牛吃草问题练习题资料讲解

合集下载

小学五年级奥数:牛吃草问题(题目+答案)资料讲解

小学五年级奥数:牛吃草问题(题目+答案)资料讲解

牛吃草问题例:有一片牧草,草每天匀速的生长,这片牧草可供100头牛吃3周,可供50头牛吃8周,那么可供多少头牛吃两周?设每头牛每周吃草一份,100头牛3周吃的草:100×3=300(份)50头牛8周吃的草:50×8=400(份)草的生长速度:(400-300)÷(8-3)=20(份)原有牧草的份数:100×3-3×20=240(份)(240+20×2)÷2=140(头)①一个牧场,草每天匀速生长,每头牛每天吃的草量相同,17头牛30天可以将草吃完,19头牛只需要24天就可以将草吃完。

现有一群牛,吃了6天后,卖掉4头牛,余下的牛再吃2天就将草吃完。

问没有卖掉4头牛之前,这一群牛一共有多少头?设一头牛一天吃一份草.17头牛30天吃的草:17×30=510(份)19头牛24天吃的草:19×24=456(份)每天长草数:(510-456)÷(30-24)=9(份)牧场原有草数:510-9×30=240(份)8天可吃草数:240+8×9=312(份)设卖牛前有x头:6x+2(x-4)=312x=40②一片牧草,可供9头牛12天,也可供8头牛吃16天,开始只有4头牛吃,从第7天起增加了若干头牛来吃草,再吃6天吃完了所有的草,问从第7天起增加了多少头牛?设一头牛一天吃一份草.9头牛12天吃的草:9×12=108(份)8头牛16天吃的草:8×16=128(份)每天新增量:(128-108)÷(16-12)=5(份)原有草量:108-12×5=48(份)从开始4头牛到6天后增加牛后再吃6天可知前后共计12天,这片草地共有草量:48+5×12=108(份)开始的4头牛12天吃的草:4×12=48(份)增加的牛数:108-48)÷6=10(头)③有一片草地,可供8只羊吃20天,或供14只羊吃10天。

牛吃草问题含例题答案讲解

牛吃草问题含例题答案讲解

小学数学牛吃草问题知识点总结: 牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

小升初冲刺第2讲牛吃草问题基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷(25-5)=5天[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)÷(20-10)=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

牛吃草问题全面练习题(一)教学资料

牛吃草问题全面练习题(一)教学资料

牛吃草问题全面练习题(一)牛吃草问题基础练习1、牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天?2、一个水池装一个进水管和三个同样的出水管。

先打开进水管,等水池存了一些水后,再打开出水管。

如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空。

那么出水管比进水管晚开多少分钟?3、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?4、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。

问:该扶梯共有多少级?5、某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。

从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。

如果同时打开7个检票口,那么需多少分钟?6、有三块草地,面积分别为5,6和8公顷。

草地上的草一样厚,而且长得一样快。

第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。

问:第三块草地可供19头牛吃多少天?7、牧场上的牧草每天均匀生长,这片草地可供17头牛吃6天,可供13头牛吃12天.问多少头牛4天把草地的草吃完?8、有-牧场,21头牛20天可将草吃完,25头牛则15天可将草吃完,现有牛若干头,吃6天后卖了4头,余下的牛再吃2天则将草吃完,问原有牛多少头?9、22头牛,吃33公亩牧场的草54夭可吃尽, 17头牛吃同样牧场28公亩的草,‘84天可吃尽.请问几头牛吃同样牧场40公亩的草,24天可吃尽?10、某火车站检票口,在检票开始前已有-些人排队,检票开始后每分钟有10人前来排队检票,-个检票口每分钟能让25人检票进站.如果只有-个检票口,检票开始8分钟后就没有人排队;如果有两个检票口,那么检票开始后多少分钟就没有人排队?11、甲、乙、丙三个仓库,各存放着同样数量的大米,甲仓库用皮带输送机-台和12个工人5小时把甲仓库搬空,乙仓库用皮带输送机-台和28个工人3小时把乙仓库搬空.丙仓库有皮带输送机2台,如果要2小时把丙仓库搬空,同时还需要多少名工人?12、牧场上-片牧草,可供27只羊吃6天;或者供23只羊吃9天,如果牧草每周匀速生长,可供21只羊吃几天?13、-片牧草,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者可供80只羊吃12天.如果l头牛的吃草量等于4只羊的吃草量,那么lO头牛与60只羊-起吃可以吃多少天?14、陕北某村有-块草场,假设每天草都均匀生长,这片草场经过测算可供100只羊吃200天,或可供150只羊吃100天.问:如果放牧250只羊可以吃多少天?放牧这么多羊对吗?为防止草场沙化,这片草地最多可以放牧多少只羊?(注意:要防止草场沙化就应该使草场的草永远吃不完)15、12头牛28天可吃完10公亩牧场上全部牧草,21头牛63天可吃完30公亩牧场上全部牧草.多少头牛126天可吃完72公亩牧场上全部牧草?(每公亩牧场上原有的草量相等,且每公亩牧场上每天草的生长量相同)牛吃草问题巩固练习16、-只船发现漏水时,已进了-些水,现在水匀速进入船内.如果lO人舀水,3小时可舀完:5人舀水8小时可舀完.如果要求2小时舀完,要安排多少人舀水?17、.-水库水量-定,河水均匀入库,5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?18、-片草地如果9头牛吃。

精选牛吃草问题(含例题、答案、讲解)

精选牛吃草问题(含例题、答案、讲解)

小学数学牛吃草问题知识点总结:牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

小升初冲刺第2讲牛吃草问题基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷(25-5)=5天[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)÷(20-10)=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

牛吃草问题(五年级奥数讲解及例题分析)

牛吃草问题(五年级奥数讲解及例题分析)

小学奥数之牛吃草问题牛吃草问题是小学奥数五年级的内容,学过的同学都知道这是一类比较复杂的应用题,还有一些相应的变形题:排队买票、大坝泄洪、抽水机抽水等等。

那么在这里讲下牛吃草问题的解题思路和解题方法、技巧供大家学习。

一、解决此类问题,孩子必须弄个清楚几个不变量:1、草的增长速度不变 2、草场原有草的量不变。

草的总量由两部分组成,分别为:牧场原有草和新长出来的草。

新长出来草的数量随着天数在变而变。

因此孩子要弄清楚三个量的关系:第一:草的均匀变化速度(是均匀生长还是均匀减少)第二:求出原有草量第三:题意让我们求什么(时间、牛头数)。

注意问题的变形:如果题目为抽水机问题的话,会让求需要多少台抽水机二、解题基本思路1、先求出草的均匀变化速度,再求原有草量。

2、在求出“每天新增长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。

3、已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。

4、根据(“原有草量”+若干天里新生草量)÷天数”,求出只数三、解题基本公式解决牛吃草问题常用到的四个基本公式分别为:1、草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数)2、原有草量=牛头数×吃的天数-草的生长速度×吃的天数3、吃的天数=原有草量÷(牛头数-草的生长速度)4、牛头数=原有草量÷吃的天数+草的生长速度四、下面举个例子例题:有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。

如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。

一般方法:先假设1头牛1天所吃的牧草为1,那么就有:(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。

牛吃草问题 非常完整版例题讲解+课后作业

牛吃草问题 非常完整版例题讲解+课后作业

牛吃草问题例题讲解【例题1】青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。

改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。

“廿”即二十之意。

)【题意翻译】:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。

若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)【巩固】牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?【例题2】牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【巩固】有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【例题3】由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。

如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?【例题4】由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。

如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?【例题5】一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天.如果一头牛一天吃草量等于5只羊一天的吃草量,那么这块草地可供10头牛和75只羊一起吃多少天?【巩固】有一片草场,草每天的生长速度相同。

若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量)。

那么,17头牛和20只羊多少天可将草吃完?【例题6】有一牧场,17头牛30天可将草吃完,19头牛则24天可以吃完.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完.问:原来有多少头牛吃草(草均匀生长)?【巩固】一片草地,可供5头牛吃30天,也可供4头牛吃40天,如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?【例题7】一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?【巩固】现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?【例题8】东升牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天.在东升牧场的西侧有一块6000平方米的牧场,可供多少头牛吃6天?【巩固】有甲、乙两块匀速生长的草地,甲草地的面积是乙草地面积的3倍.30头牛12天能吃完甲草地上的草,20头牛4天能吃完乙草地上的草.问几头牛10天能同时吃完两块草地上的草?【例题9】一个农夫有面积为2公顷、4公顷和6公顷的三块牧场.三块牧场上的草长得一样密,而且长得一样快.农夫将8头牛赶到2公顷的牧场,牛5天吃完了草;如果农夫将8头牛赶到4公顷的牧场,牛15天可吃完草.问:若农夫将这8头牛赶到6公顷的牧场,这块牧场可供这些牛吃几天?【巩固】有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?【例题10】4头牛28天可以吃完10公顷牧场上全部牧草,7头牛63天可以吃完30公顷牧场上全部牧草,那么60头牛多少天可以吃完40公顷牧场上全部牧草?(每公顷牧场上原有草量相等,且每公顷牧场上每天生长草量相等)【巩固】有三块草地,面积分别是4公顷、8公顷和10公顷.草地上的草一样厚而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?【例题11】三块牧场,场上的草长得一样密,而且长得一样快,它们的面积分别是3公顷、10公顷和24公顷.第一块牧场饲养12头牛,可以维持4周;第二块牧场饲养25头牛,可以维持8周.问第三块牧场上饲养多少头牛恰好可以维持18周?【例题12】17头牛吃28公亩的草,84天可以吃完;22头牛吃同样牧场33公亩的草54天可吃完,几头牛吃同样牧场40公亩的草,24天可吃完?(假设每公亩牧草原草量相等,且匀速生长)【例题13】有三片牧场,场上草长得一样密,而且长得一样快.它们的面积分别是133公顷、10公顷和24公顷.已知12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草,那么多少头牛18星期才能吃完第三片牧场的草?【例题14】如图,一块正方形的草地被分成完全相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光(在这2天内其他草地的草正常生长).之后他让一半牛在②号草地吃草,一半牛在③号草地吃草,6天后又将两个草地的草吃光.然后牧民把13的牛放在阴影部分的草地中吃草,另外23的牛放在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始就让这群牛在整块草地上吃草,吃完这些草需要多少时间?【课后作业】1、牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则头牛96天可以把草吃完.2、仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。

牛吃草问题练习及答案解析

牛吃草问题练习及答案解析

牛吃草问题历史起源:英国数学家牛顿(1642—1727)说过:“在学习科学的时候,题目比规则还有用些”因此在他的著作中,每当阐述理论时,总是把许多实例放在一起。

在牛顿的《普遍的算术》一书中,有一个关于求牛和头数的题目,人们称之为牛顿的牛吃草问题。

主要类型:1、求时间2、求头数除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的解题思想解决实际问题的能力。

基本思路:①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。

②已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。

③根据(“原有草量”+若干天里新生草量)÷天数”,求出只数。

基本公式:解决牛吃草问题常用到四个基本公式,分别是∶(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度第一种:一般解法“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。

如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。

”一般解法:把一头牛一天所吃的牧草看作1,那么就有:(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。

)(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。

)(3)1天新长的草为:(207-162)÷(9-6)=15(4)牧场上原有的草为:27×6-15×6=72(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)所以养21头牛,12天才能把牧场上的草吃尽。

牛吃草问题基本例题

牛吃草问题基本例题

牛吃草问题基本例题一、例题1。

1. 题目。

- 一片草地,可供10头牛吃20天,15头牛吃10天。

问可供25头牛吃多少天?2. 解析。

- 设每头牛每天的吃草量为1份。

- 首先求每天新长的草量:10头牛20天吃草量为10×20 = 200份,15头牛10天吃草量为15×10=150份。

20天的总草量比10天的总草量多的部分就是(20 - 10)天新长的草量,所以每天新长的草量(200 - 150)÷(20 - 10)=5份。

- 然后求草地原有的草量:根据10头牛20天吃草量为200份,其中新长的草量为5×20 = 100份,所以原有草量为200-100 = 100份。

- 最后求25头牛可吃的天数:25头牛每天实际消耗原草量为25 - 5=20份(因为有5份新草长出来刚好够5头牛吃),原有草量为100份,所以可以吃100÷20 = 5天。

二、例题2。

1. 题目。

- 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周。

那么它可供21头牛吃几周?2. 解析。

- 设每头牛每周的吃草量为1份。

- 求每周新长的草量:27头牛6周吃草量为27×6 = 162份,23头牛9周吃草量为23×9 = 207份。

(9 - 6)周新长的草量为207-162 = 45份,所以每周新长的草量为45÷(9 - 6)=15份。

- 求草地原有的草量:27头牛6周吃草量162份,其中新长的草量为15×6 = 90份,所以原有草量为162 - 90=72份。

- 求21头牛可吃的周数:21头牛每周实际消耗原草量为21 - 15 = 6份,原有草量72份,所以可以吃72÷6 = 12周。

三、例题3。

1. 题目。

- 有一片牧场,草每天都在匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,设每头牛吃草的量是相等的,问如果放牧16头牛,几天可以吃完牧草?2. 解析。

小学数学牛吃草问题问题试题专题讲解与练习

小学数学牛吃草问题问题试题专题讲解与练习

确定牛的数量: 根据草场的大
小和牛的食量, 确定草场能够 供养的牛的数 量。
确定草的生长 速度:根据草 场的生长环境 和条件,确定 草的生长速度。
确定牛的吃草 速度:根据牛 的品种和食量, 确定牛的吃草
速度。
xx
PART THREE
牛吃草问题的基 本公式
草场上的草量公式
草场上的草量是 一个常数,表示 草场上的草的总 数量。
xx
PART FOUR
牛吃草问题的实 际应用
实际生活中牛吃草问题的例子
牧场放牧管理中的草料消耗 问题城绿化中草坪维护与动物 活动的关系
草地上牛的数量与草的生长 速度关系
农业种植中农作物与牲畜的 平衡问题
解决实际问题的方法和步骤
理解问题背景和牛吃草问题的基本原理 确定草地上牛的数量和草的总量 计算牛吃草的速度和时间 根据实际情况调整模型,解决实际问题
小学数学牛吃 草问题
单击此处添加副标题内容
汇报人:XX
目录
CONTENTS
01 单击此处添加文本 02 牛吃草问题的基本概念 03 牛吃草问题的基本公式 04 牛吃草问题的实际应用 05 牛吃草问题的变种问题 06 总结与回顾
xx
PART ONE
添加章节标题
xx
PART TWO
牛吃草问题的基 本概念
牛吃草问题的定义
牛吃草问题的概念:指在草地上有一群牛在吃草,经过一段时间后草地上的草量发生变化, 从而引发的一系列数学问题。 牛吃草问题的特点:草量减少的速度与牛的数量和吃草的时间成正比,即草量减少的速度等 于牛的数量乘以每头牛每天吃的草量。
牛吃草问题的应用场景:可以应用于解决实际问题,如草地放牧、水库放水等问题。

牛吃草3例题思路详解

牛吃草3例题思路详解

牛吃草3例题思路详解牛吃草问题是一个经典的数学问题,它涉及到牛在草地上吃草的问题,需要解决如何让牛吃到最多的草并且草地不被破坏的问题。

下面我们就通过三个例题来详细解析牛吃草问题的解题思路和方法。

例题1:假设有一片草地,每天草都会均匀地生长,一头牛每天吃1单位的草,这片草地可供这头牛无限期地吃下去吗?思路解析:1. 假设草地原有草量为C,每天新生长的草量为R,牛每天吃的草量为S。

2. 牛吃草的过程可以看作是一个消耗和补充的过程,当牛消耗的草量等于新生长的草量时,草地上的草量保持不变;当牛消耗的草量大于新生长的草量时,草地上的草量就会减少;当牛消耗的草量小于新生长的草量时,草地上的草量就会增加。

3. 因此,要判断这片草地是否能够供这头牛无限期地吃下去,需要找到一个合适的条件,使得牛能够一直吃到足够的草,同时草地上的草量不会减少。

解题方法:设这片草地可供这头牛无限期地吃下去,那么每天新生长的草量应该等于牛每天消耗的草量加上原有的草量。

即R = S + C。

当C = 0时,即原有的草被牛全部吃掉后,每天新生长的草量仍然能够满足牛的消耗,那么这片草地就可以供这头牛无限期地吃下去。

例题2:假设有一片草地,一头牛和一只羊每天分别吃1单位的草和0.5单位的草。

这片草地上的草最多能够供这头牛和这只羊共同无限期地吃下去吗?思路解析:这个问题与上一个问题类似,但是需要考虑两只动物对草地的破坏程度。

因此需要找到一个合适的条件,使得两只动物能够吃到最多的草并且草地上的草量不会减少。

解题方法:与上一个问题类似,需要找到一个条件使得每天新生长的草量能够满足两只动物的总消耗量加上对草地的破坏程度。

具体来说,需要找到一个条件使得R = S + 0.5(S + C) + C',其中C'是草地被破坏的草量。

当C'足够大时,即草地被破坏的程度不严重时,仍然可以供这头牛和这只羊共同无限期地吃下去。

例题3:假设有一片草地,其中有一部分已经被这头牛吃掉了若干次,那么再让这头牛去吃这片草地的新长出的草,这片草地能够供这头牛无限期地吃下去吗?思路解析:这个问题需要考虑草地被多次破坏的情况,因此需要找到一个条件使得牛能够吃到最多的新长出的草并且草地上的总草量不会减少。

牛吃草经典例题及解答

牛吃草经典例题及解答

牛吃草经典例题及解答
一、例题
有一片匀速生长的草地,可供10头牛吃20天,或者可供15头牛吃10天。

问这片草地可供25头牛吃多少天?
二、解析
1. 设每头牛每天的吃草量为1份
我们来计算10头牛20天的吃草总量:10×20 = 200份。

接着,计算15头牛10天的吃草总量:15×10=150份。

2. 求出草每天的生长量
因为草地是匀速生长的,所以20天的总草量比10天的总草量多的部分就是(20 10)天生长出来的草量。

草每天的生长量=(200 150)÷(20 10)=5份。

3. 求出草地的原有草量
我们可以根据10头牛吃20天的情况来计算原有草量。

原有草量等于10头牛20天吃的草量减去20天里草生长的量。

原有草量=10×20 5×20=200 100 = 100份。

4. 计算25头牛可以吃的天数
设25头牛可以吃x天。

25头牛x天的吃草量等于原有草量加上x天里草生长的量。

可得到方程25x=100 + 5x。

移项可得25x-5x=100,即20x = 100。

解得x = 5天。

所以,这片草地可供25头牛吃5天。

牛吃草问题经典例题及答案解释

牛吃草问题经典例题及答案解释

牛吃草问题经典例题及答案解释牛吃草问题是一个使用概率论的经典问题,其实它的本质是一个典型的有条件概率问题。

首先,我们来看一下牛吃草问题的过程:在一个草地,有n头牛,其中m头是活牛,n-m头是没有被活牛吃过的死牛,他们现在分别看着草地,现在要求你计算出至少有多少活牛可以看到至少一头死牛。

要解决这个问题,首先要分析事件的关联条件,设m为活牛数,n为死牛数,p为活牛看到死牛的概率,q为活牛看到另外一头活牛的概率,那么我们可以把牛吃草问题的事件表示如下:活牛看到死牛的概率:P(A)=m/n活牛看到另外一头活牛的概率:P(B)=q(m-1)/n那么我们计算活牛看到至少一头死牛的概率:P(A∪B)=P(A)+P(B)-P(AB)=m/n+q(m-1)/n-qm/n=1-q这里,我们可以把P(A∪B)看做是1减去活牛看到另外一头活牛的概率,也就是说,若要求活牛看到至少一头死牛的概率达到1,m 的取值必须使qm/n=1,也就是说,要达到这一概率,m的取值必须大于等于n/q。

有了上述结论,我们可以得出牛吃草问题的结论:在一个草地中,有n头死牛,至少要有m头活牛,使得活牛能够看到至少一头死牛,此时m的取值必须大于等于n/q。

牛吃草问题是一个很实用的问题,它可以帮助我们分析任何一个有条件概率事件。

例如,在医学诊断中,一项检测能够显示出病人患病的概率,此时我们可以用牛吃草问题的方法来判断病人的病情:若检测概率低于预定的阈值,那么就可以认为病人没有患病。

同样的,牛吃草问题在检验和实验中也有着广泛的应用。

例如,在药品检测中,为了确定某种药品有良好的疗效,我们需要测试一大批人群,若药品实验得到良好的效果,那么我们可以用牛吃草问题来判断该药物是否确实有效。

事实上,牛吃草问题在现实生活中也有着广泛的应用,如在抽签中,我们可以计算出抽中某一签的概率;在比赛中,我们可以计算出胜利方的概率;在社会关系中,我们可以计算出两个人之间影响的概率等等。

精选牛吃草问题[含例题、答案解析、讲解]

精选牛吃草问题[含例题、答案解析、讲解]

小学数学牛吃草问题知识点总结:牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

小升初冲刺第2讲牛吃草问题基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷(25-5)=5天[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)÷(20-10)=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

牛吃草问题(含例题、答案、讲解)

牛吃草问题(含例题、答案、讲解)
2*20*10=400
400-100=300
300/20=15
100+15*4=160
160/(4*10)=4
(1)因为草量=原有草量+新长出的草量,而且草量是均匀增长的。
所以对应的牛头数X吃的较多天数”就代表了第一次情况下的总草量,即为:
吃的较多天数时的总草量=草地原有草量+草的生长速度*较多天数时的时间。
5*40=200;6*30=180
200-180=20
每天长的草:20/(40-30)=2
原有草:200-2*40=120
4*30=120,30*2=6060/4=15天
3,假设地球上新增长资源的增长速度是一定的,照此推算,地球上的资源可供
1 1 0亿人生活90年,或可供90亿人生活21 0年,为了人类不断繁衍,那么地球 最多可以养活多少亿人
小升初冲刺第2讲
牛吃草问题
基本公式:
1)设定一头牛一天吃草量为“T
2)草的生长速度=(对应的牛头数X吃的较多天数一相应的牛头数X吃的较少
天数)*(吃的较多天数一吃的较少天数);
3) 原有草量=牛头数X吃的天数一草的生长速度X吃的天数;'
4) 吃的天数=原有草量十(牛头数—草的生长速度);
5)牛头数=原有草量十吃的天数+草的生长速度。
=3份
9X20=180份……原草量+20天的生长量原草量:180-20X3=120份或150-10
X3=120份
15X10=150份……原草量+10天的生长量120-(18-3)=8天
例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。
已知某块
草地上的草可供20头牛吃5天,或可供15头牛吃6天。照此计算,可供多少头 牛吃10天

牛吃草问题专题(例题+练习+作业)

牛吃草问题专题(例题+练习+作业)

牛吃草问题牛吃草问题又称为消长问题或牛顿牧场,牛吃草问题的历史起源是17世纪英国伟大的科学家牛顿1642—1727)提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

解决牛吃草问题常用到四个基本公式,分别是︰五大基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=草量差÷时间差;3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。

这五个公式是解决牛吃草问题的基础。

首先一般假设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

求时间例1、(草增长)牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?练习:1.1.一块牧场长满了草,每天均匀生长。

这块牧场的草可供10头牛吃40天,供15头牛吃20天。

可供25头牛吃__天。

()A. 10B. 5C. 202.一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,23头牛9天把草吃尽。

如果有牛21头,几天能把草吃尽?3.牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?L例2,(草减少)由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天?练习1.由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少,如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?例3(多种动物)一片牧草,每天生长的速度相同.现在这片牧草可供20头牛吃12天,或可供60只羊吃24天.如果1头牛的吃草量等于4只羊的吃草量,那么12头牛与88只羊一起吃可以吃多少天?练习:有一片草地,每天都在匀速生长,这片草可供16头牛吃20天,可供80只羊吃12天。

牛吃草问题详解

牛吃草问题详解

牛吃草问题详解牛吃草问题学习资料。

一、基本公式。

1. 设定一头牛一天吃草量为“1”。

2. 草的生长速度=(对应的牛头数×吃的较多天数 - 相应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)。

3. 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数。

4. 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)。

5. 牛头数 = 原有草量÷吃的天数+草的生长速度。

二、例题解析。

(一)基础题型。

例1。

有一片牧场,草每天都在匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草。

设每头牛每天吃草的量是相等的,问:如果放牧16头牛,几天可以吃完牧草?要使牧草永远吃不完,最多放牧多少头牛?解析:1. 首先求草的生长速度:- 设每头牛每天吃草量为1份。

- 24头牛6天的吃草量为24×6 = 144份。

- 21头牛8天的吃草量为21×8=168份。

- 草的生长速度(168 - 144)÷(8 - 6)=12份/天。

2. 然后求原有草量:- 原有草量=24×6-12×6 = 72份。

3. 计算16头牛吃完牧草的天数:- 吃的天数=72÷(16 - 12)=18天。

4. 要使牧草永远吃不完,那么牛吃草的速度最多等于草生长的速度,所以最多放牧12头牛。

例2。

牧场上长满牧草,每天牧草都匀速生长。

这片牧场可供10头牛吃20天,可供15头牛吃10天。

供25头牛可吃几天?解析:1. 求草的生长速度:- 设每头牛每天吃草量为1份。

- 10头牛20天吃草量10×20 = 200份。

- 15头牛10天吃草量15×10 = 150份。

- 草的生长速度(200 - 150)÷(20 - 10)=5份/天。

2. 求原有草量:- 原有草量=10×20 - 5×20=100份。

牛吃草问题经典例题及解题思路和方法

牛吃草问题经典例题及解题思路和方法

牛吃草问题经典例题及解题思路和方法牛吃草含义:“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。

这类问题的特点在于要考虑草边吃边长这个因素。

数量关系:草总量=原有草量+草每天生长量×天数解题思路和方法:解决这类问题的关键是找出草的日常生长情况。

例1一块草,10头牛20天能把草吃完,15头牛10天能把草吃完。

有多少头牛能在五天内吃完草?解草是均匀生长的,所以,草总量=原有草量+草每天生长量×天数。

求“多少头牛5天可以把草吃完”,就是说5天内的草总量要5天吃完的话,得有多少头牛?设每头牛每天吃草量为1,按以下步骤解答:(1)求草每天的生长量因为,一方面20天内的草总量就是10头牛20天所吃的草,即(1×10×20);另一方面,20天内的草总量又等于原有草量加上20天内的生长量,所以1×10×20=原有草量+20天内生长量同理1×15×10=原有草量+10天内生长量由此可知(20——10)天内草的生长量为1×10×20——1×15×10=50因此,草每天的生长量为50÷(20——10)=5(2)求原有草量原有草量=10天内总草量——10内生长量=1×15×10——5×10=100(3)求5天内草总量5天内草总量=原有草量+5天内生长量=100+5×5=125(4)求多少头牛5天吃完草因为每头牛每天吃的草量是1,所以每头牛5天吃的草量是5。

因此5天吃完草需要牛的头数125÷5=25(头)五天内完成草地需要五头牛。

例2一艘船有漏洞,水匀速进入船内。

发现漏水的时候,已经有一部分水进了。

如果有12个人淘水,3个小时就能洗完;如果只有五个人在搜寻水,要10个小时才能洗出来。

要求17个人在几个小时内淘完。

解这是一道变相的“牛吃草”问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、变式训练1: 一个水池装一个进水管和三个同 样的出水管。先打开进水管,等水池存了一些 水后,再打开出水管。如果同时打开2个出水管, 那么8分钟后水池空;如果同时打开3个出水管, 那么5分钟后水池空。那么出水管比进水管晚开
多少分钟?
5、变式训练2: 自动扶梯以均匀速度由下往上 行驶着,两位性急的孩子要从扶梯上楼。已知 男孩每分钟走20级梯级,女孩每分钟走15级梯 级,结果男孩用了5分钟到达楼上,女孩用了6 分钟到达楼上。问:该扶梯共有多少级?
6、变式训练2: 自动扶梯以均匀速度由下往上 行驶着,两位性急的孩子要从扶梯上楼。已知 男孩每分钟走20级梯级,女孩每分钟走15级梯 级,结果男孩用了5分钟到达楼上,女孩用了6 分钟到达楼上。问:该扶梯共有多少级?
7、变式训练3:某车站在检票前若干分钟就开 始排队,每分钟来的旅客人数一样多。从开始 检票到等候检票的队伍消失,同时开4个检票口 需30分钟,同时开5个检票口需20分钟。如果 同时打开7个检票口,那么需多少分钟?
8、变式训练4:由于天气逐渐冷起来,牧场上的 草不仅不长大,反而以固定的速度在减少。已 知某块草地上的草可供20头牛吃5天,或可供 15头牛吃6天。照此计算,可供多少头牛吃10 天?
此课件下载可自行编辑修改,仅供参考! 感谢您的持,我们努力做得更好!谢谢
牛吃草问题练习题
牛吃草问题
1、牧场上有一片匀速生长的草地,可供27头牛吃6周, 或供23头牛吃9周.那么它可供21头牛吃几周?
2、一块牧场长满草,每天牧草都均匀生长. 这片牧场可供10头牛吃20天,可供15头牛吃 10天.问:可供25头牛吃多少天?
3、一只船发现漏水时,已经进了一些水,水 匀速进入船内.如果10人淘水,3小时淘完;如 5人淘水8小时淘完.如果要求2小时淘完,要安 排多少人淘水?
相关文档
最新文档