Simulink机械振动仿真简例共52页

合集下载

基于Simulink的振动模态分析

基于Simulink的振动模态分析

基于Simulink的振动模态分析引言振动模态分析是一种常用的工程分析方法,用于研究结构体在不同频率下的振动特性和模态。

本文将介绍如何使用Simulink软件进行振动模态分析。

Simulink简介Simulink是一种基于模型的设计和仿真工具,常用于解决动态系统建模和仿真问题。

该软件提供了丰富的工具箱,便于用户搭建模型和进行模拟实验。

振动模态分析步骤1. 结构体建模:首先,需要将待分析的结构体进行建模。

在Simulink中,可以使用各种元件来描述结构体的物理特性,例如质量、弹性等参数。

2. 模态分析设置:在建模完成后,可以设置模态分析的参数,包括分析频率范围、模态数量等。

这些参数会影响模态分析的精度和计算效率。

3. 模型求解:通过在Simulink中运行模型求解器,可以得到结构体在不同频率下的振动模态。

求解过程可以得到每一个模态对应的频率、振型和阻尼比等信息。

4. 结果分析:最后,可以对求解得到的振动模态进行进一步分析和可视化。

比如,可以绘制模态频率与振型的关系图,用于评估结构体的振动特性。

模态分析应用领域振动模态分析在工程领域有着广泛的应用。

它可以帮助工程师了解结构体的固有振动特性,从而优化设计和改进结构体的性能。

在航空航天、汽车工程、建筑设计等领域,振动模态分析被广泛应用于结构体的优化和故障诊断。

结论通过Simulink软件进行振动模态分析是一种简单而高效的方法。

它可以帮助工程师更好地理解结构体的振动特性,并在实际工程项目中起到重要作用。

在使用Simulink进行振动模态分析时,合理设置参数和精确分析结果对于获得准确的振动特性信息尤为重要。

Matlab作业Simulink 振动仿真

Matlab作业Simulink 振动仿真

山东大学Matlab 课程作业学院:机械工程学院专业:姓名:学号:基于Simulink仿真得振动学问题解决实例1.单自由度无阻尼自由振动仿真表达式:仿真框图:参数设置:k=100N/m m=4kg初始状态:初速度为0 初始位移为5仿真结果:2.简谐波形得里沙茹图形分析仿真框图:参数设置:K=100m=4→rad/sSin wave参数设置:Amplitude1 ;Frequency 5 1015初始状态:①→φ=②→φ=③=1,=5→φ=45;④=1,=−5→φ=135;⑤=0,=−1→φ=180XY Graph参数x-min -2;x-max 2;y-min—2; y-max 2Frequency 5时仿真结果:Frequency 10时仿真结果:Frequency 15时仿真结果:3.单自由度有阻尼自由振动表达式:仿真框图:参数设置:ﻫ令k=100,m=10,c=10 初始状态:ﻫ初始速度为0,位移为1仿真结果:4、衰减振荡得阻尼比得估计参数:k=100,m=10,c=2初始条件:x0=1,v0=0仿真图框:初始振幅为1,约7个周期时衰减为0、25,对数减幅:δ=(ln4)/7≈0、099阻尼比§≈δ/2≈0、032理论值§=0、5c(km)−0、5≈0、0325、单自由度有阻尼+正弦激励表达式:令激励则方程变形为参数设置:令k=4,m=1,c=0、2初始状态:ﻫ初始速度为0,位移为0、05 仿真框图:仿真结果:6、利用速度共振得里沙茹图进行固有频率与阻尼系数分析仿真框图:改变激励频率:=1、2;1、6;1、8;1、9;1、95;2;2、05;2、1;2、2等7、两自由度无阻尼系统自由振动表达式:参数设置:m1=1,m2=2 k1=1,k2=1,k3=2初始状态:①速度0,m1、m2位移均为1②速度0,m1位移1,m2位移−0、5③速度0,m1位移1,m2位移0 仿真结果:①②③。

Simulink机械振动仿真

Simulink机械振动仿真

Sources库 ① Sine Wave:产生幅值、频率可设置的正弦波信号。 双击图标 (认定该模块已拷贝到用户模型窗,以下均如此 ),弹出正弦波的参数设置框图。图中参数为Simulink默认值, 用户可根据需要对这些参数重新设置。 幅值、频率为2,基准为 0.5,其波形如产生幅值、阶跃时间可设置的阶跃信号。 双击图标 ,弹出阶跃信号的参数设置框图。图中参数为 Simulink默认值。
Continuous 库 该库包含描述线性函数的模块。双击 ① :微分环节。其输出为其 输入信号的微分。如下图为输入 斜坡信号时微分环节的输出:
即弹出下图:

:积分环节。其输出为其输入信号的积分。 双击该模块,弹出积分器的参数对话框,可设置积分器的复位、 积分上限和下限等。当设置为信号下跳过零复位、积分器限 幅为5时,积分器对谐波输入的输出如图所示:
连接线(左键)
分支线(右键)
1.2 建立Simulink仿真模型 g) 模块文件的取名和保存 选择模型窗口菜单 FileSave as后弹出一 个“Save as”对话框, 填入模型文件名,按 保存(s)即可。
[说明] 模块的修改、调整、连接通常只能在仿真模型窗口中进行,不要直 接对模块库中的模块进行修改或调整。
分别管理xyx和y轴向变焦取当前窗中信号最大最小值为纵坐标的上下限把当前轴的设置保存为该示波器的缺省设置打开示波器属性对话框设置为浮动示示波器属性对话框设置y轴个数设置显示的时间范围选择轴的标注方法确定显示频度每隔n1个示波器属性对话框general页sinks示波器属性对话框示波器属性对话框datahistory页设定缓冲区接受数据的长度勾选为缺省状态其值为5000确定示波器数据matlab工作空间
[说明]若不设置仿真参数,则采用Simulink缺省设置.

机械振动分析的Matlab_Simulink仿真研究

机械振动分析的Matlab_Simulink仿真研究
计算机应用
王文娟 : 机械振动分析的 Matlab /Simulink 仿真研究
机械振动分析的 Matlab /Simulink 仿真研究
王文娟
( 西安工业大学 陕西 西安 710032)
摘 要 : 振动在工程实际中普遍存在 。为了研究和掌握振动规律 ,利用功能强大的仿真软件 Matlab/ Simulink 对一个三 自由度系统进行仿真 ,介绍 Matlab/ Simulink 在机械振动分析中的 3 种建模方法 ,并针对第 3 种建模方法编写了相应的 S 函 数和程序 ,可快速而有效地进行不同物理常数时的模态分析 。该方法简单易行 、 准确可靠 。 关键词 :Matlab/ Simulink ; 机械振动 ; 建模 ; 模态分析 中图分类号 : TP391. 9 文献标识码 :A 文章编号 :1004 373X ( 2006) 24 046 03
嵌入式与单片机
此 ,在 Matlab 命令窗口中要写出计算 A ,B ,C ,D 的程序代
0 1 0
0 0 1 2
¨ x1 ¨ x3
- 1
2 0 #43; x3
码 , 或者新建一个 M 文件来计算 A ,B ,C ,D 的值 。后者较 前者使用更方便 , 但是在每次仿真前 , 都必须先在 Matlab 命令窗口输入 M 文件的名称 , 才能开始仿真 , 使用起来还 是不方便 。
1 引 言 振动在日常生活和工程实际中普遍存在 。为了认识 振动现象 , 有必要研究和掌握振动规律 , 掌握他的益处来 为生产和生活服务 ,同时在生产和日常生活中有效地避免 振动造成的危害 。随着计算机技术的不断发展 , 人们研究 事物的手段也在发生着变化 ,一批卓越的现代化工程应用 分析软件纷纷占领市场 ,给人们在解决工程实际问题时带 来了极大的优越性 ,机械振动分析领域也不例外 。在众多 的软件中以 Matlab/ Simulink 仿真软件最为亮眼 。利用

基于Matlab_Simulink的多自由度机械振动系统仿真

基于Matlab_Simulink的多自由度机械振动系统仿真
¨ ・ ・ ¨ ・ ・ ・ ¨ ・ ・ ・ ¨ ・ ・
写成矩阵的形式为 : M X + CX + KX = F ( t) . 应用文献 [ 6 ]中的影响系数法建立系统的质量矩阵 、 刚度矩阵和阻尼矩阵如下 :

¨

X = ( x1 , x2 , x3 , x4 ) ; X = ( x1 , x2 , x3 , x4 ) ;
Abstract: Taking a four DOF mechanical vibrating system as an examp le, this paper discusses the mod2 elling method and sim ulation analysis of multi - degree - of - freedom m echanical vibration system s by u2 sing M atlab / Si m ulink soft w are, and focuses on the establishment method and utilization of the vibration differential equation and the state - space sim ulation model . The m ethod not only sim p lifies the p rocess of p rogramm ing, and imp roves the quality and reliability of p rogramm ing, but also offers effective reference for the sim ulation of the si m ilar multi - degrees of freedom vibrating system. Key words: M atlab / Sim ulink; mechanical vibration system; model; sim ulation

Simulink仿真教程(共77张)

Simulink仿真教程(共77张)

仿真技术
第8页,共77页。
第九章 Simulink动态仿真
指令窗
该窗是进行各种 MATLAB 操作的最主要窗口。在该窗内,可键入各种送给(sònɡ ɡěi)MATLAB 运作的指令、函数、表达式;显示除图形外的所有运算结果;运行错误时,给出相关的出错提示。
仿真技术
第9页,共77页。
第九章 Simulink动态仿真
仿真技术
第6页,共77页。
第九章 Simulink动态仿真
5、 Simulink与建模仿真 (1) Simulink
Simulink是一种用来实现计算机仿真的软件工具。它是MATLAB 的 一个(yī ɡè)附加组件,可用于实现各种动态系统(包括连续系统、 离散系统和混合系统)的建模、分析和仿真。
第九章 Simulink动态仿真
Simulink动态(dòngtài)仿真
1 Simulink 基本操作 利用Simulink进行系统仿真的步骤是: ① 启动Simulink,打开Simulink模块库 ② 打开空白模型窗口; ③ 建立Smulink仿真模型; ④ 设置仿真参数,进行仿真; ⑤ 输出仿真结果。
仿真技术
第5页,共77页。
4、 仿真的三要素
第九章 Simulink动态仿真
计算机仿真的三个基本要素是系统、模型和计算机,联系着它 们的三项基本活动是模型建立、仿真模型建立(又称二次建模 )和仿真试验。
数学仿真采用数学模型,用数学语言(yǔyán)对系统的特性进行描述, 其工作过程是:
1、建立系统的数学模型; 2、建立系统仿真模型,即设计算法,并转化为计算机程序,使 系统的数学模型能为计算机所接受并能在计算机上运行; 3、运行仿真模型,进行仿真试验,再根据仿真试验的结果进一 步修正系统的数学模型和仿真模型。

基于Simulink的多自由度系统振动仿真研究

基于Simulink的多自由度系统振动仿真研究

0引言在实际工程中,许多物体都涉及到振动问题,比如在行驶过程中的汽车、城市轨道车辆、高速运行的动车等。

但是对于很多复杂物体的振动分析较为困难,因此在分析的过程中要加以简化才可以。

通常而言,大部分物体振动可以简化为简单的三自由度系统,这样更加方便计算和分析。

比如现在的汽车在满足安全的同时追求更好的驾驶舒适性,其车的结构也是越来越复杂。

大多数汽车座椅下面使用了弹簧和橡胶来吸收振动、缓解冲击,同时在汽车底盘和轮胎处都采用了减振装置,这所有就可以看成一个三自由度的系统。

简化模型来解决复杂振动问题,可以采用理论分析和数值仿真,数值仿真通常用Matlab 。

本文主要针对工程中常用的三自由度系统的简化模型进行了分析,综合采用理论计算和数值仿真。

理论计算做了三自由度的运动微分方程、固有频率和主振型的计算,数值仿真做了系统的模型用来分析各部分在外界激励的作用下的位移响应曲线。

本文用的是Simulink 动态分析,它可以在做出实际系统之前,预先对设计的系统进行仿真分析,并可以根据仿真结果随时进行参数的修正,提高系统的性能和稳定性,以减少对实际系统的设计与修改,实现高效率的开发和设计分析系统的目的。

1三自由度振动系统理论计算本节用一个三自由度有阻尼系统来近似模拟简化的机械物体在运动过程中的振动。

问题描述:已知一个系统刚度K=500N/m ,系统质量M 3=20kg 、M 2=20kg 、M 1=20kg ,阻尼器系数C=2Ns/m ,弹簧和质量块为蓄能元件,阻尼器为耗能元件。

三个质量块的位移分别为X 1、X 2和X 3,外部激励X (t )为,系统初值为零。

图1多自由度系统实物图具体分析过程如下:根据对质量块受力分析,可以得到系统的动力学方程如下:(1)整理为下面的形式方便建模:(2)矩阵形式为:(3)即振动系统可以表示为:式中:、、下面进行系统的模态分析:系统矩阵可以写为(4)其中M -1表示系统质量逆矩阵,K 表示刚度矩阵,可以表示为:系统矩阵为:(5)令,则有———————————————————————作者简介:黄兵(1998-),男,重庆人,本科,重庆交通大学机电与车辆工程学院,研究方向为城市轨道交通车辆。

基于Matlab Simulink的机械振动仿真研究

基于Matlab Simulink的机械振动仿真研究
基于Matlab Simulink的机械振 动的仿真研究
1.选题背景与意义
(1)对机械振动的研究现在多停在于理论上, 比较抽象和空洞。 (2)用Matlab软件来仿真模拟机械振动,可以 将抽象的理论形象直观地表示出来,有助于提 高学习的积极性。
2.论文逻辑思路 建立模型 列出方程 给定初始 条件求解
Thanks!
r F
−A
O
A
x
简谐振动物理模型
振动方程: 其中: ω2 = 其解为:
k m
r d2x 2r +ω x = 0 2 dt
r x = 4cos(ωt +ϕ)
r F
r f
−A
O
A
x
阻尼振动物理模型
振动方程:
2 其中: ω0 = m ,
r r d2 x dx 2r + 2n + ω0 x = 0 dt 2 dt k γ
n= 2m
r 其解为: x(t) = Ae−nt cos( ω02 − n2 t + ϕ)
r F弹
m r f
r f (t )
o x
受迫振动物理模型 r 2r r d x dx 2r + 2n + ω0 x = h sin ωt 振动方程: 2 dt dt r r F0 k γ ω0 = ,2n = , h = 其中: m m m
r 其解为: x(t) = Ae−nt cos(ω1t + φ) + h* cos(ωt + ϕ)
其中: = A
C +C
2 1
2 2
ω1 = ω02 − n2
h* =
h (2nω)2 + (ω02 − ω2 )2

MATLAB最重要的组件Simulink仿真入门教程优秀PPT课件

MATLAB最重要的组件Simulink仿真入门教程优秀PPT课件

解决方案
使用技巧
多模块复制粘贴:在Simulink模型中,可以通过复制和粘贴操作实现多个相同模块的快速添加和参数设置。
模块连接自动对齐:在Simulink模型中,可以通过右键菜单中的“自动对齐”选项实现模块连接的自动对齐。
模块快速拖拽:在Simulink模型中,可以通过按住Ctrl键并拖动模块,实现模块的快速移动。
通信工程
Simulink可以用于通信工程的仿真和优化,支持多种通信协议和信号处理算法,可以对通信系统的性能进行评估和优化。
嵌入式系统
Simulink可以与嵌入式系统紧密结合,对嵌入式系统的硬件和软件进行仿真和测试,从而加速嵌入式系统的开发和调试。
信号处理
Simulink提供了信号处理模块库,支持信号的采集、处理、分析和可视化等功能,可以方便地进行信号处理领域的各种研究和开发。
详细描述
模型建立不正确解决方案:采用MATLAB提供的帮助文档和Simulink GUI界面提示
运行效率低解决方案:采用MATLAB提供的性能分析工具对模型进行优化,例如通过减少模块计算量和增加缓存等措施提高运行效率
结果可视化不美观解决方案:采用MATLAB提供的图形界面工具对结果进行美化,例如调整图表颜色、样式和标注等。
复杂系统仿真
实际应用仿真
案例九 电液伺服系统的仿真
案例十二 机器人控制系统的仿真
案例十 车辆动力系统的仿真
案例十一 工业过程控制系统的仿真
THANKS
感谢观看
《matlab最重要的组件simulink仿真入门教程优秀ppt课件》
xx年xx月xx日
Simulink软件介绍Simulink基本操作Simulink高级操作Simulink常见问题及解决方案Simulink案例教程

Simulink机械振动仿真简例分析

Simulink机械振动仿真简例分析

1.单自由度无阻尼自由振动
运行仿真,查看示波器显示的结果
曲 线 不 光 滑 ?
1.单自由度无阻尼自由振动
打开仿真参数对话框 Ctrl+E 修改最大步长为0.01
1.单自由度无阻尼自由振动
再次运行,曲线明显光滑了许多
1.单自由度无阻尼自由振动
• 用到的模块:
积分模块,将输入信号经过数值 积分,在输出端输出相应结果。 增益模块,在输入信号基础上乘 以一个特定数据,然后输出。 示波器模块,将输入信号输入到 示波器显示出来。
据此在Simulink中画出框图
5.单自由度有阻尼+正弦激励
• 参数设置: 令k=4,m=1,c=0.2 • 初始状态: 初始速度为0,位移为0.05 • 在框图中: 分别修改对应模块的数值
5.单自由度有阻尼+正弦激励
Hale Waihona Puke • 响应趋于稳态的过程5.单自由度有阻尼+正弦激励
示波器输出为质量块的位移信号
• 参数设置:k=100N/m, m=1kg →n=10rad/s • sin wave参数:Amplitude 1; Frequency 8,10,12 • 初始状态:①x0=1, v0=0→=90; ②x0=0, v0=1→=0; ③ x0=1, v0=10→=45; ④ x0=1, v0=−10→=135; ⑤ x0=0, v0= −1→=180 Sine Wave XY Graph • XY Graph参数 1 1 s s x-min -2; x-max 2; Integrator Integrator1 Gain Scope y-min -2; y-max 2
4.衰减振荡的阻尼比的估计
• 参数:k=100,m=10, c=2 • 初始条件:x0=1, v0=0 • 初始振幅为1,约7个周期时衰减 为0.25,对数减幅: =(ln4)/70.099 阻尼比/20.032 • 理论值=0.5c(km)−0.5 0.032

基于Simulink的机械振动系统仿真

基于Simulink的机械振动系统仿真

基于Simulink的机械振动系统仿真
席平原
【期刊名称】《机床与液压》
【年(卷),期】2005(000)006
【摘要】通过列举一些实例,分析了Matlab/Simulink软件在二自由度机械振动系统仿真中的应用,不但大大地提高了编程的效率,而且提高了编程的质量和可靠性,取得了很好的效果.
【总页数】2页(P175-176)
【作者】席平原
【作者单位】淮海工学院机械系,江苏,连云港,222001
【正文语种】中文
【中图分类】TP312
【相关文献】
1.基于Matlab/Simulink的多自由度机械振动系统仿真 [J], 曾德惠;黄松和
2.基于系统仿真的旋转机械振动故障诊断方法 [J], 庄莉莉
3.基于MATLAB and Simulink的波浪能装置液压能量转换系统仿真研究 [J], 叶寅;盛松伟;乐婉贞;王坤林;张亚群
4.基于Matlab/Simulink风电机组测试平台液压加载系统仿真研究 [J], 朱怡;孙渊;陈国初
5.基于Simulink的多自由度机械振动系统仿真 [J], 匡伟春;张柏清;张传才
因版权原因,仅展示原文概要,查看原文内容请购买。

使用MATLAB-SIMULINK仿真简谐振动物理实验

使用MATLAB-SIMULINK仿真简谐振动物理实验

科技风2016年11月下科教论坛4D01:10.19392/ki.l671-7341.201622030使用MATLAB-SIMULINK仿真简谐振动物理实验王兆旭山东省历城二中高51级高三24班山东历城250001摘要:本文介绍了用Simulmk对简谐振动和阻尼振动物理实验进行仿真的方法。

仿真出了位移、速度等振动曲线;并完成了振动过程中的动 能、势能以及机械能进行监测0,实现了用Simulmk仿真物理实验的目的。

关键词:简谐振动;实验仿真;SimulinkSimulink是美MathWorks公司出品的商业数学软件MATLAB最重要的组件之一,它无需大量书写裎序,只需要通过简单直观的鼠标操作,就可组建复杂的系统,完成|个动态系统建模、仿真和綜合分析,已经被应用于数字信号和控制理论的大量仿真和设计。

将Simulink仿真精细、贴近实际、效率高的优点运用到物理实验的模拟屮太%可以直观、客观、生动地仿真物理实验,更好地理解物理规律,一、简谐振动及其数学模型简谐振动是最简单最基本的振动,其振动过程关于平衡位置对称,它是一种往复运动。

质点的位移和时间的关系遵从正弦函数的规律,它的振动图像U-t图像)是一条正弦曲线的图像。

见图1。

动力学方程(牛顿第二运动定律,不考虑摩擦等外力):mX=-kX以尤表示位移,i表示时间,这种振动的数学表达式为:x=Asin(〇)nt+(p)(1)式中,4为位移%的最大值,称为振幅,它表示振动的强度;叫表示每秒中的振动的幅角增量,称为角频率,也称圆频率;p称为初相位s以表示每秒中振动的周数,称为频率;它的倒数,T=l//,表示振动j j周所需的时间,称为周期s振幅4、频率/(或角频率队)初相位,称为简谐振动三要素4可 见速度和加速度也是按正(余)弦规律随时间变化,二*只是相位和幅值不同。

对于简谐振子,其动能+w i2和势能之和为一常量,即系统的总机械能守恒f在振动过程中,动能和势能不断相互转化$ _考虑摩 擦阻尼,振动会逐步衰减,机械能全部转变为热能逸散。

基于Simulink的机械振动系统仿真_席平原

基于Simulink的机械振动系统仿真_席平原

21 2 采用 S i m ulink 连续系统模块组中的状态空间 模块进行仿真 对于多自由度振动系统, 可以看作为多输入多输
# 176#
出系统, 在 现代 控 制理 论中, 是采 用 状态 空 间法 来 描述系统的。应用状 态空间法 对连 续系统 进行 分析, 是借助计算机直接求解一阶线性的或非线性的方程组 来进行仿真, 并根据状态方程的解, 即系统运动的时 间历程, 来对系统作出 评估。由 于不需经过任何变换, 而 是在时 域内直接求解和分析, 所 以这种 方法直观方便。以某振动 输送机 二自由度振动系统为例, 系统参 图 3 二自由度系统 数 为 m 1 = 1421kg, m 2 = 407kg , 动力学模型 k1 = 1724800N /m, k 2 = 3214400N /m, c1 = c2 = 0, F 0 = 16464N, 激 振 频 率 111 2H z, 系统力学模型如图 3所示, 求此双质量弹簧 系统的响应。 ( 1 ) 利用影 响系 数法 建立 该系 统的 振动 微分 方 程如下: m 1x & 1 + ( k1 + k2 ) x 1 - k 2 x 2 = F 0 s inXt m 2x & 2 - k2 x1 + k 2 x 2 = - F 0 s inXt 选取状态变量为 Z 1 = x 1, Z 2 = x 1, Z 3 = x 2, Z 4 = x 2; 输出变量为 y 1 = Z 1, y 2 = Z3。通过转 换化为 状态 空间表达式, 可得 0 k1 + k2 m1 0 k2 m2 0 1 m1 0 0 输出矩阵为: C = 1 0 0 0 0 0
T
《 机床与液压 》 20051N o1 6
得仿真结果如图 5~ 7 所 示, 可观 察此二 自由度 系统 的 响 应, 对 仿 真 结 果 进行分析。 由 以上 仿真 结 果 可 以 看 出, 通 过 对 二 自由度机 械振动 系统 进 行 仿 真, 能 够 很 方 便地观察 出两单 元的 位移、 速度 和 加 速 度, 以及求 得系 统的 特征 值 和特 征向 量, 从而 对 系 统进 行分 析和 预测。 多 自由度 系统 的许 多概 念 都可 以通 过二 自由 度系 统 的 问 题 来 进 行 说 明, 所以 也可 同样 方便 地对 多自由度系统进行仿真。

《SIMULINK仿真》PPT课件

《SIMULINK仿真》PPT课件

• • • • • • • • • • • • •
(4)Discrete(离散系统模块库) 模块包括描述离散时间系统的模块,其中主要模块有: Difference(差分); Discrete Derivative(离散微分); Discrete Filter(离散滤波器); Discrete State-Space(离散状态空间模型); Discrete Transfer Fcn(离散传递函数); Discrete Zero-Pole(以零极点表示的离散传递函数模型); Discrete Time Integrator(离散时间积分器); First-Order Hold(一阶采样和保持器) Integer Delay(整数延迟); Zero-Order Hold(零阶采样和保持器); Unit Delay(单位延迟);
4.1.3 SIMULINK界面窗口介绍
SIMULINK模型创建窗口
Simulink的工作原理
• • • • • 仿真包括以下几个步骤。 (1)模型编译 (2)连接 (3)仿真执行 一般仿真模型都采用数值积分来仿真 的,相邻两个时间点的长度为步长,步长 的大小取决于求解器的类型。
4.1.4 SIMULINK的常用模块库
• • • • • • • • • •
(11)Sources(输入源模块库) Band-Limited White Noise(带宽限制的白噪声); Clock(时钟信号); Constant(常数信号); Pulse Generator(脉冲发生器); Repeating Sequence(重复序列信号); Signal Generator(信号发生器); Sine Wave(正弦波信号); Random Number(随机数); Step(阶跃波信号);

基于Simulink的多自由度机械振动系统仿真

基于Simulink的多自由度机械振动系统仿真

基于Simulink的多自由度机械振动系统仿真
匡伟春;张柏清;张传才
【期刊名称】《煤矿机械》
【年(卷),期】2007(28)12
【摘要】针对多自由度机械振动问题,以弹簧质量系统、轴上带有若干圆盘的扭转振动系统和梁上有集中质量的横向振动系统为例,详细介绍在Matlab/Simulink平台上利用状态空间法进行多自由度系统仿真的方法及步骤,并对仿真结果进行了分析。

【总页数】4页(P54-57)
【关键词】多自由度;机械振动;Simulink;仿真;状态空间
【作者】匡伟春;张柏清;张传才
【作者单位】景德镇陶瓷学院;西安建筑科技大学
【正文语种】中文
【中图分类】TP391;TH113.1
【相关文献】
1.基于Simulink的机械振动系统仿真 [J], 席平原
2.基于Matlab/Simulink的多自由度机械振动系统仿真 [J], 曾德惠;黄松和
3.基于Simulink的多自由度系统振动仿真研究 [J], 黄兵;孔程程
4.基于Simulink的多自由度系统振动仿真研究 [J], 黄兵;孔程程
5.基于ADAMS与Simulink的六自由度摇摆台系统联合仿真研究 [J], 陈勇军;韩霄翰;张炎;张海坤
因版权原因,仅展示原文概要,查看原文内容请购买。

基于MATLABSimulink的机械系统仿真技术

基于MATLABSimulink的机械系统仿真技术

基于MATLABSimulink的机械系统仿真技术基于 MATLAB/Simulink 的机械系统仿真技术在当今科技飞速发展的时代,机械系统的设计和优化变得日益复杂。

为了更高效、准确地预测和分析机械系统的性能,基于MATLAB/Simulink 的机械系统仿真技术应运而生。

这项技术为机械工程师和研究人员提供了强大的工具,帮助他们在实际制造之前,就能对机械系统的行为有深入的了解和准确的预测。

机械系统仿真技术的核心在于通过建立数学模型来模拟真实世界中机械系统的运行。

而 MATLAB/Simulink 作为一款功能强大的数学计算和建模软件,为实现这一目标提供了丰富的资源和便捷的操作环境。

首先,让我们来了解一下 MATLAB/Simulink 的一些基本特点。

MATLAB 具有强大的数值计算和数据分析能力,能够处理复杂的数学公式和算法。

Simulink 则是一个基于图形化的建模环境,用户可以通过拖拽和连接各种模块来构建系统模型,这种直观的操作方式大大降低了建模的难度,提高了工作效率。

在机械系统仿真中,常见的模型类型包括刚体动力学模型、柔性体模型、传动系统模型等。

以刚体动力学模型为例,我们可以使用牛顿定律和欧拉方程来描述物体的运动。

通过在 Simulink 中定义质量、惯性矩、力和力矩等参数,以及它们之间的关系,就能模拟出刚体的运动轨迹和受力情况。

对于复杂的机械系统,如汽车的悬挂系统,不仅需要考虑刚体的运动,还需要考虑弹性元件和阻尼器的特性。

这时,就可以引入柔性体模型。

通过有限元分析等方法,可以将柔性体的模态信息导入到Simulink 中,与刚体模型相结合,从而更真实地反映系统的动态特性。

传动系统也是机械系统中的重要组成部分。

例如,齿轮传动系统的建模需要考虑齿轮的齿数、模数、压力角等参数,以及齿面接触和摩擦等因素。

在 MATLAB/Simulink 中,可以使用专门的模块来构建齿轮传动模型,并与其他部件的模型进行集成,以分析整个传动系统的性能。

Simulink机械振动仿真简例

Simulink机械振动仿真简例
• 在matlab中将激励频率列表于向量 omega=[0.1,0.5,0.9,1.3,1.6,1.8,1.9, 1.95,2.0,2.1,2.2,2.4,2.7,3.1,3.5,3.9,4. 3,4.7,5.1,5.5]; 将记录的传递力幅值列表于向量 x=[…,…,…];(自行根据实验数据 填写,元素个数要与omega一致)
0.4 1.5
0.3
1 0.2
0.5 0.1
0
0
1
2
3
4
5
6
0
0
1
2
3
4
5
6
第43页,共52页。
8.隔振系统的幅频特性分析
• 系统框图
Sine Wave Scope
1
1
s
Gain 1/m
Integrator
Gain c
1
1 s
Integrator1
Gain1 k
4
• 实验原理:改变激励频率,并记录 Scope记录的传递力幅值。
m
mm
据此在Simulink中画出框图
第23页,共52页。
5.单自由度有阻尼+正弦激励
• 参数设置: 令k=4,m=1,c=0.2
• 初始状态: 初始速度为0,位移为0.05
• 在框图中: 分别修改对应模块的数值
第24页,共52页。
5.单自由度有阻尼+正弦激励
• 响应趋于稳态的过程
第25页,共52页。
第5页,共52页。
1.单自由度无阻尼自由振动
• 参数设置: 令k=100,m=10,
• 初始状态: 初始速度为0,位移为1
• 在框图中: 修改乘法器的值为-10 修改Integrator1的Initial condation为 1(双击修改)

机电系统动态仿真matlabPPT电子教案课件-第七章-SIMULINK仿真

机电系统动态仿真matlabPPT电子教案课件-第七章-SIMULINK仿真
337 第三十七页,共61页。
仿真模型的参数设置
2.模块的属性设置
38
第三十八页,共61页。
仿真模型的参数设置
2.模块的属性设置 该对话框包括General、Block annotation和 Callbacks 3个可以相互切换的选项卡。 其中General选项卡中可以设置3个根本属性: Description(说明)、
7.3 Simulink的模块操作 7.4 仿真模型的参数设置
117 第十七页,共61页。
Simulink的根本模块
7.2 Simulink的根本模块
18
第十八页,共61页。
Simulink的根本模块
7.2 Simulink的根本模块
119 第十九页,共61页。
Simulink的根本模块
7.2 Simulink的根本模块
寻找正确 的功能模块
x(t)=sin(t)*sin(10t)。 示波器 正弦源 乘法器 正弦源
PrelookUp Index S 预查下标
Interpolation(n-D) N维插值
Direct Lookup T Fcn
直接查表
C语言形式的 表达式
MATLAB Fun
M形式的表达式
S-Function Polynomial
调用S函数 多项式
25
第二十五页,共61页。
Simulink的根本模块
(2) 将所需模块添加到模型中。 (3) 设置模块参数并连接各个模块组成仿真模型。
(4) 设置系统仿真参数。
(5) 开始系统仿真。 (6) 观察仿真结果。
5 第五页,共61页。
认识Simulink
7.1.2 Simulink的启动与退出 1.Simulink的启动
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档