连铸结晶器
344-其他资源-连铸机的结晶器
2.6 结晶器☐结晶器是连铸机非常重要的部件,称之为连铸设备的“心脏”。
钢液在结晶器内冷却初步凝固成一定坯壳厚度的铸坯外形,并被连续地从结晶器下口拉出,进入二冷区。
结晶器应具有良好的导热性和刚性,不易变形和内表面耐磨等优点,而且结构要简单,便于制造和维护。
☐按结晶器外形可分为直结晶器和弧形结晶器。
直结晶器用于立式、立弯式及直弧形连铸机,而弧形结晶器用在全弧形和椭圆形连铸机上。
☐从结构来看,有管式结晶器和组合式结晶器。
小方坯及矩形多采用管式结晶器,而大型方坯、矩型坯和板坯多采用组合式结晶器。
管式结晶器的结构如图所示。
其内管为冷拔异形无缝铜管,外面套有钢质外壳,钢管与铜套之间留有约7mm的缝隙通以冷却水,即冷却水缝。
铜管与钢套可以制成弧形或直形。
铜管的上口通过法兰用螺钉固定在钢质的外壳上,铜管的下口一般为自由端,允许热胀冷缩,但上下口都必须密封。
结晶器外套是圆形的。
外套中部有底脚板,将结晶器固定在振动框架上。
结晶器铜制壁厚10-15mm,磨损后可加工修复,但最薄不能小于3-6mm。
1-O形密封圈;2-润滑法兰;3-O形密封圈;4-铜管;5-压紧法兰;6-压紧弹簧;7-排水管;8-足辊组合式结晶器是由4块复合壁板组合而成。
每块复合壁板都是由铜质内壁和钢质外壳组成。
在与钢壳接触的铜板面上铣出许多沟槽形成中间水缝。
复合壁板用双螺栓连接固定,冷却水从下部进入,流经水缝后从上部排出。
4块壁板有各自独立的冷却水系统。
在4块复合壁板内壁相结合的角部,垫上厚3-5mm并带来45°倒角的铜片,以防止铸坯角裂。
现已广泛采用宽度可调的板坯结晶器。
可用手动、电动或液压驱动调节结晶器的宽度。
内壁铜板厚度在20-50mm,磨损后可加工修复,但最薄不能小于10mm。
随着连铸机拉坯速度的提高,出结晶器下口的铸坯坯壳厚度越来越薄;为了防止铸坯变形或出现漏钢事故,采用多级结晶器技术。
多级结晶器即在结晶器下口安装足辊、铜板或冷却格栅。
连铸机结晶器液位控制系统数学模型及其仿真
连铸机结晶器液位控制系统数学模型及其仿真连铸机结晶器液位控制系统是一个复杂的系统,它的性能直接影响到连铸机的生产效率,因此,对连铸机结晶器液位控制系统的研究是非常重要的。
本文首先简要介绍了连铸机结晶器液位控制系统的结构及工作原理,然后探讨了基于结构参数分析的数学模型,最后对模型进行仿真,得出了连铸机结晶器液位控制系统的数学模型及其仿真的结论。
1.连铸机结晶器液位控制系统简介连铸机结晶器液位控制系统是一种多参数控制系统,它是由连铸机结晶器、液位传感器、控制器、调节阀和电动蝶阀组成的(图1)。
图1铸机结晶器液位控制系统连铸机结晶器是一种机械设备,它将液体转化为固体,由于结晶过程的特点,液位变化会影响结晶质量,因此,需要对结晶器的液位进行控制。
液位传感器检测结晶器液位信号,控制器根据液位检测信号进行控制,调节阀和电动蝶阀调节结晶器的液位,从而实现对液位的控制。
2.数学模型为了研究连铸机结晶器液位控制系统,首先分析控制系统结构,建立系统数学模型,根据结构参数推导出如下数学模型:ttttt Vm = Kp*(|S|-S0)tttt(1)其中Kp为控制器参数,S0为液位参考值,|S|为液位测量值,Vm为控制器输出值。
3.仿真针对连铸机结晶器液位控制系统,结合数学模型,使用Matlab/Simulink环境建立了仿真模型,根据实际情况,设置参数如下:Kp=0.5,S0=2,液位变化范围为0~4。
图2铸机结晶器液位控制系统仿真模型根据仿真模型,控制器输出值Vm与液位|S|的变化曲线如图3所示:图3位及控制器输出值的变化曲线从上图可以看到,随着液位|S|的变化,控制器输出值Vm也随之变化,并且同步变化,Vm和|S|的变化幅度接近,这表明,控制器对液位的控制是有效的。
4.结论本文针对连铸机结晶器液位控制系统,根据结构参数推导出了数学模型,并且基于 Matlab/Simulink环境建立了仿真模型,仿真结果显示,控制器输出值Vm能有效地控制液位|S|,表明数学模型具有较强的可靠性和实际应用价值。
连铸板坯倒角结晶器优化设计及应用
连铸板坯倒角结晶器优化设计及应用连铸板坯倒角结晶器是铸造行业中的一项关键设备,它可以产生优质的板坯,同时提高生产效率和降低成本。
然而,现有的连铸板坯倒角结晶器存在一些不足之处,例如流量不均匀、结晶器内部存在死角等。
因此,优化设计和应用连铸板坯倒角结晶器显得尤为重要。
一、连铸板坯倒角结晶器的定义连铸板坯倒角结晶器是连铸线中一种重要的设备。
它是铸造设备中用于制造高质量板坯的主要机器之一,其主要作用是在连铸过程中将液态金属均匀地输送到结晶器中,并通过坯内气泡和悬浮物的消除,使得板坯表面质量得到提高。
二、连铸板坯倒角结晶器的不足之处连铸板坯倒角结晶器在使用过程中存在一些不足之处。
首先,结晶器流量分配不均匀,导致板坯表面质量得不到保证。
其次,结晶器内部存在死角和难以清洗的区域,严重影响连铸板坯的品质。
此外,目前的结晶器设计以经验为主,缺乏系统性和标准化的研究,造成了结晶器设计水平低下、使用成本高和设备寿命短等问题。
三、连铸板坯倒角结晶器的优化设计为了解决上述问题,我们可以对连铸板坯倒角结晶器进行优化设计。
优化设计主要包括流量优化、结构优化和材料优化等。
1、流量优化:在结晶器内加入分流器,使进入结晶器的金属流量分布均匀,同时加强进口处的金属混合。
通过调整导流板、冷却水管和送料系统等组件来优化结晶器内的金属流量,从而保证板坯表面的均匀性。
除此之外,可以采用流场数值模拟的方法,对结晶器的气体、液态金属和固态晶体流场进行计算和模拟。
2、结构优化:由于连铸板坯倒角结晶器中存在很多死角和难以清洗的区域,因此我们可以通过调整结晶器的结构和灵活的取料系统来改进结晶器内部的流动性。
在结晶器的角落和内壁设计凸缘,让结晶器内的气泡和悬浮物聚集在防凸缘处,避免了气泡和悬浮物的固化成本体,减少了结晶器内结晶的阻塞作用。
此外,通过采用高强度、耐磨材料和高温耐受性材料,可以增强结晶器的使用寿命。
3、材料优化:不同材质的全部性能和特殊要求也是设计过程中需要考虑的重要因素,如耐磨性、耐热性、承压性和可加工性等。
连铸圆坯结晶器
连铸机结晶器总成1、结晶器总成组合式结晶器由结晶器本体、支撑框架以及足锟等部件组成。
结晶器本体由4块铜板及支撑板组合而成,用螺栓连接为一体;支撑框架带有定位、固定装置和冷却水通道;足锟包括支架、锟子、轴承、水管和喷嘴等。
组合式结晶器可以配置液位检测装置、外置式电磁搅拌装置。
2、结晶器结构特点A、结晶器本体两块弧面铜板和两块侧面铜板组合成结晶器内腔,铜板上加工有若干冷却水槽(即水缝),用螺钉将铜板与支承板(也称为背板)连接。
支承板上设有冷却水通道,冷却水从振动台上的供水孔进入支撑框架再进入支承板,再通过支撑框架流回到振动台上的回水孔。
设计时,需要根据冷却水压强核算螺钉连接的受力及强度,并调整连接螺钉数量,直至满足要求。
一般情况下,两排螺钉之间布置5~6条水缝。
结晶器内腔角部的倒角一般采用早弧面和侧面铜板的结合部位垫有带45°斜面的铜质垫板形成;也有直接在侧面铜板上加工出倒斜角斜面的。
铜板厚度一般为45~50mm,主要取决于水缝深度和再加工要求。
可采用的材质有Cu—Ag和Cu—Cr—Zr。
如果连铸机拉速不高,相应铜板热面温度不超过250℃,可以采用Cu—Ag。
随着连铸技术发展和操作水平提高,连铸机拉速也相应提高,结晶器铜板有必要采用Cu—Cr—Zr合金,可以满足热面温度为350℃甚至更高的工况。
目前,国内方坯结晶器铜板次用Cu—Ag和Cu—Cr—Zr的都有,采用Cu—Cr—Zr的日趋增多。
为了提高结晶器使用寿命,铜板都会经过表面处理,即镀层。
典型的镀层材料有Cr、Ni、Ni—Fe、Ni—Co、Co—Ni。
Cr的硬度高,督促呢个化学稳定性好,但Cr与Cu的线膨胀系数差距较大,镀层结合力差,镀层易剥落。
Ni与Cu的结合力好,但其镀层硬度相对较低,高温耐磨性差。
现已很少采用单独镀Cr或Ni得铜板。
Ni—Fe、Ni—Co、Co—Ni都有硬度高、耐磨性好的特点,其中Ni—Fe的化学稳定性较差,其镀层韧性随着硬度增加会降低;Ni—Co的抗热交变性稍差;Co—Ni的材料成本较高。
连铸机最佳结晶器参数
T=——————
y1L
或
100(y2-y1)
T=—————
y2L
式中y2—结晶器顶部两相对面间的距离,mm
y1—结晶器底部两相对面间的距离,mm
L—结晶器长度,m
单锥度结晶器常用的锥度为0.6~0.7%/m,140~150mm小方坯采用的最大锥度为0.9%/m
锥度太小容易产生偏离角纵裂,锥度太大会增加拉坯阻力和结晶器磨损。
1vc
(8)负滑动时间tn/s(tn=—cos-1——)
pfpfs
0.12~0.15
(9)结晶器导前/mm
(结晶器导前=ssin(pftn)-vctn)
3~4
(10)水质(即总硬度)/%
<0.0005,管壁上没有沉积物
(11)水缝宽度/mm
3~5
(12)是否测量结晶器内型尺寸变化
是
结晶器锥度T(%/m)为
如果用对高碳钢合适的锥度来浇低碳钢时,低碳钢铸坯就可能粘结在结晶器内,引起横向凹陷和横向裂纹。在浇铸时铸坯颤动,就表明铸坯粘结在结晶器内。
连铸机小方坯最佳结晶器参数
(1)铜的品种
P-Cu,Ag-Cu,Cr-Zr-Cu
(2)锥度
双锥度或多锥度
(3)壁厚/mm
13(100-150mm方),20(200mm方)
(4)内角半径/mm3Fra bibliotek4(5)液面距结晶器上口/mm
100~150
(6)水速/(m·S-1)
>10~11
(7)结晶器铜管支撑
4面或顶底
连铸过程中结晶器磨损原因分析
结晶器铜管是整个连铸工艺的核心设备,直接影响到连铸的生产率、产品质量和生产成本。
在生产过程中,结晶器要不断地经受高温、高压和强磨擦的冲击,工作环境极其恶劣。
了解结晶器的磨损原因对于结晶器的设计和使用具有重要意义,这里对结晶器铜管的磨损机理进行简要介绍。
结晶器铜管裂纹结晶器的弯月面区域常有铜板裂纹出现,主要原因是铜板表面温度提高引起的极高的热流量,在此高温下,相对于钢质支持设施而言铜板趋向于膨胀。
尤其是对薄板坯连铸结晶器而言更是如此,由于拉坯速度快,铜板表面温度快速升高,铜板所承受的温度超过了其恢复再结晶温度,从而使其强度和硬度大大降低,使漏斗形过渡区经历了一个明显的3维膨胀运动。
这个热应变和机械应变组合加上硬度的下降(可达50%),导致了铜板表面裂纹的出现,而且裂纹倾向于以晶间方式进一步传播。
浇铸过程中过高的热量水平和由此而产生的结晶器铜板表面和亚表面区域的宏观塑性应变/形变,是导致结晶器弯月面处产生裂纹的主要原因。
这种损坏机理又受到极高温度区域的强化。
例如,从结晶器漏斗型区到结晶器平行区的过渡区域。
这时,结晶器热面和冷面之间的局部温度梯度可达到数百摄氏度。
结晶器铜板工作侧表面(热面)或多或少都要承受扩散的影响,钢水中的Zn、S、Cd和保护渣中的F都要扩散到铜板的表面和亚表面。
这些扩散元素会导致结晶器铜板的热脆性,导致裂纹的形成和扩散。
裂纹损坏的关键因素就是结晶器所经受的最高温度和结晶器服役时间。
当高速连铸时,结晶器材质经受超高温的另一个影响效应就是结晶器铜板发生塑性应变,导致弯月面下铜板变形,以及由于钢水内的Zn扩散到铜板中形成黄铜,即发生所谓的“黄铜化”现象。
后一个问题对于电炉钢厂或短流程轧钢厂问题尤为突出,因为电炉钢厂或短流程轧钢厂通常是利用废钢炼钢的。
黄铜的形成使得结晶器铜板产生热脆性,加之很高的工作温度而引起的应力,使结晶器铜板产生裂纹。
结晶器铜管的鼓肚结晶器铜板的鼓肚是由于结晶器铜板的宽面和窄面之间的空隙引起的。
连铸结晶器工作原理
连铸结晶器工作原理连铸结晶器是连铸生产线中的重要组成部分,其工作原理涉及多种物理和化学过程。
下面将对连铸结晶器的工作原理进行详细解释。
**一、连铸结晶器的作用**连铸结晶器主要用于在连铸过程中将液态金属逐渐冷却凝固,形成连续的坯料。
通过结晶器对液态金属进行凝固成形,可以满足不同工艺要求和坯料规格的生产需求,同时也可以提高产品的质量和性能。
**二、连铸结晶器的工作原理**1. **结晶器内的冷却系统**连铸结晶器内部配备了冷却系统,主要包括冷却水管和冷却水。
在连铸过程中,通过冷却水对结晶器进行冷却,使得液态金属能够迅速被冷却并凝固。
2. **液态金属的注入和分布**在结晶器上部,液态金属经过预炼炉或其他方式得到均匀温度后,通过喷嘴均匀地注入到结晶器内,形成一定宽度和深度的液态金属层。
通过振动和控制系统,实现液态金属在结晶器内的均匀分布和控制厚度。
3. **结晶器外壁和内壁的温度控制**结晶器外壁设有绝热层以保持结晶器内温度稳定,内壁则通过冷却水保持一定的温度,以控制凝固过程中的结晶器内部温度分布。
4. **凝固过程**液态金属在结晶器内受到冷却水的冷却,由于受热传导和传热等因素,逐渐凝固成形,形成坯料。
结晶器内部的振动系统也可以对液态金属进行微小的振动,以促进坯料的凝固和形成。
5. **坯料的后续处理**连铸结晶器中形成的坯料随后通过后续的冷却、切割和处理工艺,最终成为可加工的半成品或成品。
通过以上工作原理的分析可以看出,连铸结晶器不仅仅是一个简单的冷却设备,其内部结构和工作原理涉及了液态金属的凝固过程、温度控制、振动控制等多方面的物理和化学过程,是连铸生产中至关重要的环节。
简述结晶器在连铸生产中的作用
简述结晶器在连铸生产中的作用连铸是指将熔化的金属直接浇铸成连续的坯料,是铸造技术中一种重要的工艺。
在连铸过程中,结晶器是起着至关重要作用的设备之一。
它位于连铸机的浇注部位,主要用于控制坯料的结晶过程和形成坯料的结晶组织,以保证连铸坯料的质量和性能。
结晶器在连铸生产中的作用主要体现在以下几个方面:1. 控制结晶过程:结晶器可以通过控制结晶过程来影响坯料的结晶组织。
结晶器内部设有一定形状和尺寸的结晶孔道,通过调整结晶器的温度、冷却水流量等参数,可以控制坯料的结晶速度和结晶核的形成,从而影响坯料的晶粒尺寸和分布。
合理的结晶过程控制可以获得细小、均匀的晶粒,提高坯料的塑性和韧性。
2. 保证连铸坯料质量:结晶器可以有效地阻止浇注过程中的气体和杂质进入坯料中,减少坯料的气孔、夹杂和缺陷。
结晶器的结构设计和材料选择都需要考虑到其抗氧化、抗腐蚀、耐磨损等性能,以保证结晶器能够长时间稳定地工作,并确保坯料的质量。
3. 调整结晶组织:通过改变结晶器的结构和工艺参数,可以调整坯料的结晶组织,以满足不同材料和产品的要求。
例如,对于高强度钢材,可以采用细小晶粒的结晶器,以提高材料的强度和韧性;对于特殊用途的合金材料,可以采用特殊结构的结晶器,以获得特定的晶粒形态和组织结构。
4. 提高连铸效率:结晶器的优化设计可以提高连铸的效率和生产能力。
通过合理布置结晶器的数量和位置,可以实现多流道连铸,同时浇注多块坯料,提高连铸机的产能。
此外,结晶器还可以通过调节结晶器的冷却水流量和温度分布,优化坯料的冷却过程,提高连铸的速度和效率。
结晶器在连铸生产中起着至关重要的作用。
通过控制结晶过程、保证坯料质量、调整结晶组织和提高连铸效率,结晶器可以有效地提高连铸坯料的质量和性能,满足不同材料和产品的要求。
因此,在连铸生产中,合理选择和使用结晶器,不仅能够提高产品质量,还能够提高生产效率,降低生产成本,具有重要的经济和社会意义。
常规板坯连铸机结晶器技术
常规板坯连铸机结晶器技术结晶器是连铸机中的铸坯成型设备, 是连铸机的核心设备之一。
其作用是将连续不断地注入其内腔的钢液通过水冷铜壁强制冷却,导出钢液的热量,使之逐渐凝固成为具有所要求的断面形状和一定坯壳厚度的铸坯,并使这种芯部仍为液相的铸坯连续不断地从结晶器下口拉出,为其在以后的二冷区域内完全凝固创造条件。
在钢水注入结晶器逐渐形成一定厚度坯壳的凝固过程中,结晶器一直承受着钢水静压力、摩檫力、钢水热量的传递等诸多因素引起的的影响,使结晶器同时处于机械应力和热应力的综合作用之下,工作条件极为恶劣,在此恶劣条件下结晶器长时间地工作,其使用状况直接关系到连铸机的性能,并与铸坯的质量与产量密切相关。
因此,除了规范生产操作、选择合适的保护渣和避免机械损伤外,合理的设计是保证铸坯质量、减小溢漏率、提高其使用寿命的基础和关键。
板坯连铸机一般采用四壁组合式(亦称板式)结晶器,也有一个结晶器浇多流铸坯的插装式结构。
ﻫ结晶器主要参数的确定ﻫ1 结晶器长度Hﻫ结晶器长度主要根据结晶器出口的坯壳最小厚度确定。
若坯壳过薄,铸坯就会出现鼓肚变形,对于板坯连铸机,要求坯壳厚度大于10~15mm。
结晶器长度也可按下式进行核算:ﻫﻫH=(δ/K)2Vc+S1+S2 (mm)ﻫﻫ式中δ——结晶器出口处坯壳的最小厚度,mmﻫK——凝固系数,一般取K=18~22 mm/min0.5ﻫ Vc——拉速,mm/minS1——结晶器铜板顶面至液面的距离,多取S1=100 mmﻫﻫS2——安全余量,S=50~100 mmﻫﻫ对常规板坯连铸机可参考下述经验:ﻫﻫ当浇铸速度≤2.0m/min时,结晶器长度可采用900~950mm。
ﻫﻫ当浇铸速度2.0~3.0m/min 时,结晶器长度可采用950~1100mm。
当浇铸速度≥3.0m/min时,结晶器长度可采用1100~1200mm。
ﻫﻫ 2 结晶器铜板厚度hﻫﻫ铜板厚度的确定是依据热量传热原理和高温下的使用性能,具体说,与铜板材质、镀层、机械性能、拉速、冷却水量的大小和分布等有关。
连铸结晶器振动工艺参数
异常情况的预警与处理
预警标准
设定异常参数的阈值,当实时监测数据超过阈值时, 发出预警信号。
预警方式
通过声、光、短信等方式提醒操作人员关注异常情况 。
处理措施
根据异常类型,采取相应的处理措施,如调整振动参 数、清洗结晶器等。
工艺参数的调整与优化建议
调整原则
根据实时监测数据和异常情况,及时调整结晶器的振动参数,确 保连铸过程的稳定性和产品质量。
初始阶段
早期的连铸机采用人工敲击的方式使结晶器振动,这种方 式效率低下且不稳定。
机械式振动阶段
随着机械技术的发展,人们开始采用机械传动装置来实现 结晶器的振动,出现了多种形式的机械式振动装置。
液压式振动阶段
液压技术的引入使得结晶器的振动更加平稳可控,液压式 振动装置逐渐成为主流。
智能化振动阶段
随着计算机技术和传感器技术的发展,结晶器的振动控制 逐渐实现智能化,能够根据实际生产情况自动调整振动参 数,提高铸坯质量和产量。
04
连铸结晶器振动工艺参数的优 化
基于实验的参数优化
实验设计
通过实验方法,对连铸结晶器振 动工艺参数进行优化,需要设计 合理的实验方案,包括选择合适 的实验参数、确定实验范围和实
验步骤等。
数据采集与分析
在实验过程中,需要采集各种数 据,如振动频率、振幅、波形等 ,并对数据进行处理和分析,以 确定各参数对结晶器振动效果的
总结词
随着连铸技术的不断发展,新型振动装置的开发与应 用成为研究重点。新型振动装置应具备更高的稳定性 和可靠性,能够实现更加灵活的振动模式和精确的工 艺参数控制。
详细描述
目前,新型振动装置的开发主要集中在智能化、模块 化和集成化等方面。例如,采用智能传感器和控制系 统,实现对结晶器振动状态的实时监测和自动调整; 采用模块化设计,方便对结晶器进行快速更换和维修 ;采用紧凑型设计,减小设备体积和重量,提高设备 的可靠性和稳定性。这些新型振动装置的开发将为连 铸结晶器振动工艺参数的研究提供更加先进和可靠的 实验平台。
科技成果——连铸结晶器设计及工艺参数优化
科技成果——连铸结晶器设计及工艺参数优化技术开发单位华北理工大学
所属领域新材料
成果简介
结晶器是连铸机的心脏,钢液通过结晶器不断的振动、脱模完成初始凝固,形成坯壳。
而结晶器的冷却能力、结构设计和相关工艺参数不仅影响铸坯的表面质量,严重时还会引起各种形式的漏钢事故。
本项目基于数值模拟和在线监测,从结晶器铜板(管)的冷却结构设计、针对钢种的结晶器锥度优化以及结晶器振动参数优化等方面系统的改善钢液在结晶器内的凝固条件,全面提升铸坯表面质量。
关键技术
1、结晶器冷却结构设计
采用数值模拟的方法设计和优化结晶器铜板(管)的镀层材质和结构、使用周期内合理的铜板厚度以及背部冷却水槽(缝),针对性的优化结晶器冷却条件。
2、结晶器锥度优化
基于应力遗传算法,针对大类钢种优化其结晶器铜板(管)的锥度,并建立相应的结晶器管理制度。
3、结晶器振动参数设计及优化
以提升铸坯表面质量、改善振痕为目的,针对不同的钢种和坯型,设计合理的正弦振动或非振弦振动参数。
经济效果
铸坯质量方面:在防止漏钢的基础上,通过冷却工艺优化和振动优化,有效改善铸坯的表面质量,减轻振痕。
经济效益方面:通过对结晶器铜板(管)结构、镀层、锥度等方面进行设计和优化,成倍提高结晶器的使用寿命,降低运行成本。
管理效益方面:通过建立结晶器管理制度,提升设备能效的同时,改善现场的设备管理能力。
实施条件
钢铁企业,具备一定生产能力。
项目成熟度
利润级:开始盈利且利润超过总投入的10%
合作方式合作开发。
连铸车间结晶器无水报警现场处置方案
连铸车间结晶器无水报警现场处置方案背景连铸车间结晶器是钢水凝固过程中的一个重要设备,其内壁喷水循环降温,可使钢水形成均匀细小的晶粒,从而提高钢材质量。
在结晶器内喷水循环过程中,若喷水管道出现堵塞或者有水管爆管等故障,会导致喷水不及时或无法喷水,使结晶器内壁温度过高,出现结晶器无水现象,严重时会导致结晶器炸裂,造成严重的安全事故。
因此,当结晶器出现无水报警时,必须立即采取有效的处置措施,以确保生产安全和钢材质量。
现场处置方案一、立即停车一旦发现结晶器出现无水报警,必须立即停车。
停车措施包括关闭连铸机液压设备、停止结晶器喷水循环和关闭结晶器水泵等。
二、检查结晶器停车后,需进入连铸机台架区域,千万不要贸然进入结晶器内部。
首先,要对结晶器进行外部检查,确认结晶器有无破裂、漏水、冷却水泵运行情况等问题。
三、清理结晶器内壁若确定结晶器没有破裂、漏水等问题,需进入结晶器内部进行清理。
先通过视觉检查观察结晶器内是否有异物或堵塞的情况,再进行物理清理。
可以利用结晶器内配备的清洗喷嘴,将结晶器内的杂物清理干净。
如果使用清洗喷嘴无法清洗干净,可以使用专业的清洗工具进行清理。
四、恢复喷水循环清理结晶器内壁后,需恢复结晶器的喷水循环。
可以通过调整喷水泵的参数来恢复喷水循环。
在调整喷水泵的参数时,要仔细观察结晶器内壁的温度变化情况,确保喷水循环恢复正常。
五、检查其他设备在恢复喷水循环后,需要对其他设备进行检查。
检查内容包括:各管道连接是否紧固、各管道是否正常、冷却水泵是否工作正常等。
六、开车运行经过上述措施的确认后,可以开启液压设备、结晶器水泵和结晶器喷水循环,然后开启连铸机的运行。
在开车运行过程中,还需持续观察结晶器内壁温度变化情况,确保喷水循环正常。
结语对于连铸车间结晶器无水报警,必须采取及时、有效的处置措施,保证工人安全和钢材质量。
以上方案仅供参考,具体执行时需根据实际情况作出合理的调整和裁量。
连铸结晶器铜管尺寸规格
连铸结晶器铜管尺寸规格连铸结晶器铜管是连铸技术中的关键部件,它直接影响着钢坯质量和生产效率。
因此,铜管的尺寸规格非常重要,让我们来了解一下。
连铸结晶器铜管的尺寸规格主要包括内径、壁厚和长度。
内径是指铜管的内部直径,壁厚是指铜管壁的厚度,长度是指铜管的整体长度。
首先,内径是连铸结晶器铜管的关键参数之一。
它会直接影响钢液的流动性和冷却效果。
通常情况下,内径会根据连铸机的生产能力和钢种的要求进行设计。
较大的内径可以提高连铸机的出钢率,但会增加钢液的分流现象,降低钢液的流动性;较小的内径可以减少分流现象,提高流动性,但会降低出钢率。
因此,合理选择内径大小对于优化连铸工艺至关重要。
其次,壁厚也是连铸结晶器铜管尺寸规格中的一个重要参数。
较大的壁厚可以增加铜管的强度和耐磨性,但会增加钢液流通的阻力和冷却效果,降低出钢率;较小的壁厚可以提高流通性和冷却效果,但会降低铜管的强度和耐磨性。
因此,在选择壁厚时,需要综合考虑铜管的使用寿命和连铸工艺的要求。
最后,长度是连铸结晶器铜管尺寸规格中的另一个重要参数。
合理选择铜管的长度可以提高结晶器的冷却效果,进而提高钢坯质量。
较长的铜管可以增加冷却时间,使钢液充分结晶,有利于提高表面质量和内部组织;较短的铜管则可以减少能量损失和结晶器的占地面积。
因此,在选择长度时,需要根据连铸机的生产能力和产品质量要求进行合理的权衡。
综上所述,连铸结晶器铜管的尺寸规格对于连铸工艺至关重要。
合理选择内径、壁厚和长度可以优化工艺,提高钢坯质量和生产效率。
因此,在生产过程中,需要根据实际需求和工艺要求进行精确的设计和选择。
只有这样,才能确保连铸技术的稳定运行和优质产品的生产。
德马克、ROKOP型连铸机结晶器
魂 鱿 曦羹
裹 蒸
撇桃篡
、
蓦
ROK OP 型 连 铸 机 结 晶 器
德 马 克
德马 克
150
、
RO K
P o
型 连铸机 结 晶 器弧形 小 方
:
约 大量外 汇 而 且也 能给企业 增 加经济效 益
,
。
坯 铜 管 的产 品 规 格 为
口 1 2 0x
12 0
、
口 150 丫
,
ห้องสมุดไป่ตู้
主 要技术 参数 内腔 表 面 镀 层 妻 0 0 基体 表 面 硬度 内表面 )
单位 名 称 河南 江河机 械 厂 厂长 姓 名 黄金 祥
地
:
:
电
3
话
:
0 3 7 5一 2 2 4 6 8 1
、
223 447
电报挂 号 河 南 鲁 山 信箱 邮政编 码
:
:
31 0 9
址 河南 省鲁 山 县 n
13 0
:
4 67337
元 /支 元 /支
同类 产 品 价格 的 一 半左 右 且 产 品 性 能
口产 品
口
i 50 x
1 5 0 : 4 5 0 0一 4 7 0 0
:
优 于进
如 果替代进
5
口产品
,
,
每支 结 晶器
结 晶器 铜管 毛 坯
3
.
3~ 3
.
4
万元 / 吨
产 品 就 可 节约
0 美元 左 右 不仅 能为 国 家节
85
: :
.
320mm )铜 管 毛 坯 以 及各 种 规 格 师 7 0 一价
板坯连铸机结晶器研究课件
摘要结晶器是钢坯连续铸造的关键设备,其设计和制造的优劣直接影响到连铸生产的正常与稳定。
本文就目前连铸结晶器采用的铜板材料及铜板材料表面处理技术的发展现状进行了总结和分析。
指出针对板坯结晶器窄面铜板易高温变形、磨损的情况,采用高强度、高导热率的弥散强化铜材料,进而延长结晶器的维修周期,提高生产效率。
同时针对现有结晶器铜板表面改性技术的优缺点,发展新型合金涂、镀层技术,进一步提高涂、镀层的硬度,耐磨和耐腐蚀性能。
目前结晶器铜板表面处理的几种方法:电镀法、热喷涂法、化学热处理法以及具有潜在发展前景的激光熔覆法。
激光熔覆法由于具有清洁无污染,成品率高以及性价比高等特点,具有广阔的发展和应用空间。
而且,通过优化熔覆工艺参数,设计合理的熔覆材料体系,能够形成与铜板呈冶金结合的优良抗热耐磨复合涂层,从而显著提高结晶器的使用寿命。
关键词:结晶器;化学热处理;激光熔覆;铜板AbstractThe progress of mould plates was reviewed in continuous casting. The techniques such a solution or aging or forming or fine crystal and their combination were an effect tiveme thod which benefit for high conductivity and high strengthen of copper base alloy. Copper base composite maerial through dispersion technique and composite hardening and surface strengthening have more promising for mouldes in the future.Based on the current study stat of surface strength ening on copper crystallizer, several surface treatment means,such as electro plating thermal spraying,penetration and laserclad dingte chnique with potential development are described. Because of cleanliness without any pollution, high finished product ratio and high performance costratio, laser cladding has wide development and application range. Moreover, by optimizing process parameters and designing suitable material system, fine hea-t resistant and wear-resistant coating having metallurgy bonding with copper substrate can be fabricated, therefore, it may notably improve the service life of copper crystallizer.Key words:Copper crystallizer; Electroplating; Thermal Chemical heat treatme;Copper plate目录摘要 (I)Abstract (II)第1章绪论 (1)1.1连扎连铸简介 (1)1.2工艺流程 (3)1.3板坯连铸机质量优势 (4)1.4研究背景 (5)1.5国内外状况 (6)1.6结晶器概述 (7)1.7结晶器存在的问题 (9)1.8结晶器使用前的安全检查 (9)1.9本章小结 (10)第2章结晶器夹紧装置的选择计算 (11)2.1结晶器夹紧装置简介 (11)2.2结晶器夹紧受力分析及计算选择 (12)2.3结晶器宽边调整机构的安装 (14)2.4本章小结 (14)第3章结晶器调宽装置的选择计算 (15)3.1调宽装置简介 (15)3.2调宽装置的确定和基本参数的选择 (16)3.3调宽装置驱动选择 (18)3.4窄边调整机构的安装 (18)3.5本章小结 (19)第4章结晶器铜板及水箱的选择计算 (20)4.1结晶器铜板的设计 (20)4.1.1结晶器长度的选择 (20)4.1.2结晶器断面尺寸和倒锥度 (22)4.1.3结晶器铜板材质及表面镀层的选择 (23)4.1.4铜板厚度计算 (24)4.2水箱设计 (25)4.3本章小结 (26)第五章结晶器振动装置的应用和发展 (27)5.1振动装置的概述 (27)5.2结晶器的振动方式 (27)5.3总结 (30)5.4本章小结 (31)结论 (32)参考文献 (33)致谢 (35)第1章绪论1.1连扎连铸简介连铸连轧全称连续铸造连续轧制(Continue Casting Direct Rolling,简称CCDR),是把液态钢倒入连铸机中轧制出钢坯(称为连铸坯),然后不经冷却,在均热炉中保温一定时间后直接进入热连轧机组中轧制成型的钢铁轧制工艺。
连铸三大件生产工艺流程
连铸三大件生产工艺流程连铸是一种常用的金属制造工艺,广泛应用于钢铁、铝等金属材料的生产过程中。
连铸三大件是指连铸结晶器、结晶器保护罩和结晶器底盘。
这三个部件在连铸过程中起到关键作用,影响着产品的质量和生产效率。
下面将分别介绍连铸三大件的生产工艺流程。
一、连铸结晶器的生产工艺流程连铸结晶器是连铸过程中用于冷却和凝固金属的关键部件。
它由陶瓷材料制成,具有良好的耐火性能和导热性能。
结晶器的生产工艺流程如下:1. 原材料准备:选择高质量的陶瓷材料作为结晶器的原料。
原料需经过粉碎、筛选等处理,确保粒度合适。
2. 配料混合:按照一定比例将不同种类的原料混合,加入适量的黏结剂和助剂,进行搅拌混合。
混合后的料浆应保持均匀。
3. 成型制备:采用注塑成型或挤出成型工艺,将混合后的料浆注入模具中,经过高温高压的处理,使其成型。
成型后的结晶器需要经过一定的烧结工艺,提高其力学强度和热稳定性。
4. 精加工:对成型后的结晶器进行加工,包括切割、磨削、打磨等工序,以保证结晶器的尺寸精度和表面质量。
5. 检测和质量控制:对成品结晶器进行检测,包括尺寸、密度、抗热震性能等指标的检测。
同时进行质量控制,确保产品符合标准要求。
二、结晶器保护罩的生产工艺流程结晶器保护罩是用于保护结晶器免受外界环境侵蚀和损坏的重要部件。
它通常由耐火材料制成,具有高温抗氧化性能。
结晶器保护罩的生产工艺流程如下:1. 原材料准备:选择高质量的耐火材料作为保护罩的原料。
原料需经过粉碎、筛选等处理,确保粒度合适。
2. 配料混合:按照一定比例将不同种类的原料混合,加入适量的黏结剂和助剂,进行搅拌混合。
混合后的料浆应保持均匀。
3. 成型制备:采用压制或注塑成型工艺,将混合后的料浆注入模具中,经过高温高压的处理,使其成型。
成型后的保护罩需要经过一定的烧结工艺,提高其力学强度和耐热性能。
4. 精加工:对成型后的保护罩进行加工,包括切割、磨削、打磨等工序,以保证保护罩的尺寸精度和表面质量。
连铸工艺设备连铸设备及主要工艺参数
连铸工艺设备连铸设备及主要工艺参数一、结晶器:结晶器是连铸设备的关键部件,它通过将冷却水冷却的金属液体,使其逐渐凝固形成连续的铸坯。
结晶器主要由结晶器壳体、结晶器底板、冷却水管等组成。
其中,结晶器壳体一般采用无缝钢管制成,具有良好的耐热性和耐腐蚀性。
二、铸坯:铸坯是由熔融的金属液体通过连铸工艺凝固而成的连续坯料,它具有一定的长度和截面形状。
铸坯的形状和尺寸可以通过调整连铸设备的结晶器壁厚、结晶器型号以及挤压辊的工作方式来控制。
三、结晶壳:结晶壳是指金属液体通过结晶器壁形成的凝固层,它的厚度可以通过调整冷却水的流量和结晶器的温度来控制。
结晶壳的形成决定了铸坯的坯壳厚度和坯壳质量,对后续的连轧和热处理工艺有着重要影响。
四、冷却水系统:冷却水系统主要是用于冷却结晶器和铸坯的工艺介质,通过调整冷却水的温度和流量,可以控制铸坯的冷却速度和坯壳的厚度。
冷却水系统包括冷却塔、冷却水管道、冷却水泵等设备。
五、振动系统:振动系统是用来防止铸坯表面的凝固层结构不均匀和铸坯内部的气孔等缺陷的产生,它利用振动的力量将铸坯表面的结晶层与金属液体不断混合,以提高铸坯的质量。
六、铸坯切割系统:铸坯切割系统是将连铸的整坯切割成所需长度的小块铸件,以便后续的加工和使用。
铸坯切割系统包括切割机、切割刀具等设备。
七、传动系统:传动系统主要是将连铸工艺设备的动力传递给各个部件,以确保连铸过程的连续和稳定。
传动系统包括电机、减速机、联轴器等设备。
八、电气控制系统:电气控制系统是连铸设备各个部件之间的信息交流和工艺参数调整的重要手段,它通过传感器、PLC控制器等设备实现对连铸过程的自动控制。
与连铸设备相关的主要工艺参数包括:1.结晶器温度:结晶器温度决定了铸坯的凝固速度和结晶壳的厚度,通常在1000℃-1500℃之间。
2. 冷却水流量:冷却水的流量决定了铸坯的冷却速度和坯壳的厚度,通常在20-100L/min之间。
3. 振动频率和振幅:振动频率和振幅的调节可以改善铸坯的结晶层结构,通常在50-150Hz和0.2-0.5mm之间。
连铸结晶器振动工艺参数
06
研究展望与未来发展趋势
结晶器振动工艺参数研究的现状与不足
要点一
现状
要点二
不足
连铸结晶器振动工艺参数是提高铸坯质量、减少裂纹 等缺陷的关键因素。目前,国内外研究者已经开展了 大量研究,取得了一定的成果。
优化建议
根据实际生产需要选择合适的波形,如方波适用于高碳钢等硬度较 大的材质,正弦波适用于低碳钢等韧性较好的材质。
振动方向的控制与优化
01
纵向振动
能够提高铸坯的纵向均匀性,但脱模效果较差。
02
横向振动
能够提高铸坯的横向均匀性,但可能增加振痕深度。
03
优化建议
根据铸坯的形状和用途选择合适的振动方向,如矩形坯多采用纵向振动
连铸结晶器振动工艺参数
2023-11-09
目录
• 结晶器振动概述 • 结晶器振动工艺参数 • 结晶器振动工艺参数的选择与优化 • 结晶器振动工艺参数的监控与调整 • 结晶器振动工艺参数对铸坯质量的影响及控制措
施 • 研究展望与未来发展趋势
01
结晶器振动概述
结晶器振动的重要性
提高产品质量
通过振动,可减少铸坯表面缺 陷,提高产品质量。
振动幅度
总结词
振动幅度是结晶器振动工艺中的另一个重要参数,它决 定了坯壳与结晶器之间的相对位移。
详细描述
振动幅度是指结晶器振动时坯壳与结晶器之间的最大相 对位移,通常以毫米(mm)为单位表示。在连铸过程 中,适当地增大振动幅度可以增加坯壳与结晶器之间的 相对运动,有利于减小坯壳与结晶器之间的摩擦力,降 低坯壳表面的传热速率。然而,过大的振动幅度可能导 致坯壳过热或破裂,影响连铸坯的质量和结晶器的使用 寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连铸结晶器
结晶器是连铸机非常重要的部件,是一个强制水冷的无底钢锭模。
称之为连铸设备的“心脏”。
结晶器的定义:一种槽形容器,器壁设有夹套或器内装有蛇管,用以加热或冷却槽内溶液。
结晶槽可用作蒸发结晶器或冷却结晶器。
为提高晶体生产强度,可在槽内增设搅拌器。
结晶槽可用于连续操作或间歇操作。
间歇操作得到的晶体较大,但晶体易连成晶簇,夹带母液,影响产品纯度。
这种结晶器结构简单,生产强度较低,适用于小批量产品(如化学试剂和生化试剂等)的生产。
结晶器的作用:
(1)使钢液逐渐凝固成所需要规格、形状的坯壳;
(2)通过结晶器的振动,使坯壳脱离结晶器壁而不被拉断和漏钢;
(3)通过调整结晶器的参数,使铸坯不产生脱方、鼓肚和裂纹等缺陷;
(4)保证坯壳均匀稳定的生成。
结晶器的类型
(1)结晶器的类型按其内壁形状,可分为直形及弧形等
1)直型结晶器。
直形结晶器的内壁沿坯壳移动方向呈垂直形,因此导热性能良好,坯壳冷却均匀。
该类型结晶器还有利于提高坯壳的质量和拉坯速度、结构较简单、易于制造、安装和调试方便;夹
杂物分布均匀;但铸坯易产生弯曲裂纹,连铸机的高度和投资增加。
直形结晶器用于立式和立弯式
及直弧连铸机。
2)弧形结晶器。
弧形结晶器的内壁沿坯壳移动方向呈圆弧形,因此铸坯不易产生弯曲裂纹;但导热性比直形结晶器差;夹杂物分布不均,偏向坯壳内弧侧。
弧形结晶器用在全弧形和椭圆形连铸机上。
(2)按溶液获得过饱和状态的方法可分蒸发结晶器和冷却结晶器;按流动方式可分母液循环结晶器和晶浆(即母液和晶体的混合物)循环结晶器;按操作方式可分连续结晶器和间歇结晶器。
通俗的讲连铸结晶器:
就是一个钢水制冷成型设备。
基本由框架,水箱和铜板(背板与铜板),调整系统(调整装置,减速机等);润滑系统(油管油路),冷却系统和喷淋等设备组成。
连铸结晶器需要和连铸结晶器保护材料(渣)一同使用。
保护材料用途:
1.确保连铸工艺顺行;
2.改善铸坯表面质量
连铸结晶器钢水流动控制技术
1、连铸板坯的表面和内部缺陷与结晶器内钢液的流动状态密切相关。
伴随着连铸机拉速的提高,结晶器内液面波动加剧,容易产生卷渣,造成铸坯质量恶化。
采用结晶器钢水流动控制技术可以改善结晶器内流场形态,抑制出料速度以平稳液面,促进夹杂物上浮。
用于
板坯结晶器的电磁制动(EMBr)、电磁流动控制(FC结晶器)和多模式电磁搅拌(M-MEMS)是结晶器钢水流动控制技术的典型代表。
2、电磁制动器通过对结晶器施加一个与铸流方向垂直的静态磁场而对流动的钢液进行制动。
钢流由于电磁感应而产生感应电压,因此在钢液中产生感应电流,这些电流由于受到静态磁场的作用而产生一个与钢水运动方向相反的制动力。
钢液的流速越快,制动力也越大。
电磁制动器具有一个单一的、覆盖整个板坯宽度的静态磁场。
电磁制动技术可抑制水口射流速度,减缓沿凝固壳向下流动,促进夹杂物和气泡上浮。
3 、FC结晶器含有两个方向相反的制动磁场,第一个位于弯月面区域,另一个位于结晶器的下部,每一个磁场都覆盖了板坯的整个宽度。
FC结晶器的磁场的上电磁场减少了结晶器弯月面紊流,可防止保护渣卷入凝固壳和角部横裂;下电磁场可减少钢液向下流速,有利于夹杂物和气泡上浮。
4、利用M-MEMS多模式电磁搅拌器可根据需要以不同的方式搅动结晶器内的钢水,显著减少板坯铸造缺陷。
该技术采用4个线性电磁搅拌器,位于结晶器高度方向的中部、浸入式水口两侧,每侧2个线圈并排设置,可用于使浸入式水口流出的钢水制动(EMIS)或加速(EMLA)。
第三种工作模式则用于使位于弯月面的钢水转动(EMRS),此项技术可有效控制热传导梯度和坯壳凝固前沿的均匀性,消除某些钢种存在的气孔、针孔和表面夹渣等铸造缺陷。