管道应力分析和计算

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管道应力分析和计算

————————————————————————————————作者: ————————————————————————————————日期:

管道应力分析和计算

目次

1 概述

1.1管道应力计算的主要工作

1.2 管道应力计算常用的规范、标准1.3 管道应力分析方法

1.4管道荷载

1.5变形与应力

1.6强度指标与塑性指标

1.7强度理论

1.8 蠕变与应力松弛

1.9 应力分类

1.10应力分析

2 管道的柔性分析与计算

2.1管道的柔性

2.2 管道的热膨胀补偿

2.3管道柔性分析与计算的主要工作2.4 管道柔性分析与计算的基本假定2.5 补偿值的计算

2.6冷紧

2.7 柔性系数与应力增加系数

2.8 作用力和力矩计算的基本方法

2.9管道对设备的推力和力矩的计算

3 管道的应力验算

3.1 管道的设计参数

3.2 钢材的许用应力

3.3管道在内压下的应力验算

3.4 管道在持续荷载下的应力验算

3.5管道在有偶然荷载作用时的应力验算3.6 管系热胀应力范围的验算

3.7 力矩和截面抗弯矩的计算

3.8应力增加系数

3.9 应力分析和计算软件

1 概述

1.1 管道应力计算的主要工作

火力发电厂管道(以下简称管道)应力计算的主要工作是验算管道在内压、自重和其他外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力;判断计算管道的安全性、经济性、合理性,以及管道对设备产生的推力和力矩应在设备所能安全承受的范围内。

管道的热胀应力应按冷、热态的应力范围验算。管道对设备的推力和力矩应按冷状态下和工作状态下可能出现的最大值分别进行验算。

1.2 管道应力计算常用的规范、标准

(1)DL/T5366-2006火力发电厂汽水管道应力计算技术规程

(2)ASME B31.1-2004动力管道

在一般情况下,对国内工程采用DL/T 5366进行管道应力验算。对涉外工程或顾客有要求时,采用B 31.1进行管道应力验算。

1.3管道应力分析方法

管道应力分析方法分为静力分析和动力分析。

对于静荷载,例如:管道内压、自重和其他外载以及热胀、冷缩和其他位移荷载作用的应力计算,采用静力分析法。DL/T 5366和B 31.1规定的应力验算属于静力分析法。同时,它们也用简化方法计及了地震作用的影响,适用于火力发电厂管道和一般动力管道。

对于动载荷,例如:往复脉冲载荷、强迫振动载荷、流动瞬态冲击载荷和地震载荷作用的应力计算采用动力分析法。核电站管道和地震烈度在9度及以上地区的火力发电厂管道应力计算采用动力分析法。

1.4 管道荷载

管道上可能承受的荷载有:

(1)重力荷载:包括管道自重、保温重、介质重和积雪重等;

(2)压力荷载:包括内压力和外压力;

(3)位移荷载:包括管道热胀冷缩位移、端点附加位移、支承沉降等;

(4)风荷载;

(5)地震荷载;

(6)瞬变流动冲击荷载,如安全阀启跳或阀门的快速启闭时的压力冲击;

(7)两相流脉动荷载;

(8)压力脉动荷载,如往复压缩机往复运动所产生的压力脉动;

(9)机械振动荷载,如回转设备的简谐振动。

上述荷载根据其作用时间的长短,可以分为恒荷载和活荷载两类;根据其作用的性质,可以分为静力荷载和动力荷载。由于不同特征的荷载产生的应力性态及其对破坏的影响不同,因此,在应力分析与计算中也将采用与之相适应的方法。

1.5 变形与应力

1.5.1变形

在外力(荷载)作用下,结构的总体或构件的形状和尺寸都会发生不同程度的变化,这种形状的改变,一般称为变形。

1.5.2变形的分类

(1)按照变形的性态,可分为弹性变形和塑性变形两大类。

弹性变形:构件或物体在外力作用下产生的变形,外力除去后能

完全恢复其原有形状,不遗留外力作用过的任何痕迹,这种变形叫做弹性变形。

塑性变形:构件或物体在外力作用下产生的变形,当外力除去后,构件或物体的形状不能复原,即遗留了外力作用下的残余变形,这种变形称为塑性变形。

(2)按照变形的形式,可分为轴向拉伸(或压缩)、弯曲、扭转和剪切变形四种基本形式。

拉(压)变形:这种变形是由一对大小相等、方向相反、作用线与杆件轴线重合的外力所引起的。在这种外力作用下,杆的长度将伸长(或缩短)。

弯曲变形:当杆件承受与它的纵轴线垂直的荷载或纵向轴线平面内的力偶作用时,杆的纵向轴线由原来的直线变成了弧线,这种变形称为弯曲变形。

剪切变形:这种变形是杆件受到一对大小相等、方向相反、作用线相距很近的外力作用时所产生的。它的特征是在上述外力作用下杆的两个外力作用线间的各断面将力的作用方向(垂直于杆件轴线方向)发生相对错动。

扭转变形:杆件在受到一对大小相等、转向相反、作用面垂直于杆件轴线的力偶作用时,使杆件的任意的两个断面绕杆件轴线作相对的转动,即产生扭转变形。

1.5.3 应力

在外力作用下,构件发生变形,这说明构件材料内部在外力作用下变形时原子间的相对位置产生了改变,同时原子间的相互作用力(吸引力与排斥力)也发生了改变。这种力的改变量称为内力。

内力是沿整个断面连续分布的,单位面积上的内力强度,即应力,

以“σ”表示。

1.5.4 应变与弹性模数

(1)应变:构件或物体受外力(荷载)作用下将产生变形,为表明变形的程度,需计算单位长度内的变形,即应变,以“ε”表示。

(2)弹性模数:弹性模数E,代表材料在受到拉伸(或压缩)作用时对弹性变形的抵抗能力。当杆件长度、断面积、外力以及温度均相同的条件下,E 的数值越大,杆件的轴向伸长(变形)越小。因此,E也可说是衡量材料刚度的指标。

在弹性范围内,应力=弹性模数×应变,即σ=E·ε。

(3)泊松比:在弹性范围内,横向线应变与轴向线应变之比为一常数,此常数的绝对值称为泊松比,以“υ”表示。

泊松比的数值,对汽水管道常用的钢材,由试验得出,在弹性状态下约在0.25至0.35之间,在实用计算中取为0.3。但是,它随着钢材塑性变形的发展而增加,对塑性状态下可近似地取为0.5。

(4)剪切弹性模数:表示材料在线性弹性性态时抵抗剪切变形

的能力。剪应力与剪应变也服从虎克定律。剪切弹性模数G 与弹性模数E 和泊松比有以下关系:G= ,若取常用管道钢材在弹性状态下的泊松比υ=0.3,则剪切弹性模数G将等于

6

.2E 。 1.6 强度指标与塑性指标

钢材的强度特征与变形特征是用一定的强度指标与塑性指标来衡量的,这两类指标都是表示钢材力学性能(机械性能)的物理量,它们都可以通过钢材的拉伸试验来得到。

1.6.1 强度极限σb :在拉伸应力-应变曲线上的最大应力点,单位为M Pa。

)+υ1(2E

相关文档
最新文档