六年级下册正比例和反比例的知识点
正比例和反比例六年级知识点
正比例和反比例六年级知识点一、正比例。
1. 定义。
- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
例如:汽车行驶的速度一定时,行驶的路程和时间就是成正比例的量。
因为路程÷时间 = 速度(一定)。
2. 表达式。
- 如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用式子表示为y = kx(k一定)。
3. 正比例关系的判断方法。
- 首先看这两种量是否是相关联的量,即一种量的变化会引起另一种量的变化。
然后看这两种量相对应的数的比值是否一定。
例如:购买苹果时,总价和数量是相关联的量,总价÷数量 = 单价,如果单价是固定不变的,那么总价和数量就成正比例关系。
4. 正比例关系的图像。
- 正比例关系的图像是一条经过原点的直线。
例如y = 2x,当x = 0时,y=0;当x = 1时,y = 2;当x = 2时,y = 4等等,把这些点(0,0)、(1,2)、(2,4)等连接起来就是一条直线。
二、反比例。
1. 定义。
- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
例如:当长方形的面积一定时,长和宽就是成反比例的量。
因为长×宽 = 面积(一定)。
2. 表达式。
- 如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系可以用式子表示为xy=k(k一定)。
3. 反比例关系的判断方法。
- 先确定两种量是否相关联,再看这两种量相对应的数的乘积是否一定。
例如:总路程一定时,速度和时间是相关联的量,速度×时间 = 路程(一定),所以速度和时间成反比例关系。
4. 反比例关系的图像。
- 反比例关系的图像是一条曲线。
例如xy = 6,当x = 1时,y = 6;当x = 2时,y = 3;当x = 3时,y = 2等,把这些点(1,6)、(2,3)、(3,2)等连接起来是一条曲线。
第4单元 正比例和反比例(学生版)
2022-2023学年北师大版六年级下册同步重难点讲义精讲精练第四单元正比例和反比例知识点一:变化的量1.相互关联的变量在一定条件下的变化是有规律的。
2.列表与画图都可以表示变量之间的变化关系。
分析表格时,要弄清两个变量及相对应的数据;分析图时,要弄清图中横轴、纵轴表示的量的名称,以及图中每一个点所对应的两个量的多少。
3.一般用含有字母的式子表示有规律的变量的变化规律,应先根据题中的条件写出等量关系式,再将等量关系式用字母表示出来。
1.成正比例的量的特征:一个量随着另一个量的变化而变化,在变化过程中这两个量的比值一定。
2.如果用x 和y 表示两个相关联的量,用k(一定)表示它们的比值,正比例关系可以表示为=k (一定)。
3.判断两个量是否成正比例的方法(1)首先,要确定这两个量是不是相关联的量(其中一个量是否随着另一个量的变化而变化);(2)其次,要根据两个变量之间的数值对应关系,计算出两个变量每一对数值的比值;(3)最后,根据比值是否一定来判断这两个变量是否成正比例。
知识点三:正比例图像1.成正比例的两个量表示的各点在同一条直线上,即正比例图象的特征是一条直线。
2.从正比例图象中可以得出任意一点所表示的意义。
3.观察正比例图象时,要先明确横轴、纵轴表示的意义,从图象中可以直观地看出两个量的变化情况,不需要计算,由一个量的值可以直接找到与它对应的另一个量的值。
知识点四:反比例1.成反比例的量的特征:一个量随着另一个量的变化而变化,在变化过程中这两个量的积一定。
2.如果用字母x 和y 表示两个相关联的量,用k(一定)表示它们的乘积,反比例关系可以表示为xy=k(一定)。
3.判断两个量是否成反比例的方法(1)首先,要确定这两个量是不是相关联的量(其中一个量是否随着另一个量的变化而变化);(2)其次,要根据两个变量之间的数值对应关系,计算出两个变量每一对数值的积;(3)最后,根据积是否一定来判断这两个变量是否成反比例。
六年级下册数学讲义-第四单元——比例:正比例和反比例人教版(含答案)
第四章 比例2.正比例和反比例【知识梳理】1.正比例的意义。
(1)意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
(2)正比例关系的字母表达式:xy =k (一定)。
要点提示:成比例的两种量必须是相关联的量,而两种相关联的量却不一定都成比例。
如两种量的和或差一定时,这两种量虽然是相关联的量,但不成比例。
2.正比例关系的图像。
正比例图像是一条从(0,0)出发的无限延伸的射线,线上所有点所对应的两个数的比值都相等。
3.反比例的意义。
(1)意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
(2)反比例关系的字母表达式:x×y =k (一定)。
4.判断两种量成正比例还是成反比例的方法。
关键看这两种相关联的量中相对应的两个数是比值一定还是乘积一定。
如果比值一定,就成正比例;如果乘积一定,就成反比例。
【诊断自测】1.填空。
(1)用字母表示的正比例关系式是( ),反比例式是( )。
(2)已知6x=4y ,x 和y 成( )比例,已知3x =y6,x 和y 成( )比例。
(3)单价一定,数量与总价成( )比例;数量一定,单价与总价成( )比例;总价一定,数量与单价成( )比例。
(4)当两个变量成反比例关系时,所绘成的图是一条( )。
2.选择。
(1)在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是( ),成反比例关系是( )。
A.汽车每次运货吨数一定,运货次数和运货总吨数。
B.汽车运货次数一定,每次运货的吨数和运货总吨数。
C.汽车运货总吨数一定,每次运货的吨数和运货的次数。
(2)乐乐从1楼爬到3楼共用了3分钟,那么从1楼爬到5楼要用( )分钟。
A.8B.6C.4(3)a÷b=c ,当c 一定时,a 和b ( );当a 一定时,b 和c ( );当b 一定时,a 和c ( )。
六年级下册正比例和反比例数学知识点
六年级下册正比例和反比例数学知识点一、变化的量生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。
二、正比例1. 正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:y/x=k(一定)。
2. 应用正比例的意义判断两种量是否成正比例:有些相关联的量,虽然也是一种量随着另一种量的变化而变化,但它们相对应的数的比值不一定,就不成正比例,如被减数与差,正方形的面积与边长等。
三、画一画正比例的图像是一条直线。
四、反比例1. 反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:xy=k(一定)。
2. 判断两个量是不是成反比例:要先想这两个量是不是相关联的量;再运用数量关系式进行判断,看这两个量的积是否一定;最后作出结论。
五、观察与探究当两个变量成反比例关系时,所绘成的图像是一条光滑曲线。
六、图形的放缩一幅图放大或缩小,只有按照相同的比来画,画的图才像。
七、比例尺1. 比例尺:图上距离与实际距离的比,叫做这幅图的比例尺。
图上距离=实际距离比例尺实际距离=图上距离比例尺2. 比例尺的分类:比例尺根据实际距离是缩小还是扩大,分为缩小比例尺和放大比例尺。
根据表现形式的不同,比例尺还可分为线段比例尺和数值比例尺。
3. 比例尺的应用:(1)、已知比例尺和图上距离,求实际距离课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
六年级数学下册正比例和反比例知识点
六年级数学下册正比例和反比例知识点一、内容概要正比例和反比例是六年级数学下册的重要知识点,简单来说正比例表示两个量成正比关系,当一个量增加时,另一个量也会增加,反之亦然。
好比速度和时间是常见的正比例例子,当速度加快时,需要的时间就会减少。
反比例则是当两个量中的其中一个增加时,另一个会减少。
像是你在爬山过程中体力消耗与海拔高度的关系,海拔越高体力消耗越大,反之越省力就是反比例的例子。
掌握这些知识可以帮助我们更好地理解生活中的各种现象,接下来我们将详细解析这两个概念的应用和解题方法。
1. 回顾数学基础知识,为学习正比例和反比例做铺垫亲爱的小朋友们,转眼间我们已经进入了六年级的数学之旅,那么今天我们来一起回顾一下前面学过的数学知识,为接下来要学习的正比例和反比例知识点做好铺垫吧!数学的世界总是充满了神奇的奥秘,让我们一步步走进这个奇妙的世界。
我们知道数学是生活中的一把钥匙,它能帮助我们解决很多有趣的问题。
在学习正比例和反比例之前,我们要先打好基础。
回顾一下我们之前学过的关于数量和数量之间的关系的知识,比如当我们买文具时,文具的数量和总价之间就有一种特殊的关系。
买一支笔和买十支笔的价格是不一样的,这就是数量和价格之间的关系。
这就是我们接下来要学习的正比例和反比例的基础,你们准备好了吗?接下来我们要更深入地去探索这种关系的奥秘!2. 简述正比例和反比例的概念及其在实际生活中的应用反比例呢?它与正比例相反,当一个量变大时,另一个量就会变小。
比如说你在调节电视机的音量和亮度时,通常音量越大,电视屏幕的亮度就越低,因为电视的音量和亮度就是一对反比例关系。
再如开车的时候,车速越慢反而里程消耗越多;一个钟表转得越慢它行走的总圈数就越大等生活中都可以发现反比例的例子。
明白正比例和反比例的概念后,我们就可以更好地理解和解决生活中的很多问题啦!二、正比例知识点我们知道生活中有很多事物之间是有关系的,比如你吃的零食越多,肚子就越容易饱。
完整版)六年级数学正反比例
完整版)六年级数学正反比例正,反比例正比例和反比例是初中数学中的重要概念。
下面我们来整理一下相关知识点。
判断两种量是否成正比例,需要看它们是否相关联,一种量变化时,另一种量是否随之变化,以及它们的比值是否一定。
我们可以用字母x和y表示这两种量,用k表示它们的比值,正比例关系可以用y=kx表示。
判断两种量是否成反比例,同样需要看它们是否相关联,一种量变化时,另一种量是否随之变化,以及它们的乘积是否一定。
我们可以用字母x和y表示这两种量,用k表示它们的乘积,反比例关系可以用xy=k表示。
常见的正反比例题型包括圆的周长和半径、圆的面积和半径、平行四边形面积一定时的底和高等。
下面是一些典型例题:例1:某车间造纸时间和造纸总吨数的数据如下表所示。
我们可以在坐标系中描出对应的点,并根据图像的特点判断它们成正比例关系。
例2:这道题列举了多种量的情况,需要判断它们是否成比例,如果成比例,是正比例还是反比例。
例3:这道题给出了3:A = 5:B的比例关系,需要求出A与B的比例关系。
根据比例的性质,可以得出A与B成反比例关系。
2.如果3:B = A:5,则A与B成什么比例?为什么?根据题意,可以得到以下等式:3:B = A:5将等式两边乘以5,得到:15:B = A因此,A与B成15:B的比例。
这是因为等式中的比例关系是等价的,即3:B与A:5是等价的,所以它们的比例关系也是等价的。
因此,可以通过等式中的比例关系来确定A与B之间的比例关系。
举一反三:1.a和b相关联的两种量,下面哪个式子表示a和b成正比例?⑤b=7a因为当a增加时,b也会增加,且它们之间的比例关系保持不变,因此a和b成正比例。
2.x、y、z是三种相关联的量,已知x×y=z。
当(x+z)一定时,(y+z)和(y-x)成正比例。
拓展提升:1.如果ab=24,那么a和b成反比例;如果a÷b=18,那么a和b成正比例。
2.一个比例式,两个外项之和是37,差是13,两个比的比值是2.5,那么比例式为5:2.3.甲乙两人步行速度之比是7:5,甲乙分别从a、b两地同时出发,如果相向而行,0.5小时后相遇,如果他们同向而行,那么甲追上乙需要多长时间?题型一:按要求选四个数字组成各一个比例式子12的因数有1、2、3、4、6、12,选四个数字可以得到比例式1:2:3:4.举一反三:1.从36的因数有1、2、3、4、6、9、12、18、36,选四个数字可以得到比例式1:2:3:6.2.写出一个比值是24的比例式是3:1.题型五:人员调配问题一个车间有两个小组,第一个小组与第二个小组的人数比是5:3.如果第一个小组的14人到了第二个小组时,第一小组与第二小组的人数比是1:2,原来两个小组各有多少人?设第一个小组原来有5x人,第二个小组原来有3x人,则有以下等式:5x-14 : 3x+14 = 1 : 2解方程得到x=14,因此第一个小组原来有70人,第二个小组原来有42人。
(完整版)六年级下册正比例和反比例的知识点
知识点:
1变化的量:一种量变化,另一种量也随着变化。
2正比例:意义两种相关的量一种量变化另外一种量也随着变化,如果它们的的比值一定(也就是商一定),那么它们之间就成正比例关系。
A ÷B=K (一定)除法关系 B
A =K (一定)
3判断正比例的关系
两种相关的量,一种量随着另一种的变化而变化(同时扩大或者同时缩小)
当它们比值一定时,成正比例
正比例的图像是:一条直线
4.反比例
意义:两种相关的量,一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例关系。
5判断反比例的方法
两种相关的量,一种量变化另一种量随着变化(一种量增加另一种量随着缩小)相反的 积一定 当它们的乘积一定时,成反比例关系
反比例的图像是:一条曲线
6比例尺
比例尺:图上距离和实际距离的比,叫做这幅图的比例尺
图上距离÷实际距离=比例尺 (注意:单位 )
图上距离÷比例尺=实际距离
实际距离×比例尺=图上距离
7比例尺的分类
线段比例尺
数值比例尺
(根据比例尺扩大的就× 根据比例尺缩小就÷)。
六年级数学知识点:正比例与反比例
六年级数学知识点:正比例与反比例六年级数学知识点:正比例与正比例什么叫正比例?两种相关联的量,一种质变化,另一种量也随着化,假设这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k(k一定)或kx=y正比例的意义满足关系式y/x=k(k为常量)的两个变量,我们称这两个变量的关系成正比例。
显然,假定y与x成正比例,那么y/x=k(k为常量);反之亦然。
例如:内行程效果中,假定速度一定时,那么路程与时间成正比例;在工程效果中,假定任务效率一定时,那么任务总量与任务时间成正比例。
留意:k不能等于0.正比例的例子:正方形的周长与边长(比值4)。
圆的周长与直径(比值π)。
购置的总价与购置的数量(比值单价)。
路程的例子:1.速度一定,路程和时间成正比例。
2.时间一定,路程和速度成正比例。
长方形面积:面积一定,长和宽成正比例。
都是定一个,变一个。
例如aX=Y中,a不变,那么X与Y 成正比例。
正比例和正比例相反与联络相反之处1.事物关系中都有两个变量,一个常量。
2.在两个变量中,当一个变量发作变化时,那么另一个变量也随之发作变化。
3.相对应的两个变数的积或商都是一定的。
相互转化当正比例中的x值(自变量的值)也转化为它的倒数时,由正比例转化为正比例;当正比例中的x值(自变量的值)转化为它的倒数时,由正比例转化为正比例。
2021年小升初数学正比例的定义及考点什么叫正比例?两种相关联的量,一种质变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。
这两种量叫做成正比例的量。
它们的关系叫做正比例关系。
用k=y*x(一定)x不等于0,k不等于0来表示。
复杂点来说,就是假设一样事物添加了,另一样事物增加,他增加了,另一样事物添加,这两个事物的关系就叫做正比例。
正比例的意义满足关系式xy=k(k为常量)的两个变量,我们称这两个变量的关系成正比例;显然,假定y与x成正比例,那么xy=k(k为常量);反之亦然。
六年级下册正反比例公式归纳总结
六年级下册数学正反比例公式及练习一、根据下面的关系式,说出哪种量一定,哪两种量成什么比例。
1、总价=单价×数量。
(单价)一定,(总价)和(数量)成正比例。
(数量)一定,(总价)和(单价)成正比例。
(总价)一定,(单价)和(数量)成反比例。
2、路程=速度×时间。
(速度)一定,(路程)和(时间)成正比例。
(时间)一定,(路程)和(速度)成正比例。
(路程)一定,(速度)和(时间)成反比例。
3、在被除数、除数、商这三种量中(商)一定,(被除数)和(除数)成正比例。
(除数)一定,(被除数)和(商)成正比例。
(被除数)一定,(除数)和(商)成反比例。
4、在比的前项、比的后项、比值这三种量中(比值)一定,(比的前项)和(比的后项)成正比例。
(比的后项)一定,(比的前项)和(比值)成正比例。
(比的前项)一定,(比的后次)和(比值)成反比例。
5、工作总量=工作效率×工作时间。
(工作效率)一定,(工作总量)和(工作时间)成正比例。
(工作时间)一定,(工作总量)和(工作效率)成正比例。
(工作总量)一定,(工作效率)和(工作时间)成反比例。
6、当a×b=c(a、b、c为三种量,且均不为0)。
( a )一定,( c )和( b )成正比例。
( b )一定,( c )和( a )成正比例。
( c )一定,( a )和( b )成反比例7、长方形面积=长×宽。
(长)一定,(长方形面积)和(宽)成正比例。
(宽)一定,(长方形面积)和(长)成正比例。
(长方形面积)一定,(长)和(宽)成反比例。
8、图上距离:实际距离=比例尺。
(比例尺)一定,(图上距离)和(实际距离)成正比例。
(实际距离)一定,(图上距离)和(比例尺)成正比例。
(图上距离)一定,(实际距离)和(比例尺)成反比例。
9、总个数=每天生产的个数×生产天数。
(每天生产的个数)一定,(总个数)和(生产天数)成正比例。
六年级数学下册《正比例和反比例》知识点及重点
六年级数学下册《正比例和反比例》知识点及重点
题,开学预习
《正比例和反比例》知识点及重点题
知识点
1.在速度、路程和时间这三个量中,如果(速度)一定,(时间)和(路程)成正比例;如果(路程)一定,(速度)和(时间)成反比例。
2.如果xy=3,则x和y成(反)比例;如果x=
3y(x,y均不为0),则x和y成(正)比例。
3.成正比例的两个量的(比值)一定。
练习题
1.下面是甲、乙、丙、丁四辆车从A地到B地所用的时间和速度情况。
②一辆客车从A地到B地用了4分。
这辆客车平均每分行驶多少米?
1000×5÷4=1250(米)
2.一列动车匀速行驶,路程与时间的关系如下表。
车从甲地到乙地需要多少小时?
解:设这列动车从甲地到乙地需要x时。
550∶2=1650∶x
x=6
②如果这列动车行驶了1时30分,那么行驶的路程是多少千米?
解:设行驶的路程是x千米。
1时30分=1.5时
550∶2=x∶1.5
x=412.5
3.某工厂生产一批机器零件,现在生产每个零件所用的时间由更新设备前的9分减少到4分。
原来生产80个零件所用的时间,现在能生产多少个零件?
解:设现在能生产x个零件。
4x=80×9
x=180。
六年级数学下册 第06讲 正比例和反比例-单元知识盘点+易错题专训(苏教版)
第06讲正比例和反比例知识盘点一、正比例的意义1.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就是成正比例的量,它们的关系就叫作成正比例关系。
2.如果用x和y表示两种相关联的量,用k表示它们的比值,则正比例关系可=k(一定)。
以表示为yy3.有些相关联的量,虽然也是一种量随着另一种量的变化而变化,但是它们相对应的数的比值不一定,它们就不成正比例。
4.正比例关系的判断方法。
(1)首先判断这两种量是不是相关联的量。
(2)再看这两种量相对应的两个数的比值是否一定。
比值一定,这两种量成正比例;反之,不成正比例。
5.正比例图像。
(1)表示成正比例的两种量中相对应的各点在同一条直线上,即正比例的图像是一条经过原点的直线。
(2)从图像中可以直观地看出两种量的变化情况。
(3)借助图像,可以由一个量的值找到对应的另一个量的值。
二、认识成反比例的量1.反比例的意义。
(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就是成反比例的量,它们的关系就叫作成反比例关系。
(2)如果用x和y表示两种相关联的量,用k表示它们的积,则反比例关系可以表示为x×y=k(一定)。
2.反比例关系的判断方法。
(1)看这两种量是不是相关联的量。
(2)再看这两种量中相对应的两个数的积是否一定。
积一定,这两种量就成反比例,否则就不成反比例。
三、成反比例的两种量,也可以在方格纸上画图来表示例:速度/(千米/150 100 75 60 50时)时间/时 2 3 4 5 6(1)纵轴表示速度,单位是“千米/时”,每1小格表示25千米/时。
横轴表示时间,单位是“时”,每1小格表示1小时。
表格中的每一组数据都可以用一个点表示。
(2)画反比例图像时,先根据每一组数据描点,然后顺次连接,画的线要流畅。
典型精讲知识点一认识正比例的量1.下面说法中,不正确的有()句。
六年级下学期第四单元 正比例与反比例 非常详细知识点总结+题型训练+课后练习,所有习题 带答案
考点三、正比例系的必须是两个量,可以取不同数值的两个量,不能是具体的数字。
4、生活中正比例的例子:(1)正方形的周长与边长成正比例关系。
(2)如果汽车行驶速度一定,路程与时间成正比例关系。
(3)平行四边形的高一定,面积和底成正比例关系。
【练习三】一、判断(1)如果3x=8y ,那么y 与x 成正比例。
( )(2)黄豆的出油率一定,榨出豆油的重量和所需要的黄豆的重量成正比例( )(3)装订每个练习本所用纸的页数一定,装订的本数和所需要的纸的总张数成正比例。
( )(4)如果14x =20y ,那么y 与x 成正比例。
( ) (5)一个加数不变,和与另一个加数成正比例。
( )(6)小明的身高和体重。
( )(7)长方形的周长一定,长和宽。
( )(8)收入一定,支出和结余。
二、判断下面语句中的两个量是否成正比例关系,是打√,不是打×(1)平行四边形的高一定,它的面积和底( )(2)被减数一定,减数和差。
( )(3)单价一定,总价和数量。
( )(4)分母一定,分子和数值。
( )(5)少先队员每人做好事的件数一定,做好事的总件数和做好事的少先队员的人数。
( )三、填空题1、《中古少年报》的总份数和总价是两种像关联的量,总份数扩大,总价也随着( ),如果总份数缩小,总价也随着( ),这两种量中( )的两个数的( )一定,也就是( )一定,《中国少年报》的总价和总份数成( )关系。
2、已知a ÷b=5,(a 和b 均不为0),则a 和b 是成( )的量,他们的关系叫做( )关系。
3、每台电视机的价格一定,购买电视机的台数和钱数成( )比例。
4、甲数的34相当于乙数的23。
甲数与乙数的比是( )。
5、5X =4Y,X 与Y 成( )比例。
6、全班人数一定,出勤人数和出勤率成( )比例。
7、已知圆的半径是r ,直径是d ,周婵是C ,面积是S ,用字母表示数量关系 d=( ),C=( ),S=( )这四个量中,哪两个量成正比例关系,请你写出一个来。
正反比例的知识点归纳总结
正反比例的知识点归纳总结正反比例是数学中一个重要的概念,它描述的是两个变量之间的关系。
在正反比例中,当一个变量的值增加时,与之相关联的另一个变量的值会减少;反之亦然。
这种关系在现实生活中也有很多应用,比如说汽车的速度与行驶时间、工人的数量与完成工作的时间等等。
在这篇文章中,我们将对正反比例的相关知识点进行归纳总结,从基本概念到实际应用,帮助大家更好地理解并掌握这一概念。
1. 基本概念在正反比例中,我们通常用变量x和y来表示两个相关联的量。
如果当x增加时,y减少,我们称之为正比例;反之亦然,我们称之为反比例。
通常我们使用y=kx来表示正比例关系,其中k是一个常数;使用y=k/x来表示反比例关系,同样k也是一个常数。
这两种关系的图像分别是直线和曲线。
2. 正比例的性质对于正比例关系,当x增加时,y也会按照一定的比例增加。
如果我们知道其中一个变量的值,通过这个比例关系,我们就可以计算出另一个变量的值。
正比例关系通常在现实生活中有很多应用,比如说物体的重量和体积、时间和距离等等。
在这些情况下,我们可以利用正比例关系来进行一些问题的求解。
3. 反比例的性质对于反比例关系,当x增加时,y会按照一个倒数的比例减少。
这意味着当x变得越大,y的变化越小。
反比例关系在现实生活中也有着很多的应用,比如说密度和体积、速度和时间等等。
在这些情况下,我们同样可以利用反比例关系来进行一些问题的求解。
4. 正反比例的图像正比例的图像通常是一条通过原点的直线,而反比例的图像则是一个经过原点的曲线。
在图像中,我们可以清晰地看到这两种关系的特点,通过图像我们也能更好地理解正反比例关系。
5. 比例两端乘除法在正反比例的计算中,我们通常会用到比例两端乘除法。
这个方法是通过将等式两边同时乘以一个相同的数或者除以一个相同的数来求解未知变量。
这种方法在解决实际问题中非常有用,它能够帮助我们更快地找到问题的答案。
6. 实际应用正反比例在现实生活中有着很多的应用。
六年级下册数学-正比例与反比例
• 小明家正东方向600米处有座图书大厦,图书大厦西 偏北70度方向400米处有个科技馆,科技馆的东偏南 25度方向800米处有个邮局。选择合适的比例尺,再 平面图上画出这些地点。
.
小明家
(3)反比例的意义:两种相关联的量, 一种量变化,另一种量也随着变化,如 果这两种量中相对应的两个量的积一定, 那么这两种量就叫做成反比例的量,它 们的关系叫做反比例关系。
字母公式:X×Y=K(一定)
(4)比例尺的意义: 图上距离:实际距离=比例尺
(5)比例尺的分类: 数值比例尺 如:1:8000000正比例、反 Nhomakorabea例、比例尺
(1)正比例的意义:两种相关联的量,一种量 变化,另一种量也随着变化,如果这两种量中 的对应的两个量的比值(或者说商)一定,这 两种量就叫做成正比例的量,它们的关系叫做 正比例关系。
字母公式: y÷x=k(一定) (2)当两个变量成正比例关系时,所绘出的
图 是一条直线,也就是说所有的点都在同 一条直线上。
线段比例尺 如:0 30 60 90km
1. 生活中有哪些成正比例的例子? 2. 生活中有哪些成反比例的例子?
判断下列各题中的两个量是否成比例,成什么比例? 并说明理由。
1 用砖块铺地,每块砖的大小和所需的块数。 (反比例 ) 2 比的前项一定,比的后项与比值。( 反比例 ) 3 圆柱的侧面积一定,底面周长和高。 ( 反比例 ) 4 六一班的出勤率一定,出勤人数和总人数 。 ( 正比例 ) 5 一条绳的长度一定,剪去部分和剩下的部分.( 不成比例 ) 6 圆锥的体积一定,底面积和高 。( 反比例 ) 7 长方形的周长一定,长和宽 。( 不成比例 ) 8 订阅<少年报>的份数和总价 。 ( 正比例 ) 9 正方形的面积和边长 。( 不成比例 ) 10 圆的直径和周长。( 正比例 )
小学六年级:数学基础知识(正比例与反比例)
小学六年级:数学基础知识(正比例与反比例)什么叫正比例?两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k(k一定)或kx=y正比例的意义满足关系式y/x=k(k为常量)的两个变量,我们称这两个变量的关系成正比例.显然,若y与x成正比例,则y/x=k(k为常量);反之亦然。
例如:在行程问题中,若速度一定时,则路程与时间成正比例;在工程问题中,若工作效率一定时,则工作总量与工作时间成正比例。
注意:k不能等于0。
正比例的例子:正方形的周长与边长(比值4).圆的周长与直径(比值π)。
购买的总价与购买的数量(比值单价)。
路程的例子:1.速度一定,路程和时间成正比例.2.时间一定,路程和速度成正比例。
长方形面积:面积一定,长和宽成反比例.都是定一个,变一个。
例如aX=Y中,a不变,则X与Y成正比例。
正比例和反比例相同与联系相同之处1。
事物关系中都有两个变量,一个常量。
2.在两个变量中,当一个变量发生变化时,则另一个变量也随之发生变化。
3.相对应的两个变数的积或商都是一定的。
相互转化当反比例中的x值(自变量的值)也转化为它的倒数时,由反比例转化为正比例;当正比例中的x值(自变量的值)转化为它的倒数时,由正比例转化为反比例。
2016年小升初数学反比例的定义及考点什么叫反比例?两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定.这两种量叫做成反比例的量。
它们的关系叫做反比例关系.用k=y*x(一定)x不等于0,k不等于0来表示。
简单点来说,就是如果一样事物增加了,另一样事物减少,他减少了,另一样事物增加,这两个事物的关系就叫做反比例.反比例的意义满足关系式xy=k(k为常量)的两个变量,我们称这两个变量的关系成反比例;显然,若y与x成反比例,则xy=k(k为常量);反之亦然。
苏科版六年级下册正比例与反比例单元复习知识梳理与例题讲解
学科教师辅导教案授课类型复习(正比例和反比例)教学目标掌握正比例和反比例的意义及图形星级★★★★授课日期及时段进知识梳理知识点一:正比例的意义及应用(1)正比例的定义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(在除法中是叫做商)一定,那么这两个量叫做成正比例的量,它们的关系叫做成正比例关系。
(2)如果用字母 x 和 y 分别表示两种相关的量,用 k 表示它们的比值(一定),正比例关系式可用x/y=k。
(3)判断两种量是否成正比例的应用方法:○1、判断两个是否相关联;○2、判断这两个量的比值是否一定,比值一定就成正比例关系;反之不成正比例关系。
(简说:用除法,商一定,成正比)知识点二:正比例的图像正比例图像是一条直线。
从图像中,可以直观看到两种量的变化情况,由一个量的值可以直接找到对应的另一个量的值。
知识点三:反比例的意义及应用(1)反比例的定义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,那么这两个量叫做成反比例的量,它们的关系叫做成反比例关系。
(2)如果用字母 x 和 y 分别表示两种相关的量,用 k 表示它们的比值(一定),反比例关系式可用x ×y=k。
(3)判断两种量是否成反比例的应用方法: 1、判断两个是否相关联;2、判断这两个量的积是否一定,积一定就成反比例关系;反之不成反比例关系。
(简说:用乘法,积一定,成反比)知识点四:解题方法:(1)判断题目中相关联的量成什么关系,列出等量关系式;(2)设未知数,列方程;(3)解方程并检验写答。
考点1:正反比例的辨别例1.判断下面的两个量成正比例、反比例还是不成比例.①圆的周长和半径.②圆的面积和半径.③正方形的周长和边长.④圆柱的侧面积一定,圆柱的高和底面的半径.⑤一个自然数和它的倒数.⑥比例尺一定,图上距离和实际距离..练一练1.甲、乙是两个相关联的量,a,c和b,(d a,c,b,d均不为0)是两组相对应的值,如下表.甲a b乙c d(1)如果甲、乙成正比例,那么a⨯=⨯.(2)如果甲、乙成反比例,那么⨯=⨯.2.x、y、z三个相关联的量,并有xy z=.(1)当z一定时,x与y成反比例关系.(2)当x一定时,z与y成比例关系.(3)当y一定时,z与x成比例关系.3.判断下面各题中的两个量,哪些成正比例?哪些成反比例,哪些不成比例?填入横线内.(1)正方形的周长与边长.(2)小丽步行上学的平均速度与所花时间.(3)一个人的身高和年龄.(4)三角形的面积一定,它的底和高.(5)一捆100米长的电线,用去的长度和剩下的长度..例2.乘车人数与所付的车费如下表:人数/人0 1 2 3 4 ⋯25 ⋯车费/元0 5 10 15 20 ⋯⋯(1)仿照图中已经描出的两个点,根据上表中数据再描出各个点,然后连接各点,你发现了什么?(2)乘车人数与所付车费有什么关系?如果有25人乘车,车费是多少元?练一练:1.如图各图反映了x、y两种量的关系.图中,x、y成正比例.3.一辆自行车每时行15km.(1)填表.时间/时123456⋯⋯路程/km1530⋯⋯(2)根据表中数据先在图中描出时间和路程对应的点再依次连接各点.(3)时间和路程成正比例吗?说明理由(4)利用图象估计3.5时行多少千米?行70km约需多少时?例3.一列火车从甲城开往乙城,前3小时行驶210千米,照这样计算,再行4.5小时就可以到达乙城,甲乙两城共多少千米?(用比例解)练一练:1.在比例尺是1:35000000地图上,量得北京到杭州的铁路长4.7厘米,这条铁路实际长多少千米?(用两种方法)2.法国巴黎的埃菲尔铁塔高320m.北京的“世界公园”里有一座埃菲尔铁塔的模型,它的高度与原塔高度的比是1:10.这座模型高多少米?(用比例解)3.某工程队要铺设一条公路,前20天已铺设了2.8千米,照这样计算,剩下的4.2千米,还要多少天才能铺完?(用比例解)例4.铺地砖:(1)小芳家的客厅是一个长方形,按原计划选用边长是4分米的方砖需250块.如果改用边长5分米的方砖来铺需多少块?(用比例解)(2)从价格方面考虑,选用哪种地砖较合适?(边长4分米的每块12.8元,铺每平方米手工费13元;边长5分米的每块22元,铺每平方米手工费8元).练一练:1.某工厂四月份(30天)计划生产一批零件,平均每天要生产400个才能完成任务,实际上前6天就生产了3000个.照这样计算,完成原计划任务要用多少天?(分别用正、反比例解)2.某厂生产一批水泥,原计划每天生产150吨,20天可以完成任务.实际每天比原计划增产13,实际可以少用几天?(用比例解)3.刘师傅要加工一批零件,每小时加工40个,3小时可以完成,如果要提1小时完成任务,工作效率需提高百分之几?(用比例的方法解)出门测1.当路程一定时,速度与时间成 比例. 当比例尺一定时,图上距离与实际距离成 比例. 当煤的总吨数一定时,用去的吨数与剩下的吨数 比例. 2.如果4xy =,(x 、y 均不为0)那么x 和y 成 比例;如果4x y =,那么x 和y 成 比例.3.在式子bc a=中,如果c 一定,b 和a 成 比例;如果b 一定,那么c 和a 成 比例. 4.如果33yx =,x 和y 成 比例;如果12x y =,x 和y 成 比例()x y ≠ 5.同一时间、同一地点测得树高和影长的数据如表:树高/m 2 3 4 6 影长/m1.62.43.24.8(1)在图中描出表示树高和对应影长的点,然后把它们连起来.(2)连线以后观察,它们是在一条直线上吗? ,说明树高和影长成 关系. (3)不计算,利用图象判断,树高8米时,影长 米?影长4米时,树高 米?6.在比例尺是1:6000000的地图上,AB 两地间的距离是16厘米. (1)AB 两地间的实际距离是多少千米?(2)一列火车由A 到B 用了3小时,火车每小时行多少千米?。
人教版数学六年级下册正比例反比例知识结构图
=k(一定)
反
比
例
两种量中相对应的两个数的积一定。
x×y=k(一定)
人教版数学六年级下册正比例与反比例知识点结构图正比例和反比例的区别与联系相同点不同点特征关系式正比例两种相关联的量一种量变化另一种量也随着变化
人教版数学六年级下册《正比例与反比例》知识点结构图
正比例和反比例的区别联系
相同点
不 同 点
特 征
关系式
正
比
例
两种相关联的量,一种量变化,另一种量也随着变化。
正比例和反比例知识点是什么
正比例和反比例知识点是什么大部分同学们对正反比例的概念还停留在表面,那么正反比例的知识点有哪些呢。
以下是由编辑为大家整理的“正比例和反比例知识点是什么”,仅供参考,欢迎大家阅读。
正比例和反比例知识点一、变化的量生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。
二、正比例1. 正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:y/x=k(一定)。
2. 应用正比例的意义判断两种量是否成正比例:有些相关联的量,虽然也是一种量随着另一种量的变化而变化,但它们相对应的数的比值不一定,就不成正比例,如被减数与差,正方形的面积与边长等。
三.画一画正比例的图像是一条直线。
四、反比例1. 反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:x·y=k(一定)。
2. 判断两个量是不是成反比例:要先想这两个量是不是相关联的量;再运用数量关系式进行判断,看这两个量的积是否一定;最后作出结论。
拓展阅读:正比例和反比例什么叫正比例两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x×y = k( k一定)或k / x = y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级下册第二单元知识点
1变化的量:一种量变化,另一种量也随着变化。
2正比例:意义两种相关的量一种量变化另外一种量也随着变化,如果它们的的比值一定(也就是商一定),那么它们之间就成正比例关系。
A=K(一定)
A÷B=K(一定)除法关系
B
3判断正比例的关系
两种相关的量,一种量随着另一种的变化而变化(同时扩大或者同时缩小)
当它们比值一定时,成正比例
正比例的图像是:一条直线
4.反比例
意义:两种相关的量,一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例关系。
5判断反比例的方法
两种相关的量,一种量变化另一种量随着变化(一种量增加另一种量随着缩小)相反的积一定
当它们的乘积一定时,成反比例关系
反比例的图像是:一条曲线
6比例尺
比例尺:图上距离和实际距离的比,叫做这幅图的比例尺
图上距离÷实际距离=比例尺(注意:单位)
图上距离÷比例尺=实际距离
实际距离×比例尺=图上距离
7比例尺的分类
线段比例尺
数值比例尺
(根据比例尺扩大的就×根据比例尺缩小就÷)。