稀土镁合金

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稀土镁合金 稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE 或R)。

1. Mg-Al-RE 系镁合金组织与性能

摘要: 通过铸造和挤压变形工艺, 研究了AE (Mg-Al-RE)系合金的显微组织及稀土和铝含量的变化对AE 系合金显微组织和力学性能的影响. 实验结果表明: AE 系合金的铸态显微组织由M g α-基体相和沿晶界分布的Al4RE, 1712M g A l 相组成. 随着稀土含量的增加,

1712M g A l 相逐渐消失, 4A l R E 相的体积分数增加, 并逐渐沿晶界处形成连续网状结构.

挤压实验结果显示: AE 系合金具有良好的形变加工性能, 挤压后合金的强度和塑性均比铸态合金大幅度提高. 稀土元素的加入对合金形变过程中的动态再结晶有一定的抑制作用. 在AE 系稀土镁合金中增加Al 含量, 可以使合金的综合力学性能上升到一个较高的水平. 结论

1) AE 系合金的铸态显微组织由M g α-基体和沿晶界分布的4A l R E 及1712M g A l 相组成.

随着稀土加入量的增加, 1712M g A l 相在显微组织中逐渐消失, 4A l R E 体积分数增加, 并

逐渐沿晶界处形成连续网状.

2) AE 系列合金具有良好的形变加工性能. 挤压后合金的强度和塑性均比铸态合金大幅度提高.稀土元素的加入对合金形变过程中的动态再结晶有一定的抑制作用.

3)在AE 系稀土镁合金中增加A l 含量可以使合金的综合力学性能上升到一个较高的水平.

2. 高性能稀土镁合金的研发现状及应用

摘要:介绍高性能稀土镁合金中的铸造稀土镁合金、快速凝固稀土镁合金、变形稀土镁合金、稀土耐热镁合金、稀土阻燃镁合金,并对高性能稀土镁合金在国内外的研发现状及在军民品上的应用状况作了较详细的叙述.

1 稀土镁合金的研发动向

1. 1铸造稀土镁合金

传统的镁合金耐热、抗高温蠕变等性能较差,通常只能用于120 ℃以下的场合,达不到交通工具发动机和传动部件需要耐温150~200 ℃、250 ℃甚至更高的要求,从而限制了它的应用. 围绕着如何提高铸造镁合金的力学、耐腐蚀、耐高温、抗蠕变等性能,研究人员对稀土作为

镁合金添加剂或合金元素的作用进行了大量研究,取得了瞩目的成绩

1. 2快速凝固稀土镁合金

快速凝固工艺的原理适于改进镁合金的力学性能. 由于冷却速率相当快,可获得在传统铸造工艺条件下得不到的铸件成分、相结构,如晶粒细小、无偏析、过饱和固溶、亚稳相、化合物细小弥散等. 快速凝固是最新发展的一类制备高性能材料的先进技术,使镁合金的开发进入一个崭新的领域.

快速凝固技术的三大类(雾化、流铸和原处熔化) 都可以用于镁合金的生产.通过快速冷却制备的凝固镁合金,由于大量超过平衡溶度的稀土元素固溶到镁中可以大幅度地降低轴比

( c/a) ,扩展α- Mg 的固溶区间,激发新的滑移系,从而提高镁合金的塑性变形能力; 也可提高镁合金微观组织的均匀性,避免局部微电池作用,降低了镁合金的腐蚀趋势.

1.3 变形稀土镁合金

变形稀土镁合金比铸造镁合金具有更高的强度、更好的塑性. 研究表明镁合金在热变形后,组织得到了显著细化,铸造组织缺陷被消除,使得产品的综合力学性能大大提高[2 ] . 发展变形镁合金制品可使镁合金更大地应用于结构件上,如轧制的薄板或厚板、挤压材和锻件. 但由于变形镁合金的开发与研究不够充分,有关稀土对其组织性能影响的研究远不如稀土在铸造镁合金中的研究那么深入和充分,相关的公开专题研究报道相对较少.

1.4 稀土耐热镁合金

耐热性差是阻碍镁合金广泛应用的主要原因之一. 当温度升高时,它的强度和抗蠕变性能大幅度下降,使它难以作为关键零件(如发动机零件) 材料在汽车等工业中得到更广泛的应用.

1.5 稀土阻燃镁合金

镁合金常用的阻燃方法为熔剂保护和SF6 混合气体保护;但相对而言,合金化阻燃是一种更理想的阻燃方法. 其机理是在合金中添加特定的合金元素来影响合金氧化的热力学反应与动力学过程,形成具有保护作用的致密的氧化膜,达到阻止合金剧烈氧化的目的. 与熔剂保护和SF6 气体保护相比,合金化阻燃可以消除熔剂夹杂,提高合金的力学性能与抗腐蚀性,消除有害气体对大气的污染. 通过合金化的方法来达到阻燃的目的将是镁合金熔炼阻燃的发展方向.

稀土在镁合金中的主要作用与效果

熔体净化作用

稀土元素在镁合金熔体中具有除氢、除氧、除硫、除铁、除夹杂物的作用, 达到除气精炼、净化熔体的效果。

熔体保护作用

镁合金在熔炼过程中极易氧化燃烧, 目前工业生产镁合金一般采用熔剂覆盖或气体保护法熔炼, 但都存在不少缺点, 如果能够提高镁合金熔体自身的起燃温度则有可能实现镁合金大气下直接熔炼, 这对镁合金的进一步推广应用意义重大。稀土是镁合金熔体的表面活性元素, 能够在熔体表面形成致密的复合氧化物膜, 有效阻止熔体和大气的接触, 大大提高镁合金熔体起燃温度。

细晶强化作用

稀土元素在固液界面前沿富集引起成分过冷, 过冷区形成新的形核带而形成细等轴晶, 此外稀土的富集使其起到阻碍α-Mg晶粒长大的作用, 进一步促进了晶粒的细化。根据Hall2Petch 公式, 合金的强度随晶粒尺寸的细化而增加, 并且相对体心立方和面心立方晶体而言, 晶粒尺寸对密排六方金属强度影响更大, 因此镁合金晶粒细化产生的强化效果极为显著。

固溶强化作用

大部分稀土元素在镁中具有较高的固溶度, 当稀土元素固溶于镁基体时,由于稀土元素与镁的原子半径和弹性模量的差异,使镁基体产生点阵畸变。由此产生的应力将阻碍位错运动,从而使镁基体得到强化。稀土元素固溶强化的作用主要是减慢原子扩散速率, 阻碍位错运动, 从而强化基体, 提高合金的强度和高温蠕变性能。

弥散强化作用

稀土与镁或其他合金化元素在合金凝固过程中形成稳定的金属间化合物,这些含稀土的金属间化合物一般具有高熔点、高热稳定性等特点, 它们呈细小化合物粒子弥散分布于晶界和晶内, 在高温下可以钉扎晶界, 抑制晶界滑移, 同时阻碍位错运动, 强化合金基体。

时效沉淀强化作用

稀土元素在镁中所具有的较高固溶度随温度降低而降低, 当处于高温下的单相固溶体快速冷却时, 形成不稳定的过饱和固溶体, 经过长时间的时效, 则形成细小而弥散的析出沉淀相。析出相与位错之间交互作用, 提高合金的强度。

相关文档
最新文档