最新整理统计过程控制Spc案例分析.doc

合集下载

spc案例

spc案例

spc案例SPC(Statistical Process Control,也叫统计过程控制)是一种通过统计方法对产品和过程进行监控和改进的质量管理方法。

下面是一个SPC案例,用以说明其在实际生产中的应用。

某制造公司生产一种产品,经过市场调查发现,该产品存在一定的质量问题,如尺寸偏差、露粉等。

为了解决这些问题,公司决定采用SPC方法来监控和改进生产过程。

首先,公司确定一组关键工艺参数,如温度、压力、转速等,以及相关的质量指标,如尺寸、外观等。

随后,公司对每个工艺参数进行测量和记录,并将其输入到SPC软件中。

同时,公司还设置了对应的上下限值,即规定了每个工艺参数的合理变化范围。

在生产过程中,SPC软件会自动进行统计分析,并生成控制图。

控制图上有一条中心线,表示期望值,以及上下限线,表示允许的变化范围。

同时,还有一些参考线,如标准偏差线,用于判断过程稳定性。

公司的技术人员定期对控制图进行检查,观察各参数是否在规定范围内波动,是否出现异常情况。

如果发现异常,技术人员会及时采取措施,如调整机器参数、更换工具等,以及及时通知相关操作人员。

通过SPC的实施,公司逐渐发现了一些问题。

例如,当温度过高时,产品尺寸会偏大;当压力过低时,产品内部会出现空隙。

公司根据这些发现,对生产过程进行了优化,并引入了更先进的控制系統,进一步提高了产品质量。

此外,SPC还帮助公司进行了质量变化的监控和评估。

公司可以利用SPC软件生成的统计报表,进行不同时间段内产品质量的对比。

同时,公司还可以进行根因分析,找出导致质量问题的根本原因,并提出相应的改进措施。

总的来说,通过SPC的应用,该制造公司有效地改善了产品质量,减少了不合格品的数量,并提高了自身的竞争力。

SPC 方法在实际生产中具有广泛的应用前景,可以帮助企业提升质量管理水平,降低成本,提高效率。

汽车行业--统计过程控制SPC

汽车行业--统计过程控制SPC

汽车行业–统计过程控制SPC引言在汽车行业中,统计过程控制(Statistical Process Control,简称SPC)是一种管理工具,它通过统计方法分析生产过程中的变异性,以实现过程的稳定和质量的控制。

本文将介绍汽车行业中统计过程控制的概念和原理,并探讨在汽车制造过程中应用SPC的重要性和优势。

统计过程控制概述统计过程控制(SPC)是一种基于统计学原理和方法的过程管理工具,其目的是通过对过程性能进行监控和分析,以建立并维持过程的稳定性和可控性。

SPC通过收集、分析和解释数据,帮助生产企业识别过程中的问题,并采取相应的措施来确保产品和服务的质量。

SPC的原理与方法SPC的核心原理是基于统计学中的质量控制理论和方法,主要包括以下几个方面:1. 测量与变异性分析SPC首先需要对生产过程进行有效的测量和数据收集,包括产品的尺寸、重量、颜色等一系列关键指标的测量。

然后,通过统计方法对这些数据进行分析,识别出过程中的变异性,并将其分解为正常变异和特殊原因变异两部分。

2. 控制图的应用控制图是SPC的关键工具之一,它通过对数据的可视化呈现,帮助生产企业及时监控和识别过程中的变异性。

常见的控制图包括均值图、范围图和方差图等,它们可以显示出过程的中心线和控制限,从而判断过程是否处于控制状态。

3. 质量改进与过程优化SPC不仅可以帮助企业监控和控制过程中的变异性,还能够通过数据分析和质量改进方法,找出过程中的问题,并提出相应的改进措施。

它可以帮助企业定位问题和优化生产工艺,从而提高产品质量和生产效率。

汽车制造中的SPC应用在汽车制造过程中,SPC的应用至关重要。

下面将介绍几个具体的应用案例:1. 固定质量控制汽车制造过程中的每一个环节都需要严格的质量控制,以确保最终产品的质量。

通过SPC的应用,可以实时监控生产过程中的关键指标,并及时发现问题,从而避免次品的产生和不良产品的流入市场。

2. 方案改进与优化通过对SPC数据的分析,汽车制造企业可以发现生产过程中的瓶颈和问题,并针对性地提出改进方案。

SPC统计控制程序实例.doc

SPC统计控制程序实例.doc

SPC统计控制程序实例.docSPC 统计控制程序1.目的为了解和改善过程,通过对过程能力的分析/ 评估使其有量化资料,为设计、制造过程的改进,选择材料,操作人员及作业方法,提供依据和参考。

1、适用范围适用于我公司顾客要求和需做统计过程控制(P P K、C P K、CmK、PPM)的所有产品。

3、术语3.1 SPC:指统计过程控制。

3.2 CpK:稳定过程的能力指数。

它是一项有关过程的指数,计算时需同时考虑过程数的趋势及该趋势接近于规格界限的程度。

3.3 PpK:初期过程的能力指数。

它是一项类似于C P K 的指数,但计算时是以新产品的初期过程性能研究所得的数据为基础。

3.4 C a:过程准确度。

指从生产过程中所获得的资料, 其实际平均值与规格中心值之间偏差的程度。

3.5 C p:过程精密度。

指从生产过程中全数抽样或随机抽样(一般样本在50 个以上)所计算出来的样本标准差(σ×),以推定实际群体的标准差(σ)用 3 个标准差(3σ)与规格容许差比较。

3.6 PPM:质量水准,即每百万个零件不合格数。

指一种根据实际的缺陷材料来反映过程能力的一种方法。

PPM数据常用来优先制定纠正措施。

3.7 Cmk:设备能力指数:是反映机械设备在受控条件下,当其人/ 料/ 法不变时的生产能力大小。

4、工作程序4.1 技术部负责对新产品、通用产品的工序稳定性和产品质量状况进行分析,从中选出 SPC受控工序及特性。

选择SPC受控工序及特性的一般准则是:4.1.1 产品的性能、精度、寿命、可靠性、安全性等有直接影响的零部件的关键特性和重要特性以及影响这些特性的支配性工序因素;4.1.2 质量不稳定的工序或生产薄弱环节,出现不合格品多的质量特性及其支配性工序因素;4.1.3 工序本身有特殊要求或下道工序影响较大的质量特性以及影响这些特性的支配性工序因素;4.1.4 关键过程;4.1.5 工序因素处于特殊条件,如:代用料、设备差;4.1.6 生产中,质量问题经常重复发生的质量特性;4.1.7 用户反馈回来的或抽检(审核)不合格的质量项目;4.1.8 尽量选择能定量表示的质量特性。

统计过程控制SPC案例分析

统计过程控制SPC案例分析

【案例1】 R X -控制图示例某手表厂为了提高手表的质量,应用排列图分析造成手表不合格品的各种原因,发现“停摆”占第一位。

为了解决停摆问题,再次应用排列图分析造成停摆事实的原因,结果发现主要是由于螺栓松动引发的螺栓脱落成的。

为此厂方决定应用控制图对装配作业中的螺栓扭矩进行过程控制。

分解:螺栓扭矩是一计量特性值,故可选用基于正态分布的计量控制图。

又由于本例是大量生产,不难取得数据,故决定选用灵敏度高的R X -图。

解:我们按照下列步骤建立R X -图步骤1:取预备数据,然后将数据合理分成25个子组,参见表1。

步骤2:计算各组样本的平均数i X 。

例如,第一组样本的平均值为:0.16451621661641741541=++++=X其余参见表1中第(7)栏。

步骤3:计算各组样本的极差i R 。

例如,第一组样本的极差为:{}{}20154174min max 111=-=-=j j X X R其余参见表1中第(8)栏。

表1: 【案例1】的数据与R X -图计算表i故:272.163=X ,280.14=R 。

步骤5:计算R 图的参数。

先计算R 图的参数。

从D 3、D 4系数表可知,当子组大小n =5,D 4=2.114,D 3=0,代入R 图的公式,得到: 188.30280.14114.24=⨯==R D UCL R280.14==R CL R ==R D LCL R 3—极差控制图:均值控制图:图1 【案例1】 的第一次R X -图参见图1。

可见现在R 图判稳。

故接着再建立X 图。

由于n =5,从系数A 2表知A 2=0.577,再将272.163=X ,280.14=R 代入X 图的公式,得到X 图:512.171280.14577.0272.1632≈⨯+=+=R A X UCL X 272.163==X CL X032.155280.14577.0272.1632≈⨯-=-=R A X LCL X因为第13组X 值为155.00小于X LCL ,故过程的均值失控。

SPC案例分析

SPC案例分析

SPC案例分析在当今竞争激烈的制造业环境中,质量控制成为了企业生存和发展的关键。

统计过程控制(Statistical Process Control,简称 SPC)作为一种有效的质量控制工具,已经在众多企业中得到了广泛的应用。

本文将通过一个具体的案例,深入探讨 SPC 在实际生产中的应用和效果。

一、案例背景我们选取的案例是一家汽车零部件制造企业,该企业主要生产发动机缸体。

在过去的一段时间里,客户对产品的质量投诉不断增加,主要问题集中在缸体的尺寸精度不符合要求,导致发动机装配过程中出现故障。

为了解决这一问题,企业决定引入 SPC 方法进行质量控制。

二、SPC 方法的实施过程1、确定关键质量特性首先,企业的质量控制团队与生产部门合作,通过对产品设计要求和客户反馈的分析,确定了发动机缸体的关键质量特性,即缸体的内径尺寸和圆柱度。

2、数据采集在生产过程中,质量控制人员每隔一定时间从生产线上抽取一定数量的缸体样本,使用高精度测量仪器对关键质量特性进行测量,并记录测量数据。

3、控制图的绘制将采集到的数据输入到统计软件中,绘制均值极差控制图(XR 控制图)和均值标准差控制图(XS 控制图)。

控制图的横坐标表示样本序号,纵坐标表示测量值。

4、控制限的确定根据样本数据的分布特征和统计规律,计算出控制图的控制限。

控制限分为上控制限(UCL)、下控制限(LCL)和中心线(CL)。

中心线通常为样本数据的均值,上控制限和下控制限则根据一定的计算公式得出。

5、过程监控与分析定期对控制图进行观察和分析,判断生产过程是否处于受控状态。

如果数据点落在控制限内,且没有明显的趋势或异常模式,则认为过程处于受控状态;反之,如果数据点超出控制限,或者出现连续上升或下降的趋势,或者存在周期性的波动等异常模式,则认为过程失控,需要采取相应的措施进行改进。

三、案例结果与分析在实施 SPC 方法后的一段时间里,企业对生产过程进行了持续的监控和分析。

SPC分析实例

SPC分析实例
SPC通过收集和分析生产过程中的数据识别并消除异常波动从而提高产品质量和生产效 率。
SPC的核心思想是利用统计方法来分析生产过程中的波动找出影响产品质量的关键因素 并采取相应的措施进行改进。
SPC分析主要包括控制图、过程能力指数(Cp、Cpk)、过程性能指数(Pp、Ppk) 等工具和方法。
03
SPC分析实例介绍
感谢观看
汇报人:
Cpk:过程能力指数表示过程能力 满足规格要求的程度
Cpk:过程能力指数表示过程能力 满足规格要求的程度
过程性能指数解读
过程性能指数 (PPI):用于 衡量生产过程中 产品质量的指标
PPI的计算方法: PPI=(合格品 数量/总生产数 量)*100%
PPI的意义:反 映生产过程中产 品质量的稳定性 和可靠性
过程优化:SPC分析可以帮助企业优化生产过程提高生产效率和产品质量。
成本控制:通过SPC分析可以及时发现生产过程中的浪费现象并采取相应的措施进行改进。
风险管理:SPC分析可以帮助企业识别生产过程中的风险并采取相应的措施进行预防和控 制。
基于SPC分析的改进建议和措施
制定控制计划:根据关键质 量特性制定相应的控制计划
数据处理:对数 据进行清洗、整 理和标准化处理
实例分析过程和方法
确定分析目 标:选择需 要分析的产
品或过程
数据收集: 收集相关数 据包括时间、 数量、质量

数据处理: 对数据进行 整理、清洗、 转换等操作
建立SPC模 型:选择合 适的SPC模 型如控制图、
直方图等
分析结果: 根据模型分 析结果找出 问题所在并 提出改进措
效率。
增强市场竞争 力:通过SPC 分析可以提高 产品质量和生 产效率增强企 业的市场竞争

spc统计过程控制实务(5个doc,1个pdf)_New

spc统计过程控制实务(5个doc,1个pdf)_New

spc统计过程控制实务(5个doc,1个pdf)SPC的昨日、今日、明日、结论SPC在本世纪的工业发展过程中,一直扮演着不可或缺的角色。

尤其在1980年代以后,随着西方工业社会意识到品质复兴的必要性,在戴明思想的主导下,SPC的推广应用已经是现代化工业生产的代名词之一。

SPC的昨日1920年代随着Shewhart的管制图(注1)及Dodge & Roming抽样表(注2)的发表,一批Bell Lab.的品管先驱就尝试将这些方法应用于工业生产过程的管制,统计检验部门于焉诞生。

第二次世界大期间,美国国防部由民间采购大量的军需物资及装备,而应用这些方法于供货商的生产过程及验收。

随着战后,有些战时使用的标准及教育训练的教材亦延续在民间的企业使用。

这些标准包括:(1) 品质管制指南(Guide for Quality Control)●AWS Z1.1(1941)●ASA Z1.1(1958)●ASQC STD B1 (1958)●CNS 2311 Z45 (1964)●ANSI Z1.1 (1969)(2) 分析数据用的管制图法(Control Chart Method of Analyzing Data)●AWS Z1.2 (1941)●ASA Z1.2 (1958)●ASQC STD B2 (1958)●CNS 2312 Z46 (1965)●ANSI Z1.2 (1969)(3) 管制品质用的管制图法(Control Chart Method of Controlling Quality During Production)●AWS Z1.3 (1941)●ASA Z1.3 (1958)●ASQC STD B3 (1958)1970年代起,日本松下电子零件公司与松下电器产业公司电视事业部之间长期的信赖关系,每年为了提高电子零件之品质而努力,终于达成了ppm的品质水准。

经由日本QC大会的对外发表,ppm品质水准的观念逐渐普及于日本及国际工业先进国家。

SPC统计过程控制应用实例分析

SPC统计过程控制应用实例分析

SPC统计过程控制应用实例分析1.SPC控制特性的定义T1S6949质量管理体系在实际应用中强调以系统的方法对过程进行分析研究,以确定系统的输入因子,输出因子以及输入对输出的影响作用。

产品实现的过程也可以用框图简单地描述为下图:上图表示,产品实现的过程为由材料、生产参数、设备、人员、环境构成的输入因素通过生产转换成输出产品的过程,同时利用输出的信息来反作用于输入因素,以得到输入因素如材料、生产参数等的持续改进。

输入因素通过生产过程转化成输出的产品,其中的实现过程也就是SPC需要进行监控的工艺过程,当然针对SPC控制特性的选择并不是越多越好,由于检验本身是不带来增值效益的过程,因此在行业的应用过程中,考虑到成本的计算,SPC只会应用在部分关键特性的监控过程中,而关键特性的选择也根据企业自身的生产能力及控制能力的需要来决定的。

因此在进行统计过程控制时,首先需要定义控制的对象,然后通过监控生产实现过程中的各大因素对控制对象的作用,检测到过程的特殊原因波动,从而实现提前预防不合格品产品的作用。

针对关键特性之外的其他参数,可以通过记录检查表的形式将其记录并保存,以便工艺改进时提供历史依据的参考。

PSC的控制项目对产品特性及工序监控的必要性,通常通过以下几个方面进行考量;(1) 从产品特性要求判断,是否为产品关键特性;如Tirm Form工序,SPC记录共面性的抽样检验结果,以判断产品当前的生产流程是否处于稳定受控的状态下。

产品的关键特性在产品设计阶段己确定。

(2) 另一方面,在产品生产制造的过程中,关键工序参数的监控对产品质量良率起着重大的决定作用,利用实时的SPC方法进行工艺参数的监控,能够及时发现生产过程中存在的特殊原因,及时围堵并消除,以得到立即的改正及预防的作用。

例如,在硅片切割工序(Wafer saw),工艺上利用对切割槽宽度的定期数据采集,绘制SPC控制图,从而起到过程监控的作用,以防止参数对切割工序带来的过程能力偏移。

SPC案例分析

SPC案例分析

)案例分析统计过程控制(SPC用途一.态。

统计控制状产过程处于分析判断生产过程的稳定性,生1.防不合格品异,预缓慢变.及时发现生产过程中的异常现象和2产生。

术精度,以便作出正确的技备的实际艺.查明生产设备和工装3决定。

质量提供依据。

品为评定产.4二、控制图的设计原理分态值服从或近似服从正:设绝大多数质量特性正态性假三1布。

则:准73%9932三?发生的。

小概率事件原理:小概率事件一般是不会三3证法思想。

反三4控制图的种类四.~)量值(按产品质量的特性分()计11三SXRXRXRX ,,,????S。

图)(数值,,,()计up2cpn图。

)分析用控制图;()控制用控制按控制图的用途分:(212三控制图的判断规则五.:分析用控制图三1种情况);绝大多数点子在控制界限线内(准判规则稳则1-----3。

现象(规则种情况)排列无下述则判异准-----28-1--1-:图控制用控制三2每一个点子均落在控制界限内。

规则1现象。

控制界限内点子的排列无异常规则2量程产过质图元件的不合格率而为案例控制某无线电设计,生2][p 。

平均不合格率要求为≤2%-2--2-收集收据解:一.见程中收集数据准化的情况下从生产过在充分固定并标,,5M1E下表所表示:元件不合格品率数据表线电某无值平均711 1.4k本中不合格品率样计算二:.i列在上表?p.,k,i?1,2,.....,n i i 程平均不合格品率过三求:.?k i140%248/17775???p?n i-3--3-140%??p CL图线四计算控制:.p n/3p(1UCL?p??)p i n/p?3)p(1UCL??pi化而变时随的从上式可以看出当诸样本大小不相等,UCL,LCL, nn ii变化其图形为阶梯式的折线而非直线为了方便若有关系式:,,.n?2n max n?n/2min同时满足也即相差不大时可以令使得上下限仍为常数其图,,,,,nnn?ii形仍为直线.本例中诸样本大小满足上面条件故有控制线为:,,,n711n?i CL?p?140%图:p UCL?p?3p(1?p)/n?p?3p(1?p)/n?2.72%图五制作i UCL?p?3p(1?p)/n?p?3p(1?p)/n?0.08%i控制:.以样本序号为横坐标样本不合格品率为纵坐标做图.p,,六描点依据每个样本中的不合格品率在图上描点.:.七分析生产过程是否处于统计控制状态.从图上可以看到第个点超过控制界限上界出现异常现象这说,,14,明生产过程处于失控状态尽管但由于生产过程失控即,.=1.40%<2%,p -4--4-图化为控制用控制不合格品率波动大所以不能将此分析用控制图转,,正措施点失控的原因并制定纠应查明第.,14案例分析造成手表不用排列图量某手表厂为了提高手表的质应3][,用再次应摆占第一位为了解决停摆问题合格的各种原因发现停,---.,而发现主要是由于螺栓脱落造成的分析造成停摆的原因结果排列图,,中的螺装配作业厂方决定应用控制图对后者是有螺栓松动造成为此,.程控制行过栓扭矩进.又由于本例图选用正态分布控制分析螺栓扭矩是计量特征值故可,],[图用灵敏度高的难取得数据故决定选是大量生产不.,,R?x图按照下列步骤建立解][R x?下表见组预备根据合理分组原则取数据步骤一.25,,.X值为例如第一值组样本的平均计步骤二算各样本组的平均.,i X=(154+174+164+166+162)/5=164.01本的极差算各样步骤三计.20X}?174?154???R,Rmax{X}min{i1ii值计算样本总均骤步四.和平均样本极差RX?X?4081.8i?357?Ri所以,X?163.272R?14.280步骤五计算图与的参数.R X先计算图的参数(1)R样本容量时,D4=2.114,D3=0n=5-5--5-UCL?DR?2.114*14.280?30.1884R代入图公式CL?R?14.280R R LCL?DR?03R均值控制图极差控制图X R图计的原始数据与算表例.2备观察值样本X i注序号R∑XijXi5Xi4Xi3Xi2Xi110820164162166164174154.20-6--6-值图。

统计过程控制(SPC)在制造业中的应用案例分析

统计过程控制(SPC)在制造业中的应用案例分析

统计过程控制(SPC)在制造业中的应用案例分析统计过程控制(SPC)是一种常用于制造业中的质量管理方法,通过对过程中的关键参数进行监测与控制,确保产品质量稳定可靠。

本文将以一家汽车零部件制造企业的案例为例,分析SPC在制造业中的应用。

该企业是一家专业生产汽车引擎活塞的制造商,其产品质量直接关系到汽车发动机的性能和寿命。

为了保证引擎活塞的质量,在生产过程中,该企业采用了SPC方法来监控关键参数,及时调整生产过程,提高产品质量。

首先,在SPC的实施过程中,该企业明确定义了关键参数,并建立了相应的控制图。

在引擎活塞的生产过程中,关键参数包括活塞直径、活塞高度、活塞内孔直径等。

通过在生产线上设置检测装置和传感器,实时监测这些参数,并将数据输入到SPC软件中进行分析和控制。

接下来,该企业使用SPC软件对收集到的数据进行统计分析。

通过统计分析,可以了解到每个关键参数的平均值、标准差、极差等信息,以及其变化趋势。

通过对这些数据进行分析,可以判断生产过程的稳定性和一致性。

当关键参数超出了控制界限,即超出了产品质量的上下限时,SPC软件会自动发出警报,提醒相关人员进行相应的调整和控制。

此外,SPC软件还可以生成各种控制图,如X-bar控制图、R控制图和P控制图等。

这些控制图可以直观地显示出生产过程的稳定性和变异性。

通过观察和分析控制图的规律,可以判断生产过程是否受到特殊因素的影响,如材料变化、设备故障或人为误操作等。

当发现特殊因素时,及时采取纠正措施,以确保产品质量稳定。

此外,SPC软件还可以进行过程能力分析,通过分析过程能力指标(Cp、Cpk)等参数,评估生产过程的稳定性和能力。

通过这些分析,可以确定生产过程是否满足质量要求,并及时调整和优化生产过程,以提高产品质量和生产效率。

在该企业的实践中,SPC方法的应用取得了显著的效果。

通过SPC的实时监控和调整,引擎活塞的关键参数稳定在设计要求的范围内,产品质量得到了有效控制。

SPC-统计过程控制

SPC-统计过程控制

SPC-统计过程控制
SPC基本概念 SPC实施步骤 SPC工具和技术 SPC应用案例 SPC未来发展与挑战
contents
目 录
01
SPC基本概念
统计过程控制(SPC)是一种应用统计学的方法,通过对生产过程中的各个阶段进行数据收集、分析和控制,以实现过程稳定、减少变异和优化性能的管理手段。
SPC的核心在于利用统计技术对生产过程中的关键特性进行监控和预测,及时发现异常并采取相应措施,确保生产过程的稳定和产品质量的可靠。
判断标准
过程能力指数还可以作为改进生产过程的依据,帮助企业优化生产工艺和流程。
改进依据
过程能力指数
综合评估
过程性能指数是对生产过程整体性能的综合评估,考虑了生产过程中的所有影响因素。
比较分析
通过比较不同时间段或不同生产条件下的过程性能指数,可以对生产过程进行全面的比较和分析。
持续改进
过程性能指数可以作为持续改进生产过程的依据,帮助企业不断提升生产效率和产品质量。
选择适宜的控制图
确定控制界限
根据历史数据和行业标准,制定适合的控制界限,确保过程处于受控状态。
验证控制界限
在实际生产过程中验证控制界限的适用性和有效性,根据实际情况进行调整。
制定控制界限
数据的收集与处理
建立数据收集系统
确保数据收集的准确性和及时性,建立有效的数据记录和存储系统。
数据处理与分析
对收集到的数据进行处理、分析和解释,识别异常波动和趋势,为后续的决策提供依据。
SPC在持续改进中的作用
THANKS FOR
WATCHING
感谢您的观看
02
SPC实施步骤
选择对产品或服务的质量、性能等有关键影响的参数作为控制对象,确保这些参数在控制范围内。

统计过程控制案例分析

统计过程控制案例分析

统计过程控制案例分析统计过程控制案例分析在生产和管理领域,统计过程控制(SPC)是一种重要的技术,用于监控和改善过程质量。

本文通过一个实际案例分析,探讨了SPC的应用和效果。

案例背景某电子产品制造商在生产过程中遇到了质量问题,产品不合格率居高不下。

为了解决这个问题,公司决定采用SPC技术对生产过程进行监控和改进。

控制图分析首先,我们通过控制图来分析生产过程。

控制图是一个直观的图形,横轴表示时间,纵轴表示产品质量。

在SPC中,通常使用X-R图(均值-极差图)来监控过程的稳定性。

X-R图由两条曲线组成,一条表示均值(X),另一条表示极差(R)。

均值反映过程的中心趋势,极差反映过程的波动大小。

通过对X-R图的分析,我们可以发现生产过程中的波动和不稳定性。

在本案例中,我们发现产品质量存在较大的波动,且不合格率较高。

这表明生产过程存在较大的问题,需要进行改进。

原因分析和措施制定针对上述问题,我们进行了深入的原因分析。

通过对生产环节的调查和分析,我们发现问题的主要原因是原材料的质量不稳定。

为此,我们提出了以下改进措施:1、对原材料进行质量检查和控制,确保原材料的质量符合要求。

2、加强生产过程的监控和管理,确保生产过程的稳定性和一致性。

3、提高员工的技能和素质,加强质量意识培训。

实施改进措施在制定改进措施后,我们开始实施。

在实施过程中,我们采用了PDCA 循环(计划-执行-检查-处理)来确保改进措施的有效性和持续性。

在改进措施实施后,我们再次对生产过程进行了SPC监控和评估。

效果评估和总结通过SPC技术的监控和评估,我们发现生产过程的质量得到了显著改善。

不合格率得到了有效降低,产品质量更加稳定。

员工的技能和素质也得到了提高,质量意识得到了加强。

这些改进不仅提高了企业的生产效率和质量水平,也提高了客户对产品的满意度。

通过本案例的分析,我们可以看到SPC技术在生产和管理领域的重要作用。

SPC技术可以帮助我们监控和改善过程质量,提高生产效率和质量水平。

统计过程控制SPC案例分析

统计过程控制SPC案例分析

统计过程控制SPC案例分析制造公司生产汽车零件,该公司决定采用统计过程控制来监测生产过程中的变异程度,并及时采取相应的措施来保证产品质量。

首先,该公司确定了需要监控的关键过程参数,如尺寸、重量、硬度等。

然后,选取了一个代表性样本,进行了初始的统计分析。

通过对样本数据的收集和分析,可以得到该过程的中心值(mean)和过程能力指数(process capability index)。

接下来,公司制定了针对每个关键过程参数的控制限规则。

这些规则包括上控制限(Upper Control Limit,UCL)和下控制限(LowerControl Limit,LCL),一旦产品参数超出这些限制范围就会引发警报。

第三步,该公司开始在生产线上收集样本数据,并进行实时统计分析。

每隔一段时间,例如每小时或每一天,取样并测量样本的关键参数,记录数据并计算统计指标,例如平均值和标准差。

最后,根据统计分析的结果,如果数据超出了控制限范围,该公司可以立即采取纠正措施。

例如,如果平均值偏离了中心值,可以调整生产设备或工艺参数;如果数据的变异过大,可以对生产设备进行维护或调整操作程序。

通过持续的SPC监测和改进,该公司可以实现以下几方面的益处:1.提高质量:通过监测关键参数并及时纠正异常,可以减少产品的次品率和退货率,提高产品质量,满足客户需求。

2.降低成本:通过减少次品率和退货率,公司可以降低废品处理成本和退货成本;此外,通过减少变异,还可以降低废品和工时成本。

3.提高效率:通过监控关键参数,公司可以及时调整生产设备或工艺参数,减少无效生产时间和停机时间,提高生产效率和产能。

需要注意的是,SPC并非一劳永逸的解决方案,而是需要持续不断的监测和改进。

公司应该定期复评统计指标,根据实际情况调整控制限并更新纠正措施。

此外,为了提高SPC的效果,公司还可以使用一些辅助工具,如散点图、控制图和直方图等,帮助分析和解决问题。

综上所述,统计过程控制是一种有效的管理技术,可以帮助制造公司提高质量、降低成本和提高效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本例中,, 诸样本大小满足上面条件,故有控制线为:
p图:
五.制作控制图:
以样本序号为横坐标,样本不合格品率为纵坐标,做p图.
UCL
CL
LCL
六.描点:依据每个样本中的不合格品率在图上描点.
七.分析生产过程是否处于统计控制状态
从图上可以看到,第14个点超过控制界限上界,出现异常现象,这说明生产过程处于失控状态.尽管=1.40%<2%,但由于生产过程失控,即不合格品率波动大,所以不能将此分析用控制图转化为控制用控制图,应查明第14点失控的原因,并制定纠正措施.
统计过程控制(SPC)案例分析
一.用途
1. 分析判断生产过程的稳定性,生产过程处于统计控制状态。
2.及时发现生产过程中的异常现象和缓慢变异,预防不合格品产生。
3.查明生产设备和工艺装备的实际精度,以便作出正确的技术决定。
4.为评定产品质量提供依据。
二.控制图的基本格式 1.标题部分
X-R控制图数据表
0.12
10
49.50
49.48
49.57
49.55
49.53
49.526
0.09
11
49.47
49.44
49.54
49.55
49.50
49.500
0.11
12
49.49
49.50
49.50
49.52
49.55
49.512
0.06
13
49.46
49.48
49.53
49.50
49.50
49.494
0.07
[解]按照下列步骤建立图
步骤一.根据合理分组原则,取25组预备数据,见下表.
步骤二.计算各样本组的平均值,例如第一组样本的平均值为
=(154+174+164+166+162)/5=164.0
步骤三.计算各样本的极差
步骤四.计算样本总均值
步骤五.计算R图与的参数
(1)先计算R图的参数
样本容量n=5时,D4=2.114,D3=0
813
162.6
16
22
166
160
170
172
158
826
165.2
14
23
172
164
159
165
160
822
164.0
13
24
174
164
166
157
162
823
164.6
17
25
151
160
164
158
170
803
160.6
19

4081.8
357
平均
163.272
14.280
(2)可见现在R图判稳,故接着再建立均值图。
174
828
165.6
18
11
168
174
166
160
166
934
166.8
14
12
148
160
162
164
170
804
160.8
22
13
165
159
147
153
151
775
155.0
18
超限
14
164
166
164
170
164
828
165.6
6
15
162
158
154
168
172
814
162.8
18
16
P图的UCL(5)
1
85
2
0.024
0.102
2
83
5
0.060
0.103
3
63
1
0.016
0.112
4
60
3
0.050
0.114
5
90
2
0.022
0.100
6
80
1
0.013
0.104
7
97
3
0.031
0.098
8
91
1
0.011
0.100
9
94
2
0.021
0.099
10
85
1
0.012
0.102
158
162
156
164
152
792
158.4
12
17
151
158
154
181
168
812
162.4
30
18
166
166
172
164
162
830
166.0
10
19
170
170
166
160
160
826
165.2
10
20
168
160
162
154
160
804
160.8
14
21
162
164
165
169
153
现把全部预备数据作直方图并与规格进行比较.如下图所表示.
由此可见,数据分布与规格比较均有余量,但其平均值并未对准规格中心,因此还可以加以调整以便提高过程适应能力指数,减少不合格品率.调整后要重新计算图.
SU=200
145 150 155 160 165 170 175 180 185 SL=100 m=150 u=163.69
代入R图公式
均值控制图
极差控制图
例2的原始数据与图计算表.
序号
样本观察值
∑Xij
R


Xi1
Xi2
Xi3
Xi4
Xi5
1
154
174
164
166
162
820
164.0
20
2
166
170
162
166
164
828
165.6
8
3
168
166
160
162
160
816
163.2
8
4
168
164
170
164
166
解:一.收集收据
在5M1E充分固定并标准化的情况下,从生产过程中收集数据,见下表所表示:
某无线电元件不合格品率数据表
组号
样本大小
样本中不合格品数
不合格品率
1
835
8
1.0
2
808
12
1.5
3
780
6
0.8
4
504
12
2.4
5
860
14
1.6
6
600
5
0.8
7
822
11
1.3
8
814
8
1.0
9
618
10
2.控制用控制图:
规则1 每一个点子均落在控制界限内。
规则2 控制界限内点子的排列无异常现象。
[案例1] p控制图
某半导体器件厂2月份某种产品的数据如下表(2)(3)栏所表示,根据以往记录知,稳态下的平均不合格品率,作控制图对其进行控制.
数据与p图计算表
组号(1)
样本量(2)
不合格品数D(3)
不合格品率p(4)
第13组数据是例外值,需要用判定准则(判稳/判异)判断。
另外,由表可见,R图中的第17组R=30出界,于是再次执行20字方针:“查出异因,采取措施,保证消除,纳入标准,不再出现”,消除异因纳入标准之后,应再收集35组数据,重新计算,但为了简化本例题,而采用舍去第17组数据的方法(注:舍弃数据的办法不是不能用,而必须是调整没有改变原有的4M1E的关系,例如刚才对第13组数据的舍弃,异因对后面的数据没有影响),重新计算如下:
步骤七. 延长上述图的控制线,进入控制用控制图阶段,对过程进行日常控制.
[例4]某厂生产一种零件,其长度要求为49.50±0.10mm,生产过程质量要求为Cp≥1,为对该过程实行连续监控,试设计图。
某零件长度值数据表 (单位:mm)
序号
Xi1
Xi2
Xi3
Xi4
Xi5
R
备注
1
49.47
49.46
49.52
[案例3]某手表厂为了提高手表的质量,应用排列图分析造成手表不合格的各种原因,发现---停摆占第一位.为了解决停摆问题,再次应用排列图分析造成停摆的原因,结果发现主要是由于螺栓脱落造成的,而后者是有螺栓松动造成.为此,厂方决定应用控制图对装配作业中的螺栓扭矩进行过程控制.
[分析]螺ห้องสมุดไป่ตู้扭矩是计量特征值,故可选用正态分布控制图,又由于本例是大量生产,不难取得数据,故决定选用灵敏度高的图.
49.51
49.47
49.485
0.06
2
49.48
49.53
49.55
49.49
49.53
49.516
0.07
3
49.50
49.53
49.47
49.52
49.48
49.500
0.06
4
49.47
49.53
49.50
49.51
49.47
49.496
0.07
5
49.47
49.55
49.45
49.53
49.56
14
49.53
49.57
49.55
49.51
相关文档
最新文档