摩擦及润滑基础知识
第一章 摩擦学基础知识(润滑)
三、润滑脂及其主要性能 • 组成:基础油+稠化剂+添加剂+澎润土 • 润滑脂的性能指标主要有针入度、滴点、析 油量、机械杂质、灰分、水分等
1)针入度 软硬程度 H(mm)/0.1
h
阻力大小、流动性强弱
标准锥体,150g,25 ℃ ,5s
2)滴点----固体 流体的温度转折点,表示耐热性 3)防水性能; 4)静音性能; 5)种类 A)钙基脂:抗水,适于轻中重载荷; B)钠基脂:高温,但不抗水; C)锂基脂:多用途,最好; D)铝基脂:高度耐水性,航运机械 E)其它特种润滑脂(特种合成油、添加剂、 稠化剂等)
五、添加剂 • 作用越来越大,在润滑脂、合成油中不加添加剂,
六、对润滑剂的要求
较低的摩擦系数 良好的吸附和渗入能力 有一定的黏度 有较高的纯度和抗氧化性 没有腐蚀性 有良好的导热性和较大的热容量
七、润滑装置 单体供油装置 油壶, 油杯,
油枪
油杯
压配式油杯
滴油式油杯
油芯式油杯
油环
油链
• 集中供油装置 a) 简单的少数点位集中供油 b) 设备中心、车间及工厂级集中供油 泵站+(稳压+冷却)+过滤+分配器+工位润滑
η t = η0 ( t0 / t )
m
2、润滑油的粘压特性
• 粘度和压力的关系近 似表示为:
η = η0 e
ap
粘温关系曲线
3、油性—反映在摩擦表面的吸附性能 油性 (边界润滑和粗糙表面尤其重要) 4、闪点—瞬时燃烧和碳化的温度; 闪点 燃点—长时间连续燃烧的温度(高温性能); ; 燃点 5、凝点—冷却,由液体转变为不能流动的临界 凝点 温度; (低温启动性能) 6、极压性(EP), 在重压下表面膜破裂的最大 极压性(EP) 接触载荷,用PB表示,(极限载荷) 7、酸值—限制润滑剂变质后对表面的腐蚀 酸值
摩擦学基础知识
(1)表面被污染,摩擦系数主要取决于材料 组合、表面特征和环境条件。
(2)粘着起作用,摩擦系数开始上升,假如 微凸体断裂,产生旳磨粒将产生犁沟作用, 使摩擦系数升高。
(3)滑动表面旳磨粒数增长,犁沟作用增大, 摩擦系数急剧上升。
(4)进入和离开界面旳磨粒数相等时,摩擦 系数保持不变,即稳定摩擦状态。
摩擦学基础知识
概述
1. 摩擦旳定义:
2. 两个接触物体表面在外力 3. 作用下相互接触并作相对 4. 运动或有运动趋势时,在 5. 接触面之间产生旳切向运 6. 动阻力称为摩擦力,这种 7. 现象就是摩擦。
2 . 摩擦旳分类
1. 摩擦按摩擦副运动状态可分为:
静摩擦:两物体表面产生接触,有相对运动趋势但 还未产生相对运动时旳摩擦。 动摩擦:两相对运动表面之间旳摩擦。 2. 按相对运动旳位移特征分类:
(2)具有牵引力旳滚动---滚动元件受到法向 载荷和牵引力旳作用产生旳滚动形式。
(3)伴随滑动旳滚动---几何形状造成接触面 上切向速度不等时,必将伴有滑动。
3. 滚动摩擦系数
(1)有量纲滚动摩擦系数: 驱动力矩与法向载荷之比,即: μ=FR/W=W´e/W=e
(2)无量纲滚动摩擦系数:
称为滚动阻力系数,数值上等于驱动力矩 在单位距离所作旳功与法向载荷之比,即:
(4)无法解释脆性材料具有旳和金属材料相 同旳摩擦性能。
(5)粘着理论很好解释了“相溶性较大旳金 属之间轻易发生黏着,摩擦系数较大”现象.
对于大多数金属, τb =0.2σs ,计算旳摩擦系数 为 0.2左右.正常大气中测旳摩擦系数都高达 0.5 ,在真空中更高.
5.机械—粘着—犁沟综合作用理论
(了解)当刚性滚轮沿弹性平面滚动时,在 一整周内滚轮走过旳距离要不不小于圆周长。 (了解)当弹性滚轮沿刚性平面滚动时,在 一整周内滚轮走过旳距离要不小于圆周长。
润滑基础知识
润滑(油)剂的分类和作用
3、润滑油的作用 (1)降低摩擦 在摩擦面之间加入润滑剂,形成润滑油膜, 避免金属直接接触造成摩擦,从而降低摩擦系数, 减少摩擦阻力,减少功率损失。 (2)减少磨损 摩擦面间具有一定强度的润滑膜,能够支撑 负荷,避免或减少金属表面的直接接触,从而可 减轻接触表面的塑性变形、熔化焊接、剪断再粘 接等各种程度的粘着磨损。
磨损的类型 : 粘结:摩擦产生的热量使接触面熔和、焊接 研磨:接触面之间有固体颗粒(磨粒)存在 腐蚀:同环境物质发生反应,然后脱落 疲劳:滚动接触时表面疲劳 气蚀:气泡的迅速形成和破裂造成压力的急 剧变化,冲击金属表面
润滑的意义
3、润滑 形成一个更易于剪断的润滑膜(油膜),从 而减少或避免两个接触表面的摩擦和磨损。 4、润滑剂 介于两个相对运动的物体之间,有减少两物 体因接触而产生的摩擦的功。 5、润滑(油)剂的主要作用 减少摩擦 减少磨损 冷却系统 防止生锈 清洁系统 密封和缓冲
润滑(油)剂的分类和作用 (3)冷却降温
润滑剂能够降低摩擦系数,减少摩擦热产生, 而且能够带走产生的摩擦热。 (4)密封隔离 润滑剂特别是润滑脂,覆盖于摩擦表面或其 他金属表面,可隔离空气、湿气或其他有害介质, 保护摩擦面。 (5)冲洗清净 润滑剂在润滑过程中不断流动,可及时冲刷 走摩擦表面上的磨屑及污物,防止发生磨粒磨损。 (6)动力传递和防锈防腐
润滑(油)剂的特点和质量指标 (2)汽轮机油特点
在汽轮机组中,汽轮机油是循环使用的,由 于循环速度较快次数较多,要求油品上的使用年 限较长,并与空气和及金属接触,因此,要求汽 轮机油有良好的抗氧化性,在长期的运转中生成 的沉淀少,酸值增加不显著。 <1>极好的分水性能,能快速彻底分离因各种原因 进入系统的水分。 <2>优良的氧化安定性,有效延长使用寿命。 <3>优良的抗泡性和空气释放性能。 <4>优良的防锈、防腐性,防止设备的锈蚀
金属加工润滑基础知识之一摩擦学
金属加工润滑基础知识之一摩擦学金属加工润滑基础知识之一摩擦学摩擦学的三个方面:摩擦、磨损、润滑摩擦:相互接触的物体在相对运动时或具有相对运动的趋势时,接触面间发生阻碍相对运动的现象,称为摩擦。
所产生阻碍其相对运动的阻力称之为摩擦力。
特征:摩擦阻力、摩擦热量、材料磨损摩擦种类:(按摩擦副表面的润滑状态分类)1、干摩擦:在没有任何润滑剂的条件下,两物体表面间的摩擦。
2、液体摩擦:又称流体摩擦。
是发生在液体内部的一种摩擦现象,包括纯液体流动时的摩擦和液体将金属表面隔开时的摩擦。
一般来讲,这层液体的厚度在2微米以上。
3、边界摩擦:当固体表面不是被一层液体隔开,而是被一层很薄的吸附油膜隔开,或是被一层具有分层结构和润滑性能的边界膜隔开时的摩擦,称为边界摩擦。
这层膜的厚度一般在0.1-1微米以下。
4、混合摩擦:物体相对运动时,由于它的表面粗糙度不同,当凸起较高的部分发生边界摩擦时,凸起较低的部分处于液体摩擦状态或半液体摩擦中,当凸起较低的部分处于边界摩擦时,凸起较高的部分因挤压较剧烈会导致边界膜破烈,其表面直接接触发生局部干摩擦、半干摩擦。
磨损:定义:相互接触的物体在相对运动时,表层材料不断发生的损耗的过程,或者产生残余变形的现象。
磨损的三个阶段:磨合、稳定磨损、急剧磨损磨损的类型:1、粘附磨损:接触表面相对运动时,由于分子间的吸引力作用而产生粘附连接,致使材料从表面脱掉的磨损。
2、磨料磨损:接触表面相对运动时,由于硬质颗粒或较硬表面上的微凸体,在摩擦过程中的“梨削”“切削”“磨削”作用引起表面擦伤,表层材料脱落或分离出碎屑和其他磨粒。
3、疲劳磨损:两个相互作用的摩擦表面,由于表层材料疲劳,产生微观裂纹并分离出磨粒和碎片剥落,形成凹坑,造成磨损。
4、腐蚀磨损:摩擦副在第三介质的作用下发生的腐蚀磨损,比如:润滑油酸化变质产生的酸性油泥;手汗;潮湿空气中的氧、二氧化硫、硫化氢等等。
磨损的影响因素:1、润滑对磨损的影响(降低摩擦系数,液体润滑时能防止粘附磨损,洁净润滑能减少磨料磨损;有防锈性能的润滑剂能减少腐蚀磨损)2、材料性能对磨损的影响(材料的硬度和韧性;硬度决定表面抵抗能力,过高硬度易产生碎屑,产生磨料磨损。
摩擦与润滑基本知识
摩擦与润滑基本知识1.摩擦产生的原因:当接触表面粗糙度较大时,接触表面凹凸不平处相互啮合,摩擦力的主要因素表现为机械啮合;当接触表面粗糙度较小时,两接触面的分子相互吸引,摩擦力的主要因素表现为表面分子的吸引力。
2.根据物体的表面润滑程度,滑动摩擦可分为干摩擦、液体摩擦、界限摩擦、半液体和半干摩擦等。
2.1干摩擦:在摩擦表面之间,完全没有润滑油和其他杂质,摩擦表面之间作相对运动时所产生的摩擦叫做干摩擦。
例如制动闸瓦与制动轮作相对运动时即产生干摩擦。
2.2液体摩擦:在两个滑动摩擦表面之间,由于充满润滑剂,因而表面不发生直接接触,摩擦发生在润滑剂的内部,叫液体摩擦。
例如空气压缩机的主轴瓦。
2.3界限摩擦:两个滑动摩擦表面之间由于润滑剂供应不足,无法建立液体摩擦,只能依靠润滑剂中的极性油分子在摩擦表面形成一层极薄的油膜,属于液体摩擦过渡到干摩擦的最后界限。
3.零件磨损的主要形式:3.1磨粒磨损:有硬质微粒进入摩擦表面间时,摩擦表面被硬粒切下或擦下切屑而形成的刮伤。
3.2刮研磨损:由摩擦表面的微观不平度而发生的磨损,主要是较硬的一面对较软的一面形成切削。
3.3点蚀磨损:表面上有重复的接触应力,在表面上引起微观裂痕,这些裂痕逐渐扩大,形成麻斑式的剥落。
3.4胶合磨损:摩擦表面润滑油不足,当滑动速度较高、压强过大时,局部的摩擦变形热量和塑性变形热量,使较软的材料局部熔化,粘在另一表面上而被撕下来的磨损。
3.5塑性变型:表面发生了塑性变形的一种摩擦。
3.6金属表面的腐蚀:金属表面层氧化,变成松软多孔,易于脱落,丢失耐磨强度的状态。
实例一,摩擦的规律:同类纯金属间的摩擦因数比异类纯金属间和同类合金间的摩擦因数大得多。
4.影响磨损的因素和减小磨损的途径4.1润滑:轴径与轴瓦建立液体摩擦的必要条件是a、合适的间隙配合,确保油膜形成;b、润滑油充足,具备必要的压力和速度;c、轴径要有足够的转速;d、轴径与轴承配合表面的加工精度要适当;e、注油孔和油槽要设计在轴承承载区以外。
摩擦与润滑基础知识
摩擦与润滑基础知识目录一、摩擦学概述 (3)1. 摩擦定义及分类 (4)2. 摩擦现象产生原因 (5)3. 摩擦学研究内容 (6)二、润滑基础 (7)1. 润滑概念及作用 (8)2. 润滑剂的种类与选择 (9)3. 润滑剂的性能指标 (11)三、摩擦与润滑原理 (13)1. 摩擦原理 (14)(1)干摩擦与湿摩擦 (15)(2)静摩擦与动摩擦 (16)(3)摩擦系数 (17)2. 润滑原理 (17)(1)液体润滑理论 (18)(2)边界润滑理论 (19)(3)混合润滑理论 (20)四、摩擦与润滑影响因素 (21)1. 材料性质影响 (22)2. 载荷影响 (23)3. 速度影响 (24)4. 温度影响 (24)5. 环境影响 (25)五、摩擦与润滑在机械设备中的应用 (26)1. 机械设备中的摩擦现象分析 (28)2. 润滑系统在机械设备中的作用 (29)3. 典型机械设备的润滑设计实例 (30)六、摩擦与润滑的试验方法及设备 (31)1. 摩擦试验方法及设备 (32)2. 润滑试验方法及设备 (33)3. 实验结果分析与评价 (34)七、摩擦与润滑的故障诊断及维护保养 (35)1. 摩擦故障类型及诊断方法 (36)2. 润滑系统故障分析及处理 (38)3. 设备维护保养策略与建议 (39)八、摩擦与润滑的未来发展趋势 (41)1. 新材料在摩擦与润滑领域的应用 (42)2. 智能润滑技术的发展趋势 (43)3. 绿色环保理念在摩擦与润滑领域的应用前景 (44)一、摩擦学概述摩擦学是研究摩擦现象及其产生机理、摩擦过程中的物理和化学变化、摩擦性能和润滑技术的一门科学。
它是机械工程、材料科学、物理学和化学等多个学科的交叉领域。
在现代工程实践中,摩擦学对于提高机械效率和可靠性、节约能源、减少磨损和延长设备寿命等方面具有至关重要的作用。
摩擦是一种普遍存在的物理现象,任何相互接触的物体在相对运动时都会产生摩擦。
润滑知识
润滑知识(一)一、润滑的定义用润滑剂减少(或控制)两摩擦面间的摩擦与磨损或其他形式的表面破坏的方法叫润滑。
二、润滑剂的主要作用1、降低摩擦在摩擦面之间加入润滑剂,形成润滑油膜,避免金属直接接触造成摩擦,从而降低摩擦系数,减少摩擦阻力,减少功率损失。
2、减少磨损摩擦面间具有一定强度的润滑膜,能够支撑负荷,避免或减少金属表面的直接接触,从而可减轻接触表面的塑性变形、熔化焊接、剪断再粘接等各种程度的粘着磨损。
3、冷却降温润滑剂能够降低摩擦系数,减少摩擦热产生,而且能够带走产生的摩擦热。
4、密封隔离润滑剂特别是润滑脂,覆盖于摩擦表面或其他金属表面,可隔离空气、湿气或其他有害介质,保护摩擦面。
5、阻尼减震润滑剂能将冲击振动的机械能转变为液压能,起到减缓冲击,吸收噪音的作用。
6、冲洗清净润滑剂在润滑过程中不断流动,可及时冲刷走摩擦表面上的磨屑及污物,防止发生磨粒磨损。
三、润滑油的主要理化指标(一)、润滑油的流动性能:粘度、粘度指数、倾点和凝点1、粘度Viscosity:当润滑油受到外力作用而发生相对移动,在油分子之间产生阻力,使润滑油无法进行顺利流动,其阻力的大小称为粘度。
粘度值随温度的升高而降低。
粘度的度量方法分为绝对粘度和相对粘度两大类。
绝对粘度分为动力粘度、运动粘度两种;相对粘度有恩氏粘度、赛氏粘度和雷氏粘度等几种表示方法。
2、粘度指数(Viscosity index)粘度指数是表示油品随温度变化这个特性的一个约定量值。
粘度指数越高,表示油品的粘度随温度变化越小。
一般以VI表示。
3、倾点和凝点(Pour point and Solidification point)倾点是在规定的条件下被冷却的试样能流动时的最低温度,以℃表示。
凝点是试样在规定的条件下冷却至停止移动时的最高温度,以℃表示。
倾点或凝点是一个条件试验值,并不等于实际使用的流动极限。
但是,倾点或凝点越低,油品的低温性越好。
(二)、安全性能1、氧化安定性(Oxidation stability)润滑油在加热和金属的催化作用下,抵抗氧化变质的能力,称为润滑油的抗氧化安定性。
润滑基础知识
润滑基础知识一、概述:机器运转就有摩擦,有摩擦就有磨损。
润滑就是降低摩擦,减少磨损的必要手段。
要想能够正确使用润滑剂,使之发挥最大工作效果。
必须了解机器的摩擦状态、磨损机理、工作情况和工作环境。
润滑工作者必须具备摩擦和磨损的基本知识。
根据实际情况对症下药,选择最佳的润滑剂,最佳的供油方式,提供合理的维护方法。
实现我们“维护为主,修理为辅”的指导方针。
学好我们设备的“保健医生”。
二、摩擦1.摩擦:两个相互接触物体在外力作用下发生相对运动或具有相对运动趋势时,在接触间产生切向的运动阻力,叫摩擦力,这种现象叫摩擦。
例:轴与轴承、齿轮啮合、链条链机、皮带与皮带机等。
2.摩擦的害处:(1).消耗大量的能量。
(2).摩擦副严重磨损。
(3).产生热量。
3.影响摩擦系数的因素:1)表面氧化膜对摩擦系数的影响。
2)材料性质对摩擦系数的影响。
3)载荷对摩擦系数的影响4)滑动速度对摩擦系数的影响。
5)温度对摩擦系数的影响。
6)表面粗糙度对摩擦系数的影响。
三、磨损1.磨损:是固体与其他物体或介质相互间发生机械作用时其表面的破坏程度。
导致机械零件损坏和实效的三个原因:(1)磨损(2)腐蚀(3)断裂2.磨损过程:1)正常的(自然的)磨损。
(机器启动前盘车,形成油膜)2)意外(过早的或事故的)磨损。
(一般是润滑不良引起的)3.运动副磨损分为三个阶段:1)初期磨损阶段(磨合期)2)稳定磨损阶段(磨损速度较慢和比较恒定的)3)加速磨损阶段。
(间隙增大,表示形状的改变以及疲劳磨损)4.影响磨损的因素:1)润滑对磨损的影响。
(润滑是向磨损、摩擦斗争的一个有力措施)2)材料对磨损的影响。
3)表面加工质量对磨损的影响。
(表面粗糙度)机件表面粗糙度对抵抗腐蚀磨损的能力有重要的影响。
表面粗糙度凹谷越深,腐蚀磨损越大。
4机件工作条件对磨损的影响a. 机械的受力性质。
包括载荷种类、大小和方向。
b. 速度特征。
包括转速的高低、方向、变速、正反转、开启停。
设备润滑基础知识
精选课件
2016年11月3日
1
主要内容
一、润滑理论基础 二、润滑剂选用原则 三、设备润滑方式及标准 四、设备润滑故障分析 五、设备润滑常见误区
精选课件2Fra bibliotek1、润滑理论基础:
1.1磨擦按润滑状态分类:
干摩擦:既无润滑又无湿气的摩擦,金属间的摩擦系数达0.3~1.5,磨 损严重,发热很多,寿命相对很短。 流体摩擦(流体润滑):两相对运动表面间被一层具有压力的流体完全隔 开的摩擦。它的摩擦阻力很小,只与流体内部的分子运动阻力(即黏 度)有关。摩擦系数约0.01~0.001或更小,摩擦损耗功率小,几乎没有 磨损,是一种非常理想的摩擦状态。 边界摩擦(边界润滑):在摩擦表面间存在一层即具有润滑性能,又 能吸附在表面上的极薄的边界膜(一般在0.1um以下),使其处于干摩 擦和流体摩擦的边界状态。摩擦阻力的大小不取决于润滑剂的黏度, 而与表面的吸附性质和边界膜有关。摩擦系数一般为0.15~0.3,能比较 有效的降低摩擦阻力和减轻磨损。
精选课件
3
1.1.1边界膜按结构形式
a、吸附膜:润滑剂中的极性分子靠分子力吸附在金属表面上,形成定向排列 的分子栅,亦称为物理吸附膜。形成膜即可以是单分子层,也可以是多分子层。 分子间的内聚力使吸附膜具有一定承载能力,能有效的防止两摩擦表面直接接 触,构成吸附膜之间的摩擦。这种边界膜的润滑性能通常称润滑油的油性,在 温度、速度和载荷不太高的情况下极易形成并起作用。 此外润滑剂中的活性分子靠离子键吸附在金属表面上,形成另一种熔点低、剪 切强度小的化学吸附膜,可防止粘着和降低摩擦力。 在重载、高温时吸附膜很容易破裂,使金属摩擦面直接接触。 b、反应膜:在润滑剂中添加硫、氯、磷等与金属表面进行化学反应生成的膜, 称为反应膜,它的熔点高、剪切强度和摩擦系数较低,主要用在重载、高滑动 速度和高温作条件下。
润滑基础知识
重要性—血液
保持架
滚子
外 圈 润滑脂
4
前言/PREFACE
对于机械设备而言,摩擦通常将造成能量利 用效率的降低,而磨损是机械设备损坏或报 废的主要原因。因此通过各种技术手段降低 摩擦、抑制或减小磨损是设备运行及维护的 首要问题。
润滑是降低摩擦、减小或避免磨损的最 有效技术,其对设备的安全高效运行, 提高生产效率具有至关重要的影响。润 滑通常是通过使用恰当的润滑剂来实现 5 的。
润滑与摩擦的基本知识 基础油简介及分类标准 润滑剂添加剂概述 润滑产品作用及性能指标
8
01
润滑与摩擦的基本知识
9
润滑与摩擦的基本知识
摩擦 几个重要 概念
相互接触的物体在相对运动时或具有相对运动趋势时, 接触面间所产生阻碍其相对运动的阻力称之为摩擦力, 发生此现象称之为摩擦。 相互接触的物体在相对运动时,表层材料不断发生损耗 的过程或者产生残余变形的现象。
前言/PREFACE
工业是骑在10微米厚的油膜上
间隙尺寸颗粒 能够造成更多 的磨损!
6
前言/PREFACE
润滑理念
润滑是设备管理和维修人员所能把握的最大机 会! -- 你不能改变设备的设计、操作规程、材质 等,但你能控制或改变你的润滑剂!
10 微米油膜
7
目录/Contents
01
02 03 04
摩擦阻力减缓磨损的技术措施。一般通过润滑剂来达到润滑的目的。
随着现代工业的发展,润滑问题显得更为重要,现代设备向着高精度、高效率、 超大型、超小型、高速、重载、节能、可靠性等方面发展,导致机械中摩擦部分的工 况更加严酷,合理润滑变的极为重要。实践证明:“盲目的使用润滑材料,光凭经
验做润滑是不行的,必须掌握摩擦、磨损、润滑的本质和规律,实行严格科 学的管理。” 因润滑不当。左图:齿 轮箱结焦;右图:齿轮 断齿,“因此,润滑剂 的选择尤为重要。”
润滑基础知识培训课件
润滑基础知识培训课件目录一、润滑基础理论 (2)1.1 润滑油的作用与分类 (3)1.2 润滑油的性能指标 (4)1.3 润滑系统的组成与功能 (6)二、润滑材料与选择 (7)2.1 常用润滑油脂的种类与特性 (8)2.2 润滑油脂的选择原则与方法 (10)2.3 不同工况下的润滑材料选择 (11)三、润滑装置与维护 (12)3.1 润滑装置的类型与选用 (14)3.2 润滑装置的日常维护与保养 (15)3.3 润滑装置的故障诊断与排除 (15)四、润滑油品的监测与质量控制 (17)4.1 润滑油品的常规检测项目 (18)4.2 润滑油品的质量控制标准 (18)4.3 润滑油品的替代与升级 (20)五、润滑管理与安全 (22)5.1 润滑油品的管理制度与流程 (23)5.2 润滑系统的安全操作与维护 (24)5.3 润滑事故的处理与预防 (25)六、案例分析 (27)6.1 润滑系统故障案例分析 (29)6.2 润滑油品选用与使用案例分析 (30)6.3 润滑管理与安全案例分析 (31)一、润滑基础理论润滑概述:润滑是机械设备中不可或缺的一环,旨在减少摩擦、降低磨损、防止损坏和提高设备性能。
良好的润滑是确保机械设备正常运行和延长使用寿命的关键因素。
润滑原理:润滑原理主要包括液体润滑、边界润滑和干摩擦润滑。
液体润滑是通过润滑油膜将相对运动件之间完全隔开,减小摩擦和磨损;边界润滑则是润滑油在摩擦表面形成边界膜,起到润滑作用;干摩擦润滑则是在特定条件下,如高温或高负荷,无法形成有效的润滑油膜,需要通过其他方式如固体润滑材料来减小摩擦。
润滑油的作用:润滑油在机械设备中扮演着多重角色。
它起到润滑作用,减少运动部件之间的摩擦和磨损;同时,还能起到冷却、降温作用,通过油的循环流动将摩擦产生的热量带走;此外,润滑油还能起到密封、防锈和清洁等作用。
润滑剂的种类与选择:根据机械设备的运行要求和工作环境,选择合适的润滑剂至关重要。
润滑基础知识培训
闪点、倾点及凝点
闪点
油品在规定条件下加热,其蒸气 与空气混合后遇明火发生短暂闪 光的最低温度,是油品安全性的
重要指标。
倾点
油品在规定的试验条件下,被冷却 的试样能够流动的最低温度,反映 油品低温流动性。
凝点
油品在规定的试验条件下,被冷却 的试样油面不再移动时的最高温度 ,是评定油品低温流动性的指标。
深入剖析了润滑系统的构成, 包括油箱、油泵、滤清器、冷 却器等部件的作用及工作原理 ,增强学员对润滑系统的整体 理解。
结合实际应用案例,探讨了润 滑技术在机械设备中的重要作 用,提高了学员解决实际问题 的能力。
学员心得体会分享
知识体系建立完善
通过本次培训,我对润滑基础知 识有了更系统、更全面的了解, 为今后的工作和学习打下了坚实
选择合适的润滑油品
根据设备的工作条件和要求,选择适合的润滑油品,确保良好的润滑 效果。
保持润滑系统清洁
定期清洗润滑系统和更换滤芯,防止杂质和污染物进入系统,影响润 滑效果。
定期检查油位和油品质量
保持适当的油位,避免过高或过低对设备造成不良影响;定期取样化 验油品质量,确保油品符合使用要求。
掌握正确的加油和换油方法
按照规范操作进行加油和换油,避免混油和污染。
05 故障诊断与排除方法分享
常见故障类型及原因分析
润滑不足
由于润滑剂不足或润滑剂选择不当,导 致摩擦副表面不能形成完整的油膜,从
而引起磨损或烧。
润滑系统堵塞
由于杂质、水分或氧化物等污染物进 入润滑系统,导致油路堵塞,影响润
滑效果。
润滑系统泄漏
由于密封件损坏、管路破裂或接头松 动等原因,导致润滑剂泄漏,造成资 源浪费和环境污染。
第九章 润滑油的生产
MVI-60,MVI-75,MVI-100, MVI-150,MVI-200,MVI300,MVI-500,MVI-600, MVI-750,MVI-900以MVI90BS,MVI125/140BS和 MVI-200/220BS三个光亮油。
的表面后者是主要的。
▪ (二)摩擦产生的现象
▪ 摩擦主要产生消耗动力、摩擦发热、物件磨损等三种现象。
▪ (三)摩擦和润滑的类型
▪ 摩擦和润滑的类型主要有:干摩擦;液体摩擦(润滑);流 体动力润滑;弹性流体动力润滑;边界润滑;极压润滑等。
▪ (四)润滑的作用
▪ 在金属表面的润滑油起到如下作用:(1)润滑作用,有效 地克服由于摩擦产生的三种现象;(2)冷却作用,将机械 能转化的热能带走或冷却;(3)冲洗作用,将磨损产生的 金属碎屑或其它固体杂质冲洗带走;(4)密封作用,防泄 漏、防尘、防窜气;(5)保护作用,防锈、防尘;(6)减 震作用,即起缓冲作用;(7)动能传递作用,如液压系统 和遥控马达及摩擦无级变速等。上通用的SAE黏度 分类和API性能分类。
内燃机油类别及牌号
分类方法
黏度分类(牌号 )
名称
单级油 多级油
性能分类(分级) 汽油机油 柴油机油 船用柴油机油
牌 号(分级)
20、30、40、50 5W、10W、15W、20W 5W/20、5W/30、10W/30 10W/40、15W/40、20W/40 SA、SB、SC、SD、SE、SF CQ、CB、CC、CD ZA、ZB、ZC、ZD
>60
-
分类
其它要求及用途
黏度牌号
《润滑基础知识》课件
总结
1 润滑基础知识的重
要性
2 润滑践的价值
性能优良的润滑剂和正
润滑是维护各种机械设
确的润滑方法对润滑效
备正常运行的重要保障,
果具有重要的影响,而
了解润滑基础知识对提
润滑实践需要不断探索
高机械的使用寿命和运
和实践。
行效率非常重要。
3 未来润滑发展的趋
势
润滑技术与工业技术的 发展紧密相连,随着新 工艺、新改进的润滑剂 不断出现,润滑技术的 应用和研究将越来越重 要。
润滑维护
1
润滑维护的重要性
好的润滑维护可以保护机械免受磨损和腐蚀,延长机械的使用寿命。
2
润滑维护的方法
润滑维护的方法包括研究润滑性能、安全储存、添加维护、满足使用要求等。
润滑实践
润滑方法的演示
演示不同部件的润滑方法,如轴承、齿轮等。
润滑技巧的讲解
讲解润滑时需要注意的技巧和注意事项,如选用 适当的润滑剂、控制润滑膜厚度等。
2 润滑脂的性能
润滑脂的物理和化学性能对润滑效果有重要影响,主要包括减摩性、抗磨性、防锈性和 防水性等。
润滑油
1
润滑油的分类
按粘度等级可以分为SAE粘度等级,按基础油可以分为矿物油、合成油和生物油等, 按用途可以分为汽车用润滑油、工业用润滑油。
2
润滑油的特性
润滑油的特性包括黏度、黏度指数、闪点、凝点、氧化安定性等。
润滑的目的
润滑的目的是降低机械能损失,提高运转效 率和使用寿命。
润滑剂
润滑剂的种类
目前润滑剂的种类非常多,有矿物油、合成油、 液体蜡、固体润滑材料、添加剂等。
润滑剂的选择
选择润滑剂应根据物料的性质、使用环境、工作 条件和润滑效果等因素来决定。
润滑的基本知识
润滑第一节、润滑的基本知识一、润滑的作用润滑的作用有以下几个:(1)减少摩擦和磨损。
由于相对运动两表面之间加入润滑剂,可以尽量减少甚至不接触。
(2)设备加入润滑剂后,可以起到冷却的作用。
(3)设备加入润滑剂后,可以起到防止锈蚀的作用。
(4)设备加入润滑剂后,可以起到冲洗污垢的作用。
二、对润滑材料的要求(1)润滑材料要有较低的摩擦系数。
(2)润滑材料要有良好的吸附能力和渗入能力,以便渗入摩擦副微小的间隙内,并牢固的粘附在摩擦表面上。
(3)润滑材料要有一定得内聚力(即粘度),以便抵抗压力,不得被挤出而形成油膜。
(4)润滑材料要有较高纯度和抗氧化性能。
(5)润滑材料要有密封洗涤的作用、较好的导热能力与较大的热容量。
三、润滑的分类润滑按摩本质分为四类:(1)液体摩擦润滑。
两摩擦面被润滑剂隔开,比接触。
(2)半液体摩擦润滑。
两摩擦面部分突出高峰有接触。
(3)半干摩擦润滑。
两摩擦面的部分凹谷有润滑剂。
(4)干摩擦润滑。
两摩擦面间基本没有润滑剂。
设备润滑的目的就是保摩擦副达到半液体摩擦润滑,并力争达到液体摩擦润滑的要求。
四、润滑方式的分类1、按对摩擦副供油的性质分,润滑方式有:(1)无压润滑与有压润滑。
无压润滑石靠自重供油,有压润滑时靠压力供油。
(2)间隙润滑与连续润滑。
间隙润滑与连续润滑的区别在于供油是否连续。
(3)流出润滑与循环润滑。
流出润滑与循环润滑的区别在于供油是否回复循环。
(4)单独润滑与集中润滑。
单独润滑与集中润滑区别在于每个润滑点是否独立供油。
2、按润滑装置分,润滑的方式有(1)油杯式润滑。
油杯式润滑又分为旋盖式、压注式、油芯式、针阀式润滑等。
油杯式润滑适用于相对速度不大、摩擦产生的热量不多、精度要求不太高的机械,如起重、矿山、建筑等机械。
(2)压力润滑。
压力润滑适用于高速、大型、长期、连续运转的机械,特别是摩擦部位发热高的机械,一般已封闭式循环系统来实现。
压力视润滑部件的工作条件、性质,要求在100~300kPa,也低于50kPa或更高一些的。
磨损与润滑基础知识(一)
磨损与润滑基础知识(一)磨损与润滑基础知识工程学中,磨损与润滑是两个非常重要的概念。
它们是与能源转化、机器运转等直接相关的。
下面将分别从磨损和润滑两个角度介绍关于它们的基础知识。
一、磨损磨损是指两个物体接触部分相对运动所产生的材料损失。
在机器运转中,磨损会导致机器零件失效,影响效率和安全。
因此,对于磨损的了解和防范非常重要。
1. 磨损的类型根据磨损的形态和机制,可以分为以下三种类型:① 粘着磨损:两个物体间摩擦点处发生焊接,伴随着断裂和临近表面的材料剥落。
② 疲劳磨损:在受到循环负载的作用下,材料很容易发生延展、收缩等形变,最终导致裂纹和分层的产生。
③ 磨粒磨损:由于颗粒、砂谷等硬物颗粒间的摩擦和冲击,物体表面发生了材料剥落和凹坑的产生。
2. 磨损的控制磨损可以通过合理的设计、材料选择、润滑等方式控制。
① 合理设计:通过能够接受负荷分布的减速装置、减振挡板以及避免体积叠加等,降低机械元件的应力。
② 材料选择:优先选择磨损性能好的材料,如高硬度、高强度的耐蚀合金等。
③ 润滑:可通过涂油、通油、喷涂润滑剂等来减少磨损。
二、润滑润滑是指在两个物体间施加一定的松动剂,使得摩擦力减小,从而防止或减少磨损的过程。
常见的润滑剂有油、脂、水、灰等。
1. 润滑的分类润滑根据润滑剂的性质和润滑方式的不同,可以分为以下几类:① 干润滑:利用白石油、石墨、氧化锌等涂层,或者进行动态换向、作用面直接改变等方式进行润滑。
② 润的干润滑:使用压差把气体膜经过摩擦面和涂油的孔洞里,形成分子级别的润滑膜,即采用气体润滑。
③ 液滑润滑:利用液态润滑剂分泌到摩擦面上,并不断补充,形成稳态润滑。
④ 固液润滑:含有固体颗粒的流体润滑剂,则称为固液润滑。
2. 润滑的作用润滑在机械制造中有着不可替代的作用:① 降低磨损:润滑剂在摩擦面形成氢键库、隙缝等微观结构,降低了机械表面间接触的面积,减少了表面磨损。
② 减小摩擦力:润滑剂渗透到摩擦表面,改变其表面能和表面张力等物理性质,从而减小了机械表面间接触的摩擦力。
摩擦、磨损、润滑基础知识
塑性区
粘着转移,有 粘着转移, 可能形成磨屑
2、磨料磨损 、
磨料磨损是当摩擦副一方表面存在坚硬的细微凸起, 磨料磨损是当摩擦副一方表面存在坚硬的细微凸起, 或者在接触面之间存在硬质粒子时所产生的磨损。 或者在接触面之间存在硬质粒子时所产生的磨损。 F
切削掉的体积
颚式破碎机机构简图——典型的磨粒磨损 典型的磨粒磨损 颚式破碎机机构简图
• 当动压润滑条件不具坏时, 流体摩擦、边界摩擦和干摩擦同时存在的现象, 流体摩擦、边界摩擦和干摩擦同时存在的现象,这种摩 擦状态称为混合摩擦。 擦状态称为混合摩擦。
1、粘着磨损 、 粘着磨损也称咬合磨损, 粘着磨损也称咬合磨损,是指在滑动摩擦 条件下,当摩擦副相对滑动较小时发生的。 条件下,当摩擦副相对滑动较小时发生的。它 是因为缺乏润滑油,摩擦表面无氧化膜, 是因为缺乏润滑油,摩擦表面无氧化膜,且单 位法向载荷很大, 位法向载荷很大,以至接触应力超过实际接触 点处屈服强度而产生的一种磨损。 点处屈服强度而产生的一种磨损。
第四节 密封
一、密封的分类 二、常见密封
摩擦的分类
滑动摩擦
滚动摩擦
静摩擦
一、干摩擦
• 不加润滑剂时,相对运动的零件表面直接接触,这样 不加润滑剂时,相对运动的零件表面直接接触, 如真空中)。 产生的摩擦称为干摩擦 (如真空中 。 如真空中 古典摩擦理论的摩擦力计算公式: 古典摩擦理论的摩擦力计算公式:
F f = fFn
• 现在观点认为: 现在观点认为: 摩擦力的组成可表示为: 摩擦力的组成可表示为:
Ff = F分子 + F机械
二、边界摩擦
两表面加入润滑油后, 两表面加入润滑油后,在金属 表面会形成一层边界膜, 表面会形成一层边界膜,它可能是物 理吸附膜,也可能是化学反应膜。 理吸附膜,也可能是化学反应膜。不 满足流体动压形成条件, 满足流体动压形成条件,或虽有动压 但压力较低,油膜较薄时, 力,但压力较低,油膜较薄时,在载 荷的作用下,边界膜互相接触, 荷的作用下,边界膜互相接触,横向 剪切力比较弱, 剪切力比较弱,这种摩擦状态称为边 界摩擦。 界摩擦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章摩擦和润滑第一节摩擦与润滑机理当两个紧密接触的物体沿着它们的接触面作相对运动时,会产生一个阻碍这种运动的阻力,这种现象叫摩擦,这个阻力就叫做摩擦力。
摩擦力与垂直载荷的比值叫做摩擦系数。
摩擦定律可描述如下:(1)摩擦力与法向载荷成正比:F∝P(2)摩擦力与表面接触无关,即与接触面积大小无关。
(3)摩擦力与表面滑动速度的大小无关。
(4)静摩擦力(有运动趋向时)F S大于动摩擦力F K,即Fs>F K。
摩擦定律公式:F=f·P或f=F/P式中F——摩擦力f——摩擦系数;P——法向载荷,即接触表面所受的载荷;载荷机器中凡是互相接触和相互之间有相对运动的两个构件组成的联接称为“运动副”(也可称为“摩擦副”),如滚动轴承里的滚珠与套环;滑动轴承的轴瓦与轴径等等。
任何机器的运转都是靠各种运动副的相对运动来实现,而相对运动时必然伴随着摩擦的发生。
摩擦首先是造成不必要的能量损失,其次是使摩擦副相互作用的表面发热、磨损乃至失效。
磨损是运动副表面材料不断损失的现象,它引起了运动副的尺寸和形状的变化,从而导致损坏。
例如油在轴承内运转,轴承孔表面和轴径逐渐磨损,间隙逐渐扩大、发热,使得机器精度和效率下降,伴随着产生冲击载荷,摩擦损失加大,磨损速度加剧,最后使机器失效。
润滑是在相对运动部件相互作用表面上涂有润滑物质,把两个相对运动表面隔开,使运动副表面不直接发生磨擦,而只是润滑物质内部分子与分子之间的摩擦。
所以,摩擦是运动副作相对运动时的物理现象,磨损是伴随摩擦而发生的事实,润滑则是减少摩擦、降低磨损的重要措施。
第二节摩擦分类摩擦有许多分类法。
1. 按摩擦副运动状态分静磨擦:一个物体沿着另一个物体表面有相对运动趋势时产生的摩擦,叫做静摩擦。
这种摩接力叫做静摩擦力。
静摩擦力随作用于物体上的外力变化而变化。
当外力克服了最大静摩擦力时,物体才开始宏观运动。
动磨擦:一个物体沿着另一个物体表面相对运动时产生的摩擦叫做动摩擦。
这时,产生的阻碍物体运动的切向力叫做动摩擦力。
2. 按摩擦副接触形式分滑动摩擦:接触表面相对滑动时的摩擦叫做滑动摩擦。
滚动磨擦:在力矩作用下,物体沿接触表面滚动时的摩擦叫做滚动摩擦。
3. 按摩擦副表面润滑状态分。
干摩擦:指既无润滑又无湿气的摩擦。
边界摩擦:指摩擦表面有一层极薄的润滑膜存在时的摩擦。
这时,摩擦不取决于润滑剂的粘度,而是取决于接触表面和润滑剂的特性。
边界摩擦时,不能避免金属的直接接触,这时仍有微小的摩擦力产生,其摩擦系数通常约0.1左右。
混合摩擦:属于过度状态的摩擦,包括半干摩擦和半流体摩擦。
半干摩擦是指同时有边界摩擦和干摩擦的情况。
半流体摩擦是指同时有液体摩擦和干摩擦的情况。
混合摩擦能有效的降低摩擦力,其摩擦系数要比边界摩擦小的多。
但因表面间仍有轮廓峰的直接接触,所以不可避免的仍有磨损存在。
流体摩擦:即流体润滑条件下的摩擦。
这时两表面完全被液体油膜隔开,摩擦表现为由粘性流体引起。
摩擦系数极小(油润滑时约为0.001-0.008),而且不会有磨损产生,是理想的摩擦状态。
炼油化工设备中的一些摩擦副的工作条件是复杂的,如处于高速、高温、或低温、真空等苛刻环境条件下工作,其摩擦、磨损情况也各有不同的特点。
第三节产生摩擦的原因对于接触表面作相对运动时产生摩擦力这一现象有各种各样的解释,综合起来有以下几点:机械上发生相对运动的部位一般都经过加工,具有光滑的表面。
但实际上,无论加工程度怎样精密,机件表面都不可能“绝对”平滑,在显微镜下看来,都是有高有低、凸凹不平的,如下图所示。
图11 - 1 金属表面形状如果摩擦表面承受载荷而又紧密接触的突起和陷下部分就会犬牙交错地嵌合在一起,两个接触表面作相对运动时,表面上的突起部分就会互相碰撞,阻碍表面间的相对运动。
另外,由于两个摩擦表面承受载荷并紧密接触,表面是由若干突起部分支撑着的,支撑点处两表面之间的距离极小,处于分子引力的作用范围之内,表面作相对运动时,突起部分也要跟着移动,因此就必须克服支撑点处的分子引力。
还有,出于碰撞点和支撑点都要承受极高的压力,这就便这些地方的金属表面发生严重的变形、一个表面上的突起就会嵌入另一表面中去。
碰撞和塑性变形都会导致产生局部瞬间高温,而撕裂粘结点要消耗动力。
以上各点综合起来就表现为摩擦力。
第四节磨损物体工作表面的物质,由于表面相对运动而不断损失的现象,叫做磨损。
机械零件正常运动的磨损过程一般分为三个阶段,如下图所示。
(1) 跑合阶段(又称磨合阶段) 新的摩擦副表面具有一定的粗糙度,真实接触面积较小。
跑台阶段,表面逐渐磨平,真实接触面积逐渐增大,磨损速度减缓,如上图中o-a线段。
人们有意利用跑台阶段的轻微磨损,为正常运行的稳定磨损创造条件。
选择合理的跑合规程、采取适当的磨擦副材料及加工工艺,使用含活性添加剂的润滑油(摩合油)等方法,都能缩短跑合期。
跑合结束应重新换油。
(2) 稳定磨损阶段这一阶段磨损缓慢稳定。
如上图中a—b线。
这一线段的斜率就是磨损速度,横坐标时间就是零件耐磨寿命。
(3) 剧烈磨损阶段上图中b点以后,磨损速度急剧增长,机械效率下降,功率和润滑油的损耗增加,精度丧失,产生异常噪声及振动,摩擦副温度迅速升高,最终导致零件失效。
有时也会发生下述情况:ⅰ转入稳定磨损阶段后,长时间内磨损甚微,并无明显的剧烈磨损阶段,零件寿命较长。
ⅱ跑合阶段和稳定磨损阶段无明显磨损,当表层达到疲劳极限后,产生剧烈磨损。
ⅲ磨损条件恶劣,跑台阶段后,立即转入剧烈磨损阶段,机器无法正常运转。
根据磨损的破坏机理及机械零件表面磨损状态,磨损可大体分为下列几种类型。
1. 粘着磨损磨擦副相对运动时,由于固相粘结,接触表面的材料从一个表面转移到另一个表面的现象,叫做粘着磨损,严重时摩擦副咬死。
润滑状态对粘着磨损值影响较大,边界润滑粘着磨损值大于流体动压润滑,而流体动压润滑又大于流体静压润滑。
润滑油、脂中加入油性和极压添加剂能提高润滑油吸附能力以及油膜强度,能成倍提高抗粘着磨损的能力。
2. 磨料磨损硬的颗粒或硬的突起物,在摩擦过程中引起材料脱落,这种现象叫做磨料磨损。
3. 表面疲劳磨损两接触表面作滚动或滑动复合摩擦时,在交变接触压应力作用下,使材料表面疲劳而产生物质损失的现象叫做表面疲劳磨损。
齿轮副、滚动轴承都能产生表面疲劳磨损。
表面疲劳磨损分为扩展性及非扩展性两种。
当交变压应力较大时,由于材料塑性稍差或润滑选择不当而发生扩展性表面疲劳磨损。
4. 腐蚀磨损(或称腐蚀机械磨损)在摩擦过程中,金属同时与周围介质发生化学或电化学反应,产生物质损失,这种现象成为腐蚀磨损。
由于介质的性质、介质作用在摩擦面上的状态及摩擦材料性能的不同,磨蚀磨损出现的5. 侵蚀侵蚀是指含有颗粒的流体撞击在一物体上,使物体表面受到的损伤。
侵蚀问题对一些在高速下工作的零件来说显得比较突出,例如强度大、密度小的用碳纤维强化的塑料涡轮叶片,要求叶片的前线应具有较高的抗侵蚀性。
第五节润滑在发生相对运动的各种摩擦副的接触面之间加入润滑油(剂),从而使两磨擦面之间形成润滑膜,将原来直接接触的干摩擦面分隔开来,变干摩擦为润滑油(剂)分子间的摩擦,达到减少摩擦,降低磨损,延长机械设备的使用寿命,这就是润滑。
1. 润滑要求由于各摩擦副的作用、工作条件及其性质不同对于润滑的要求是各不相同的,归纳有以下几点:(1) 根据摩擦副的工作条件和作用性质,选用适当的润滑油。
(2) 根据摩擦副的工作条件和作用性质,确定正确的润滑方式和方法,将润滑油按一定的量分配到各摩擦面之间。
(3) 搞好润滑管理。
2. 润滑剂的作用使用润滑剂的目的是为了润滑机械的摩擦部位,减少摩擦抵抗、防止烧结和磨损、减少动力的消耗,以提高机械效率。
除此之外,还有一些实用方面的作用,归纳如下:(1)减少摩擦。
在摩擦面之间加入润滑油,能使摩擦系数降低,从而减少了摩擦阻力,节约能源的消耗。
在流体润滑条件下,润滑油的粘度和油膜厚度对减少摩擦起到十分重要的作用。
随着摩擦副接触面间金属-金属接触点的增多,出现了边界润滑条件,此时添加剂的化学性质和化学活性就显得极为重要(2)降低磨损机械零件的粘着磨损、表面疲劳磨损和腐蚀磨损与润滑条件很有关系。
在润滑剂中加入抗氧、抗腐剂有利于抑制腐蚀磨损,而加入油性剂、耐压抗磨剂可以有效地降低粘着磨损和表面疲劳磨损。
(3)冷却作用。
润滑利可以减轻摩擦,并可以吸热、传热和散热,因而能降低机械运转摩擦所造成的温度上升。
(4)防腐作用。
摩擦面上有润滑剂覆盖时.就可以防上或避免因空气、水滴、水蒸汽、腐蚀性气体及液体、尘土、氧化物等所引起的腐蚀、锈蚀。
润滑油的防腐能力与保留于金属表面的油膜厚度有直接关系,何时也取决于润滑剂的组成。
采用某些表面活性剂作为防锈剂能使润滑剂的防锈能力提高。
(5)绝缘性。
精制矿物油的电阻大,如作为电绝缘材料的电绝缘油的电阻是2×1016Ω/mm2(水是0.5×106Ω/mm2)。
(6)力的传递。
油可以作为静力的传递介质例如汽车的起重机液压油。
也可经作为动力的传递介质,例如自动变速机油。
(7)减振作用。
润滑油吸附在金属表面上,本身应力小,所以,在磨擦副受到冲击载荷时具有吸收冲击能的本领。
(8)清洗作用。
通过润滑油的循环可以带走邮路系统中的杂质,再经过滤器虑掉。
例如润滑油系统的油冲洗。
(9)密封作用润滑剂对某些外露部件形成密封,防止水分或杂技的侵入。
3. 润滑的类型按照磨擦副表面润滑状态,可把润滑类型分为:流体润滑、边界润滑、混合润滑,如下图所示。
摩擦系数与轴承因数G的关系(1) 流体润滑。
在两摩擦面之间加有液体润滑剂,润滑油把两磨擦面完全隔开,变金属接触干摩擦为液体的内磨擦,这就是流体润滑,如下图所示。
流体润滑的优点是液体润滑剂的内摩擦力小,通常为0.001~0.01,只有金属直接接触的几十分之—。
流体润滑状态实现流体润滑的条件:(a) 磨擦表面间必须有相对运动。
(b) 顺着表面运动的方向.油层必须成楔形。
(c) 润滑油与摩擦表面必须有一定的附着力(与油性有关),润滑油随磨擦表面运动时必须有一定的内摩擦力、亦即必须有一定的粘度。
以滑动轴承形成流体润滑为例,如下图所示。
轴不转动时(a),轴与轴承接触面上的润滑油完全被挤出来。
当轴开始按箭头方向转动时(b),由于轴表面与润滑油之间有吸附力,而油层内部存在内摩擦力,轴就会带着轴承内右下方的整个楔形油层向前移动,好像把一个木楔打入入窄缝把缝胀开一样,迫使轴向上抬起并略向左偏。
当轴转速进一步提高时,轴的位置也进一步抬高,偏心度也减小(c)。
轴转速无限大时,轴与轴承的中心应重合在一起(d)。
滑动轴承中润滑油层的形成过程轴与轴承摩擦面间的油层厚度,是由轴上所承受的载荷和油层的内摩擦力的大小来决定的,油层内摩擦力的大小取决于油品的粘度和轴与轴承的相对运动速度。