05 金属自由电子气体模型

合集下载

(整理)固体物理课后习题与答案

(整理)固体物理课后习题与答案

第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。

在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。

在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。

也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。

2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。

晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。

3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。

除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。

4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。

价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。

在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。

由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。

这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。

电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。

2.金属自由电子气的Drude模型

2.金属自由电子气的Drude模型
* 离子实的作用仅维持固体结合,维持电中性
• 金属中的价电子就象无相互作用的理想气体, 但模型与理想气体又有所不同:
* 电子气体的浓度比理想气体大三个量级 * 有两种粒子:电子,离子
不是很圆滑,所以再加些限制(基本假定),完 成Drude模型的构造
10.107.0.68/~jgche/ 金属电子气的Drude模型
1、已知的金属性质
模型建立的依据
10.107.0.68/~jgche/
金属电子气的Drude模型
4
为什么研究固体从金属开始?
• 金属最基本物质状态之一,元素周期表中有2/3 是金属元素,应用很广泛,当时对金属的了解 比其他固体多
* 比如,电导、热导、光泽、延展等性能很早开始就 被广泛应用 * 区分非金属,实际上也是从理解金属开始
12
思考——假如你是Drude
• 根据已有线索,如何仿照理想气体建立模型?
* 与理想气体(电中性)还是有些不同!除了碰撞的 瞬间,可以不考虑其他。但现有两种带电粒子
• 不是电中性的,有库仑相互作用?那么
* 电子-电子如何相互作用? * 电子-离子实如何相互作用?
• 还有——电传导(也包括热传导)是个输运过 程,非平衡过程,所以
上讲回顾
• 固体的微观定义
* 固体中的原子在其平衡位置附近作微小振动
• 贯穿课程的主线
* 周期性波在周期性结构中的运动
10.107.0.68/~jgche/
金属电子气的Drude模型
1
本讲内容:建模推演比较修正
• 如何用在1900年左右可以理解和接受的假设、 前提和经典理论,在微观层次上建立研究金属 宏观性质的模型,解释实验观察到的金属的良 好导电和导热现象

金属自由电子气模型ppt课件

金属自由电子气模型ppt课件
2k 2 E 2m
为波矢量.
E是电子的能 量本征值 P为电子的动 量本征值
p k
16
周期性边界条件
在金属的自由电子论中,它不完全自由,它的位 置受金属边界的限制 (r Lx ) (r ) (1) 周期性边界条件: (r Ly ) (r ) (2) (r Lz ) (r ) (3)
金属的电导率
有外电场时金属中自由电子的运动规律 (1)在外电场E的作用下, 金属中的电子在电场的反方向上将获得附加速度; (2)当电子与正离子发生碰撞时, 电子将失去附加速度; (3)碰撞后由于外场的继续作用, 电子又会获得定向运动速度而自由的前进。 这个过程在周期性晶体点阵中反复不断的进行。
eE v a =me 1 v平 = v 2 j nev平 j E
3
经典电子自由理论
1900年,特鲁德首先将金属 中的价电子与理想气体类比,提 出了金属电子气理论。 • 1904年,洛伦兹将麦克斯韦玻耳兹曼统计分布规律引入电子 气,据此就可用经典力学定律对 金属自由电子气体模型作出定量 计算。 • 这样就构成了特鲁德-洛仑兹 自由电子气理论,称为经典自由 电子理论
10
魏德曼—弗兰兹定律
1.电导率和热导率之间的关系
(洛仑兹关系)
实验表明:金属的电导率越高,则其热导率也越高。
2.魏德曼—弗兰兹定律
在不太低的温度下,金属的导热系数与电导率之比 正比于温度,其中比例常数的值不依赖于具体的金属。
2 C e,V v l e m v kB LT 2 2 3 ne l 2m v e
12
关于电阻率的思考
由之前的推导可以 得到:
E m 1 e e J ne vd ne (a ) n ne2

金属自由气体模型

金属自由气体模型

第十九讲金属自由气体模型一、固体物理中的主要模型(理论):Atoms in the solid matter= ion cores (离子实)+ valence electrons(价电子)= nuclei + core electrons + valence electrons1.最简单的模型—金属自由电子气体模型a)认为离子实静止不动;b)通过“自由电子近似(凝胶模型--离子实系统产生的势场是均匀的)”和“独立电子近似(忽略电子与电子之间的作用)”形成一类最简单的“单电子近似”模型:i.Drude Model (1900)ii.Sommerfeld Model (1928)2.次简单模型Ⅰ—晶格模型和能带理论a)认为离子实仍然静止不动;b)离子实系统产生的势场随空间是周期变化,不再是均匀的。

3.次简单模型Ⅱ—晶格振动理论和声子模型a)不考虑电子的运动;b)离子以简正模式运动。

4.最复杂的模型—电子与声子相互作用理论,光子与声子相互作用理论,光子与电子(固体、半导体中的电子,)相互作用理论,…总结:学习这种将复杂的大问题(真实的物理体系)化成可以局部求解的小问题(简化的物理体系);通过不断对简单模型的修正,来处理复杂的体系。

在学会这种思维方式的同时,保持头脑清醒,牢记各种模型的成立前提(或条件,或可忽略的物理内容),才能正确使用模型,得到合理的有价值的结论。

二、Sommerfeld量子金属自由电子气体模型通过三个近似,将一块体积为V的金属简单地看成一堆价电子在体积为V的“空盒子”中运动的单纯由电子组成的体系。

1.自由电子近似——对金属来说是个比较好的近似。

a)忽略价电子与离子实之间的作用,认为离子实系统产生的势场对处在其中的价电子来说是均匀的。

b)将离子实系统看成是保持体系电中性的均匀正电荷背景。

c)价电子的自由运动范围仅限于金属块的体积V内,由金属的表面势垒将价电子限制在样品内部。

2.独立电子近似——对其它晶体(包括半导体和绝缘体)来说也是一个比较好的近似。

凝聚态物理学导论及金属自由电子气体模型

凝聚态物理学导论及金属自由电子气体模型
• G. Grosso & G. P. Parravicini, Solid State Physics, Academic Press, 2000
• 阎守胜 编著 《固体物理基础》(第 二版)北京大学出版社,2003
教材与参考书目
课外读物
• P. W. Anderson, Concepts in Solids, World Scientific, 1977 • 文小刚 著, 胡滨 译,《量子多体 理论》,高等教育出版社,2004
人类历史是以人类理解和控制凝聚态 材料的进程来命名的:石器时代,青 铜时代,黑铁时代,高分子时 代?... ...
如果我们已经知道了自然界的 一切基本定理,知道了所有的基本粒 子。使用这一些知识,我们能够理解 我们日常所见的物理现象吗?比如说 黄金能导电,而塑料是绝缘体?为什 么液体具有流动性,而固体具有刚性? 等等
上世纪下半叶开始了凝聚态物理的时凝聚态物理的前身是固体物理研究波在周期结构中的传播bloch定理光子晶体声子晶体位形空间与动量空间的凝聚相变对称性破缺序参量守恒定律气液相变液固相变临界点连续对称性破缺与弹性的起源理想聚合物的生长在空间上是各向同性的
凝聚态物理学导论
望文生意,凝聚态物理是做什么的?
重要性
主要参考书
• P. M. Chaikin & T. C. Lubensky, Principles of condensed matter physics, Cambridge University Press, 1995
教材与参考书目
• 陆坤权 刘寄星 主编《软物质物理 学导论》北京大学出版社, 2006
金属自由电子气体模型
单位体积自由电子气体的基态能量由
费米球内所有单电子能级能量相加得

金属自由自由电子气体模型及基态性质解析PPT课件

金属自由自由电子气体模型及基态性质解析PPT课件

v p k mm
2k2 1 m 2m 2
2k 2 m2
1 mv2 2
即电子的能量和动量都有经典对应,但是,经典中的平面 波矢k可取任意实数,对于电子来说,波矢k应取什么值呢?
4.波矢k的取值
波矢k的取值应由边界条件来确定
边界条件的选取,一方面要考虑电子的实际运动情况(表面和内部);另一方 面要考虑数学上可解。

k2
d
k
E dE ky
dZ
2
V
2π 3

2m
2
m d 2 2m
E
kx
4πV
2π 3
(2 m )3 2 1 2
3
d
3
4πV
2m h2
21
2d
N ( )
dZ
C
1 2
d
其中
C
4πV
2m h2
3
2
第24页/共30页
法3. 在k空间自由电子的等能面是半径
k 2mE 的球面,
波函数为行波,表示当一个电子运动到表面时并不被反射回来,而是离开 金属,同时必有一个同态电子从相对表面的对应点进入金属中来。
二者的一致性,表明周期性边条件的合理性
由周期性边界条件:(讲解以下推导过程)
x L, y, z x, y, z x, y L, z x, y, z x, y, z L x, y, z
V
(2)波矢空间状态密度(单位体积中的状态代表点数):
k
1 k
1
( 2 )3
L3
(2 )3
V
8 3
L
注意量纲
第14页/共30页
三、基态和基态能量 1.N个电子的基态、费米球、费米面 电子的分布满足:能量最小原理 和 泡利不相容原理

固体物理第一章金属电子气体模型

固体物理第一章金属电子气体模型

⇓ ⇓ ⇓
为计算方便,设金属是边长为 L 的立方体, 内有N个原子,一个原子提供1个价电子。 则金属的体积: V=L3 自由电子数目为:N 由自由电子气体模型, N 个原子和N 个电子 的多体问题转化为单电子问题。 按照量子力学假设,单电子的状态用波函 数 Ψ (r ) 描述,且满足薛定谔方程。
1.薛定谔方程及其解
(3)价电子速度服从费米—狄拉克分布—自由电 子费米气体 (free electron Fermi gas) (4)不考虑电子和金属离子之间的碰撞 (No collision) 2.电子密度 理想气体在温度恒定下可用气体密度来描述, 与此类似,自由电子气体模型也可用电子密度 n来描述,而且,n是唯一的一个独立的参量。 电子的能量、动量、速度等都可以写成n的 数。
k
为波矢,其方向为平面波的传播方向 的大小与电子的德布罗意波长的关系为:
k
k =

λ
把波函数
1 ik ⋅r ψ k (r ) = e 代入薛定谔方程 V
2 2
得到电子的本征能量:
k = 2 2 2 (k x + k y + k z ) ε = 2m 2m
2. 电子的动量 将动量算符
2
ˆ p = −i ∇
(3) 发展—1904年洛仑兹发展了这个理论:认 为金属中的电子不仅是自由的,而且遵守麦— 玻统计规律,同时认为电子和金属离子的碰撞 是弹性的。从而半定性地解释上述问题。 (4) 困难--(a) 根据经典统计的能量均分定 理,N个价电子的电子气有3N个自由度,它们 对热容的贡献为3NkB/2,但对大多数金属,实验 值仅为这个理论值的1% 。 (b) 根据这个理论得出的自由电子的顺磁磁 化率和温度成正比,但实验证明,自由电子的 顺磁磁化率几乎与温度无关。(第三节)

金属自由电子模型

金属自由电子模型

0 EF
0
3 V 2m 3/2 3/2 3 0 ( 2 ) E dE EF 3eV 2 2 3 5
如果把电子比作费米子的理想气体分子,则在绝对零度,电子基态的平均能 量相当于 T~23077K,对应于平均速度为
3kBT | v | v 2 1106 m / s ~ 1/ 300 光速 me
E TF r C F r dr z
一,金属自由电子气体模型
1.1 经典电子论 特鲁德电子气模型: 特鲁德提出了第一个固体微观理论利用微观概念计算宏 观实验观测量 自由电子气+波尔兹曼统计 欧姆定律 电子平均自由程+分子运动论 电子的热导率 特鲁德(Paul Drude)模型的基本假设 1 1.自由电子近似: 传导电子由原子的价电子提供,离子实对电子的作用可以 忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。 2.独立电子近似: 电子与电子之间的相互作用可以忽略不计。 外电场为零时, 忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气 体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能 带论中证明是错误的。 ) 特鲁德(Paul Drude)模型的基本假设 2 3.玻尔兹曼统计:自由电子服从玻尔兹曼统计。 4.弛豫时间近似:电子在单位时间内碰撞一次的几率为 1 / , 称为弛豫时 间(即平均自由时间) 。每次碰撞时,电子失去它在电场作用下获得的能量,即 电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。 特鲁德模型的成功之处——成功解释了欧姆定律 欧姆定律 E j (或 j E ) ,其中 E 为外加电场强度、 为电阻率、 j 为 电流密度。
用托马斯一费米模型处理原子中的问题.为方便起见,下面均采用原子单位. 即。e= =μ=1 的单位制。 基于统计的考虑,Thomas 和 Fermi 于 1927 年曾几乎是同时地分别提出,将 多电子运动空间划分为边长为 l 的小容积(立方元胞) v l 3 。其中含有 N 个 电子 (不同的元胞中所含电子数不同) 。假定在温度近于 0K 时每一元胞中电子的 行为是独立的 Fermi 粒子, 并且各个元胞是无关的。则有三维有限势阱中自由里 子的能级公式

金属自由电子气模型

金属自由电子气模型
这里涉及dt的二次项,是个二阶小量,可以略去。
(1.2.2)式在一级近似下为
p(t
dt)
p(t)
F (t)dt
P(t)
dt
(1.2.3)
更简练的形式为
dp(t)
F (t )
P(t)
dt
(1.2.4)
引入外场作用下电子的漂移速度(Drift velocity)d
m
d d
(t)
F (t)
• 作为研究金属特性的Drude模型在1900年提出,现在仍 然被用来迅速了解金属及其它一些材料的特性。这个 模型后来经过稍许修改就取得了巨大成功。
1. Drude模型
1)传导电子和芯电子
Na: K L M 1s 2s2p 3s 281
Na 蒸汽 3s 轨道半径 0.19 nm Na 固体 最近邻原子间距 0.365 nm
传导电子密度 n:单位体积的传导电子数
原子数/mole: N0 = 6.022 ∙ 1023,Avogadro常数 mole数/cm3: ρm/A, 其中 m是金属的质量密度(g/cm3),A 是元素的原子量
n
N0
Zm
A
6.022 1023
Zm
A
Z是每个原子贡献的价电子(传导电子)数目
对于金属,n的典型值为1022-1023/cm3。这个值要比理想 气体的密度高上千倍3源自0.22rs a0
1014 sec .
(1.2.10)
其a0为中玻,尔为半金径属。电阻率,rs为一个所占据体积的等效球半径,
金属Cu的室温电阻率ρ=1.56∙10-6Ohm-cm, τ=2.7 ∙10-14 sec
3)金属中电子的平均自由程
l = v0τ ; 而 mv02/2 =3kBT/2

第一章 金属自由电子气体模型

第一章 金属自由电子气体模型

K-空间中,本征波矢均匀分布,间隔:2π/L.由 于L很大,称为准连续谱 定义k-空间的态密度:k-k+dk范围的状态数:
ρ(k) = L 2π
三维导体
电子在三维金属体内运动,看成电子在三维无限 深势阱中运动(单电子薛定谔方程):
ℏ2 2 ∇ +U(r)ψ (r) = Eψ (r) − 2m 2m
()
()
π
π
在k-空间,k - k+dk 范围电子状态数
9
V 3 dN = g(ε )d ε = 2 3 2m ε d ε πℏ V 3 g(ε ) = 2 3 2m ε ∝ ε πℏ
在能量层 ε-ε+ dε范围的电子状态数 请讨论1、2维电子的能态密度
kz
g (ε )
kx
ky
ε
例:应用态密度计算电子的基态能
13
一、费米分布
T=0时,电子先占据低能量状态: f (ε )
limT →0
1, ε i < µ f (ε i ) = 0, ε i > µ
T>0 时,量子态上(自由) 电子占据的几率:
µ
ε
f (ε i ) =
e
(ε i − µ ) k BT
1
+1
k
∆ε ~ k BT
14
问题:常温下电子的热容量可以忽略?
z
费米面半径 :
kF
V 4 3 N = 2× 3 × π kF 8π 3 3 2 kF = 3π n TF = εF kB ≈10 ~ 10 K
4 5
8
kx
ky
电子的平均动能 为费米能时,体 系具有的温度
四、态密度

金属自由电子气模型

金属自由电子气模型
2 2 2 = (k x k y ) 2m
求(1)电子态密度(考虑自旋); (2)该系统的费米能(只考虑温度为绝对 零度
北京工业大学 固体物理学
第二节 自由电子气的热性质
费米-狄拉克分布函数 T≠0K时,电子在本征态上的分布服从费 米-狄拉克分布
fi
1 e
( i )/ k BT
vF/108cm/s TF/104K
1.29 1.07 0.86 0.81 0.75 1.57 1.39 1.40 2.25 1.58 1.28 1.83 2.03 1.74 1.90 1.83 1.87 5.51 3.77 2.46 2.15 1.84 8.16 6.38 6.42 16.6 8.23 5.44 11.0 13.6 10.0 11.8 11.0 11.5
T=0 T1


北京工业大学 固体物理学
1、化学势随温度的变化 ① T≠0K,自由电子气单位体积的内能
2 u ( k ) f g( ) f ( )d k 0 V k
② T≠0K,分布函数中的化学势可由电子数 密度算出
2 n V

k
fk g( ) f ( )d 0
北京工业大学 固体物理学
代入
f f I Q( ) ( )d Q( ) ( )( )d 1 f 2 Q( ) ( ) ( )d 2



(**)
(**)第一项积分项等于1 (**)第二项
1 ik (r ) e r V
电子的本征能量:
将波函数代入薛定谔方程,得
k (k ) 2m
2
2

05 金属自由电子气体模型

05 金属自由电子气体模型

ε mol
=
N
A
⎜⎛ ⎝
3 2
k
BT
⎞⎟ ⎠
=
3 RT 2
一价金属:CVe ,mol
=
∂ε mol ∂T
=
3R 2
高温时金属的总比热容:
CV
=
C Ph V ,mol
+ CVe ,mol
= 3R + 3 R ≈ 37.40J / mol ⋅ K 2
实际
Ce V,mol
小于经典值
量子:
CVe
~
T TF
常温下:电子的贡献比例很小
kx
=
2π L
nx
ky
=
2π L
ny
kz
=
2π L
nz
nx , ny , nz--一组整数
自由电子的能量是不连续的,相邻能级相距很近. 5 kv空间与态密度 (k-space) 电 的子 端的 点状 代态 表由 一波 个矢可确 能定 的。kv 在 值。kv空相间邻中 代, 表每 点一 在波 三矢 维坐kv
vy
=

eτ m
Ey
+
ωcτv x
ωc
=
eB m
--回旋频率
vz
=

eτ m
Ez
30
5
Jv = −nevv σ = ne2τ m
σ 0 E x = J x + ωcτJ y σ 0 E y = −ωcτJ x + J y
4.4 霍尔效应和磁阻
长方体样品, 沿x轴施加外电场Ex, 存在电流Jx, 在z轴 加磁场B后, 产生洛仑兹力在负y方向作用到电子上.
+1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

pˆ = −ih∇ --动量算符
处在 ψ kv (rv)态的电子具有一个与矢量 kv 成正比的确
定的动量: pv = hkv 速度:vv = pv = hkv
mm
能量:ε = p2 = 1 mv 2 2m 2
波长:λ = 2π
k
7
4.1 模型及基态性质
将平面波解代入边界条件:
e ikxL = e ikyL = e ikzL = 1
2m 3ε
12
µ
=
ε
F
⎡ ⎢1 ⎢⎣

π2 12
⎜⎛ ⎝
kBT εF
⎟⎞2 ⎠
⎤ ⎥ ⎥⎦
一般T,
kBT << ε F
µ ≈εF
16
4.2 自由电子气体的热性质
三 电子比热
定容比热:
cV
=
⎜⎛ ⎝
∂u ∂T
⎟⎞ ⎠V
u=U V
∑ ∑ U—内能: U = 2 kv ε (kv) fkv
N =2 kv
f kv
假设碰撞后电子出现的方向是随机的,
vv0 对总体的电子平均速度 vv平无影响,
vv平 由各电子的附加速度取平均获得:
vvd
=
vv平
=

eEvτ m
23
4.3 电场中的自由电子
电流密度:
Jv
=
−nevvd
=
ne 2τ m
Ev
Jv = σEv --欧姆定律
σ = ne2τ m
电导率∝传导电子浓度,与m成反比
9
4.1 模型及基态性质
在 kv 标度下的态密度 g(kv):
dN
=
g(kv)dτ kv
=
V 4π
3
dτ kv
态密度 g(ε ) :单位体积样品、单位能量间隔,包
含自旋的电子态数。
dN = Vg(ε )dε
由 的球ε =面h。2k 2自2由m 所电确子定在的kv 空关间系的,等在能kv空面间是是球半面径。为 2mε h
+1
µ --系统化学势:在温度和体积不变的条件下,系 统增加一个电子所需自由能.
N
=

fi
=V

∫0
g(ε
)f

)dε
i
14
4.2 自由电子气体的热性质
1 T→0
lim
T →0
f
(ε i
)
=
1,
εi < µ
lim
T →0
f
(ε i
)
=
0,
εi > µ
绝对零度时,能量在 µ 以下的状态全部被电子占满,
理学院 物理系 沈嵘
第四章 金属自由电子气体模型
4.1 模型及基态性质 4.2 自由电子气体的热性质 4.3 电场中的自由电子 4.4 霍尔效应和磁阻 4.5 金属的热导率 4.6 自由电子气体模型的局限性
1
4.1 模型及基态性质
4.1 模型及基态性质
一 经典电子气模型的基本假设
金属:价电子→传导电子
4
4.1 模型及基态性质
二 量子自由电子气模型--单电子本征态和本征能量
1 薛定谔方程 ⇒ 三维势井中的单电子问题
V (x, y, z) = 0 0 < x, y,z < L
势能:
V (x, y, z) = ∞ x, y, z ≤ 0或 x, y, z ≥ L
每一电子满足波动方程:
− h2 ∇2ψ (rv) = εψ (rv)
pv = mvv
29
4.4 霍尔效应和磁阻
( ) m⎜⎛ d ⎝ dt
+
1 τ
⎟⎞v ⎠
x
=
−e
Ex
+ vyB
( ) m⎜⎛ d ⎝ dt
+
1 τ
⎟⎞v ⎠
y
=
−e
Ey
− vxB
m⎜⎛ ⎝
d dt
+
1 τ
⎞⎟v ⎠
z
=
−eEz
对静电场中的稳态,时间导数为零,漂移速度为:
vx
=

eτ m
Ex
− ωcτv y
vy
=

eτ m
Ey
+
ωcτv x
ωc
=
eB m
--回旋频率
vz
=

eτ m
Ez
30
5
Jv = −nevv σ = ne2τ m
σ 0 E x = J x + ωcτJ y σ 0 E y = −ωcτJ x + J y
4.4 霍尔效应和磁阻
长方体样品, 沿x轴施加外电场Ex, 存在电流Jx, 在z轴 加磁场B后, 产生洛仑兹力在负y方向作用到电子上.
pv (t
+
dt
)
=
⎜⎛ ⎝
1

dt τ
⎞⎟[

pv (t
)
+
Fv
(t
)dt
]
pv (t
+
dt ) − pv(t ) = Fv (t )dt −
dpv(t )dt=Fra bibliotekFv(t
)

pv (t
τ
)
pv (t
)
dt τ
——自由电子在外场作用下的动力学方程
21
4.3 电场中的自由电子
三 金属的电导率
1 经典图象 无外场:传导电子作无规运动:vv平 = 0
2m

h2 2m
⎜⎜⎝⎛
∂2 ∂2x
+
∂2 ∂2 y
+
∂2 ∂2z
⎟⎟⎠⎞ψ
(
x,
y,
z
)
=
εψ
(
x,
y,
z
)
5
4.1 模型及基态性质
2 边界条件 ——周期性边界条件:
ψ (x + L, y, z, t ) =ψ (x, y, z, t ) ψ (x, y + L, z, t ) =ψ (x, y, z, t ) ψ (x, y, z + L, t ) =ψ (x, y, z, t )
电子聚集在导体负y方向一侧,在y方向建立电场。
平衡时,这个横向场—霍尔电场Ey对电子的作用将
抵消洛仑兹力。电流沿x方向。
31
4.4 霍尔效应和磁阻
J y = 0 时,霍尔电场:
Ey
=
− ωcτ σ0
Jx
=

B ne
Jx
定义
RH
=
Ey JxB
--霍尔系数
RH
=
−1 ne
对自由电子,霍尔系数为负.
测定霍尔系数是确定载流子浓度的重要手段之一.
4.3 电场中的自由电子
一 准经典模型
1 电子受到散射
牛顿定律、热平衡
2 弛豫时间(relaxation time) τ
dt 碰撞几率: dt τ
∆x

h ∆p
>>
1 kF

rs
准经典: vth → vF
经典处理
相差 ε F kBT 倍
20
4.3 电场中的自由电子
二 电子的动力学方程 t pv(t ) dt
标轴方向的间隔都是 2π L ,每个代表点占有体积:
∆kv = ⎜⎛ 2π ⎞⎟3 = 8π 3 ⎝ L⎠ V
8
4.1 模型及基态性质
∆kv = ⎜⎛ 2π ⎟⎞3 = 8π 3 ⎝ L⎠ V
单位 kv 空间体积中 kv 值数目:
1 ∆k
=
V 8π
3
对位每kv 一空间kv 态 体,积电所子允有许两的种单电不子同态的数自目旋:状V态4。π 3∴单
Jv
=
−nevvd
=
ne 2τ m
Ev
σ = ne2τ Jv = σEv
m
3 电子的平均自由程 经典电子气:l = v0τ
量子电子气:l = vFτ
电子平均自由程比经典理论结果大很多.
27
4.3 电场中的自由电子
经典电子气—电子之间、电子与晶格原子实间的 碰撞产生电阻。 量子电子气—理想周期破坏,即原子实振动,缺 陷等对电子的散射产生电阻。
2
索末菲电子气图象
自由电子: mvv = hkv
在均匀的与时间无关的电场中: Fv = −eEv
24
4
4.3 电场中的自由电子
由牛顿第二定律:
Fv
=
m
d dt
vv
=
h
d dt
kv
=
−eEv
积分,得:kv(t
)

kv(0)
=

e h
Evt
没有碰撞时,恒定的外加电场使
kv 空间中
的费米球匀速移动. 电子气填充以 kv 空间原点为中心的费米球.
u
=
∫∞ 0
εg(ε
)
f

)dε
n
=
∫∞ 0
g(ε
)
f

)dε
u
=
u0
⎡ ⎢1 + ⎢⎣
5π 2 12
⎜⎛ ⎝
T TF
⎟⎞
2
⎤ ⎥
⎠ ⎥⎦
u0 --基态时电子的平均能量
cV
=
⎜⎛ ⎝
∂u ∂T
⎟⎞ ⎠V
=π2 2
T nkB TF
17
相关文档
最新文档