第六节 空间曲线及其方程
高等数学 第八章 第六节 空间曲线及其方程
S2 L S1
F(x , y , z) = 0 G( x , y , z) = 0
例如,方程组
G(x , y , z) = 0 F(x , y , z) = 0
z
2C
表示圆柱面与平面的交线 C 。
第八章 第六节
o 1y
x
2
又如,方程组
z
ay
表示上半球面与圆柱面的交线 C 。 x
特点:曲线上的点都满足 方程, 满足方程的点都在 曲线上, 不在曲线上的点 不能同时满足两个方程。
第八章 第六节
3
例1
方程组
x2 + y2 = 1
表示怎样的曲线?
2x + 3 y + 3z = 6
解 x2 + y2 = 1 表示圆柱面,
2x + 3 y + 3z = 6 表示平面,
x2 + y2 = 1 2x + 3 y + 3z = 6
交线为椭圆。
第八章 第六节
4
z = a2 − x2 − y2
空间曲线的一般方程、参数方程。
F(x , y , z) = 0 G( x , y , z) = 0
x = x(t)
y
=
y(t )
z = z(t)
空间曲线在坐标面上的投影。
H(x , y) = 0 z = 0
R( y , z) = 0
x
=
0
第八章 第六节
T ( x , z) = 0
y
=
0
21
yoz 面上的投影曲线,
R( y , z) = 0
x
=
0
xoz面上的投影曲线,
空间曲线及其方程
§7.6 空间曲线及其方程
一空间曲线的一般方程
(1)
面上。
所以,它的坐标不满足方程组(1)。
由上述两点可知:
由方程组
方程组(1)称作空间曲线的一般方程。
二空间曲线的参数方程
(2)
(2)叫做空间曲线参数方程。
【例1
),
螺旋线,试建立其参数方程。
以
螺旋线有一个重要性质:
螺距。
空间曲线的一般方程也可以化为参数方程,下面通过例子来介绍其处理方法。
【例2表示成参数方程。
(1)
(2)
则曲线又可表示成为
一般来说:
1、空间曲线总可以用参数形式给出它的方程;
2、随着参数选取的不同,方程的形式会发生变化。
三空间曲线在坐标面上的投影
(1)
(2)
因(2)(1)
(2)
点都在由(2)表示的曲面上。
同理,消去方程组( 1) 中的变量
或
有时,我们需要确定一个空间立体(或空间曲面)在坐标面上的投影,一般来说,这种投影往往是一个平面区域,因此,我们称它为空间立体(或空间曲面)在坐标面上的投影区域。
投影区域可以利用投影柱面与投影曲线来确定。
【例4】求上半球面
解:上半球面与锥面的交线为。
空间曲线PPT课件
contents
目录
• 空间曲线的基本概念 • 空间曲线的方程 • 空间曲线的几何性质 • 空间曲线在几何图形中的应用 • 空间曲线在现实生活中的应用 • 空间曲线的发展前景与展望
01
CATALOGUE
空间曲线的基本概念
定义与特性
定义
空间曲线是由三维空间中的点的 集合构成,这些点通过连续的参 数变化而形成一条连续的轨迹。
02
CATALOGUE
空间曲线的方程
参数方程
参数方程
通过选择合适的参数t,将空间曲线 上的点与参数t关联起来,形成参数 方程。
参数方程的优缺点
参数方程可以直观地表达曲线的形状 和方向,但有时候参数的选择可能较 为复杂。
直角坐标方程
直角坐标方程
利用三维空间中的三个互相垂直的坐标轴,将空间曲线上的点与三个坐标轴上的 值关联起来,形成直角坐标方程。
空间曲线在几何学中的地位和作用
地位
空间曲线是几何学中的重要概念之一,它是连接点与点之间 的桥梁,也是描述三维空间中物体运动和变化的重要工具。
作用
空间曲线在几何学中有着广泛的应用,如在解析几何、微积 分、线性代数等领域中都有重要的应用。此外,空间曲线还 在工程、建筑、艺术等领域中有着广泛的应用,如建筑设计 、机械设计、动画制作等。
直角坐标方程的应用
直角坐标方程广泛应用于解析几何、微积分等领域。
极坐标方程
极坐标方程
利用极径和极角来描述空间曲线上的 点,形成极坐标方程。
极坐标方程的特点
极坐标方程可以方便地描述旋转对称 的曲线,但在处理复杂曲线时可能不 够直观。
球坐标方程
球坐标方程
利用球径和球角来描述空间曲线上的点,形成球坐标方程。
§7.4空间曲线及其方程高数
单叶双曲面: x a sec cos y b sec sin 4 4 z c tan 0 2 圆环面: x ( R r cos ) cos y ( R r cos ) sin 0 2 0 2 z r sin 正螺面:
解: 取时间 t 为参数, 当 t = 0 时, 动点从 x 轴上的 一点A(a, 0, 0)出发, 经过 t 时间, 运动到点M(x, y, z ), M 在xoy面上的投影为M(x, y, 0). z 由于点M在圆柱面 x2 + y2 = a2上以 角速度 绕 z 轴旋转, 所以经过时间 t , AOM= t. 从而: x =| OM |cosAOM= a cos t. y =| OM | sinAOM= a sin t. o M 又由于点M同时又以线速度 v 沿平行于 z 轴的正方向上升, 所以 x A y M z=vt t x a cos t 因此, 螺旋线的参 y a sin t 数方程为: z v t
x2 y2 1 z 0
x
2
y
补充: 空间立体或曲面在坐标面上的投影.
空 间 立 体
曲 面
z 4 x 2 y 2 和锥面 例6: 设一个立体由上半球面 z 3( x 2 y 2 ) 所围成, 求该立体在xoy面上的投影.
解: 半球面和锥面的交线为 z 4 x 2 y2 , C : z 3( x 2 y 2 ) , 消去 z 得投影柱面方程: x2 + y2 = 1. 则交线C在xoy面上 的投影曲线方程为: x 2 y 2 1, z 0. 这是xoy面上的一个圆, 所以, 所求立体在xoy面上的投 影(区域)为: x 2 y 2 1.
空间曲线方程
一、空间曲线及其方程
1. 空间曲线的一般式方程
空间直线可以看作是两个平面的交线,而它的方程可以用这 两相交平面方程的联立方程组来表示,同样空间曲线可以看作两 个曲面的交线.
设有两个相交的曲面,它们的方程分别是F1(x,y,z)=0, F2(x,y,z)=0.那么联立方程组
(7-15) 就是它们交线的方程,称式(7 15)为空间曲线的一般式方程.
2x2+y2-2x=0. 于是,两球面的交线在xOy面上的投影曲线方程为
最后,我们通过例题来说明,空间解析几何中由方程来 描绘空间区域的方法.它在今后多元函数积分学中经常用到, 要仔细体会.
二、空间曲线在坐标面上的投影
【例4】
描绘由x≥0,y≥0,z≥0,x+y≤1,y2+曲线C′在xOy坐标面上的投影曲线方程.
二、空间曲线在坐标面上的投影
同理,从式(7-17)中消去x或y,分别得投影柱面方程 G(y,z)=0或R(x,z)=0,再分别与x=0或y =0联立,即可得曲 线C′在坐标面yOz面或zOx面上的投影曲线方程分别为
【例3】
求两球面x2+y2+z2=1和(x-1)2+y2+(z-1)2=1的交线 在xOy面上的投影方程.
解 在空间解析几何中,不等式关系描述了曲线上(下) 方或内(外)的区域,为此,我们在空间直角坐标系中只要 描绘出相应方程的图形,就可得到所描绘的空间区域.
方程x+y=1表示过点(1,0,0)和点(0,1,0)且 平行于z轴的平面.
二、空间曲线在坐标面上的投影
x+y≤1表示以x+y=1为界,且包含原点的那 个半空间.
一、空间曲线及其方程
高数空间曲线及其方程
隐式方程
通过三个坐标分量之间的 隐式关系来表示空间曲线, 如F(x,y,z)=0,其中F为某 个三元函数。
参数方程
通过引入参数来表示空间 曲线上的点的坐标,如 x=x(t), y=y(t), z=z(t), 其中t为参数,可以表示空 间曲线上的任意一点。
02 空间曲线的基本类型
一般空间曲线
01
参数方程形式
空间曲线与曲面的切线及法线
要点一
切线与法线的定义
空间曲线在一点处的切线是与该点处 曲线相切的直线,法线则是垂直于切 线的直线。对于曲面而言,切线是指 曲面上一点处与曲面相切的平面,法 线则是垂直于该切平面的直线。
要点二
切线与法线的性质
切线和法线在几何学和微积分学中具 有重要的应用,它们可以用于描述曲 线和曲面的局部性质,如斜率、曲率 等。
空间曲线的基本概念
空间曲线的定义
空间曲线可以看作是一维曲线在三维空间中的推广,由无数个点组成,且每个 点都有三个坐标分量。
空间曲线的分类
根据形状和性质,空间曲线可以分为多种类型,如平面曲线、直线、圆、螺旋 线等。
方程表示方法
01
02
03
显式方程
通过三个坐标分量之间的 显式关系来表示空间曲线, 如x=f(t), y=g(t), z=h(t), 其中t为参数。
要点三
切线与法线的求解方 法
对于给定的曲线或曲面方程,可以通 过求导或微分的方法得到切线和法线 的方程。对于空间曲线而言,需要分 别求出曲线在参数变化方向上的切向 量和法向量;对于曲面而言,则需要 求出曲面在一点处的切平面和法线向 量。
06 案例分析与实践应用
案例分析:空间曲线在实际问题中的应用
曲线的弯曲程度
10-6空间曲线及其方程11327 共27页
x2
y2
在各坐标面上的投影.
z
解(1)在xoy面,
z 2 x2 y2 z 1
消去z x2y2 1
o
x
在 xoy面上的投影为
x2 y2 1 z 0
y
15
(2)在yoz面上
在zz
2x2 1
y2中
,z
1(不含x)是母线
平行于x轴的柱面
投影柱面
yoz面上的投影Cyoz为线段: zx10,
2, 上升的高度 h2b螺距
7
三、空间曲线在坐标面上的投影
z 1.定义 设空间曲线C的一般方程: C
F(x, y,z) 0
o
G(x, y,z) 0
x
y
以C为准线,作母线平行于z 轴的柱面 Cxoy ,则称与xoy 面的交线Cxoy为曲线C在 xoy 面上的投影(曲线), 且称为曲线C 关于xoy面的投影柱面.
t
o
M
x A M y
xaco ts
yasi nt
zvt
螺旋线的参数方程
6
螺旋线的参数方程还可以写为
x a cos
y
a
sin
z b
(t, bv)
螺旋线的重要性质:
上升的高度与转过的角度成正比.
即 :0 0 , z:b0 b0 b,
平行于y 轴的柱面
投影柱面 z 1
2 y 0
所以在 xo面z上的投影Czox为线段:
z
1 2,
y 0
| x | 3 2
13
(3)同理在 yoz面上的投影Cyoz也为线段:
空间曲线及其方程
平行于x轴的柱面
投影柱面
yoz面上的投影Cyoz为线段:
z
x
10,
| y | 1
(3)同理xoz面上的投影Czox也为线段:
z
y
10,
| x | 1.
15
例7 求抛物面 y2 z2 x 与平面 x 2 y z 0
的截线在三个坐标面上的投影曲线方程. z
解 截线C的方程为:
y2 z2 x
y
x 2y z 0
如图,
o
x
16
(1)消去z ,得 C 在 xoy 面上的投影:
x2 5 y2 4xy x 0
,
z 0
(2)消去y ,得 C 在 zox 面上的投影:
x2 5z2 2xz 4x 0
,
y 0
(3)消去 x,得 C 在 yoz 面上的投影:
y2 z2 2y z 0
F( x, y, z) 0 G( x, y, z) 0
消去x
C yoz
:
x0 R( y, z)
0
C在zox 面上的投影 Czox:
F( x, y, z) 0 消去y G( x, y, z) 0
C z ox
:
T ( x, z)
y
0
0
9
例4
C
:
x
2
x2 (y
y2 1)2
z2 1 (z 1)2
.
x 0
17
四、一元向量值函数
1. 基本概念
(1) 一元向量值函数
r r(t), t I
其中r
xi
yj
zk ,
空间曲线的向量形式
r(t )
x(t)i
第六节 空间曲线及其方程
2,
上升的高度 h 2b 螺距
二、空间曲线在坐标面上的投影
F ( x, y, z ) 0 设空间曲线的一般方程: G ( x , y , z ) 0
消去变量z后得: H ( x , y ) 0 曲线关于 xoy 的投影柱面 投影柱面的特征: 可视为以此空间曲线为准线,母线垂直 于所投影的坐标面的一个柱面. [1]. 投影柱面
[2]. 投影曲线 曲线的投影柱面与所投影的平面的交线. 空间曲线在xoy 面上的投影曲线
H ( x, y) 0 z 0
类似地:可定义空间曲线在其他坐标面上的投影
yoz 面上的投影曲线,
R( y , z ) 0 x 0
xoz 面上的投影曲线,
T ( x , z ) 0 y 0
的全部点.
2 2 2 M x y a 如果空间一点 在圆柱面 上以角 例3 速度 绕 z 轴旋转,同时又以线速度 v 沿平行于 、v 都是常数),那么点 z 轴的正方向上升(其中 M 构成的图形叫做螺旋线,试建立其参数方程.
解
z
取时间t为参数, 动点从A点出 发,经过t时间,运动到M点 M 在 xoy 面的投影 M ( x , y ,0)
t
o
x A
M
x a cos t y a sin t z vt
y
M
螺旋线的参数方程
螺旋线的参数方程还可以写为
x a cos y a sin v z b ( t , b )
特性:
即 : 0 0 ,
上升的高度与转过的角度成正比.
其中 1 // 2
同济版高等数学第六版课件第八章第六节空间曲线及其方程
直角坐标方程是另一种描述空间曲线 的方法,它由一个方程组组成,表示 曲线上任意一点的坐标与三个直角坐 标轴之间的关系。
02
空间曲线的方程
空间曲线的一般方程
空间曲线的一般方程是两个三维空间 的方程联立得到的,通常表示为: F(x,y,z)=0 和 G(x,y,z)=0。
一般方程描述了空间中曲线的形状和 位置,通过解方程组可以求得曲线上 点的坐标。
参数方程
参数方程是描述空间曲线 的一种常用方法,其中参 数的变化反映了曲线上点 的运动轨迹。
空间曲线的弯曲程度
曲率
曲率描述了曲线在某一点 的弯曲程度,曲率越大, 弯曲程度越剧烈。
挠率
挠率描述了曲线在某一点 的方向变化速率,与曲线 的形状和类型有关。
曲率和挠率的关系
曲率和挠率共同决定了空 间曲线的弯曲程度和形状 。
原曲线与投影曲线的位置关系
通过比较原曲线和投影曲线的形状,可以确定它们之间的位 置关系,如相交、相切或相离。
投影曲线的面积与原曲线的关系
投影曲线面积的求解
根据投影曲线的方程,利用定积分计算其面积。
投影曲线面积与原曲线的关系
通过比较投影曲线面积和原曲线的面积,可以分析它们之间的数量关系,如相等 、成比例或相差一个常数倍。
02
极坐标方程的一般形式为:ρ=ρ(θ),其中 ρ 是极径,θ是极角
。
极坐标方程可以用来表示各种形状的空间曲线,如球面曲线、
03
柱面曲线等。
03
空间曲线的性质
空间曲线的方向
01
02
03
方向向量
空间曲线的方向由其上的 方向向量决定,方向向量 表示了曲线上任意两点的 相对位置。
切线向量
课件:空间曲线
空间曲线及其方程
一、 空间曲线的一般方程 二、 空间曲线的参数方程 三、空间曲线在坐标面上的投影曲线
8-1
上页 下页
一、空间曲线的一般方程
空间曲线可视为两曲面的交线, 其一般方程为方程组
例如,方程组
S2
G(x, y, z) 0
L
S1
F(x, y, z) 0
z
表示圆柱面与平面的交线 C.
2C
R(
y, z) x0
0
消去y 得C 在zox 面上的投影曲线方程
x
T
(
C
x, z) y0
0
8-6
上页 下页
例如,C
:
x
2
x2 (y
y2 1) 2
z2 (z
1 1) 2
1
① ②
z
①-②,得 z 1 y,
将此代入①,得 C在xoy 面上的
C
o
1y
投影曲线方程为
x
x
2
2
y2 2 z0
y
0
同理得 C在yoz 面和xoz面上的投影曲线方程分别为
y
x
z
0
1,
(0
y
1);
x2 2z2 2z 0
y0
8-7
上页 下页
8-4
上页 下页
例1. 将曲线
化为参数方程表示。
解: 根据 x2 y2 1引入:
并求得 故所求参数方程为
8-5
上页 下页
三、空间曲线在坐标面上的投影曲线
设空间曲线 C 的一般方程为
消去 z 得投影柱面
z
则C 在xoy 面上的投影曲线 C´为
C
第六节空间曲线及其方程讲义
y, z)
3 1 (6 2cos sin )
3
o
•
y
x
M ( x, y,0)
x cos
L:
y
sin
0 2
z
2
2 3
cos
1 3
sin
三、空间曲线在坐标面上的投影
设空间曲线的一般方程: L
F ( x, y, z) 0 G( x, y, z) 0
消去变量z后得: H ( x, y) 0 (1)
母线平行于 y 轴的柱面方程是____________;
3、曲线 x2 z2 3 yz 2x 3z 3 0, y z 1 0在
xoz 平面上的投影方程是_______________;
4、方程组
y y
5 2
x x
1 在平面解析几何中表示______; 3
x2 5、方程组 4
4 x2 y2,
z 3( x2 y2 ),
则交线 C 在 xoy 面上的投影为
x2 y2 1, z 0.
所求立体在 xoy 面上的投影为
o
y
x2 y2 1.
x
四、小结
空间曲线的一般方程、参数方程.
F(x, y,z) 0 G( x, y, z) 0
x x(t)
y
y(t )
的截线在三个坐标面上的投影曲线方程. 解 截线方程为
y2 z2 x x 2y z 0
(3)消去x 得 yoz 面上的投影
y2 z2 2y z 0
.
x 0
四、空间曲面或立体在坐标面上的投影.
z
称区域 D 为 空间曲面 S 在 xoy 面上 的投影。
M
•
( x,
高等数学(二)_ 向量代数与空间解析几何2_ 空间曲线及其方程_
包含曲线 C 关于 zox面 的投影柱面的柱面方程
例3 求空间曲线
z
x2 + y2 + z2 =1, C :
x2 +(y 1) +2(z 1) =12
在 xoy 面上的投影曲线方程.
C
o
1
y
x
解 消去 z 得包含曲线 C 而母线平行于z轴的柱面方程
x2 +2y2 2y = 0.
易见此方程就是曲线 C 关于 xoy 面的投影柱面方程, 因此空间曲
x2 + y2 2x = 0, 0. z =
消去 x 得 C 关于 yoz 面的投影柱面方程
z
z4 4z2 + y2 = 0.
因此空间曲线 C 在 yoz 面上的投影曲线方程为
O
y
z 4 4z 2+ y =2 0,
x
x = 0.
包含曲线 C 关于 zox 面的投影柱面的柱面方程为 z2 = 2x.
2
z2 = 2x,(0 x 2), 空间曲线 C 在 zox 面上的投影曲线方程为
四、空间立体或曲面在坐标面上的投影
空间立体或曲面在坐标面上的投影 —— 正投影.
例5 求由上半球面
和锥面
所
围成的立体在 xoy 面上的投影.
z
解 两曲面的交线C的方程为
C
o y
x
消去 z 得包含曲线 C 而母线平行于z轴的柱面方程
设空间曲线 C 的一般方程为 ②
消去 z 得 ③
此方程表示包含曲线 C 且母线平行于 z 轴的柱面.
以C为准线,母线平行于 z 轴(即垂直于 xoy 面)的柱面称为 曲线C关于 xoy 面的投影柱面. 投影柱面与 xoy 面的交线C ′叫做
第6-4节(曲面、空间曲线及其方程)
江西理工大学理学院第 4 节曲面、空间曲线及其方程江西理工大学理学院一、曲面方程的概念曲面的实例: 水桶的表面、台灯的罩子面等. 曲面在空间解析几何中被看成是点的几何轨迹. 曲面方程的定义:如果曲面 S 与三元方程 F ( x , y , z ) = 0 有下述关系:(1)曲面 S 上任一点的坐标都满足方程; (2)不在曲面 S 上的点的坐标都不满足方程;那么,方程 F ( x , y , z ) = 0 就叫做曲面 S 的方程, 而曲面 S 就叫做方程的图形.江西理工大学理学院以下给出几例常见的曲面.例 1 建立球心在点 M 0 ( x 0 , y0 , z 0 ) 、半径为 R 的球面方程.解设 M ( x , y , z ) 是球面上任一点,根据题意有| MM 0 |= R2 22 2 2( x − x0 )2+ ( y − y0 ) + ( z − z 0 ) = R2所求方程为 ( x − x0 ) + ( y − y0 ) + ( z − z0 ) = R 特殊地:球心在原点时方程为 x + y + z = R2 2 22江西理工大学理学院例 2 求与原点O 及 M 0 ( 2,3,4)的距离之比为1 : 2 的 点的全体所组成的曲面方程.解设 M ( x , y , z ) 是曲面上任一点,| MO | 1 = , 根据题意有 | MM 0 | 2 x2 + y2 + z2( x − 2) + ( y − 3) + (z − 4)2 221 = , 222⎞ 4 ⎞ 116 2 ⎛ ⎛ . 所求方程为 ⎜ x + ⎟ + ( y + 1) + ⎜ z + ⎟ = 3⎠ 3⎠ 9 ⎝ ⎝2江西理工大学理学院例 3 已知 A(1,2,3) , B( 2,−1,4),求线段 AB 的 垂直平分面的方程.解设 M ( x , y , z ) 是所求平面上任一点,根据题意有 | MA |=| MB |,( x − 1) + ( y − 2 ) + ( z − 3 )2 22( x − 2)2 + ( y + 1)2 + ( z − 4)2 , =化简得所求方程 2 x − 6 y + 2 z − 7 = 0.江西理工大学理学院2 2 例4 方程 z = ( x − 1) + ( y − 2) − 1的图形是怎样的?解根据题意有 z ≥ −1用平面 z = c 去截图形得圆:z( x − 1)2 + ( y − 2) 2 = 1 + c (c ≥ −1)当平面 z = c 上下移动时, 得到一系列圆coxy圆心在(1,2, c ),半径为 1 + c半径随c 的增大而增大. 图形上不封顶,下封底.江西理工大学理学院以上几例表明研究空间曲面有两个基本问题: (1)已知曲面作为点的轨迹时,求曲面方程. (讨论旋转曲面) (2)已知坐标间的关系式,研究曲面形状. (讨论柱面、二次曲面)江西理工大学理学院二、旋转曲面定义 以一条平面 曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.播放 播放江西理工大学理学院旋转过程中的特征: 如图设 M ( x , y , z ),z⋅ M ( 0, y , z ) ⋅ Md1 1 1(1) z = z1(2)点 M 到 z 轴的距离o x2 2f ( y, z ) = 0yd=x + y =| y1 |2 2将 z = z1 , y1 = ± x + y 代入f ( y1 , z1 ) = 0江西理工大学理学院z = z1 , y1 = ± x 2 + y 2 代入 f ( y1 , z1 ) = 0 将得方程f (± x + y , z = 0,2 2)yoz 坐标面上的已知曲线 f ( y , z ) = 0 绕 z 轴旋转一周的旋转曲面方程.同理: yoz 坐标面上的已知曲线 f ( y , z ) = 0 绕 y 轴旋转一周的旋转曲面方程为f y, ±(x 2 + z 2 = 0.)江西理工大学理学院例 5 直线 L绕另一条与 L相交的直线旋转一周, 所得旋转曲面叫圆锥面.两直线的交点叫圆锥面 ⎛ 0 < α < π ⎞ 叫圆锥面的 的顶点,两直线的夹角 α ⎜ ⎟ 2⎠ ⎝ 半顶角.试建立顶点在坐标原点,旋转轴为 z 轴, 半顶角为α 的圆锥面方程. z解yoz 面上直线方程为 z = y cot α2 2⋅ αoM 1 (0, y1 , z1 )y圆锥面方程z = ± x + y cot αxM ( x , y, z )江西理工大学理学院例6 将下列各曲线绕对应的轴旋转一周,求 生成的旋转曲面的方程.⎧ x2 z2 ⎪ 2 − 2 =1 (1)双曲线 ⎨ a 分别绕 x 轴和 z 轴; c ⎪ y=0 ⎩x2 y2 + z2 绕 x 轴旋转 − =1 2 2 a c x +y z − 2 =1 绕 z 轴旋转 2 a c2 2 2旋 转 双 曲 面⎧ y2 z2 ⎪ 2 + 2 =1 (2)椭圆 ⎨ a 绕 y 轴和 z 轴; c ⎪x = 0 ⎩ y2 x2 + z2 旋 绕 y 轴旋转 + =1 2 2a c x +y z + 2 =1 绕 z 轴旋转 2 a c2 2 2江西理工大学理学院转 椭 球 面⎧ y 2 = 2 pz (3)抛物线 ⎨ 绕 z 轴; ⎩x = 0x 2 + y 2 = 2 pz旋转抛物面江西理工大学理学院三、柱面定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线 C 叫柱面的准线 ,动直线 L 叫 柱面的母线. 观察柱面的形 成过程:播放 播放江西理工大学理学院柱面举例zzy = 2x2平面o xo xyyy= x抛物柱面江西理工大学理学院从柱面方程看柱面的特征:只含 x, y 而缺 z 的方程 F ( x , y ) = 0 ,在 空间直角坐标系中表示母线平行于 z 轴的柱 面,其准线为 xoy 面上曲线C . (其他类推)实 例y z + 2 = 1 椭圆柱面 // x 轴 2 b c x2 y2 − 2 = 1 双曲柱面 // z 轴 2 a b 2 抛物柱面 // y 轴 x = 2 pz22江西理工大学理学院四、空间曲线的一般方程空间曲线C可看作空间两曲面的交线.⎧F ( x, y, z ) = 0 ⎨ ⎩G ( x , y , z ) = 0空间曲线的一般方程 特点:曲线上的点都满足 方程,满足方程的点都在 曲线上,不在曲线上的点 不能同时满足两个方程.zS1 S2oxCy江西理工大学理学院⎧ x2 + y2 = 1 例7 方程组 ⎨ 表示怎样的曲线? ⎩2 x + 3 y + 3z = 6解x 2 + y 2 = 1 表示圆柱面,2 x + 3 y + 3 z = 6 表示平面,⎧ x2 + y2 = 1 ⎨ ⎩2 x + 3 y + 3z = 6交线为椭圆.江西理工大学理学院⎧z = a2 − x2 − y2 ⎪ 2 表示怎样的曲线? 例8 方程组 ⎨ a 2 a 2 ⎪( x − ) + y = ⎩ 2 4解z = a2 − x2 − y2上半球面,a 2 a2 2 圆柱面, (x − ) + y = 2 4交线如图.江西理工大学理学院五、空间曲线的参数方程⎧ x = x(t ) ⎪ ⎨ y = y( t ) 空间曲线的参数方程 ⎪ z = z( t ) ⎩当给定 t = t1 时,就 得到曲线上的一个点( x1 , y1 , z1 ),随着参数的变化可得到曲线上的全部点.,0αb +空间曲线投影柱面。
高等数学--空间曲线及方程
xyz1的交线在 xoy 平面的投影曲线方程.
解:旋转曲面方程为 zx2 y2,它与所给平面的
交线为
z x2 y2 x y z 1
此曲线向 xoy 面的投影柱面方程为
xyx2y21
此曲线在 xoy 面上的投影曲线方程为
xyx2 y2 1 z 0
例2
方程组 ( x
a )2 2
y2
a2 4
表示怎样的曲线?
z
解 z a2x2y2
上半球面,
(xa)2y2 a2
2
4
圆柱面,
交线如图.
o ay
x
二、空间曲线的参数方程
x x(t)
y
y(t)
空间曲线的参数方程
z z ( t )
当给定t t1时,就得到曲线上的一个点 (x1,y1,z1),随着参数的变化可得到曲线上的全
解 半球面和锥面的交线为
C:z 4x2 y2, z 3(x2 y2),
消去 z得投影 x2柱 y2 面 1,
则交C线在xoy面上的投影为
x2 y2 1,
一个圆,
z 0.
所求立x体 o面 y在上的投影为
x2y21.
四、小结
空间曲线的一般方程、参数方程.
2, 上升的高度 h2b螺距
例4. 将下列曲线化为参数方程表示:
(1)
x2
y2
1
2x 3z 6
(2)zx2 ay22xa2xy02
解: (1) 根据第一方程引入参数 , 得所求为
xco t s
ysint
(0t2)
z1 3(62cot)s
空间曲线及其方程
1.2 空间曲线的参数方程
例 3 如果空间点 M 在圆柱面 x2 y2 a2 上以角速度 绕 z 轴旋转,同时又以线速度 v
沿平行于 z 轴的正方向上升(其中 ,v 都是常数),那么点 M 构成的图形称为螺旋线.试建
立其参数方程.
分析 关键是确定参数.已知动点 M 的运动角速度和线速 度,则动点坐标与时间有关,可以以时间 t 为参数.
1.4 空间曲线在坐标面上的投影
定义 以曲线 C 为准线,且母线平行于 z 轴的柱面称为曲线 C 关于 xOy 面的 投影柱面.这个投影柱面与 xOy 面的交线称为空间曲线 C 在 xOy 面上的投影曲线, 如图所示.投影曲线的方程为
H (x ,y) 0 , z 0.
同理可得,曲线 C 在 yOz 面或 zOx 面上的投影曲线方程为
x2 y2 1.
高等数学
动,方程(9-17)便是旋转曲面的方程.
例如,球面 x2 y2 z2 a2 可看成 zOx 面上的半圆周
x a sin ,
y
0
,
(0 π)
z a cos ,
x a sin cos ,
绕 z 轴旋转所得,故球面方程为
y
a
sin
sin
,(0
π ,0
2π)
z a cos ,
*1.3 曲面的参数方程
技术上称为螺距.
*1.3 曲面的参数方程
曲面的参数方程通常含有两个参数,形如
x x(s ,t) ,
y
y(s
,t)
,
z z(s ,t) .
例如,空间曲线
x (t) ,
y
(t)
,(
t
)
z (t) ,
空间曲线与曲面的方程
空间曲线与曲面的方程一、空间曲线的方程空间曲线是在三维空间中的曲线,通常由参数方程给出。
参数方程由参数变量表示曲线上的点的位置,从而描述了曲线的形状。
下面我们来讨论一些常见的空间曲线的方程。
1. 直线的方程直线是最简单的一种空间曲线,可以用一条方程来表示。
直线的方程通常由点斜式或者两点式给出。
- 点斜式:对于一个直线上的点P(x, y, z),斜率为m,已知直线上另一点Q(x1, y1, z1),直线方程可以表示为:(x - x1) / (x - x1) = (y - y1) / (y - y1) = (z - z1) / (z - z1)- 两点式:已知直线上两点P(x1, y1, z1)和Q(x2, y2, z2),直线方程可以表示为:(x - x1) / (x2 - x1) = (y - y1) / (y2 - y1) = (z - z1) / (z2 - z1)2. 圆的方程圆是一个平面上所有到一个固定点距离相等的点的集合,可以通过参数方程或者一般方程来表示。
- 参数方程:对于一个圆的中心点C(x0, y0, z0),半径r,圆的方程可以表示为:x = x0 + r * cos(t)y = y0 + r * sin(t)z = z0其中t是参数,通常取值范围为[0, 2π]。
- 一般方程:对于一个圆的中心点C(x0, y0, z0),半径r,圆的方程可以表示为:(x - x0)^2 + (y - y0)^2 + (z - z0)^2 = r^23. 椭圆的方程椭圆是一个平面上到两个固定点的距离之和等于常数的点的轨迹。
椭圆的方程也可以通过参数方程或者一般方程来表示。
- 参数方程:对于一个椭圆的中心点C(x0, y0, z0),长轴a,短轴b,椭圆的方程可以表示为:x = x0 + a * cos(t)y = y0 + b * sin(t)z = z0其中t是参数,通常取值范围为[0, 2π]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、空间曲线在坐标面上的投影
[1]. 投影柱面
设空间曲线的一般方程:GF((xx,,
y, z) y, z)
0 0
消去变量z后得: H ( x, y) 0
曲线关于xoy 的投影柱面
投影柱面的特征:
可视为以此空间曲线为准线,母线垂直 于所投影的坐标面的一个柱面.
[2]. 投影曲线 曲线的投影柱面与所投影的平面的交线.
z
1 2
在坐标面上的投影.
解 (1)消去变量z后得
x2 y2 3, 4
在 xoy面上的投影为
x2
y2
3 4,
z 0
(2)因为曲线在平面 z 1 上, 2
所以在 xoz 面上的投影为线段.
z
1 2,
y 0
| x | 3 ; 2
(3)同理在 yoz 面上的投影也为线段.
z
1 2,
z
s
L
M
M0
M0( x0 , y0 , z0 ), M( x, y, z),
o
y
M L,
M0M// s
x
s {m, n, p}, M0M {x x0 , y y0 , z z0 }
(2) 对称式方程
x x0 y y0 z z0
m
n
p
直线的对称式方程 也称点向式方程
令 x x0 y y0 z z0 t
z
S1
S2
C
o
y
x2 y2 1
例1 方程组
表示怎样的曲线?
2x 3 y 3z 6
解 x2 y2 1 表示圆柱面, 2x 3 y 3z 6 表示平面, x2 y2 1 2x 3 y 3z 6
交线为椭圆.
z a2 x2 y2
例2
方程组 ( x
a )2 2
y2
a2 4
的全部点.
例3 如果空间一点M 在圆柱面 x2 y2 a2 上以角 速度 绕 z 轴旋转,同时又以线速度 v 沿平行于 z 轴的正方向上升(其中 、v 都是常数),那么点
M 构成的图形叫做螺旋线,试建立其参数方程.
解
z
取时间t为参数,动点从A点出
发,经过t时间,运动到M点
M 在xoy面的投影M ( x, y,0)
空间曲线在xoy 面上的投影曲线 H(x, y) 0 z 0
类似地:可定义空间曲线在其他坐标面上的投影
yoz 面上的投影曲线, xoz面上的投影曲线,
R( y, z) 0
x
0
T( x, z) 0
y
0
如图:投影曲线的研究过程.
空间曲线
投影柱面
投影曲线
x2 y2 z2 1
例4
求曲线
表示怎样的曲线?
解 z a2 x2 y2
上半球面,
( x a )2 y2 a2 圆柱面,
2
4
交线如图.
[2]. 空间曲线的参数方程
x x(t)
y
y(t )
空间曲线的参数方程
z z(t)
当给定t t1 时,就得到曲线上的一个点 ( x1 , y1 , z1 ),随着参数的变化可得到曲线上
t
o
M
•
x A M y
x acost y a sint
z vt
螺旋线的参数方程
螺旋线的参数方程还可以写为
x a cos
y
a
sin
z b
特性:
( t,
b v)
上升的高度与转过的角度成正比.
即 : 0 0 , z : b0 b0 b , 2, 上升的高度 h 2b 螺距
解 在直线上任取一点 ( x0 , y0 , z0 )
取
x0
1
y0 y0
z0 2 0 , 3z0 6 0
解得 y0 0, z0 2
点坐标(1,0,2),
因所求直线与两平面的法向量都垂直
取
s n1 n2 {4,1,3},
对称式方程 x 1 y 0 z 2 , 4 1 3
第六节 空间曲线 直线及其方程
一、空间曲线及其方程 二、空间曲线在坐标平面上的投影 三、空间直线及其方程 四、小结
一、空间曲线及其方程
[1]. 空间曲线方程的一般方程
空间曲线C可看作空间两曲面的交线.
F(x, y,z) 0 G( x, y, z) 0
空间曲线的一般方程
特点: 曲线上的点都满足 方程,满足方程的点都在 曲线上,不在曲线上的点 x 不能同时满足两个方程.
x 0
| y | 3 . 2
例5 求抛物面 y2 z2 x 与平面 x 2 y z 0
的截线在三个坐标面上的投影曲线方程.
解 截线方程为
y2 z2 x x 2y z 0
如图,
(1)消去z 得投影
x2 5 y2 4xy x 0
,
z 0
(2)消去y 得投影
x2 5z2 2xz 4x 0
,
y 0
(3)消去x 得投影
y2
z2
2y z
0 .
x 0
空间立体或曲面在坐标面上的投影.
空 间 立 体
曲 面
例6 设一个立体,由上半球面 z 4 x2 y2
和 z 3( x2 y2 )锥面所围成,求它在 xoy
面上的投影.
解
半球面和锥面的交线为
C
:
z
z
消去 z 得投影柱面 x2 y2 1,
4 x2 y2, 3( x2 y2 ),
x2 y2 1,
则交线 C 在 xoy 面上的投影为
z 0.
所求立体在 xoy 面上的投影为 是一个圆,
x2 y2 1.
三、直线及其方程
[1]. 空间直线的一般方程 定义 空间直线可看成两平面的交线.
1 : A1 x B1 y C1z D1 0 z 1
2 : A2 x B2 y C2z D2 0
其中 1 // 2
2
A1 A2
x x
B1 B2
y y
C1z C2z
D1 D2
0 0
L
o
y
空间直线的一般方程 x
[2]. 空间直线的对称式与参数式方程
(1) 方向向量的定义:
如果一非零向量平行于一
条已知直线,这个向量称为 这条直线的方向向量.
m
n0 mt
y
y0
nt
z z0 pt
直线的参数方程
直线的一组方向数 它是其一个方向向量 的坐标。
方向向量的余弦称为 直线的方向余弦.
空间直线的一般式与对称式方程的互化 例7 用对称式方程及参数方程表示直线
x y z 1 0 2x y 3z 4
. 0
x 1 4t
参数方程
y
t
.
z 2 3t
直线的一般方程化 为对称式方程:
(1)取点 (2)求方向向量 (3)写出直线的对称式
例8 一直线过点 A(2,3,4),且和 y 轴垂直相
交,求其方程.
解 因为直线和 y轴垂直相交,
所以交点为 B(0,3, 0),