数字逻辑基础第01章
第一章数字逻辑基础思考题与习题
![第一章数字逻辑基础思考题与习题](https://img.taocdn.com/s3/m/3254d55af6ec4afe04a1b0717fd5360cba1a8df6.png)
第一章 数字逻辑基础 思考题与习题题1-1将下列二进制数转换为等值的十六进制数和等值的十进制数。
⑴(10010111)2 ⑵(1101101)2⑶(0.01011111)2⑷(11.001)2题1-2将下列十六进制数转换为等值的二进制数和等值的十进制数。
⑴(8C )16 ⑵(3D.BE )16⑶(8F.FF )16⑷(10.00)16题1-3将下列十进制数转换为等值的二进制数和等值的十六进制数。
要求二进制数保留小数点以后4位有效数字。
⑴(17)10⑵(127)10⑶(0.39)10 ⑷(25.7)10题1-4将十进制数3692转换成二进制数码及8421BCD 码。
题1-5利用真值表证明下列等式。
⑴))((B A B A B A B A ++=+ ⑵AC AB C AB C B A ABC +=++⑶A C C B B A A C C B B A ++=++ ⑷E CD A E D C CD A C B A A ++=++++)( 题1-6列出下列逻辑函数式的真值表。
⑴ C B A C B A C B A Y ++=⑵Q MNP Q P MN Q P MN PQ N M Q NP M PQ N M Y +++++=题1-7在下列各个逻辑函数表达式中,变量A 、B 、C 为哪几种取值时,函数值为1?⑴AC BC AB Y ++= ⑵C A C B B A Y ++=⑶))((C B A C B A Y ++++= ⑷C B A BC A C B A ABC Y +++=题1-8用逻辑代数的基本公式和常用公式将下列逻辑函数化为最简与或形式。
⑴ B A B B A Y ++=⑵C B A C B A Y +++=⑶B A BC A Y += ⑷D C A ABD CD B A Y ++= ⑸))((B A BC AD CD A B A Y +++= ⑹)()(CE AD B BC B A D C AC Y ++++= ⑺CD D AC ABC C A Y +++=⑻))()((C B A C B A C B A Y ++++++= 题1-9画出下列各函数的逻辑图。
数电-数字逻辑基础
![数电-数字逻辑基础](https://img.taocdn.com/s3/m/726fd82a8bd63186bdebbc9f.png)
无论数字信号还是模拟信号都有传输通路。在电 子电路中,人们将产生、变换、传送、处理模拟信 号的电子电路叫做模拟电路,将产生、存储、变换 、处理、传送数字信号的电子电路叫做数字电路。 数字电路不仅能够完成算术运算,而且能够完成逻 辑运算,具有逻辑推理和逻辑判断的能力,因此被 称为数字逻辑电路或逻辑电路。
为了区别3种不同数制,约定 数后加B表示二进制数 带D或不带字母符号表示十进制数 带H表示十六进制数
5
数制间转换
(1)二←→十六
二进制整数→十六:从右(最低位)向左将二进制数4位1组 划分,最后一组若不足4位则在其左边补0,每组用1位十六进 制数表示
如: 1111111000111B → 1 1111 1100 0111B → 0001 1111 1100 0111B = 1FC7H
14
当决定一件事情的各个条件中,只要有一个具备,这件事情就会发生, 这样的因果关系,叫做与逻辑关系。在图(b)中,只要开关A或者开关B闭 合,灯Y2就会亮所发对灯Y2这件事情来说,开关A、开关B闭合是或的逻辑 关系。非就是反,就是否定。在图(c)中,当开关A断开时,灯Y3亮,闭 合时反而会灭,所以对灯Y3亮来说,开关闭合是一种非逻辑关系。
集电极开路门简称OC门,它是将TTL与非逻辑电路输出级的倒相器V5管 的集电极有源负载V3、V4及电阻R4、R5去掉,保持V5管集电极开路而得到 的。由于V5管集电极开路,因此使用时必须通过外部上拉电阻RL接至电源 EC。EC可以是不同于UCC的另一个电源。OC门的逻辑符号如图所示。
A
&
A
F
F
B
B
(a)
≥1 Y5 A B
A B
A B
& ≥1
数字逻辑基础教学课件PPT
![数字逻辑基础教学课件PPT](https://img.taocdn.com/s3/m/1822db16a9956bec0975f46527d3240c8547a161.png)
(1)逻辑函数式→真值表 举例:例1-6(P9) (2)逻辑函数式→逻辑图 举例:例1-7(P10) (3)逻辑图→逻辑函数式 方法:从输入到输出逐级求取。
举例:例1-8(P10)
(4)真值表→函数式
方法:将真值表中Y为 1 的输入变量相与,取 值为 1 用原变量表示,0 用反变量表示, 将这 些与项相加,就得到逻辑表达式。这样得到的 逻辑函数表达式是标准与-或逻辑式。
断开为0;灯为Y,灯亮为1,灭为0。
真值表
AB Y 00 0 01 1 10 1 11 1
由“或”运算的真值表可知
“或”运算法则为:
有1出
0+0 = 0 1+0 = 1
1
0+1 = 1 1+1 = 1
全0为
0
⒊ 表达式
逻辑代数中“或”逻辑关系用“或”运算 描述。“或”运算又称逻辑加,其运算符为 “+”或“ ”。两变量的“或”运算可表示
0
卡诺图是一 种用图形描 述逻辑函数
的方法。
00 0 01 0 11 0
10 1
例:函数 F=AB + AC
ABC F
000 0
1 001 1 010 0
1 011 1
1 100 1
0
101 1 110 0
1 111 0
1.逻辑函数式
特点:
例:函数 F=AB + AC
(1)便于运算; (2)便于用逻辑图实现; (3)缺乏直观。
真值表
K
Y
0
1
1
0
由“非”运算的真值表可知 “非”运算法则为:
0 =1 1 =0
⒊ 表达式
“非”逻辑用“非”运算描述。“非”运 算又称求反运算,运算符为“-”或“¬”, “非”运算可表示为:
第一章 数字逻辑电路基础知识
![第一章 数字逻辑电路基础知识](https://img.taocdn.com/s3/m/dfc18ed9d1f34693daef3ea7.png)
(DFC.8)H =13×162+15×161+12×20+8×16-1 =(3580 .5)D
二. 二进制数←→十六进制数
因为24=16,所以四位二进制数正好能表示一位十六进制数的16个数码。反过
来一位十六进制数能表示四位二进制数。
例如:
(3AF.2)H 1111.0010=(001110101111.0010)B 2
第一章 数字逻辑电路基础知识
1.1 数字电路的特点 1.2 数制 1.3 数制之间的转换 1.4 二进制代码 1.5 基本逻辑运算
数字电路处理的信号是数字 信号,而数字信号的时间变 量是离散的,这种信号也常 称为离散时间信号。
1.1 数字电路的特点
(1)数字信号常用二进制数来表示。每位数有二个数码,即0和1。将实际中彼此 联系又相互对立的两种状态抽象出来用0和1来表示,称为逻辑0和逻辑1。而且在 电路上,可用电子器件的开关特性来实现,由此形成数字信号,所以数字电路又 可称为数字逻辑电路。
例如: (1995)D=(7CB)H =(11111001011)B
或 1995D =7CBH=11111001011B 对于十进制数可以不写下标或尾符。
1.3 不同进制数之间的转换
一.任意进制数→十进制数: 各位系数乘权值之和(展开式之值)=十进制数。 例如: (1011.1010)B=1×23+1×21+1×20+1×2-1+1×2-3
逻辑运算可以用文字描述,亦可用逻辑表达式描述,还可 以用表格(这种表格称为真值表)和图形( 卡诺图、波形 图)描述。
在逻辑代数中有三个基本逻辑运算,即与、或、非逻辑运 算。
一. 与逻辑运算
《数字逻辑与电路》复习题及答案
![《数字逻辑与电路》复习题及答案](https://img.taocdn.com/s3/m/897e6defaff8941ea76e58fafab069dc502247df.png)
《数字逻辑与电路》复习题及答案《数字逻辑与电路》复习题第⼀章数字逻辑基础(数制与编码)⼀、选择题1.以下代码中为⽆权码的为CD。
A. 8421BCD码B. 5421BCD码C.余三码D.格雷码2.以下代码中为恒权码的为AB 。
A.8421BCD码B. 5421BCD码C. 余三码D. 格雷码3.⼀位⼗六进制数可以⽤ C 位⼆进制数来表⽰。
A. 1B. 2C. 4D. 164.⼗进制数25⽤8421BCD码表⽰为 B 。
A.10 101B.0010 0101C.100101D.101015.在⼀个8位的存储单元中,能够存储的最⼤⽆符号整数是CD 。
A.(256)10B.(127)10C.(FF)16D.(255)106.与⼗进制数(53.5)10等值的数或代码为ABCD 。
A. (0101 0011.0101)8421BCDB.(35.8)16C.(110101.1)2D.(65.4)87.与⼋进制数(47.3)8等值的数为:A B。
A.(100111.011)2B.(27.6)16C.(27.3 )16D. (100111.11)28.常⽤的B C D码有C D。
A.奇偶校验码B.格雷码C.8421码D.余三码⼆、判断题(正确打√,错误的打×)1. ⽅波的占空⽐为0.5。
(√)2. 8421码1001⽐0001⼤。
(×)3. 数字电路中⽤“1”和“0”分别表⽰两种状态,⼆者⽆⼤⼩之分。
(√)4.格雷码具有任何相邻码只有⼀位码元不同的特性。
(√)5.⼋进制数(17)8⽐⼗进制数(17)10⼩。
(√)6.当传送⼗进制数5时,在8421奇校验码的校验位上值应为1。
(√)7.⼗进制数(9)10⽐⼗六进制数(9)16⼩。
(×)8.当8421奇校验码在传送⼗进制数(8)10时,在校验位上出现了1时,表明在传送过程中出现了错误。
(√)三、填空题1.数字信号的特点是在时间上和幅值上都是断续变化的,其⾼电平和低电平常⽤1和0来表⽰。
《数字电子技术基础》——数字逻辑基础.ppt
![《数字电子技术基础》——数字逻辑基础.ppt](https://img.taocdn.com/s3/m/2276e6f3168884868762d6ff.png)
(3)由数字电路组成的数字系统,抗干扰能力强, 可靠性高, 精确性和稳定性好,便于使用、维护 和进行故障诊断,容易完成实时处理任务。
(4)高速度,低功耗,可编程。
2、数字电路的分类
(1)按集成度分类:数字电路可分为小规模 (SSI)、中规模(MSI)、大规模(LSI)和超 大规模(VLSI)数字集成电路。集成电路从应 用的角度又可分为通用型和专用型两大类型。
数字信号:在时间上和数值上不连续的 (即离散的)信号。
u
t
数字信号波形
对数字信号进行传输、处理的电子线路称 为数字电路。
1.1.2 数字电路的特点与分类
1、数字电路的特点
(1)数字技术能够完成许多复杂的信号处理工作。
(2)数字电路不仅能够完成算术运算,而且能够完 成逻辑运算, 具有逻辑推理和逻辑判断的能力。
约束条件反映了逻辑函数中各逻辑变量之间的制约关系约束条件所含的最小项称为约束项它表示输入变量某些取值组合不允许出现或者不影响逻辑函数的输出因此也被称为无关项任意项一般用d表示i仍为最小项序号填入卡诺图时用表示
数字电子技术基础
国防科技大学出版社
第1章 数字逻辑基础
1.1 概述 1.2 数制及二进制代码 1.3 逻辑代数基础 1.4 逻辑函数及其化简
交换律:
A A
B B BB
A
A
结合律:
( (
A A
B) B)
C
C
A
(B A
C) (B
C)
分配律:
A A
(B B
C) C
A (A
B B)
A (A
C
C)
反演律(摩根定律):
A
.B
一数字逻辑基础
![一数字逻辑基础](https://img.taocdn.com/s3/m/deb0cf727275a417866fb84ae45c3b3567ecddb4.png)
(二(十进)三制格)B雷校3 B码2验B1码B0 十进制 G3 G2 G1 G0
1.任0意两组0最相0 常0邻0用码的之误间8差只检有验1一1码位0是不0 奇同。 注大偶息:数1校码1首0验组尾00码外0两之0,增个间0它加数也1 的一码符编位即合码监9最此方督小特法码数点1是元0,10在。00故01信它和可最
符号位“1”加原码符号位“1”加反码符号位“1”加补码
第一节 数制与编码
补码的算术运算
例: X在1 =数-0字0电01路00中0,,用X2原=码0-求00两01个001正11,数,M和求求NX的1X+1减+X法2X2
运码现反解补算的。码:电减运+路法)[算X相运1][[:当算反 补[XXX12+复变]]1[]反 反 补 补X杂成反2]+==,反反补[X0110但码2=]0110如或反0110[0110X果补11=1+010采码X001[2001X]用的1反+反加X2不有]码法当反过进或运符算号不位补算号时位需 ,,码位不是反循自符易,有需否码环动号于即进判相在进丢位电可位断同进位弃参路把时两。行,。加实原需数算如运循符术算运。
称为2循环0码0。1 1 10 1 1 1 1
2为.A反编(S34射C码四I码I还码)。具00:字七10有11符位反00代编射码码性表11,12示9因61个2此118为个10又11字图可00符形称字其
符5 0 1 1 1 13 1 0 1 1
6 0101
14控制1字0符0 132个
7 0 1 0 0 15 1 0 0 0
例: ((11001111110011..110011000011))BB == ((?5)D.HA4) H
01011101.10100100
数字逻辑基础第一章
![数字逻辑基础第一章](https://img.taocdn.com/s3/m/e1950747804d2b160b4ec0d3.png)
1.3 逻辑代数的标准表达式和卡诺图
1.3 逻辑代数的标准表达式和卡诺图
1.3.1 逻辑函数的两种标准表达式
1.3.2 两种逻辑函数标准表达式间关系
1.3.3 将逻辑函数按照标准形式展开 1.3.4 逻辑函数的卡诺图表示
2017/5/28 31 数字逻辑基础
1.3.1 逻辑函数的两种标准表达式
B.最大项个数:为2n,每个最小项可用Mi表示,包含输入变 量的所有取值组合。 例:
A+B+C=M0 A+B+C=M1 A+B+C=M2 A+B+C=M4
最大项积的形式 (标准或与式)
2017/5/28
数字逻辑基础
34
3.最小项与最大项的比较:(以3变量函数为例)
最小项:m0 A B C 最大项:M 0 A B C 对于任意一个逻辑函数,可表示为最小项和的形 式和最大项积的形式。 最小项:m1 A B C 最大项:M 1 A B C 最小项:m2 A B C 最大项:M 2 A B C 最小项:m3 A B C 最大项:M 3 A B C
数字逻辑基础
21
1.2.1 基本公式 (2)
四.特殊定律
注意: A. 同一律(等幂律): 1.可用基本公式进行化简,以简 化电路。 , 11. A · A =A 11 A + A=A 2.可用基本公式将电路转换为一 B. 还原律(自反律): 种或少数几种门电路构成,如与 12. A =A 非-与非形式、或非-或非形式等。
2017/5/28
>1
=1
同或门
=
18 数字逻辑基础
1.2 逻辑代数的基本定理
数字逻辑 第一章 作业参考答案
![数字逻辑 第一章 作业参考答案](https://img.taocdn.com/s3/m/37fb5a82f12d2af90242e697.png)
解:该命题的真值表如下:
输入
输出
(1)不考虑无关项的情况下,输出逻辑函数表达式为:
ABCD
F
0000
0
F (m1,m3,m5,m7 ,m9 ) AD BCD
0001
1
(2)考虑无关项的情况下,输出逻辑函数表达式为:
0010
0
0011
1
0100
0
0101
1
F (m1,m3,m5,m7,m9) (d10,d11,d12,d13,d14d15)
AB CD 00 01 11 10 00 0 0 0 0 01 0 1 1 0 11 0 1 1 0 10 1 0 0 1 Y2 的卡诺图
将 Y1、Y2 卡诺图中对应最小项相或,得到 Y1+Y2 的卡诺图如下:
AB CD 00 01 11 10 00 1 0 0 0 01 1 1 1 0 11 0 1 1 0 10 1 0 0 1
P151: 3-4 试分析图 3-64 所示电路逻辑功能。图中 G1、G 0 为控制端。A、B 为输入端。 要求写出 G1、G 0 四种取值下的 F 表达式。
解: 3-8 使用与非门设计一个数据选择电路。S1、S0 选择端,A、B 为数据输入端。数
据选择电路的功能见表 3-29。数据选择电路可以反变当量G1输=入0、。G 0=0 时:
输出 F 0 1 1 1 1 1 1 0
由卡诺图可得 F = A + BC + BC = A • BC • BC
(3)逻辑图表示如下:
1-12 用与非门和或非门实现下列函数,并画出逻辑图。
解:(1) F(A, B,C) = AB + BC = AB • BC
(2) F(A, B,C, D) = (A + B) • (C + D) = A + B + C + D
第1章数字逻辑基础
![第1章数字逻辑基础](https://img.taocdn.com/s3/m/8e50a0bfcc1755270622086c.png)
M2
n1
ai
2i
im
精品课件
7
1.1.2二进制数
➢一个二进制数的最右边一位称为最低有效 位 , 常 表 示 为 LSB(Least Significant Bit),
➢最左边一位称为最高有效位,常表示为 MSB(Most Significant Bit)。
➢例:试标出二进制数11011.011的LSB,MSB 位,写出各位的权和按权展开式,求出其 等值的十进制数。
M10 ai 10i
im
10i是第i位的权,
n是整数位位数
10是基数。
m是小数位位数
精品课件
5
1.1.1十进制数
➢任意进制数的按权展开式
MR
n1
ai
Ri
im
ai为0~(R-1)中任
意一个数字符号
R为基数
Ri 为 第 i 位 的 权 值 。
精品课件
6
1.1.2二进制数
➢组成:0、1 ➢进位规则:逢二进一
➢
=2×162+10×161+15×160=68710
精品课件
13
1.1.4二进制数和其它进制之间的转换
⒈十进制数转换成二进制数
➢将十进制数M10转换为二进制数,一般采用 将M10的整数部分和小数部分分别转换,然
后把其结果相加。
➢设 M10 的 整 数 部 分 转 换 成 的 二 进 制 数 为 an-1an-2…a1a0
➢将上式两边同除以2,两边的商和余数相等。
所 得 商 为 an-12n-2+an-22n-3+…+a221+a1 , 余 数 为a0,经整理后有:
大学 数字电子技术基础-第一章--数字逻辑基础
![大学 数字电子技术基础-第一章--数字逻辑基础](https://img.taocdn.com/s3/m/a889ec290166f5335a8102d276a20029bd646306.png)
•
23
例1-6 将(154.375)D 转化为十六进制数。 解:(1)整数部分 :“除16取余”
连续“除16取余”的 过程直到商为0为止
24
(2)小数部分:“乘16取整”
0.375×16=6.0 ……… 整数部分为6
(154.375)D=(9A.6)H
直到小数部分为0 为止
25
四、八进制----二进制
二进制数和八进制数之间 有很简单的对应关系,三 位二进制数对应一位八进 制数。对应关系如表所示。
三位二进制数 000 001 010 011 100 101 110 111
一位八进制数 0 1 2 3 4 5 6 7
(374.26)O = (011111100 . 010110)B
1
1
0
0
1
1
0
0
0
33
三、ASCII码
ASCII码是国际上最通用的一种字符码,用7位二进制码来表示128个十进制 数、英文大小写字母、控制符、运算符以及特殊符号
34
第五节 逻辑问题的描述ห้องสมุดไป่ตู้
• 一、自然界中三种基本逻辑关系:
❖1、与逻辑关系:决定某一事物结果的所有条件
同时具备,结果才会发生。这一因果关系称与逻 辑关系
32
二、格雷码
二进制数
b3
b2
b1
b0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
一章数字逻辑基础
![一章数字逻辑基础](https://img.taocdn.com/s3/m/570e9d399a6648d7c1c708a1284ac850ac02046d.png)
“代码”。
❖ 建立这种代码与十进制数值、字母、符号旳一
一相应关系称为“编码”。
❖ 若所需编码旳信息有N项,则需用旳二进制数码
位数n应满足:2n≥N。
19
❖自然二进制码:
二进制数码每 位旳值称位“权” 或“位权”,各为 8、4、2、1。
b3b2b1b0
23222120
代码对应旳十进制数
余3码
0 1 2 3 4 5 6 7 8 9
23
b3b2b1b0
23222120
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
自然二进制码
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
千百 十 个 103 102 101 100
9
例1. 3.1 试用位权来表达十进制数4567。 4567=4×103+5×102+6×101+7×100
❖ 十进制数旳体现式:
N D Ki 10i i
式中:Ki为基数“10”旳第i次幂旳系 数。
10
1.3.2 二进制
❖ 只有0、1两个数码。
❖ 计数规律是“逢二进一”。 ❖ 二进制是以2为基数旳计数体制。 ❖ 二进制旳位权:…… 23 22 21 20 ❖ 二进制数旳体现式:
2)二进制数旳基本运算规则简朴,运算操 作简便。
➢ 缺陷: 用二进制表达一种数时位数多,使用不以 便,不习惯。 如(49)D=(110001)B。
13
➢送入计算机时,将十进制数转换成二进制,运算结 束后,将二进制转换成十进制输出。
数字逻辑知识点
![数字逻辑知识点](https://img.taocdn.com/s3/m/abd7b62faf45b307e87197cb.png)
TTL与MOS集成逻辑门多余输入端的处理:
与门/与非门——多余输入端接高电平
或门/或非门——多余输入端接低电平
要牢记各种门电路的逻辑符号!(教材P243~244)
第三章布尔代数与逻辑函数化简
基本公式
基本法则:
代入法则:逻辑等式中的任何变量A,都可用另一函数Z代替,等式仍然成立。
第四章组合逻辑电路
组合逻辑电路的定义
组合逻辑电路的分析过程:
(1)由给定的逻辑电路图,写出输出端(关于输入)的逻辑表达式;
(2)列出真值表;
(3)从真值表概括出逻辑功能;
(4)对原电路进行改进设计,寻找最佳方案(这一步不一定都要进行)。
组合逻辑电路的设计步骤:
(1)将文字描述的逻辑命题变换为真值表,这是十分重要的一步。
由反演律(参见第三章摩根定理)可以看出,利用“与”和“非”可以得出“或”;利用“或”和“非”可以得出“与”。因此,“与非”、“或非”、“与或非”这三种复合运算中的任何一种都能实现“与”、“或”、“非”的功能,即这三种复合运算各自都是完备集。
集成逻辑门
由于软件工程专业没有电路、模拟电子的先修课程,此部分涉及到电路细节部分不作要求,只概念性地了解相关集成逻辑芯片的逻辑功能及芯片系列的参数等。
两种表示法:
或:
(满足约束关系式的输入变量取值为“合法”取值,
不满足约束关系式的输入变量取值为“非法”取值——无关项×)
有利于逻辑函数的化简时可以利用相应的无关项。
逻辑函数的描述方法常用的有:
真值表法、布尔代数法、卡诺图法、逻辑图法、波形(时序)图法
(其中 布尔代数法、逻辑图法具有“多样性”)
数电 第1章 数字逻辑电路基础
![数电 第1章 数字逻辑电路基础](https://img.taocdn.com/s3/m/29095511d5bbfd0a785673a7.png)
关系。
A
或逻辑真值表
AB
F=A+ B
E
B
F
或逻辑电路
00
0
01
1
10
1
11
1
A
≥1
B
或门逻辑符号
F=A+B
或门的逻辑功能概括为: 1) 有“1”出“1”; 2) 全“0” 出“0”.
3. 非逻辑运算 定义:假定事件F成立与否同条件A的具备与否有关,
若A具备,则F不成立;若A不具备,则F成立.F和A之间的这 种因果关系称为“非”逻辑关系.
才成立;如果有一个或一个以上条件不具备,则这件事就 不成立。这样的因果关系称为“与”逻辑关系。
AB
E
F
与逻辑电路
与逻辑电路状态表
开关A状态 开关 B状态 灯F状态
断
断
灭
断
合
灭
合
断
灭
合
合
亮
若将开关断开和灯的熄灭状态用逻辑量“0”表示;将开关 合上和灯亮的状态用逻辑量“1”表示,则上述状态表可表 示为:
73.5
0111 0011 . 0101
故 (73.5)10 =(01110011.0101)8421BCD码
2. 格雷码(Gray码)
格雷码为无权码,特点为:相邻两个代码之间仅有一位 不同,其余各位均相同.
格雷码和四位二进制码之间的关系:
设四位二进制码为B3B2B1B0,格雷码为R3R2R1R0,
George Boole在1847年提出的,逻辑代数也称布尔代数.
1.3.1 基本逻辑运算
在逻辑代数中,变量常用字母A,B,C,……Y,Z, a,b, c,……x.y.z等表示,变量的取值只能是“0”或“1”.