STC89C52单片机为控制芯片,以直流电机,光电传感器,超声波传感器,电源电路以及其他电路构成。
系统由STC89C52通过IO口,通过红外传感器检测黑线,利用单片机输出PWM脉冲控制直流电机的转速和转向,循迹由TCRT5000型光电对管完成。
一、系统设计1、小车循迹,避障原理这里的循进是指小车在白色地板上寻黑线行走,通常采取的方法是红外探测法。
红外探测法,即利用红外a在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地板时,发生漫反射反射光被装在小车上的按收管按收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光,单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。
红外探测器探测距离有限一殷最大不应超过3cm。
而避障则是通过超声波模块不断向前方发射超声波信号,通过接收反射回来的超声波信号,从而实现的避障。
当前方有障碍物时,超声波会向单片机串口发送一串数字,这些数字就是当前小车距离障碍物得距离。
当串口接收到信号时,会引发串口中断,单片机通过读取距离值,并且对此数值进行分析是不是距离小车很近,是的话就进行转向;否则继续循迹。
当小车遇到第一个障碍后,就计数一次,这样当遇到第二个障碍物时,小车就可以以不同的形式躲避障碍物了。
2、选用方案(1):采用成品的小车地盘,通过改装来完成任务;(2):采用STC89C52单片机作为主控制器;(3):采用7V电源经7805稳压芯片降压后为其他芯片及器件供电。
(4):采用TCRT5000型红外传感器进行循迹;(5):L298N作为直流电机的驱动芯片;(6):通过对L298N使能端输入PWM来控制电机转速和转向;3、系统机构框图如下所示:超声波模块主控制芯片STC89C52红外传感器直流电机L298N稳压电源模块电压比较器二、硬件实现及单元电路设计与分析1、微控制模块设计与分析微控制器模块我们采用STC89C52。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1.项目设计目的··12.项目设计正文··32.1.项目分析及方案制定··32.2.设计步骤及流程图··42.2.1.寻迹设计步骤··42.2.2.流程图··42.3.主要模块介绍··42.3.1.LM393·42.3.1.1 LM393的主要特点··42.3.1.2 LM393引脚图及内部框图··52.3.1.3 LM393 功能简介··52.3.2.89C2051·52.3.2.1 89C2051简介··52.3.2.2 89C2051 主要性能参数··52.3.2.3 89C2051 功能特性概述··62.4.电路设计及PCB绘制··62.4.1.电源电路··62.4.2.红外收发电路··62.4.3.电机驱动电路··72.4.4.单片机最小系统··72.4.5. 整体电路··82.4.6. PCB板的绘制··82.5. 成品展示··93.项目设计总结··94.参考文献··10智能寻迹小车——CDIO三级项目王君杰(电子信息工程1501 150070116)一、项目设计目的在科技飞速发展的今天,智能化的概念已经渗入到各行各业,自动控制系统也出现在生活的方方面面,早到工厂的机械化生产,近到目前的自动驾驶。
越来越多的领域涉及到电控制技术。
特别是使用单片机一类的MCU的控制,在生活中越来越常见。
因此,基于单片机控制的电路的学习和时间对于我们来说就显得尤为重要。
同时,对于单片机作为软件主控单元,结合模电数电的硬件电路支持的综合项目开发,也是作为大学生需要了解并且熟练运用的基础。
掌握了这些知识,对于我们以后的职业发展也有着莫大的帮助。
二、项目设计正文2.1、项目分析及方案制定首先对于“智能寻迹小车”这个标题而言,我们可以分为两个部分:小车和智能寻迹。
“小车”决定了硬件电路的大致构成:电源、电容、电阻、开关、电机、LED。
而“智能”则决定了一些高级电路的选用:MCU、传感器、电机驱动、电位器及一些IC。
其次,假如去掉“智能”两字,仅关注如何做成一个能够行驶的小车,那么电路的搭建将会变得尤为简单。
假如做一个“上电即跑”的小车,那么连开关都不需要,仅需要电源(1.5V干电池即可),两个电机(3V/100mA)和两个限流电阻按图一方式连接即可。
当然,这样的小车只能实现向一个方向前进,无法实现跑道的自动识别和转向。
不过,这个电路也是所有行驶工具的基础,所有的行驶工具,都是在这个电路的基础上按照想要实现的功能进行拓展开发。
接着让我们来到“智能”的环节。
所谓智能,也就是需要小车有人的思想,正如同课题所述——寻迹。
智能的小车需要具备自动识别跑道的能力。
同时,在采集到跑道信息后要做出相应的处理。
在我们这个课题中,也就是需要及时并准确转弯。
要实现这些功能,就需要更多的电子器件的支持。
通过表1我们可以看到不同功能所需要的不同元件。
表1 跑道信息处理电路器件列表通过表1我们可以发现我们本次的课题用到的器件还不是很多,电路也是比较简单,但是要把这些器件整合起来得到预期实现的功能也不是一件很容易的事情,特别需要我们的全局观和布局能力。
2.2、设计步骤及流程图2.2.1、寻迹设计步骤寻迹可以说是智能寻迹小车的核心,车做的好不好关键在于能不能按指定的路程行驶。
在我们本次的题目中使用的传感器是红外对管。
仅车的单侧来说,利用红外发射管发射红外线,当小车行驶在黑线上时由于红外管安装的位置处于白色跑道位置,因此红外接收管接收到红外信号,电压比较器获得红外对管的电信号后输出一个电平,再经过单片机进行处理输出到电使其转动。
反之,当小车偏移黑线,由红外对管检测到的信号通过电压比较器输出相反电平,再经过单片机的处理使电机停止转动。
拓展到两侧,车位于正中间,两边的红外对管没有检测到黑线,两轮都前进。
假如车向左偏,右侧的红外管检测到黑线,右轮停止转动,左轮依旧转动,于是车身回正,另一侧原理相同。
通过这样的控制系统,即可实现车的寻迹功能。
2.2.2、流程图通过对小车整个系统的分析,我们可以得到图2的流程图。
在我们后期的制作中,这个流程图可以为我们提供很大的参考价值。
可以看到,我们的小车是一个简易的闭环控制系统,通过传感器采集回的信息来对我们车的姿态进行调整,再通过控制小车两轮的差速来进行方向的控制,最终就能够实现小车沿着黑线行驶而不会一直向前。
2.3、主要模块介绍在本次的课题中,我们主要使用到的两个重要的器件是电压比较器LM393和单片机89C2051。
其中电压比较器作为信号处理的第一级电路,有着不可忽视的作用,而单片机则是整个系统的大脑,由它来决定小车什么时候前进,什么时候拐弯。
下面我们来了解一下这两个器件的具体信息。
2.3.1、LM3932.3.1.1、LM393主要特点:·工作电源电压范围宽,单电源、双电源均可工作,单电源:2~36V,双电源:±1~±18V;·消耗电流小,Icc=0.8mA;·输入失调电压小,V IO=±2mV;·共模输入电压范围宽,Vic=0~Vcc-1.5V;·输出与TTL,DTL,MOS,CMOS 等兼容;·输出可以用开路集电极连接“或”门;2.3.1.2、LM393引脚图及内部框图2.3.1.3、LM393 功能简介比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系):当“+”输入端电压高于“-”输入端时,电压比较器输出为高电平;当“+”输入端电压低于“-”输入端时,电压比较器输出为低电平;电压比较器的作用:它可用作模拟电路和数字电路的接口,还可以用作波形产生和变换电路等。
利用简单电压比较器可将正弦波变为同频率的方波或矩形波。
2.3.2、89C20512.3.2.1、89C2051简介2.3.2.2、89C2051主要性能参数·与MCS-51产品指令系统完全兼容·2k字节可重擦写闪速储存器·1000次擦写周期·2.7V-6V的工作电压范围·全静态操作0Hz-24Mhz·两级加密程序储存器·128X8字节内部RAM·15个可编程I/O口线·2个16位定时/计数器·6个中断源·可编程串行UART通道·可直接驱动LED的输出端口·内置一个模拟比较器·低功耗空闲和掉电模式2.3.2.3、89C2051功能特性概述AT89C2051 提供以下标准功能:2k字节Flash 闪速存储器,128 字节内部RAM,15 个I/O口线,两个16位定时/计数器,—个5向量两级中断结构,一个全双工串行通信口,内置—个精密比较器,片内振荡器及时钟电路。
同时,AT89C2051 可降至0HZ 的静态逻辑操作,并支持两种软件可选的节电工作模式。
空闲方式停止CPU 的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。
掉电方式保存RAM 中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。
2.4、电路设计及PCB绘制在分析完电路需要实现的功能和所需要的器件选型以后,我们要做的也就是最重要的一步:电路的设计。
一个电路方案最终能不能有效运行很大程度上取决于电路设计的质量。
当然我们首先是进行单个模块的电路设计,最后才将其进行整合。
整合的过程也是最不容出错的过程,可能一个很小的错误如电容反接就将导致整个电路的烧毁和瘫痪,更加严重的可能会对人身造成一定的威胁。
2.4.1、电源电路一个完整的电路要想工作,首先就要具备一个动力的源头——电源。
电源的设计方案多种多样,由简单要复杂。
一个复杂的电源电路需要整流、滤波、限幅等多种模块配合工作,从而实现高精度、高稳定的系统的运作,而对于我们的小车来说,不需要用到这么复杂的电路,我们选用的电源为1.5V的干电池,属于低压直流电源。
而因为需要给我们的单片机供电,因此直接与电路相连的方法是不可取的,查阅手册可以得知,我们选用的单片机工作电压为2.7-6V,于是我们使用2节干电池提供3V电压,为了使电源供电稳定,将为电源进行滤波从而得到更好的输入电压波形。
如图4所示,电容C5为100uf的低通滤波电容,用于滤除低频噪声;C1位高通滤波电容,用于滤出高频噪声。
2.4.2、红外收发电路红外收发电路相当于智能寻迹小车的“眼睛”。
自然,在本小车上,我们选用了两对红外收发管,各安装在车身中轴的两侧,用来检测车身的行驶位置。
图5为单独一对红外收发管的电路连接情况,另一对与其相同。
D3和D5分别为红外发射管和红外接收管,两个限流电阻R2和R8将通过红外管的电流限制在其工作范围内,防止电流过大而烧毁器件。
R6为可调电阻,调整其阻值来控制LM393的基准电压值,改变此值能够改变小车对黑线感应的灵敏度。
同是,在不同的光照环境和不同的黑线材料下,红外反射情况也有所区别,用可调电阻能做到应对环境变化的及时修正,使小车的适应性更加强大。
2.4.3、电机驱动电路电机驱动电路可以说是小车的动力所在。
一些高端智能车采用的电机驱动电路往往十分复杂。
不仅要考虑到驱动板的安装结构,对于其性能的要求也十分高,而一些竞速类的车更是需要最优的器件布局,稳定的电流输出,良好的散热系统,合适的板子结构等等元素相配合。
就我们这一个小车而言,要不了如此高的标准,因此电路的设计也就更加简单明了。
当然也不像图1所示的那样简单。
考虑到我们是用单片机控制,而单片机普通I/O口的电流达不到我们电机所需要的工作电流,所以我们就需要特殊处理。
电路图如图6所示。
图中我们用三极管进行电流放大再接入电机,就可以有效地控制电机运转。
通过单片机I/O口输出高电平,三极管导通,电机转;I/O口输出低电平,三极管截止,电机停转。
C2和C3均为滤波电容,对电机两端的电压进行滤波,滤除高频噪声,使电机的输出更加稳定。
同时为了美观和调试的方便,我们在驱动电路中再接上两个发光二极管,利用单片机控制其亮灭。
左轮转,D1亮,反之灭;右轮转,D2亮,反之灭。
再车行驶的过程中我们能更清晰地观察到跑道的识别情况。
2.4.4、单片机最小系统最后一个模块也同样是最重要的模块——单片机最小系统。