焊接结构残余应力分析

合集下载

焊接结构的残余应力的研究

焊接结构的残余应力的研究

焊接结构的残余应力的研究【关键词】焊接结构;残余应力;消除方法0.引言人们对焊接应力的认识由来已久,但对其进行系统的研究时间并不长。

通俗来说,残余应力的产生是由焊接时零部件受热不均匀,而导致零部件内部受热产生的向外膨胀的力。

而在焊接后的零部件冷却阶段,在零部件会有一定的应力残留,即所谓的残余应力。

它对零部件的结构性能影响很大,必须设法消除。

1.焊接结构的残余应力对零部件的不良影响分析1.1残余应力对零部件疲劳强度的影响分析所谓零部件的疲劳强度,是指零部件在使用过程中能够保证基本性能不发生重大变化的时间,有时候也被称为疲劳寿命,它是检验零部件性能的一个重要指标。

根据一项研究,零部件疲劳强度受零部件材料、加工工艺以及焊接残余应力等因素的影响较大。

其中,焊接残余应力所构成的影响最大。

也就是说,一个构件的疲劳强度与焊接的应力循环有关,当一个构件的焊接的应力循环的平均值增加时,它的极限就会有所降低,所以说如果在构件的应力上存在着焊接结构的残余应力,那么这个构件的疲劳强度则会大大地降低。

而且,如果这种焊接残余应力的值达到了一定的程度,超过了零部件所能承受的最大限度,就会从根本上破坏零部件的结构性能,也就是说会使加工的零件失去使用价值。

因此,如果想让零部件的疲劳强度增大,就应当设法减小残余应力。

1.2残余应力对零部件的稳定性的影响分析无论在课堂上还是在实际生活中,我们都知道,每一种材料都有它自身的稳定性。

生产零部件所使用的材料也不例外。

当零部件受到各种压力、弯压时,构件就会出现各种不稳定的现象,比如说受压杆件会不稳定、焊件加工精度和尺寸会不稳定等。

而根据研究,当零部件受到焊接残余应力的影响时,零部件材料稳定性所受到的不良影响非常强烈。

例如,在焊接钢制结构的零部件时,残余应力会使零部件表面残生一些细微的裂缝或者氧化,严重破坏其化学稳定性,使其容易产生金属疲劳或者生锈,对它的正常使用也构成了非常不利的影响。

而且,当外面的压力与焊接结构的残余应力同时作用于构件时,会出现更加严重的问题,焊件会出现由于有效截面积严重不足而导致的受压杆件不稳定以及由于焊接结构的残余应力之前的平衡状态被破坏而导致的焊件加工精度和尺寸不稳定等等一些严重的问题。

简述焊接残余应力对结构性能的影响

简述焊接残余应力对结构性能的影响

简述焊接残余应力对结构性能的影响焊接作为一种固定工具,在结构件中具有极其重要的地位,他能够把几个零件紧凑地结合在一起。

但是,焊接也会产生残余应力,这些残余应力会对结构的性能产生一定的影响。

因此,现在探讨焊接残余应力对结构性能的影响成为一个重要课题。

一般来说,在工程中,材料结构的性能受到残余应力的影响是很大的。

焊接残余应力是由焊接工艺所产生的作用力,它可能会导致结构件的变形、开裂或热收缩脆性断裂等,并影响结构件的性能。

首先,残余应力会影响材料结构的强度和弹性,如果焊接残余应力太大,它可以破坏材料结构的整体强度,从而加重结构件的强度,承载能力可能会受到影响。

同时,残余应力也会影响材料结构的抗弯性,这会导致材料结构的抗弯强度和抗弯刚度降低,从而损害材料结构的使用性能。

此外,焊接残余应力还可能会影响材料结构的抗拉强度和抗压强度,也会降低材料结构的安全性能和可靠性。

这是由于焊接残余应力在材料结构中存在拉应力、压应力和剪应力,这些应力都可能导致材料结构变形或断裂,使材料结构的可靠性和安全性受到影响。

最后,焊接残余应力也会影响材料结构的耐腐蚀性,如果焊接残余应力太大,它会加剧材料结构的腐蚀变形,从而影响材料结构的耐腐蚀性。

因此,可以看出,焊接残余应力会对材料结构的性能产生负面影响,包括强度、弹性、抗拉强度、抗压强度和耐腐蚀性等,这些都会影响材料结构的使用性能和可靠性。

因此,在焊接工艺中,应当采取一些恰当的措施,减少焊接残余应力,从而提高材料结构的使用性能和可靠性。

总之,焊接残余应力是材料结构性能的重要影响因素,值得予以重视。

在工程实际中,应利用各种方法和手段进行有效的控制,充分考虑焊接残余应力的影响,以提高材料结构的使用性能和可靠性。

试析焊接残余应力对钢结构性能的影响作用

试析焊接残余应力对钢结构性能的影响作用

试析焊接残余应力对钢结构性能的影响作用作者张红随着社会经济及科学技术的发展,钢结构以其材料强度高、自重轻、延性及抗震性好、工业化程度高、施工速度快等多个优点在现代化建设中得到了广泛的应用。

钢结构是利用钢材设计制作成构件后通过一定的连接方式将构件连接形成的,焊接是常用的钢构件连接方法,焊接过程中产生的焊接残余应力对钢结构有着较大的影响,是实际工程中需关注的主要问题之一。

1焊接残余应力的产生原因焊接残余应力产生的主要原因是焊接过程中的局部不均匀热输入。

按应力分布形式分以下三种:1.1纵向残余应力沿焊缝长度方向的残余应力称为纵向残余应力(如下图1),钢材焊接是一个不均匀的加热和冷却过程,在焊接时,温度很高的焊缝及其附近区域和温度较低的临近区域会产生不均匀的温度场,进而产生不均匀的膨胀,低温度区的钢材膨胀小,限制高温度区钢材膨胀,产生热塑性压缩,冷却时,焊缝两侧钢材又会限制塑性压缩引起的焊缝缩短,产生纵向拉应力,由于焊接残余应力是一种内应力,无荷载作用,需要在焊件内部自相平衡,从而导致焊件上距焊缝稍远产生压应力。

图1纵向残余应力分布图2横向残余应力分布1.2横向残余应力横向残余应力是指垂直于焊缝方向的残余应力(如上图2),受到塑性压缩焊缝的纵向收缩可使焊缝两侧的钢板形成反向弯曲变形,在两块钢板间会产生横向的拉应力,同时钢板的两端形成压应力;焊接时,焊缝焊接的先后顺序不同,先焊接的焊缝先凝固,可限制后焊接焊缝的膨胀,引起横向塑性压缩变形,冷却时,先焊接已凝固的焊缝限制后焊接焊缝的收缩形成横向拉应力,同时最后焊接的焊缝末端产生拉应力,两块钢板间的横向拉应力及两端的压应力与先焊接焊缝的横向拉应力及焊缝末端的拉应力合成最终形成焊缝的横向应力。

1.3沿厚度方向的残余应力焊件采用厚钢板时,焊接时需要多层施焊,由于焊接时不同厚度方向的温度分布不均匀,冷却时表面冷却较中间快,可在焊缝中间层形成拉应力,在外层形成压应力,从而形成除纵向和横向残余应力外的沿厚度方向的残余应力。

钢结构焊接残余应力产生的原因

钢结构焊接残余应力产生的原因

钢结构焊接残余应力产生的原因1. 概述钢结构焊接残余应力是指焊接过程中产生的应力,其主要原因有以下几个方面。

2. 材料本身的性质钢材具有较高的热导率和热膨胀系数,当焊接时,焊缝附近会受到高温热源的加热,导致局部区域温度升高。

由于热膨胀系数的差异,焊接区域与周围区域的线膨胀不一致,产生残余应力。

3. 焊接过程中的温度变化焊接过程中,焊缝区域会经历高温、中温和低温阶段的温度变化。

在高温阶段,焊缝区域受到热源的加热,温度升高,材料发生热膨胀。

在冷却过程中,焊缝区域受到快速冷却的影响,温度迅速下降,材料发生收缩。

这种温度变化导致焊接区域产生应力。

4. 焊接变形引起的应力焊接过程中,焊缝区域会发生热胀冷缩变形,导致焊接件产生塑性变形。

塑性变形会引起应力集中,从而产生残余应力。

5. 焊接过程中的约束焊接过程中,焊接件通常由多个部件组成,这些部件之间会存在约束。

约束会限制焊接件的自由变形,导致焊缝区域产生应力。

6. 焊接工艺参数的选择焊接工艺参数的选择直接影响焊接过程中的温度变化和应力分布。

不合理的焊接工艺参数选择会导致焊接残余应力的产生。

7. 焊接残余应力的影响焊接残余应力对钢结构的性能和使用寿命有着重要的影响。

它可能导致焊接件的变形、开裂和疲劳破坏等问题。

7.1 变形焊接残余应力会引起焊接件的变形,导致尺寸偏差和形状不规则,影响钢结构的装配和使用。

7.2 开裂焊接残余应力会使焊接区域的应力超过材料的承受能力,导致开裂的产生。

开裂会降低钢结构的强度和耐久性。

7.3 疲劳破坏焊接残余应力会使焊接区域的应力集中,从而导致疲劳破坏的产生。

疲劳破坏是由于应力循环加载引起的,会减少钢结构的使用寿命。

8. 焊接残余应力的控制与消除为了减少焊接残余应力的影响,可以采取以下措施:8.1 合理选择焊接工艺参数合理选择焊接工艺参数,控制焊接过程中的温度变化和应力分布,减少焊接残余应力的产生。

8.2 采用预加热和后热处理通过预加热和后热处理,可以改变焊接区域的温度分布,减小焊接残余应力的大小。

焊接残余应力产生原因分析及消除方法

焊接残余应力产生原因分析及消除方法

(2)运用三维模型装配仿真对打磨掉干涉区域后的前承力机匣和IGB机匣进行模拟装配,结果显示可实现装配;(3)实物装配IGB机匣与打磨后的前承力机匣,可顺利完成装配;(4)装配后的发动机在完成其原定试验计划后,未出现任何潜在问题。

通过三维装配仿真可有效地为设计及排故等提供有力的技术支持,节省由于设计等不合理带来的返工、时间以及其他成本的浪费。

5结语目前发动机装配分析主要是对比典型民用航空发动机装配顺序和装配路径,定性地判断整机装配性,无法准确判断实际装配情况。

通过三维仿真装配技术,在方案设计阶段,建立发动机装配仿真模型,进行三维静态、动态干涉检查,规划整机装配路径,可最大程度地暴露并提前解决装配过程存在的干涉问题,保证实际装配可行性,提高装配效率,节约成本。

[参考文献][1]雷相波.虚拟装配的3D空间动作路径方法研究[J].电脑编程技巧与维护,2019(12):79-80.[2]田富君,田锡天,耿俊浩,等.基于视点跟随的装配路径规划与干涉检查研究[J].中国机械工程,2011,22(15):1810-1814.[3]邵毅,余剑峰,李原,等.基于VMap的装配路径规划研究与实现[J].西北工业大学学报,2001,19(1):118-121.[4]SUN J K,YANG C Y,QIU H H.Assembly Process PlanningBased on Tri-dimensional Visual Platform[J].Applied Mechanics and Meterials,2014,644/645/646/647/648/649/ 650:4805-4808.[5]徐丽英.基于CATIA V5平台模型装配过程中的干涉分析[C]//大型飞机关键技术高层论坛暨中国航空学会2007年年会论文集,2007:161-169.[6]杨家军,苏昭群,张明丽,等.基于虚拟现实技术的机构干涉分析[J].湖北工业大学学报,2010,25(4):1-3.[7]穆塔里夫·阿赫迈德,张年松,郑力.加工中心虚拟装配建模及装配干涉研究[J].现代制造工程,2002(9):14-16.[8]郑轶,宁汝新,刘检华,等.交互式虚拟装配路径规划及优选方法研究[J].中国机械工程,2006,17(11):1153-1156. [9]刘检华,宁汝新,万毕乐,等.面向虚拟装配的复杂产品装配路径规划技术研究[J].系统仿真学报,2007,19(9):2003-2007.[10]刘检华,宁汝新,姚珺,等.面向虚拟装配的零部件精确定位技术研究[J].计算机集成制造系统,2005,11(4):498-502.收稿日期:2018-05-17作者简介:王秋阳(1985—),女,湖北襄阳人,硕士,工程师,主管设计师,研究方向:发动机总体结构设计。

残余应力

残余应力
(3)塑性变形产生的必要条件是切应力的存在:材料在单轴应力的作 max 用下, / 2 最大切应力,在三轴等值拉应力(x y z )作 max 用下,切应力 0 ,在这种情况下就不可能产生塑性变形, 因此三轴拉伸内应力将阻碍塑性变形的产生,对承载能力不利。
(二)内应力对疲劳强度的影响(见第五章) (三)内应力对机械加工精度的影响 机械切削加工把一部分材料从工件上切去,如果工件中存在 着内应力,那么把一部分材料切去的同时,把原先在那里的内应 力也一起去掉,从而破坏了原来工件中内应力的平衡使工件产生 变形。加工精度也就受到了影响。 例1:如在焊接丁字形零件上(见图2—121a)加工一个平面,会 引起工件的挠曲变形。但这种变形由于工件在加工过程中受到夹 持,不能充分地表现出来,只有在加工完毕后松开夹具时变形才 能充分地表现出来。这样,它就破坏了己加工平面的精度。 例2:焊接齿轮箱的轴孔(见图2—121b),加工第二个轴孔所引起 的变形将影响第一个已加工过的轴孔的精度。 保证加工精度的最彻底的办法是先消除焊接内应力然后再进行机 械加工。
2、圆筒上环形焊缝引起的纵向应力σx分布:与平板不同。 (对圆筒来讲就是切向应力) (1)当圆筒直径与厚度之比较大时, σx的分布和平扳上的情况 相似,见图2—100。 对低碳钢来说σx达到σs (2)当圆筒直径与厚度之比较小时,就有所降低。 原因:由于圆筒环焊缝的半径在焊后缩小,焊缝在长度上的收缩 比平板上的焊缝具有更大的自由度。因此纵向应力比平板小。 应力值的大小取决于圆筒的半径R、壁厚以及塑性变形区的宽度 bp。后者与焊接线能量和材质有关。 当壁厚不变,R↓-- σx ↓; bp ↓ -- σx ↑(?)
③直通焊的尾部是拉应力,中段是压应力,起焊段由于必须满足平衡条件的 原因仍为拉应力,应力分布情况与图2—l04a相似 ④用分段退焊和分段跳焊法。σy/ /的分布将出现多次交替的拉应力和压应力 区。值得注意的是分段跳焊法的σy/ /峰值较其他焊接顺序高。

钢结构焊接中的残余应力分析方法

钢结构焊接中的残余应力分析方法
局部-整体法的优势
能够兼顾计算精度和计算效率,适用于大型复杂 焊接结构的残余应力分析。
03
钢结构焊接中的残余应力测量技术
X射线衍射法
01
02
03
04
原理
利用X射线在晶体中的衍射现 象,通过测量衍射角的变化来 计算残余应力。
优点
非破坏性测量,对试样无损伤 ,可测量小区域和复杂形状的 构件。
缺点
设备昂贵,操作复杂,需要专 业人员进行操作和分析。
将数值模拟得到的残余应力分布结果与实验结果 进行对比分析,验证模拟的准确性。
模拟结果优化
针对误差来源进行模拟结果的优化和改进,提高 数值模拟的精度和可靠性。
ABCD
误差来源分析
分析数值模拟中可能存在的误差来源,如模型简 化、材料参数不准确等,并提出改进措施。
工程应用探讨
探讨数值模拟在钢结构焊接残余应力分析中的工 程应用前景和局限性。
原理
利用超声波在材料中的传播速 度与应力之间的关系,通过测 量超声波传播速度的变化来计
算残余应力。
优点
设备相对简单,操作方便,可 实现在线测量。
缺点
对材料表面粗糙度和温度等因 素敏感,测量结果易受干扰。
应用范围
适用于各种金属材料和构件的 表面残余应力测量。
应变片法
原理
在构件表面粘贴应变片,通过测量应 变片电阻值的变化来计算残余应力。
求解过程
采用合适的数值方法求解边界积分方 程,得到焊接过程中的温度场和应力
场分布。
材料本构关系与热源模拟
定义材料的本构关系和焊接热源模型 ,以模拟焊接过程中的热力学行为。
结果分析与验证
对求解结果进行可视化处理和数据分 析,评估残余应力的分布和影响,并 与实验结果进行对比验证。

焊接结构残余应力分析

焊接结构残余应力分析

焊接结构残余应力分析摘要:焊接残余应力的存在,会直接影响到钢混结构的承载能力。

为了保证焊接结构的安全可靠,准确地推断焊接过程中的力学行为和残余应力是十分重要的。

对于焊接残余应力,以往多是采用切割、钻孔等试验测量方法,不但费时费力,而且受到许多条件的限制,结果数据误差也会很大。

关键词:焊接残余应力;有限元;对接焊缝一、焊接残余应力的概念焊接构件由焊接而产生的内应力称之为焊接应力,按作用时间可分为焊接瞬时应力和焊接残余应力。

焊接过程中,某一瞬时的焊接应力称之为焊接瞬时应力,它随时间而变化;焊后残留在焊件内的焊接应力称之为焊接残余应力。

焊接残余应力为热应力(主要为冷却应力),相变应力可再叠加其上。

在冷焊、扩散焊、滚轧敷层和爆炸敷层等情况下,冷加工作用力是残余应力的源泉,它可单独作用,也可能附加于上述热效应之上。

二、焊接残余应力产生的原因焊接过程是一个先局部加热,然后再冷却的过程。

焊件在焊接时产生的变形称为热变形,焊件冷却后产生的变形称为焊接残余变形,这时焊件中的应力称为焊接残余应力。

焊接应力包括沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。

焊接残余应力产生的主要原因是由焊接过程中不均匀加热所引起的。

焊接应力按其发生源来区分,有如下3种情况:(1)直接应力是进行不均匀加热和冷却的结果,它取决于加热和冷却时的温度梯度,是形成焊接残余应力的主要原因。

(2)间接应力是由焊前加工状况所造成的压力。

构件若经历过轧制或拉拔时,都会使之具有此类残余应力。

这种残余应力在某种场合下会叠加到焊接残余应力上去,而在焊后的变形过程中,往往也具有附加性的影响。

另外,焊件受外界约束产生的附加应力也属于此类应力。

(3)组织应力是由组织变化而产生的应力,也就是相变造成的比容变化而产生的应力。

它虽然因含碳量和材料其它成分不同而有异,但一般情况下,这种影响必须要加以考虑的是,发生相变的温度和平均冷却速度。

钢结构的焊接残余应力与消除方法

钢结构的焊接残余应力与消除方法

钢结构的焊接残余应力与消除方法摘要:钢结构在焊接的过程中,经常会有焊接参与应力的存在,这会对其总体的施工质量及使用质量产生一定的影响,为了消除这种焊接残余应力,要对其形成原因及影响因素进行分析,在此基础上提出相关的消除措施,本文就针对此予以简单分析。

关键词:钢结构;焊接残余应力;消除在钢结构的施工过程中,其中一种非常重要的施工工艺就是焊接,这是一个非常复杂的过程,其中涉及到力学、冶金、传热、电弧物理等各个学科的,在进行钢结构的焊接时,为了保证其焊接质量及各种使用性能参数,对其焊接残余应力的产生原因进行分析,并提出相关的消除方法是非常必要的。

一、焊接残余应力的概念在进行钢结构中的相关构件的焊接时,会产生一定的内应力即焊接应力,而这种焊接应力的作用时间的长短是有一定的区别的,按照其作用时间的长短有焊接残余应力与焊接瞬时应力的区别,焊接瞬时应力的作用会在焊接之后的短时间内消失,而另一部应力会在焊接结束之后残留于构件之中,继续作用,这种焊接应力就是焊接残余应力。

二、钢结构焊接残余应力的产生原因通过试验分析发现,产生焊接残余应力的原因是多种多样的,对其主要的产生原因进行分析,可以得出以下几点:(1)焊接方法及焊接顺序的不合理会导致焊接残余应力的出现,尤其是对于一些焊接部位较多,焊接程序复杂的构建来说,采用不同的焊接顺序进行焊接,最终产生的焊接应力也是不尽相同的。

(2)焊接工艺参数设置不合理,在构件的焊接过程中,需要综合考虑构建的结构、材质、厚度等各种因素才能进行焊接方法的选择及焊接参数的设置,否则很容易在焊接的过程中形成凹坑、气孔、裂纹等缺陷。

(3)焊缝的位置及数量分布的不合理,如果在构件的焊接过程中具有较多的封闭焊缝,并且不同焊缝的疏密程度具有较大差别,甚至出现焊缝的相互交叉,这种现象的存在,很容易导致较大焊接残余应力的产生。

(4)焊缝的接头形式、尺寸等设计不合理,焊缝尺寸的大小与焊接应力的大小有着直接的关系,并且焊接间隙、焊接坡口形式、焊接零件之间的搭接方式等都会对焊接残余应力的大小产生直接的影响。

浅谈钢结构焊接残余应力及焊接变形控制

浅谈钢结构焊接残余应力及焊接变形控制

浅谈钢结构焊接残余应力及焊接变形控制钢结构焊接在安装过程中较为常见,焊接连接在具有其独特的优点的同时,也存在着其不可避免的缺陷,即焊接残余应力及焊接变形。

本文就施工现场的工艺钢结构及炉壳焊接,结合连续退火炉结构安装工程实际,浅谈焊接的残余应力及焊接变形的原因,以及现场施工过程中如何控制及解决办法。

标签:钢结构;焊接;应力;变形;控制措施【Abstract】Steel structure welding is more common in the installation process,welding connection has its unique advantages,but at the same time it also has the inevitable defects,namely welding residual stress and deformation. This article is showing the reasons of residual stress of welding and welding deformation ,and also give methods to control and solve the problem what is said above in the process of the construction site ,according to the scene of the process steel structure and the furnace shell welding,combined with the engineering practice of the furnace structure installation of Continuous Annealing Line.【Key Words】steel structure,welding,stress,deformation ,control measures引言:焊接连接是钢结构主要的连接方法,其优点是构造简单、不削弱构件截面、节约钢材、加工方便、易于采用自动化操作、密封性好、刚度大等特性。

焊接残余应力课件

焊接残余应力课件

焊接残余应力焊接残余应力是影响焊接结构或焊接部件疲劳强度、弯曲强度、脆性断裂强度和抗腐蚀性等性能的重要因素。

同时,残余应力还会严重影响结构的机加工质量和尺寸的稳定性。

因此,在前面学习内应力和焊接应力产生原因的基础上,将介绍焊接后残存在焊接结构中的应力分布情况,以及降低和消除焊接应力的措施。

一、焊接残余应力的分布在焊件厚度不大(一般小于20mm)的常规焊接结构中,残余应力基本是纵、横双向的,如图2-5所示。

厚度方向的残余应力很小,只有在大厚度的焊接结构中,厚度方向的残余应力才有较高数值。

为了便于分析,通常将平行于焊缝轴线方向的应力称为纵向残余应力,用бx表示。

将垂直于焊缝轴线方向的残余应力称为横向残余应力,用бy表示。

厚度方向的应力残余应力,用бz表示。

下面分别加以讨论。

图2-5板材的空间坐标位置(一)非拘束状态下焊接残余应力的分布1.纵向残余应力бx的分布在低碳钢和普通低合金钢焊接结构中,焊缝及其附近的压缩塑性变形区内的纵向应力бx为拉应力,其数值一般达到材料的屈服点(焊件尺寸过小时除外),稍离开焊缝区,拉伸应力迅速陡降,继而出现残余压应力。

如图2-6所示为中心有一条焊缝的低碳钢长板条在不同横截面上的纵向应力бx的分布情况。

从图中可以看出,焊缝及其附近为拉应力,并达到材料的屈服极限,而远离焊缝区为压应力。

在长条板中部(Ⅲ-Ⅲ截面所在的区域),纵向残余应力的大小基本保持不变,一般称该区域为稳定区。

在焊缝两端O-O截面,、因为边界条件与中部有所不同,拘束度和热循环特性也不尽相同,使纵向残余应力由恒定逐渐降至零而出现过渡区。

另外,纵向应力在过渡区分布不同于中段,且бx小于材料的屈服限бs。

图2-6焊缝横截面纵向应力的分布随着焊缝长度的缩短,稳定区降逐渐减小,直至消失。

如图2-7所示为不同焊缝长度的纵向应力бx的分布情况示意图。

由图可以发现,当焊板较短时,不存在稳定区,并且焊板越短,短焊缝中的纵向应力比长焊缝中的纵向应力要小。

钢结构焊接残余应力产生的原因

钢结构焊接残余应力产生的原因

钢结构焊接残余应力产生的原因引言:钢结构焊接是一种常见的连接方法,但在焊接过程中会产生残余应力。

了解焊接残余应力产生的原因对于有效控制焊接质量和延长结构寿命至关重要。

本文将就钢结构焊接残余应力产生的原因进行探讨。

一、热应力引起的残余应力焊接过程中,高温会导致焊接区域的局部膨胀,而冷却后又会收缩。

这种温度变化引起的热应力会在焊接接头中产生残余应力。

热应力主要来源于以下几个方面:1.1. 焊接热源焊接电弧产生的高温会使焊接接头局部加热,导致局部膨胀。

当焊接材料冷却后,由于不同部位的冷却速度不同,会产生不均匀的收缩,进而引起残余应力。

1.2. 焊接过程中的热传导焊接过程中,焊接热源会引发热传导,使焊接接头周围的材料温度升高。

随着温度的升高,材料的热膨胀系数也会增大,从而产生热应力。

1.3. 相变引起的体积变化在焊接过程中,金属材料会经历固态到液态的相变,这个过程伴随着体积的变化。

当焊接材料冷却后,由于相变引起的体积变化不均匀,会导致残余应力的产生。

二、冷却引起的残余应力焊接完成后,焊接接头会经历冷却过程。

冷却过程中,焊接接头会逐渐降温,从而引发残余应力。

冷却引起的残余应力主要有以下几个原因:2.1. 不均匀的冷却速度焊接接头不同部位的冷却速度不同,由于冷却速度的差异,会导致焊接接头内部产生不均匀的残余应力。

例如,焊接接头的外侧由于与外界的接触,冷却速度较快,而内部由于受到周围材料的影响,冷却速度较慢。

2.2. 不同材料的热膨胀系数不同焊接接头通常由多种材料组成,而不同材料的热膨胀系数也不相同。

在冷却过程中,由于不同材料的收缩率不同,会导致焊接接头产生残余应力。

2.3. 结构约束焊接接头通常是固定在结构中的一部分,而结构的约束会限制焊接接头的自由收缩。

当焊接接头因冷却而收缩时,受到结构的约束,会产生残余应力。

三、应力集中引起的残余应力焊接接头通常是由多个焊缝组成的,而焊缝的几何形状和尺寸会导致应力集中。

浅谈焊接过程中的焊接残余应力及其相关问题研究

浅谈焊接过程中的焊接残余应力及其相关问题研究

浅谈焊接过程中的焊接残余应力及其相关问题研究摘要:在焊接过程中,由于加热和冷却循环作用的影响,极易造成焊接残余应力的产生。

本文就残余应力的产生原因及影响进行分析,希望对今后的建筑施工有所借鉴。

关键词:焊接;残余应力;焊接应力;影响Abstract: in the welding process, because heating and cooling cycle effects, is caused extremely easily welding residual stress of produce. This paper the residual stress causes and effects are analyzed, and the hope for future construction can draw lessons from it.Keywords: welding; Residual stress; The welding stress; influence一、引言在众多的能引起残余应力的因素中,焊接是非常重要的一种。

焊接是钢结构中的重要工艺,它运用加热或加压的手段将建筑部件有机地连接在一起或在其表面堆敷覆盖层的加工工艺,被广泛应用于航天、桥梁、压力容器等工业中。

焊接残余应力的产生会严重影响到钢结构制造过程本身和焊接结构的使用性能,直接影响到工程质量的优劣和结构的安全。

因此.应采取各种有效的措施减少焊接残余应力产生的危害。

二、焊接残余应力产生的原因在焊接过程中,由于受热不均匀,极易造成残余应力的产生。

如果按照发生源来分,焊接应力可以分为以下几种:一是直接应力。

直接应力是造成焊接残余应力的主要原因,这是由于在加热和冷却的时候温度不均匀造成的。

二是间接应力。

如果构件经过轧制或拉拔,就极易造成间接应力的产生。

这种残余应力在一定情况下容易叠加到焊接残余应力上面,焊接完毕后,在构件的冷却变形过程当中会加大残余应力的影响。

焊接残余应力产生的原因

焊接残余应力产生的原因

焊接残余应力产生的原因焊接残余应力是指焊接工艺过程中产生的残留应力。

焊接残余应力的产生原因主要有以下几个方面:1. 热应力:焊接过程中,焊缝和母材受到高温的加热,使其发生热膨胀。

而焊接完成后,焊缝和母材冷却收缩,由于收缩系数不同,会产生热应力。

这种应力主要分布在焊缝附近和热影响区域,对焊接结构的强度和稳定性产生影响。

2. 冷却应力:焊接过程中,焊缝和母材在高温下形成了熔池,当焊接完成后,熔池快速冷却,由于冷却速度不均匀,会导致焊缝和母材产生冷却收缩应力。

这种应力主要分布在焊缝附近和热影响区域,对焊接结构的强度和稳定性产生影响。

3. 弹性应力:焊接过程中,焊接材料受到局部变形,使焊缝和母材产生弹性应力。

这种应力主要是由于焊接过程中焊接材料的热胀冷缩引起的,对焊接结构的强度和稳定性产生影响。

4. 形状变化引起的应力:焊接过程中,焊接结构可能会发生形状变化,如变形、扭曲等。

这种形状变化会引起焊缝和母材的应力,对焊接结构的强度和稳定性产生影响。

焊接残余应力对焊接结构的影响主要体现在以下几个方面:1. 引起裂纹:焊接残余应力是焊接结构内部的应力,当应力超过了材料的承受能力时,会引起裂纹的产生。

裂纹的产生会降低焊接结构的强度和稳定性。

2. 引起变形:焊接残余应力会引起焊接结构的变形,如翘曲、扭曲等。

这些变形会影响焊接结构的几何形状和尺寸,使其失去设计要求的精度和稳定性。

3. 影响力学性能:焊接残余应力会改变焊接结构的力学性能,如强度、韧性等。

这些改变可能导致焊接结构在受力时发生变形或破坏,影响其使用寿命和安全性能。

为了减小焊接残余应力的影响,可以采取以下措施:1. 优化焊接工艺:合理选择焊接方法和参数,控制焊接过程中的温度和变形,减小焊接残余应力的产生。

可以采用预热、缓冷等措施,促使焊接结构的温度和变形均匀分布,减小应力集中。

2. 采用适当的焊接顺序:根据焊接结构的特点,采用合理的焊接顺序,避免焊接过程中应力的积累和集中。

名词解释焊接的残余应力

名词解释焊接的残余应力

名词解释焊接的残余应力焊接的残余应力是指在焊接过程中,由于热量集中和冷却速度快导致的焊接件内部材料发生塑性变形后,产生的应力。

这种应力会存在于焊接接头的表面和内部,对焊接结构的强度和耐久性产生一定的影响。

焊接是一种常见的金属连接方法,通过加热和冷却使金属材料相互熔合,形成结构性的连接。

然而,在焊接过程中,由于焊接电弧和焊接区域的高温,焊接接头会发生瞬时的热膨胀。

而当焊接接头冷却时,由于冷却速度较快,金属迅速由高温状态转变为低温状态,导致焊接区域内部的塑性变形。

这种塑性变形会引起焊接接头内部的材料变形,产生残余应力。

焊接过程中的残余应力主要来源于两个方面:热应力和变形应力。

热应力是由于焊接过程中瞬时的热膨胀和冷却引起的,而变形应力则是由于塑性变形引起的。

焊接接头的残余应力对焊接结构的强度和耐久性有一定的影响。

首先,残余应力会导致焊接接头的变形,使接头出现翘曲、弯曲等形变。

这种形变会降低焊接接头的强度和刚度,甚至可能导致焊接接头的破裂。

其次,焊接接头内部的残余应力可能导致应力集中,使接头易于发生应力腐蚀开裂和断裂。

此外,焊接接头存在残余应力也会影响其耐腐蚀性和耐疲劳性能,加速接头的老化和失效。

为了解决焊接接头的残余应力问题,可以采取一些措施。

首先,可以通过合理的焊接工艺控制热输入和冷却速度,减轻残余应力的产生。

其次,可以通过退火处理来消除焊接接头内部的残余应力。

退火处理是将焊接接头加热到一定温度,然后缓慢冷却的过程,以促使焊接接头内部的应力得到释放和松弛。

此外,还可以使用其他方式,如预应力技术、辅助加热和机械挤压等来减轻焊接接头的残余应力。

总之,焊接的残余应力是由于焊接过程中产生的材料塑性变形引起的。

这种应力会对焊接结构的强度和耐久性产生一定的影响。

为了解决焊接接头的残余应力问题,可以采取一些措施来减轻残余应力的产生和消除已经存在的残余应力。

通过合理的焊接工艺和退火处理等方法,可以有效地解决焊接接头的残余应力问题,提高焊接结构的质量和可靠性。

焊接残余应力产生原因分析及消除方法

焊接残余应力产生原因分析及消除方法

焊接残余应力产生原因分析及消除方法摘要:焊接应力即是在焊接结构时由于焊接而产生的内应力,它可以依据产生作用的时间被分为焊接瞬时应力和焊接残余应力。

所谓焊接瞬时应力是指在焊接的过程中某一个焊接瞬时产生的焊接应力,它是会跟着时间的变化而发生变化的,而在焊接之后,某一个受到焊接的焊件内还残留的焊接应力被称为焊接残余应力。

关键词:焊接残余应力;原因;消除方法1产生焊接残余应力的原因之所以会产生焊接残余应力,主要是由于焊件在焊接的过程中所受到的加热是不均匀的。

按照焊接残余应力的发生来源,可将焊接残余应力分为直接应力、间接应力和组织应力三种。

(1)直接的焊接应力是焊接残余应力所产生的最主要的原因,它是受到不均匀的加热和冷却之后所产生的,根据加热和冷却时的温度梯度而发生变化。

(2)间接的焊接应力则是焊件由于焊前的加工状况造成的应力。

焊件在受到轧制和拉拔时会产生一定的残余应力。

间接的残余应力如果在某一种场合下叠加到焊接的残余应力上去,焊件受到焊接发生变形,也会将其影响附加到焊接残余应力上去。

而且,焊件一旦受到外来的某一种约束,产生相应的附加应力,也属于间接应力的范畴。

(3)组织应力也就是由相变造成的比容变化而产生的应力,它的产生是由于焊件的组织发生了变化。

虽说组织应力会由于含碳量和材料其他成分的不同而产生差异,但我们一般都会将其所产生的影响进行分析研究。

2焊接残余应力控制方法2.1焊接结构焊接是产生焊接残余应力的根本原因,减少焊缝数量和尺寸能有效减少焊接量,通过控制焊接量可有效减少应力。

在同等焊接强度下,焊缝尺寸较小的,其焊接残余应力较小。

应尽量避免多条焊缝在同一部位集中,焊缝距离过近时,焊缝间会产生耦合,形成复杂残余应力场,焊缝间距离一般应大于3倍板厚且不小于100mm。

应尽量采用刚度较小的焊接接头形式,其结构拘束度小,能够通过变形释放焊接应力,残余应力较小。

2.2焊接工艺结构组件拆分、焊前预热、焊接参数设置、焊接顺序等对焊接应力影响较大。

焊接后热处理技术及焊接残余应力的影响分析

焊接后热处理技术及焊接残余应力的影响分析

焊接后热处理技术及焊接残余应力的影响分析焊件施焊后,结构受加热影响会出现局部塑性变形情况,温度降低后,焊件内部会残余部分应力,直接弱化工件机械强度,继而引发裂纹等不良现象。

作为技术人员试验后,应明确掌握焊接残余应力的影响因素与热处理技术,实现残余应力峰值的有效控制,确保焊接质量。

标签:焊接;热处理技术;残余应力受焊接原材料、热源等因素影响,焊接后会残余部分应力,直接降低焊接结构的静力、疲劳强度与刚度,缩短工件使用寿命。

热处理技术可有效消除焊接残余应力,但前提是合理模拟温度与应力场数值,确保焊接残余应力有效消除且处于平稳状态。

一、焊接残余应力主要影响因素1焊接原材料焊接残余应力直接受原材料熔化温度影响,两者存在正相关。

除此之外,残余应力还受弹性模量、屈服强度与膨胀系数等因素影响。

不同的原材料种类,弹性模量、屈服强度等反应不同,残余应力大小也不同。

尤其是膨胀系数,当去处于高温环境中时,温度会持续增加,呈线性增加状态[1]。

2焊接参数通常情况下,要求焊接电流不变,需要提高焊接效率,与此同时,此时焊接温度场将延长,焊接梯度、残余应力随之增加。

要求焊接速度不变,需要提升焊接电流强度,与此同时,焊接温度场长宽拓展,焊接梯度、残余应力随之增加。

3焊接热源焊接属于不均匀的局部加热过程,热源中心温度持续升高,焊缝施焊后,焊件不同点温度发生变化,温度场随之改变。

与此同时,焊件温度梯度、残余应力也受到影响。

4焊接比容焊件加热、冷却后,会出现相变作用,继而引起比容与性能等发生变化。

当钢材温度超过700℃时,会实现奥氏体、铁素体的转变,残余应力可不计,随着温度降低,碳元素数量与合金数量等不断增加,钢结构逐渐产生相变,在体积快速膨胀作用下,会形成残余应力[2]。

二、焊接残余应力对构件的危害1焊件静力强度下降焊件结构在承载力影响下,会产生一定的塑性变形能力。

屈服强度区域应力随者荷载力的增加而加大,不在屈服强度的区域应力也随之改变,此时,静力强度不受焊接残余应力影响。

建筑钢结构工程技术 2.5 焊接残余应力和残余变形

建筑钢结构工程技术 2.5  焊接残余应力和残余变形

焊接残余应力和残余变形一、焊接残余应力和残余变形的成因钢结构的焊接过程是一个不均匀加热和冷却的过程。

在施焊时,焊件上产生不均匀的温度场,焊缝及附近温度最高,达1600℃以上,其邻近区域则温度急剧下降。

不均匀的温度场要求产生不均匀的膨胀和收缩。

而高温处钢材的膨胀和收缩要受到两侧温度较低、胀缩较小的钢材的限制,从而使焊件内部产生残存应力并引起变形,此即通称的焊接残余应力和残余变形。

二、焊接残余应力和残余变形(一)焊接残余应力焊接残余应力按其方向可分为纵向残余应力、横向残余应力和厚度方向残余应力。

1. 纵向残余应力。

图2-38是焊接残余应力的示例。

图2-38(a)是两块钢板平接连接,焊接时钢板焊缝一边受热,将沿焊缝方向纵向伸长。

但伸长量会因钢板的整体性,受到钢板两侧未加热区域的限制,由于这时焊缝金属是熔化塑性状态,伸长虽受限,却不产生应力(相当于塑性受压)。

随后焊缝金属冷却恢复弹性,收缩受限将导致焊缝金属纵向受拉,两侧钢板则因焊缝收缩倾向牵制而受压,形成图2-38(b)所示的纵向焊接残余应力分布。

它是一组在外荷载作用之前就已产生的自相平衡的内应力。

2. 横向残余应力。

图2-38所示两块钢板平接除产生上述纵向残余应力外,还可能产生垂直于长度方向的残余应力。

由图中可以看到,焊缝纵向收缩将使两块钢板有相向弯曲变形的趋势(如图2-38a中虚线所示)。

但钢板已焊成一体,弯曲变形将受到一定的约束,因此在焊缝中段将产生横向拉应力,在焊缝两侧将产生横向压应力,如图2-38(c)所示。

此外,焊缝冷却时除了纵向收缩外,焊缝横向也将产生收缩。

由于施焊是按一定顺序进行,先焊好的部分冷却凝固恢复弹性较早,将阻碍后焊部分自由收缩,因此,先焊部分就会横向受压,而后焊部分横向受拉,形成如图2-38(d)所示的应力分布。

图2-38(e)是上述两项横向残余应力的叠加,它也是一组自相平衡的内应力。

3. 厚度方向残余应力对于厚度较大的焊缝,外层焊缝因散热较快先冷却,故内层焊缝的收缩将受其限制,从而可能沿厚度方向也产生残余应力,形成三相应力场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焊接结构残余应力分析
摘要焊接残余应力的存在,会直接影响到钢混结构的承载能力。

为了保证焊接结构的安全可靠,准确地推断焊接过程中的力学行为和残余应力是十分重要的。

对于焊接残余应力,以往多是采用切割、钻孔等试验测量方法,不但费时费力,而且受到许多条件的限制,结果数据误差也会很大。

关键词焊接残余应力;有限元;对接焊缝
一、焊接残余应力的概念
焊接构件由焊接而产生的内应力称之为焊接应力,按作用时间可分为焊接瞬时应力和焊接残余应力。

焊接过程中,某一瞬时的焊接应力称之为焊接瞬时应力,它随时间而变化;焊后残留在焊件内的焊接应力称之为焊接残余应力。

焊接残余应力为热应力(主要为冷却应力),相变应力可再叠加其上。

在冷焊、扩散焊、滚轧敷层和爆炸敷层等情况下,冷加工作用力是残余应力的源泉,它可单独作用,也可能附加于上述热效应之上。

二、焊接残余应力产生的原因
焊接过程是一个先局部加热,然后再冷却的过程。

焊件在焊接时产生的变形称为热变形,焊件冷却后产生的变形称为焊接残余变形,这时焊件中的应力称为焊接残余应力。

焊接应力包括沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。

焊接残余应力产生的主要原因是由焊接过程中不均匀加热所引起的。

焊接应力按其发生源来区分,有如下3种
情况:
(1)直接应力是进行不均匀加热和冷却的结果,它取决于加热和冷却时的温度梯度,是形成焊接残余应力的主要原因。

(2)间接应力是由焊前加工状况所造成的压力。

构件若经历过轧制或拉拔时,都会使之具有此类残余应力。

这种残余应力在某种场合下会叠加到焊接残余应力上去,而在焊后的变形过程中,往往也具有附加性的影响。

另外,焊件受外界约束产生的附加应力也属于此类应力。

(3)组织应力是由组织变化而产生的应力,也就是相变造成的比容变化而产生的应力。

它虽然因含碳量和材料其它成分不同而有异,但一般情况下,这种影响必须要加以考虑的是,发生相变的温度和平均冷却速度。

焊后消除应力处理:(1)整体热处理:消除应力的程度主要决定于材质的成分、组织、加热温度和保温时间。

低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本消除全部残余应力。

另外还有爆炸消除应力。

(2)局部热处理:大型焊接结构,受加热炉的限制或要求不高时采用这种方法。

可采用火焰、红外、电阻、感应等加热方式,应保持均匀加热并具有一定的加热宽度。

低合金高强钢,一般在焊缝两侧各100~200mm。

(3)机械拉伸、水压试验、温差拉伸、振动法等这几种方法只能消除20~50%的残余应力,前两种方法在生产上广泛应用。

焊接后进行去应力处理,有自然时效处理(时间长,去应力不彻底,)、震动时效(效率高,费用低,只能去除焊接应力的70%左
右)人工加热时效(时间短费用较高,能100%去除焊接应力,同时能进行去氢处理)。

三、焊接残余应力对焊接结构的影响
(1)对结构刚度的影响当外载产生的应力。

与结构中某区域的残余应力叠加之和达到屈服点o。

时,这一区域的材料就会产生局部塑性变形,丧失了进一步承受外载的能力,造成结构的有效截面积减小,结构的刚度也随之降低。

结构上有纵向和横向焊缝时(例如工字梁上的肋板焊缝),或经过火焰校正,都可能在相当大的截面上产生残余拉伸应力,虽然在构件长度上的分布范围并不太大,但是它们对刚度仍然能有较大的影响。

(2)对受压杆件稳定性的影响当外载引起的压应力与残余应力中压应力叠加之和达到o。

,这部分截面就丧失进一步承受外载的能力,这样就削弱了杆件的有效截面积,并改变了有效截面积的分布,使稳定性有所改变。

残余应力对受压杆件稳定性的影响大小,与残余应力的分布有关。

(3)对静载强度的影响如果材料是脆性材料,由于材料不能进行塑性变形,随着外力的增加,构件中不可能应力均匀化。

应力峰值将不断增加,直至达到材料的屈服极限,发生局部破坏,最后导致整个构件断裂。

脆性材料残余应力的存在,会使承载能力下降,导致断裂。

对于塑性材料,在低温环境下存在三向拉伸残余应力的作用,会阻碍塑性变形的产生,从而也会大大降低构件的承载能力。

(4)对疲劳强度的影响残余应力的存在使变荷载的应力循环发
生偏移,这种偏移只改变其平均值,不改变其幅值。

结构的疲劳强度与应力循环的特征有关。

当应力循环的平均值增加时,其极限幅值就降低,反之则提高。

因此,如应力集中处存在着拉仲残余应力,疲劳强度就降低。

应力集中系数越高,残余应力的影响也就越显著,因此,提高疲劳强度,不仅应从调节和消除残余应力着手,而且应从工艺和设计上来降低结构的应力集中系数,从而降低残余应力对疲劳强度的不利影响。

(5)对应力腐蚀开裂的影响应力腐蚀开裂是残余拉应力和化学腐蚀共同作下产生裂缝的现象,在一定的材料和介质的组合下发生。

应力腐蚀开裂所需时间与残余应力大小有关,残余拉应力越大,应力腐蚀开裂的时间越短。

四、残余应力研究的意义
焊接残余应力会严重影响焊接结构的使用性能,可能引起结构的脆性断裂,拉伸残余应力会降低疲劳强度和腐蚀抗力,压缩残余应力会减小稳定性极限,焊接残余应力是焊件产生变形和开裂等工艺缺陷的主要原因。

由于焊接残余应力的测定程序麻烦,计算残余应力又极为复杂,因此给残余应力的研究带来了许多困难,对焊接结构的残余应力研究就显得尤为重要。

随着现代科学技术的发展,数值模拟技术的地位显得越来越重要。

焊接是一个涉及电弧物理、传热、冶金和力学的复杂过程,一旦各种焊接现象能够实现计算机模拟,我们就可以通过计算机系统来确定各种材料的最佳设计、最佳工艺和焊接参数。

焊接工艺过去一般总是凭经验,通过一系列的
试验或根据经验公式获得,通过数值模拟则可以大大节约人力、物力和时间,尤其是复杂的大型结构。

随着有限元法和计算机技术的飞速发展,越来越多的焊接工作者利用数值模拟来研究焊接问题,并取得了不少成果。

相关文档
最新文档