题型分类突破数学文科第二篇考点二
第二章 有理数及其运算(知识归纳+题型突破)(解析版)

第二章有理数1.了解具有相反意义的量,正负数的概念;2.理解有理数、相反数、绝对值、倒数的概念,能正确解题;3.理解数轴的概念,并能正确画出数轴,,在数轴上表示数;4.理解有理数加法、减法、乘法、除法法则、;5.理解有理数乘方定义及运算;6.能掌握加法、减法的运算定律和运算技巧,熟练计算;能掌握乘法的运算定律和运算技巧,熟练计算;7.通过将减法转化成加法和将除法转化成乘法,初步培养学生数学的归一思想8.进一步掌握有理数的五则混合运算;9.理解科学记数法,了解近似数;10.能运用科学记数法表示较大的数.知识点1 正数和负数1.概念正数:大于0的数叫做正数。
负数:在正数前面加上负号“—”的数叫做负数。
注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。
(不是带“—”号的数都是负数,而是在正数前加“—”的数。
)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
知识点2:有理数1.概念整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数知识点3:数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。
比较大小:在数轴上,右边的数总比左边的数大。
3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)知识点3 :相反数1.概念代数:只有符号不同的两个数叫做相反数。
(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
2020年 高考数学(文科)总复习超级详细讲解 效率提分之第2章 2.3

§2.3函数的奇偶性与周期性考情考向分析以理解函数的奇偶性、会用函数的奇偶性为主,常与函数的单调性、周期性交汇命题,加强函数与方程思想、转化与化归思想的应用意识,题型以填空题为主,中等偏上难度.1.函数的奇偶性2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.概念方法微思考1.如果已知函数f(x),g(x)的奇偶性,那么函数f(x)±g(x),f(x)·g(x)的奇偶性有什么结论?提示在函数f(x),g(x)公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.已知函数f(x)满足下列条件,你能得到什么结论?(1)f(x+a)=-f(x)(a≠0).(2)f(x+a)=1f(x)(a≠0).(3)f(x+a)=f(x+b)(a≠b).提示(1)T=2|a|(2)T=2|a|(3)T=|a-b|题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y=x2,x∈(0,+∞)是偶函数.(×)(2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×)(3)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√)(4)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)题组二教材改编2.[P45习题T11]已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=x(1+x),则f(-1)=________.答案-2解析f(1)=1×2=2,又f(x)为奇函数,∴f(-1)=-f(1)=-2.3.[P43练习T4]函数y=f(x)为(-∞,+∞)上的偶函数,且f(|a|)=3,则f(-a)=________. 答案 3解析若a≥0,则f(-a)=f(a)=f(|a|)=3;若a<0,则f(-a)=f(|a|)=3.故对a∈R,总有f(-a)=3.4.[P45习题T8]若函数f(x)=(x+1)(x-a)为偶函数,则a=________.答案 1解析∵f(x)=(x+1)(x-a)=x2+(1-a)x-a为偶函数,∴f(-x)=f(x)对x∈R恒成立,∴(1-a)x=(a-1)x恒成立,∴1-a=0,∴a=1.题组三 易错自纠5.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 答案 13解析 ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.6.偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)=________. 答案 3解析 ∵f (x )为偶函数,∴f (-1)=f (1). 又f (x )的图象关于直线x =2对称, ∴f (1)=f (3). ∴f (-1)=3.题型一 函数奇偶性的判断例1 判断下列函数的奇偶性: (1)f (x )=36-x 2+x 2-36; (2)f (x )=ln (1-x 2)|x -2|-2;(3)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0.解 (1)由⎩⎪⎨⎪⎧36-x 2≥0,x 2-36≥0,得x 2=36,解得x =±6,即函数f (x )的定义域为{-6,6},关于原点对称, ∴f (x )=36-x 2+x 2-36=0. ∴f (-x )=-f (x )且f (-x )=f (x ), ∴函数f (x )既是奇函数又是偶函数.(2)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|≠2,得定义域为(-1,0)∪(0,1),关于原点对称.∴x -2<0,∴|x -2|-2=-x , ∴f (x )=ln (1-x 2)-x.又∵f (-x )=ln[1-(-x )2]x =ln (1-x 2)x =-f (x ),∴函数f (x )为奇函数.(3)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称. ∵当x <0时,-x >0,则f (-x )=-(-x )2-x =-x 2-x =-f (x );当x>0时,-x<0,则f(-x)=(-x)2-x=x2-x=-f(x);综上可知,对于定义域内的任意x,总有f(-x)=-f(x),∴函数f(x)为奇函数.思维升华判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数)是否成立.跟踪训练1 (1)定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sin x中,奇函数的个数是________.答案 2解析函数y=x3,y=2sin x为奇函数,y=2x为非奇非偶函数,y=x2+1为偶函数,故奇函数的个数是2.(2)函数f(x)=lg|sin x|是________.(填序号)①最小正周期为π的奇函数;②最小正周期为2π的奇函数;③最小正周期为π的偶函数;④最小正周期为2π的偶函数.答案③解析易知函数的定义域为{x|x≠kπ,k∈Z},关于原点对称,又f(-x)=lg|sin(-x)|=lg|-sin x|=lg|sin x|=f(x),所以f(x)是偶函数,又函数y=|sin x|的最小正周期为π,所以函数f(x)=lg|sin x|是最小正周期为π的偶函数.题型二 函数的周期性及其应用1.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=________. 答案 -2解析 f (7)=f (-1)=-f (1)=-2.2.已知定义在R 上的函数f (x )满足f (2)=2-3,且对任意的x 都有f (x +2)=1-f (x ),则f (2 020)=________. 答案 -2- 3解析 由f (x +2)=1-f (x ),得f (x +4)=1-f (x +2)=f (x ),所以函数f (x )的周期为4,所以f (2 020)=f (4).因为f (2+2)=1-f (2),所以f (4)=-1f (2)=-12-3=-2- 3.故f (2 020)=-2- 3.3.已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________. 答案 6解析 ∵f (x +4)=f (x -2),∴f ((x +2)+4)=f ((x +2)-2),即f (x +6)=f (x ), ∴f (x )是周期为6的周期函数, ∴f (919)=f (153×6+1)=f (1). 又f (x )是定义在R 上的偶函数, ∴f (1)=f (-1)=6,即f (919)=6.4.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x <1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 答案2-1解析 依题意知:函数f (x )为奇函数且周期为2, 则f (1)+f (-1)=0,f (-1)=f (1),即f (1)=0. ∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52 =f ⎝⎛⎭⎫12+0+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (0) =122-1+20-1 =2-1.思维升华 利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.题型三 函数性质的综合应用命题点1 求函数值或函数解析式例 2 (1)设f (x )是定义在R 上周期为4的奇函数,若在区间[-2,0)∪(0,2]上,f (x )=⎩⎪⎨⎪⎧ax +b ,-2≤x <0,ax -1,0<x ≤2,则f (2 021)=________. 答案 -12解析 设0<x ≤2,则-2≤-x <0,f (-x )=-ax +b .因为f (x )是定义在R 上周期为4的奇函数,所以f (-x )=-f (x )=-ax +1=-ax +b ,所以b =1.而f (-2)=f (-2+4)=f (2),所以-2a +b =2a -1,解得a =12,所以f (2 021)=f (1)=12×1-1=-12.(2)已知f (x )为偶函数,当x ≤0时,f (x )=e-x -1-x ,则f (x )=________.答案 ⎩⎪⎨⎪⎧e-x -1-x ,x ≤0,e x -1+x ,x >0 解析 ∵当x >0时,-x <0, ∴f (x )=f (-x )=e x -1+x ,∴f (x )=⎩⎪⎨⎪⎧e -x -1-x ,x ≤0,e x -1+x ,x >0.命题点2 求参数问题例3 (1)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =__________. 答案 1解析 ∵f (-x )=f (x ),∴-x ln(a +x 2-x )=x ln(x +a +x 2), ∴ln[(a +x 2)2-x 2]=0. ∴ln a =0,∴a =1.(2)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫32,则a +3b 的值为________. 答案 -10解析 因为f (x )是定义在R 上且周期为2的函数, 所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12且f (-1)=f (1), 故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12, 从而12b +212+1=-12a +1,即3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22,即b =-2a .②由①②得a =2,b =-4,从而a +3b =-10.(3)已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=-x 2+ax -1-a ,若函数f (x )为R 上的减函数,则a 的取值范围是____________. 答案 [-1,0]解析 因为函数f (x )是R 上的奇函数,所以f (0)=0,若函数f (x )为R 上的减函数,则满足当x >0时,函数为减函数,且-1-a ≤0,此时⎩⎪⎨⎪⎧-a -2=a 2≤0,-1-a ≤0,即⎩⎪⎨⎪⎧a ≤0,a ≥-1,即-1≤a ≤0. 命题点3 利用函数的性质解不等式例4 (1)已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,若f (ln x )<f (2),则x 的取值范围是________. 答案 (e -2,e 2)解析 根据题意知,f (x )为偶函数且在[0,+∞)上单调递增,则f (ln x )<f (2)⇔|ln x |<2, 即-2<ln x <2,解得e -2<x <e 2,即x 的取值范围是(e -2,e 2). (2)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围为______________. 答案 ⎝⎛⎭⎫13,1解析 由已知得函数f (x )为偶函数,所以f (x )=f (|x |), 由f (x )>f (2x -1),可得f (|x |)>f (|2x -1|). 当x >0时,f (x )=ln(1+x )-11+x 2, 因为y =ln(1+x )与y =-11+x 2在(0,+∞)上都单调递增,所以函数f (x )在(0,+∞)上单调递增.由f (|x |)>f (|2x -1|),可得|x |>|2x -1|,两边平方可得x 2>(2x -1)2,整理得3x 2-4x +1<0, 解得13<x <1.所以符合题意的x 的取值范围为⎝⎛⎭⎫13,1.思维升华 解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.跟踪训练2 (1)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=________. 答案 -12解析 由题意可知,f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=-2×12×⎝⎛⎭⎫1-12=-12. (2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25),f (11),f (80)的大小关系为________. 答案 f (-25)<f (80)<f (11)解析 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数且满足f (x -4)=-f (x ), 得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数, 所以f (x )在区间[-2,2]上是增函数, 所以f (-1)<f (0)<f (1). 所以f (-25)<f (80)<f (11).(3)已知函数g (x )是R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x >0,若f (6-x 2)>f (x ),则实数x 的取值范围是________. 答案 (-3,2)解析 ∵g (x )是奇函数,∴当x >0时,-x <0,g (x )=-g (-x )=ln(1+x ), 易知f (x )在R 上是增函数, 由f (6-x 2)>f (x ),可得6-x 2>x , 即x 2+x -6<0,∴-3<x <2.函数的性质函数的奇偶性、周期性及单调性是函数的三大性质,在高考中常常将它们综合在一起命题,解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.一、函数性质的判断例1 (1)已知函数f (x )=ax 2+1x ,其中a ∈R .讨论函数f (x )的奇偶性,并证明你的结论.解 方法一 f (x )的定义域为(-∞,0)∪(0,+∞). 若f (x )为奇函数,则f (-x )=-f (x )恒成立,即ax 2-1x =-ax 2-1x,得2ax 2=0恒成立,所以a =0; 若f (x )为偶函数,则f (-x )=f (x )恒成立, 即ax 2-1x =ax 2+1x ,得2x =0,这是不可能的.综上所述,当a =0时,f (x )为奇函数; 当a ≠0时,f (x )为非奇非偶函数.方法二 f (x )的定义域为(-∞,0)∪(0,+∞). 当a =0时,f (x )=1x ,f (-x )=-1x =-f (x ),此时f (x )为奇函数;当a ≠0时,f (-1)=a -1,f (1)=a +1, 则f (-1)≠-f (1)且f (-1)≠f (1), 所以f (x )是非奇非偶函数. (2)下列函数: ①y =sin 3x +3sin x; ②y =1e x +1-12;③y =lg 1-x1+x;④y =⎩⎪⎨⎪⎧-x +1,x ≤0,-x -1,x >0.其中是奇函数且在(0,1)上是减函数的是________.(填序号) 答案 ②③解析 易知①中函数在(0,1)上为增函数;④中函数不是奇函数;满足条件的函数为②③. (3)定义在实数集R 上的函数f (x )满足f (x )+f (x +2)=0,且f (4-x )=f (x ).现有以下三个命题: ①8是函数f (x )的一个周期;②f (x )的图象关于直线x =2对称;③f (x )是偶函数. 其中正确命题的序号是________. 答案 ①②③解析 由f (x )+f (x +2)=0可得 f (x +4)=-f (x +2)=f (x ),∴函数f (x )的最小正周期是4,①对; 由f (4-x )=f (x ),可得f (2+x )=f (2-x ),f (x )的图象关于直线x =2对称,②对;f (4-x )=f (-x )且f (4-x )=f (x ), ∴f (-x )=f (x ),f (x )为偶函数,③对. 二、函数性质的综合应用例2 (1)(2018·全国Ⅱ改编)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=________.答案 2解析 ∵f (x )是奇函数,∴f (-x )=-f (x ), ∴f (1-x )=-f (x -1).∵f (1-x )=f (1+x ), ∴-f (x -1)=f (x +1),∴f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), ∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数且定义域为R 得f (0)=0, 又∵f (1-x )=f (1+x ),∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,∴f (-2)=0. 又f (1)=2,∴f (-1)=-2,∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0, ∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50) =0×12+f (49)+f (50)=f (1)+f (2)=2+0=2.(2)(2018·南京、盐城模拟)若函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是单调增函数.如果实数t 满足f (ln t )+f ⎝⎛⎭⎫ln 1t ≤2f (1),那么t 的取值范围是________. 答案 ⎣⎡⎦⎤1e ,e解析 f (ln t )+f ⎝⎛⎭⎫ln 1t =f (ln t )+f (-ln t ) =2f (ln t )=2f (|ln t |), 于是f (ln t )+f ⎝⎛⎭⎫ln 1t ≤2f (1), 所以f (|ln t |)≤f (1),所以|ln t |≤1,所以-1≤ln t ≤1, 所以1e≤t ≤e.(3)(2018·扬州期末)已知函数f (x )=sin x -x +1-4x2x ,则关于x 的不等式f (1-x 2)+f (5x -7)<0的解集为________. 答案 (2,3)解析 因为f (-x )=sin(-x )+x +1-4-x2-x=-sin x +x +4x -12x =-f (x ),所以f (x )为奇函数.又因为f(x)=sin x-x+12x-2x,所以易判断f(x)在R上单调递减,所以f(1-x2)+f(5x-7)<0,即f(1-x2)<f(7-5x),所以1-x2>7-5x,即x2-5x+6<0,解得2<x<3.1.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是________.(填序号) ①y=f(|x|);②y=f(-x);③y=xf(x);④y=f(x)+x.答案②④解析由奇函数的定义f(-x)=-f(x)验证,①f(|-x|)=f(|x|),为偶函数;②f(-(-x))=f(x)=-f(-x),为奇函数;③-xf(-x)=-x·[-f(x)]=xf(x),为偶函数;④f (-x )+(-x )=-[f (x )+x ],为奇函数. 可知②④正确.2.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=________. 答案 -3解析 由f (x )为R 上的奇函数,知f (0)=0,即f (0)=20+m =0,解得m =-1, 则f (-2)=-f (2)=-(22-1)=-3. 3.函数f (x )=⎩⎪⎨⎪⎧x 2-2x +3,x >0,0,x =0,-x 2-2x -3,x <0为________函数.(填“奇”或“偶”)答案 奇解析 f (x )的定义域为R (关于原点对称).(1)当x =0时,-x =0,f (-x )=f (0)=0,f (x )=f (0)=0,∴f (-x )=-f (x ); (2)当x >0时,-x <0, ∴f (-x )=-(-x )2-2(-x )-3 =-(x 2-2x +3)=-f (x ); (3)当x <0时,-x >0, ∴f (-x )=(-x )2-2(-x )+3 =-(-x 2-2x -3)=-f (x ).由(1)(2)(3)可知,当x ∈R 时,都有f (-x )=-f (x ), ∴f (x )为奇函数.4.已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝⎛⎭⎫-52+f (1)=________. 答案 -2解析 ∵函数f (x )为定义在R 上的奇函数,且周期为2, ∴f (1)=-f (-1)=-f (-1+2)=-f (1), ∴f (1)=0,f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=124-=-2, ∴f ⎝⎛⎭⎫-52+f (1)=-2. 5.已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为________. 答案 ⎝⎛⎭⎫0,12∪(2,+∞) 解析 f (x )是R 上的偶函数,且在(-∞,0]上是减函数,所以f (x )在[0,+∞)上是增函数,所以f (log 2x )>2=f (1)⇔f (|log 2x |)>f (1)⇔|log 2x |>1⇔log 2x >1或log 2x <-1⇔x >2或0<x <12.6.已知偶函数f (x )对于任意x ∈R 都有f (x +1)=-f (x ),且f (x )在区间[0,1]上是单调递增的,则f (-6.5),f (-1),f (0)的大小关系是________.(用“<”连接) 答案 f (0)<f (-6.5)<f (-1)解析 由f (x +1)=-f (x ),得f (x +2)=-f (x +1)=f (x ),∴函数f (x )的周期是2. ∵函数f (x )为偶函数,∴f (-6.5)=f (-0.5)=f (0.5),f (-1)=f (1). ∵f (x )在区间[0,1]上是单调递增的, ∴f (0)<f (0.5)<f (1),即f (0)<f (-6.5)<f (-1).7.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________. 答案 -32解析 函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln 1+e 3x e 3x +e 6x =2ax =ln e 2ax ,即1+e 3x e 3x +e 6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0恒成立, 所以a =-32.8.已知函数f (x )是奇函数,当x >0时,f (x )=ln x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2的值为________. 答案 -ln 2解析 由已知可得f ⎝⎛⎭⎫1e 2=ln 1e 2=-2, 所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2=f (-2). 又因为f (x )是奇函数,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2=f (-2)=-f (2)=-ln 2. 9.奇函数f (x )在区间[3,6]上是增函数,且在区间[3,6]上的最大值为8,最小值为-1,则f (6)+f (-3)的值为________. 答案 9解析 由于f (x )在[3,6]上为增函数,所以f (x )的最大值为f (6)=8,f (x )的最小值为f (3)=-1,因为f (x )为奇函数,所以f (-3)=-f (3)=1,所以f (6)+f (-3)=8+1=9.10.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫92,则f (5a )的值是________. 答案 -25解析 由已知f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-52+2=f ⎝⎛⎭⎫-12=-12+a , f ⎝⎛⎭⎫92=f ⎝⎛⎭⎫92-4=f ⎝⎛⎭⎫12=⎪⎪⎪⎪25-12=110. 又∵f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫92,则-12+a =110,a =35, ∴f (5a )=f (3)=f (3-4)=f (-1)=-1+35=-25.11.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. 经检验,m =2符合题意.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].12.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式.(1)证明∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)是周期为4的周期函数.(2)解∵x∈[2,4],∴-x∈[-4,-2],∴4-x∈[0,2],∴f(4-x)=2(4-x)-(4-x)2=-x2+6x-8. ∵f(4-x)=f(-x)=-f(x),∴-f(x)=-x2+6x-8,即f(x)=x2-6x+8,x∈[2,4].13.若定义在R上的偶函数f(x)满足f(x)>0,f(x+2)=1f(x)对任意x∈R恒成立,则f(2 023)=________. 答案 1解析因为f(x)>0,f(x+2)=1f(x),所以f(x+4)=f[(x+2)+2]=1f(x+2)=11f(x)=f(x),即函数f(x)的周期是4,所以f(2 023)=f(506×4-1)=f(-1).因为函数f(x)为偶函数,所以f (2 023)=f (-1)=f (1).当x =-1时,f (-1+2)=1f (-1),得f (1)=1f (1).由f (x )>0,得f (1)=1,所以f (2 023)=f (1)=1.14.已知函数f (x )=x 3+2x ,若f (1)+1(log 3)af >0(a >0且a ≠1),则实数a 的取值范围是____________. 答案 (0,1)∪(3,+∞)解析 因为函数f (x )=x 3+2x 是奇函数,且在R 上是增函数,f (1)+1(log 3)af >0,所以1(log 3)a f >-f (1)=f (-1),所以1log 3a >-1,所以⎩⎪⎨⎪⎧1a >1,0<a <3或⎩⎪⎨⎪⎧0<1a <1,3<a ,所以a ∈(0,1)∪(3,+∞).15.已知函数f (x )=sin x +x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为__________. 答案 ⎝⎛⎭⎫-2,23 解析 易知f (x )在R 上为单调递增函数,且f (x )为奇函数,故f (mx -2)+f (x )<0等价于f (mx -2)<-f (x )=f (-x ),则mx -2<-x ,即mx +x -2<0对所有m ∈[-2,2]恒成立,令h (m )=mx +x-2,m ∈[-2,2],此时,只需⎩⎪⎨⎪⎧h (-2)<0,h (2)<0即可,解得-2<x <23.16.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,当x ∈(2,4)时,f (x )=|x -3|,求f (1)+f (2)+f (3)+f (4)+…+f (2 020)的值.解 因为f (x )为奇函数,f (x +1)为偶函数,所以f (x +1)=f (-x +1)=-f (x -1),所以f (x +2)=-f(x),所以f(x+4)=-f(x+2)=f(x),所以函数f(x)的周期为4,所以f(4)=f(0)=0,f(3)=f(-1)=-f(1).在f(x+1)=f(-x+1)中,令x=1,可得f(2)=f(0)=0,所以f(1)+f(2)+f(3)+f(4)=0.所以f(1)+f(2)+f(3)+f(4)+…+f(2 020)=0.21。
中考数学 第3编 创新分类突破篇 题型2 方程与不等式(精讲)试题

题型二 方程与不等式“方程与不等式”包括方程与方程组、不等式与不等式组两个方面的内容.“方程与不等式”均存在标准形式,其解法有程序式化的特点,是一种重要的数学基本技能.此外,“方程与不等式”也是刻画现实世界的一个有效的数学模型,在现实生活中存在大量的“方程与不等式”问题.“方程与不等式”是初中数学的核心内容之一.就解法与自身的应用来说,“方程与不等式”是初中数学最重要的基础知识之一,同时也是学习函数等知识的基础;就所蕴含的“方程思想和转化思想”而言,它更是培养考生分析问题和解决问题思想方面的重要源泉和场所.通过归纳主要有以下几种类型:(1)方程、不等式与函数综合型,一般是求待定字母的值,求待定字母的取值范围.在解这类问题时,需要我们借助图形来给出解答.要充分利用图形反馈的信息,或将文字信息反馈到图形上,做到“有数思形”“有形思数”顺利解决问题.(2)与几何知识结合型,特别是有未知数的几何问题,就需要用方程(组)与不等式(组)的知识来解决,在解决问题时,把某个未知量设为未知数,根据有关的几何性质、定理或公式,建立未知数和已知数间的等量关系或不等关系,列出方程(组)与不等式(组)来解决,这对解决和计算有关几何的数学问题,特别是几何综合题,是非常重要的.(3)对用方程(组)与不等式(组)解决实际问题型,实际问题中往往蕴含着方程与不等式,分析问题中的等量关系和不等关系,建立方程(组)模型和不等式(组)模型,从而把实际问题转化为数学模型,然后用数学知识来解决.考查考生构建数学模型的能力.题目常是考查解决实际问题中的方案选择、优化设计以及最大利润等问题,为了防止漏解和便于比较,我们常常用到分类讨论思想对方案的优劣进行探讨.【例1】关于x 的方程x 2-x +1-m =0的两个实数根x 1,x 2,满足|x 1 |+|x 2 |≤5,则m 的取值范围是________.【解析】首先由一元二次方程x 2-x +1-m =0有两个实根,得到其判别式是非负数,然后利用根与系数关系和|x 1|+|x 2|≤5得到关于m 的不等式,联立判别式即可求出实数m 的取值范围.【答案】1<m≤7或34≤m ≤1 【点评】此题主要考查了一元二次方程的根与系数的关系,同时也利用分类讨论的思想和绝对值的定义,有一定的综合性,要求考生熟练掌握相关知识才能很好解决这类问题.【例2】已知关于x 的一元二次方程x 2-ax +(m -1)(m +2)=0,对于任意实数a 都有实数根,则实数m 的取值范围是________.【解析】一元二次方程有实数根,根的判别式Δ=b 2-4ac≥0,b 2是非负数,如果-4ac 为非负数,无论b 取什么数,方程一定有实数根,由此探讨得出答案即可.【答案】-2≤m≤1【点评】此题主要考查了一元二次方程ax 2+bx +c =0(a≠0)的根的判别式Δ=b 2-4ac :当Δ>0时,方程有两个不相等的实根;当Δ=0时,方程有两个相等的实根;当Δ<0时,方程没有实根.【例3】 如果关于x 的不等式组⎩⎪⎨⎪⎧7x -m≥0,6x -n≤0的整数解仅为1,2,3,那么适合这个不等式组的整数对(m ,n )共有( B )A .49对B .42对C .36对D .13对【解析】先用不等式组中待定字母表示出不等式组的解集,根据不等式组的整数解确定待定字母m ,n 即可.【答案】B【点评】此题主要考查了一元一次不等式组的解法,不等式组的解集与解的概念.由不等式组的整数解确定待定字母的取值范围是解答本题的关键.【针对练习】1.(2014宜宾创新)设x 1,x 2是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足1x 1+1x 2=-1,则m 的值是( A ) A .3 B .-3或-1C .-1D .-3或12.(2012宜宾创新)已知方程组⎩⎪⎨⎪⎧5x +3y =2-3k ,3x -y =k +4的解为⎩⎪⎨⎪⎧x =a ,y =b 且|k|<3,那么a -b 的取值范围是( A )A .-1<a -b <5B .-3<a -b <3C .-3<a -b <5D .-1<a -b <33.若关于x 的方程x 2-bx ax -c =m -1m +1有绝对值相同,符号相反的两个根,则m 的值应为( D ) A .c B .1c C .a -b a +b D .a +b a -b4.设一元二次方程x 2-3x +2-m =0(m>0)的两实根分别为x 1,x 2,且x 1<x 2,则x 1,x 2应满足( D )A .1<x 1<x 2<2B .1<x 1<2<x 2C .x 1<1<x 2<2D .x 1<1且x 2>25.方程组3|x|+2x +4|y|-3y =4|x|-3x +2|y|+y =7( C )A .没有解B .有1组解C .有2组解D .有4组解6.已知三个关于x 的一元二次方程ax 2+bx +c =0,bx 2+cx +a =0,cx 2+ax +b =0恰有一个公共实数根,求a 2bc +b 2ac +c 2ab 的值为( D ) A .0 B .1 C .2 D .37.如果方程(x -1)(x 2-2x +m)=0的三个根可以作为一个三角形的三条边长,那么实数m 的取值范围是( B ) A .0≤m ≤1 B .34<m ≤1C .34≤m ≤1D .m ≤348.(2013宜宾创新)二果问价源于我国古代《四元玉鉴》:“九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?”则甜果、苦果的个数分别是( C ) A .648,352 B .650,350C .657,343D .666,3349.α,β是关于x 的方程x 2+kx -1=0的两个实根,若(|α|-β)(|β|-α)≥1,则实数k 的取值范围是( A )A .k ≥5-2B .k ≤5-2 C .k ≥5-2 或k≤-5-2D .k ≥5-2 10.(2014宜宾创新)若实数a ,b 满足方程组⎩⎪⎨⎪⎧ab +a +b =6,3a +3b =14-ab ,则a 2b +ab 2=__8__. 11.已知x =2是不等式(x -5)(ax -3a +2)≤0的解,且x =1不是这个不等式的解,则实数a 的取值范围是__1<a≤2__.12.已知a 为整数,关于a 的方程x 2x 2+1-4||x x 2+1+2-a =0有实数根,则a 的值可能是__0或1或2__.13.关于x 的不等式(2a -b)x>a -2b 的解集是x<52,求关于x 的不等式ax +b<0的解集为__x<-8__. 14.已知关于x 的方程(m 2-1)x 2-3(3m -1)x +18=0有两个正整数根(m 是整数).△ABC 的三边a ,b ,c 满足c =23,m 2+a 2m -8a =0,m 2+b 2m -8b =0.求:(1)m 的值;(2)△ABC 的面积.解:(1)方程有两个实数根,则m 2-1≠0,解方程得x 1=6m +1,x 2=3m -1. 由题意,得⎩⎪⎨⎪⎧m +1=1,2,3,6,m -1=1,3,即⎩⎪⎨⎪⎧m =0,1,2,5,m =2,4, ∴m =2;(2)把m =2代入两等式,化简得a 2-4a +2=0,b 2-4b +2=0,当a =b 时,a =b =2± 2.当a≠b 时,a ,b 是方程x 2-4x +2=0的两根,而Δ>0,由韦达定理,得a +b =4>0,ab =2>0,则a>0,b>0.①a ≠b ,c =23时,由于a 2+b 2=(a +b)2-2ab =16-4=12=c 2故△ABC 为直角三角形,且∠C =90°,S △ABC =12ab =1. ②a =b =2-2,c =23时,∵2(2-2)<23,∴不能构成三角形,不合题意,舍去.③a =b =2+2,c =23时,∵2(2+2)>23,∴能构成三角形.∴S △ABC =12×23×(2+2)2-(3)2 =9+12 2. 综上所述,△ABC 的面积为1或9+12 2.教后反思:________________________________________________________________________ ________________________________________________________________________ ___________________________________________________________________________________________________________________________________________。
高考数学文科二轮分类突破课件:题型分类突破第二篇考点五 解析几何

设所求圆的圆心坐标为(x0,y0),则
y0 = -x0 + 5,
|x0-y0-1| = 2
解得 2,
x0 y0
= =
50 ,或
x0 y0
= =
14,.因此所求圆的方程为(x-5)2+y2=24 或(x-1)2+(y-4)2=24.
2
刷高考原题改编题
2.(2016 年全国Ⅱ卷,文 20 改编)已知椭圆 E:xa22+yb22=1 的焦点在 x 轴上,椭圆 E 的左顶点为 A,斜率为 k(k>0)
由点 O 到直线 AB 的距离 d=
2 1+(
3)2=1,∴S△AOB=|A2B|·d=41533.
方法技巧 解决直线与圆锥曲线的相交弦长问题时,一方面,我们要注意运用解析几何的基本思想方法(即几何 问题代数化),把它转化为代数问题,通过代数的计算,使问题得到解决;另一方面,由于弦长问题和平面几何联系得 非常紧密,因此,我们要勤动手,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简 捷地得到解决,注意圆锥曲线的几何性质的运用.
直线 AC 的方程为 y=-ba(x+a),令 x=0,得 y=-ab2.
又
S△ABD=12· b
+
a2 b
பைடு நூலகம்
·a=2ab,于是 a2+b2=4b2,a2=3b2,所以 e=ca= 36.
解析
刷高考原题改编题
(2)设直线 AB 的方程为 y=k(x+a),
联立
������2 ������2
+
y2 3
因此 k 的取值范围是(3 2,2). 返
刷最新模拟题
2020《新高考 二轮专题突破+考前集训 文科数学》课件 第2部分 第3讲 解答题审题技巧

即
(x2
-
x1)[
f(x1)
+
ax
2 1
+
f(x2)
+
ax
2 2
]
>
2(ex2
-
ex1)
得
证.
二轮专题突破+考前集训 文科数学
【审题指导】
第3讲 解答题审题技巧
对于(1),根据条件,只需 f ′(x)≥0,即 2a≤exx,构造 函数 m(x)=exx,结合其单调性求解值域,得到参数 a 的取
值范围;对于(2),化简得到 x2-x1>2(eexx22--xx11+-11),观察结
二轮专题突破+考前集训 文科数学
第3讲 解答题审题技巧
可得 b=2sin θ,a=2sinπ3-θ,c= 3, ∴△ABC 的周长 f(θ)=a+b+c=2sin θ+2sinπ3-θ + 3= 2sin θ+2sinπ3cos θ-2cosπ3sin θ+ 3=sin θ+ 3cos θ+ 3=2sinθ+π3+ 3.
二轮专题突破+考前集训 文科数学
第3讲 解答题审题技巧
(2)当 m=2 时,求数列{(-1)nan}的前 2 020 项和 S2 020. 解:由(1)知当 m≠-1 时,bn=an+n=3×3n-1=3n,
即 an=3n-n,
∴(-1)nan=(-3)n-(-1)nn,
∴S2
020=-3×1[1--(-(-33) )2
020] -[(-1+2)+(-3+4)
+…+(-2
019 + 2
020)]
=
-3+32 4
021
-
1
010 =
32 021-4 043. 4
2020版高考文科数学突破二轮复习新课标通用课件:专题二 高考解答题的审题与答题示范 数列类解答题

标准答案 (2)记2na+n 1的前 n 项和为 Sn. 由(1)知2na+n 1=(2n+1)2(2n-1)=2n1-1-2n1+1.⑤
裂项求和 则 Sn=11-13+13-15+…+2n1-1-2n1+1=2n2+n 1.
⑥
第八页,编辑于星期日:一点 三十三分。
第十页,编辑于星期日:一点 三十三分。
本部分内容讲解结束
按ESC键退出全屏播放
第十一页,编辑于星期日:一点 三十三分。
第二部分 高考热点 分层突破
高考解答题的审题与答题示范(二)
数列类解答题
数学
第一页,编辑于星期日:一点 三十三分。
01
解题助思快速切入
02
满分示例规范答题
第二页,编辑于星期日:一点 三十三分。
[思维流程]
第三页,编辑于星期日:一点 三十三分。
[审题方法]——审结构 结构是数学问题的搭配形式,某些问题已知的数式结构中常常隐含着某种特
阅卷现场
第(1)问
第(2)问
①
②
③
④
⑤
⑥
得分点 2
1
1
2
3
3
6分
6分
第九页,编辑于星期日:一点 三十三分。
阅卷现场 第(1)问踩点得分说明 ①写出 n≥2 时的递推关系式得 2 分. ②求得 n≥2 时的{an}的通项公式得 1 分. ③验证 a1,得 1 分. ④写出通项公式得 2 分. 第(2)问踩点得分说明 ⑤将2na+n 1裂项得 3 分. ⑥利用裂项求和得 3 分.
第六页,编辑于星期日:一点 三十三分。
标准答案 (1)因为 a1+3a2+…+(2n-1)an=2n,故当 n≥2 时,a1+3a2+…+(2n-3)an-1 =2(n-1).① 两式相减得(2n-1)an=2. 所以 an=2n2-1(n≥2).②
第二章 第一节 相等关系与不等关系(共28张PPT)

学科素养: 逻辑推理.
知识·分步落实
⊲学生用书 P14 1.实数大小顺序与运算性质之间的关系 a-b>0⇔__a_>__b__;a-b=0⇔__a_=__b__;a-b<0⇔__a_<__b__.
2.等式的性质 (1)如果 a=b,那么 b=a; (2)如果 a=b,b=c,那么 a=c; (3)如果 a=b,那么 a±c=b±c; (4)如果 a=b,那么 ac=bc; (5)如果 a=b,c≠0,那么ac =bc .
(6)可开方:a>b>0⇒n a >n b (n∈N,n≥2).
不等式的两类常用性质
(1)倒数性质
①a>b,ab>0⇒1a <1b ;
②a<b<0⇒1a >1b ;
③a>b>0,0<c<d⇒ac >bd ;
④0<a<x<b 或 a<x<b<0⇒1b
1 <x
1 <a
.
(2)有关分数的性质
若 a>b>0,m>0,则
①真分数的性质
b a
<ba+ +mm
,ba
>ab--mm
(b-m>0);
②假分数的性质
a b
>ab+ +mm
,ab
<ba--mm
(b-m>0).
1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)两个实数 a,b 之间,有且只有 a>b,a=b,a<b 三种关系中的一种.( ) (2)若ab >1,则 a>b.( ) (3)同向不等式具有可加性和可乘性.( ) (4)两个数的比值大于 1,则分子不一定大于分母.( ) 答案: (1)√ (2)× (3)× (4)√
[友情提示] 每道习题都是一个高考点,每项训练都是对能力的检验, 认真对待它们吧!进入“课时作业(三)”,去收获希望,体验成功!本栏目 内容以活页形式分册装订!
第二章 整式的加减(知识归纳+题型突破)(原卷版)

第二章 整式的加减(知识归纳+题型突破)1.了解代数式的概念及书写要求,理解单项式、多项式、整式的概念及各自的次数、项数、常数项等;2.理解同类项,合并同类项,对多项式进行化简及求值;3.理解并掌握整式加减在实际问题中的应用.一、列代数式及书写要求代数式:用运算符号把字母和数字连接而成的式子就叫代数式.代数式的值:用具体数值代替代数式中的字母,就可以得到代数式的值.代数式的书写要求:①字母与数字相乘,或字母与字母相乘,乘号不用“×”,而是“g ”,或略去不写.因“×”与“x”易混淆.②字母与数字相乘,一般数字在前,系数带分数的,一般写成假分数.因312x 易混淆为3×12×x.③系数是1时,一般省略不写.○4多项式后面带单位,多项式须用括号括起来.代数式的书写规范问题【解题技巧】代数式书写规范:①数和字母相乘,可省略乘号,并把数字写在字母的前面;②字母和字母相乘,乘号可以省略不写或用“ · ” 表示. 一般情况下,按26个字母的顺序从左到右来写;③后面带单位的相加或相减的式子要用括号括起来;④除法运算写成分数形式,即除号改为分数线;⑤带分数与字母相乘时,带分数要写成假分数的形式;⑥当“1”与任何字母相乘时,“1”省略不写;当“-1”乘以字母时,只要在那个字母前加上“-”号.根据要求列代数式【解题技巧】解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.二、单项式的概念单项式:数或字母的积.(单独的一个数或一个字母也是单项式).例:5x ;100;x ;10ab 等注:分母中有字母,那就是字母的商,不是单项式.例:4x不是单项式.单项式的系数:单项式中的数字叫做单项式的系数.例:28xy p的系数为8p.单项式的次数:一个单项式中所有字母的指数的和.例: 22xy p 的次数为3次.三、多项式的有关概念多项式:几个单项式的和.注:和,即减单项式,实际是加该单项式的相反数.例如: 32x 3y ﹣45y 2+ 12xy 可以视作: 32x 3y+(﹣45y 2)+ 12xy .项:每个单项式叫做多项式的项,有几项,就叫做几项式.常数项:不含字母的项.多项式的次数:所有项中,次数最高的项的次数就是多项式的次数(最高次数是n 次,就叫做n 次式).四、 整式的概念整式:单项式与多项式统称为整式.注:①多项式是由多个单项式构成的;②单项式和多项式的区别在于是否含有加减运算;③分母中含有字母的式子不是整式(因不是单项式或多项式)利用整式的相关概念求字母的取值①利用单项式的系数与次数求值解题技巧:此类题型有2点需要注意:①题干会告知单项式的次数,利用系数关系可以列写一个等式;②还需注意,单项式的系数不为0②利用多项式的次数及特定的系数求值解题技巧:此类题型有3点需要注意:①题干会告知次数,则多项式的最高次数项的次数等于该值;②注意最高次数项的系数不能为0;③题干还会告知项数,往往利用项数也能确定一些等式(不等式).五、合并同类项同类项:所含字母相同,并且相同字母的指数也相同的项(即仅系数不同或系数也相同的项)例:5abc2:与3abc23abc 与3abc判断同类项需要同时满足2个条件:①所含字母相同;②相同字母的指数相同合并同类项:将多项式中的同类项合并成一项叫做合并同类项同类项合并的计算方法:系数对应向加减,字母及指数不变.利用同类项的概念求值解题技巧:(1)若告知某两个单项式为同类项,则这两个单项式的对应字母的次数相同;(2)若告知某个整式经过一系列变化后,结果为某个单项式,则该整式中与该单项式不是同类项的系数必为0.六、去(添)括号法则括号前是“+”,去括号后,括号内的符号不变括号前是“-”,去括号后,括号内的符号全部要变号.括号前有系数的,去括号后,括号内所有因素都要乘此系数.解题技巧:去多重括号,可以先去大括号,在去中括号,后去小括号;也可以先从最内层开始,先去小括号,在去中括号,最后去大括号.可依据简易程度,选择合适顺序.七、整式的加减(合并同类项)整式的加减运算实际就是合并同类项的过程,具体步骤为:①将同类项找出,并置与一起;②合并同类项.解题技巧:(1)当括号前面有数字因数时,应先利用乘法分配律计算,然后再去括号,注意不要漏乘括号内的任一项.(2)合并同类项时,只能把同类项合并,不是同类项的不能合并,合并同类项实际上就是有理数的加减运算.合并同类项要完全、彻底,不能漏项.整式“缺项”及与字母取值无关的问题解题技巧:(1)若题干告知整式不含某次项,则说明该次项前面的系数为0.(2)因为与字母取值无关,说明包含该字母前面的系数为0.即先化简整式,另包含该字母的的式子前面的系数为0即可.八.数字类规律①符号规律:通常是正负间或出现的规律,常表示为(1)n -或1(1)n --或1(1)n +-②数字规律:数字规律需要视题目而确定○3字母规律:通常字母规律是呈指数变换,长表示为:n a 等形式九. 算式类规律算式规律这一类没有固定的套路,主要依靠学生对已知算式的观察、总结、逻辑推理,发现期中的规律.常考的背景有:杨辉三角、等差数列、连续n 个数的立方和、连续n 个数的平方和、阶乘等.十.图形类规律通常结合数字特点和图形变化情况进行猜想,验证,从而提高探究规律能力.题型一 列代数式【典例1】(2023秋·全国·七年级专题练习)一个两位数,个位上数字为5,设十位上数字为x ,则这个两位数表示为 .巩固训练题型二代数式书写要求题型三已知字母的值,求代数式的值a__________;(1)=(2)求222-+的值;a b ab题型四已知式子的值,求代数式的值题型五 程序流程图与代数式求值巩固训练1.(2023春·山东济南·七年级统考期末)如图是一个运算程序示意图,若开始输入2.(2022秋·安徽铜陵·七年级统考期末)按如图所示的程序计算,若开始输入()1100x x x+>,如果“是”则得到输出的结果,如果为.题型六 单项式的概念及系数、次数题型七多项式的概念及项数、系数、次数、常数题型八整式的概念及分类题型九同类项的识别及依据同类项求字母的值题型十多项式的化简及化简求值巩固训练。
2022年高考数学基础题型重难题型突破类型二 恒成立问题与有解问题(解析版)

2022年高考数学基础题型重难题型突破类型二恒成立问题与有解问题一.不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.二.恒成立问题的一般解答方法如下:(1)参数分离法:将原不等式化为()a g x >或()a g x <恒成立的问题,然后分析函数()g x 在所给区间的单调性及最值,只需满足最值成立即可;(2)分类讨论:讨论函数()f x 在所给区间单调性及最值,需满足()max 0f x <或()min 0f x >【典例1】已知函数f (x )=(1-x )e x-1.(1)求f (x )的极值;(2)设g (x )=(x -t )2x ,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使方程f (x 1)=g (x 2)成立,求实数m 的最小值.【典例2】设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.【典例3】已知f (x )=x 2-4x -6ln x .(1)求f (x )在(1,f (1))处的切线方程以及f (x )的单调性;(2)对任意x ∈(1,+∞),有xf ′(x )-f (x )>x 2+6k 恒成立,求k 的最大整数解;(3)令g (x )=f (x )+4x -(a -6)ln x ,若g (x )有两个零点分别为x 1,x 2(x 1<x 2)且x 0为g (x )的唯一的极值点,求证:x 1+3x 2>4x 0.【典例4】已知函数f (x )=x 2+πcos x .(1)求函数f (x )的最小值;(2)若函数g (x )=f (x )-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π.【典例5】已知函数f (x )=a e x -1-ln x +ln a .若f (x )≥1,求a 的取值范围.【典例6】设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.2思路分析❶存在x 0≥1,使得f (x 0)<aa -1↓❷fxmin<a a -1↓❸求f xmin【典例7】已知函数f (x )=2ln x +1.若f (x )≤2x +c ,求c 的取值范围.【典例8】已知函数f(x)=ln x-ax,g(x)=x2,a∈R.(1)求函数f(x)的极值点;(2)若f(x)≤g(x)恒成立,求a的取值范围.【典例9】已知x=1e为函数f(x)=x a ln x的极值点.(1)求a的值;(2)设函数g(x)=kxe x∀x1∈(0,+∞),∃x2∈R,使得f(x1)-g(x2)≥0,求k的取值范围.【典例10】设函数f(x)=ax2-a-ln x,g(x)=1x-ee x,其中a∈R,e=2.718…为自然对数的底数.(1)讨论f(x)的单调性;(2)证明:当x>1时,g(x)>0;(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.【典例11】已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).类型二恒成立问题与有解问题一.不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.二.恒成立问题的一般解答方法如下:(1)参数分离法:将原不等式化为()a g x >或()a g x <恒成立的问题,然后分析函数()g x 在所给区间的单调性及最值,只需满足最值成立即可;(2)分类讨论:讨论函数()f x 在所给区间单调性及最值,需满足()max 0f x <或()min 0f x >【典例1】已知函数f (x )=(1-x )e x-1.(1)求f (x )的极值;(2)设g (x )=(x -t )2x ,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使方程f (x 1)=g (x 2)成立,求实数m 的最小值.【解析】解(1)f ′(x )=-x e x,当x ∈(0,+∞)时,f ′(x )<0,当x ∈(-∞,0)时,f ′(x )>0,∴当x =0时,f (x )有极大值f (0)=e 0-1=0,f (x )没有极小值.(2)由(1)知f (x )≤0,又因为g (x )=(x -t )2x ≥0,所以要使方程f (x 1)=g (x 2)有解,必然存在x 2∈(0,+∞),使g (x 2)=0,所以x =t ,ln x=m t,等价于方程ln x =mx有解,即方程m =x ln x 在(0,+∞)上有解,记h (x )=x ln x ,x ∈(0,+∞),则h ′(x )=ln x +1,令h ′(x )=0,得x =1e,所以当x h ′(x )<0,h (x )单调递减,当x h ′(x )>0,h (x )单调递增,所以当x =1e 时,h (x )min =-1e ,所以实数m 的最小值为-1e.【典例2】设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.【解析】解f ′(x )=2ax -1-ln x -(2a -1)=2a (x -1)-ln x (x >0),易知当x ∈(0,+∞)时,ln x ≤x -1,则f ′(x )≥2a (x -1)-(x -1)=(2a -1)(x -1).当2a -1≥0,即a ≥12时,由x ∈[1,+∞)得f ′(x )≥0恒成立,f (x )在[1,+∞)上单调递增,f (x )≥f (1)=0,符合题意;当a ≤0时,由x ∈[1,+∞)得f ′(x )≤0恒成立,f (x )在[1,+∞)上单调递减,f (x )≤f (1)=0,显然不符合题意,a ≤0舍去;当0<a <12时,由ln x ≤x -1,得ln1x ≤1x -1,即ln x ≥1-1x,则f ′(x )≤2a (x ax -1),∵0<a <12,∴12a>1.当x ∈1,12a 时,f ′(x )≤0恒成立,∴f (x )在1,12a 上单调递减,∴当x ∈1,12a 时,f (x )≤f (1)=0,显然不符合题意,0<a <12舍去.综上可得,a ∈12,+∞【典例3】已知f (x )=x 2-4x -6ln x .(1)求f (x )在(1,f (1))处的切线方程以及f (x )的单调性;(2)对任意x ∈(1,+∞),有xf ′(x )-f (x )>x 2+6k 恒成立,求k 的最大整数解;(3)令g (x )=f (x )+4x -(a -6)ln x ,若g (x )有两个零点分别为x 1,x 2(x 1<x 2)且x 0为g (x )的唯一的极值点,求证:x 1+3x 2>4x 0.【解析】(1)因为f (x )=x 2-4x -6ln x ,所以定义域为(0,+∞),所以f ′(x )=2x -4-6x ,且f ′(1)=-8,f (1)=-3,所以切线方程为y =-8x +5.又f ′(x )=2x (x +1)(x -3),令f ′(x )>0解得x >3,令f ′(x )<0解得0<x <3,所以f (x )的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)xf ′(x )-f (x )>x 2+6等价于k <x +x ln x x -1,记h (x )=x +x ln x x -1,则k <h (x )min ,且h ′(x )=x -2-ln x (x -1)2,记m (x )=x -2-ln x ,则m ′(x )=1-1x>0,所以m (x )为(1,+∞)上的单调递增函数,且m (3)=1-ln 3<0,m (4)=2-ln 4>0,所以存在x 0∈(3,4),使得m (x 0)=0,即x 0-2-ln x 0=0,所以h (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增,且h (x )min =h (x 0)=x 0+x 0ln x 0x 0-1=x 0∈(3,4),所以k 的最大整数解为3.(3)证明:g (x )=x 2-a ln x ,则g ′(x )=2x -a x =(2x +a )(2x -a )x,令g ′(x )=0,得x 0=a2,当x g ′(x )<0,当x g ′(x )>0,所以g (x上单调递增,而要使g (x )有两个零点,要满足g (x 0)<0,即-a lna 2<0⇒a >2e.因为0<x 1<a2,x 2>a 2,令x 2x 1=t (t >1),由g (x 1)=g (x 2),可得x 21-a ln x 1=x 22-a ln x 2,即x 21-a ln x 1=t 2x 21-a ln tx 1,所以x 21=a ln tt 2-1,而要证x 1+3x 2>4x 0,只需证(3t +1)x 1>22a ,即证(3t +1)2x 21>8a ,即(3t +1)2a ln t t 2-1>8a ,又a >0,t >1,所以只需证(3t+1)2ln t -8t 2+8>0,令h (t )=(3t +1)2ln t -8t 2+8,则h ′(t )=(18t +6)ln t -7t +6+1t ,令n (t )=(18t +6)ln t -7t +6+1t,则n ′(t )=18ln t +11+6t -1t 2>0(t >1),故n (t )在(1,+∞)上单调递增,n (t )>n (1)=0,故h (t )在(1,+∞)上单调递增,h (t )>h (1)=0,所以x 1+3x 2>4x 0.【典例4】已知函数f (x )=x 2+πcos x .(1)求函数f (x )的最小值;(2)若函数g (x )=f (x )-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π.【解析】(1)易知函数f (x )为偶函数,故只需求x ∈[0,+∞)时f (x )的最小值.f ′(x )=2x -πsin x ,当x h (x )=2x -πsin x ,h ′(x )=2-πcos x ,显然h ′(x )单调递增,而h ′(0)<0,h x 0得h ′(x 0)=0.当x ∈(0,x 0)时,h ′(x )<0,h (x )单调递减,当x 0h ′(x )>0,h (x )单调递增,而h (0)=0,x h (x )<0,即x f ′(x )<0,f (x )单调递减,又当x x >π>πsin x ,f ′(x )>0,f (x )单调递增,所以f (x )min ==π24.(2)证明:依题意得x 1x 2F (x )=f (x )-f (π-x ),x F ′(x )=f ′(x )+f ′(π-x )=2π-2πsin x >0,即函数F (x )单调递增,所以F (x )<x f (x )<f (π-x ),而x 1,所以f (x 1)<f (π-x 1),又f (x 1)=f (x 2),即f (x 2)<f (π-x 1),此时x 2,π-x 1由(1)可知,f (x x 2<π-x 1,即x 1+x 2<π.【典例5】已知函数f (x )=a e x -1-ln x +ln a .若f (x )≥1,求a 的取值范围.【解析】解f (x )的定义域为(0,+∞),f ′(x )=a e x -1-1x.当0<a <1时,f (1)=a +ln a <1.当a =1时,f (x )=ex -1-ln x ,f ′(x )=ex -1-1x.当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以当x =1时,f (x )取得最小值,最小值为f (1)=1,从而f (x )≥1.当a >1时,f (x )=a ex -1-ln x +ln a ≥ex -1-ln x ≥1.综上,a 的取值范围是[1,+∞).【典例6】设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.2思路分析❶存在x 0≥1,使得f (x 0)<aa -1↓❷fxmin<a a -1↓❸求f xmin【解析】解(1)f ′(x )=ax+(1-a )x -b .由题设知f ′(1)=0,解得b =1.(2)f (x )的定义域为(0,+∞),由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=a x +(1-a )x x -1).①若a ≤12,则a1-a≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上单调递增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f (1)<a a -1,即1-a 2-1<a a -1,解得-2-1<a <2-1.②若12<a <1,则a 1-a >1,故当x f ′(x )<0,当x f ′(x )>0,f (x 增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f<aa -1.而fa lna 1-a +a 221-a +a a -1>a a -1,所以不符合题意.③若a >1,则f (1)=1-a 2-1=-a -12<aa -1.综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).【典例7】已知函数f (x )=2ln x +1.若f (x )≤2x +c ,求c 的取值范围.【解析】解设h (x )=f (x )-2x -c ,则h (x )=2ln x -2x +1-c ,其定义域为(0,+∞),h ′(x )=2x -2.当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0.所以h (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.从而当x =1时,h (x )取得最大值,最大值为h (1)=-1-c .故当-1-c ≤0,即c ≥-1时,f (x )≤2x +c .所以c 的取值范围为[-1,+∞).【典例8】已知函数f (x )=ln x -ax ,g (x )=x 2,a ∈R .(1)求函数f (x )的极值点;(2)若f (x )≤g (x )恒成立,求a 的取值范围.【解析】解(1)f (x )=ln x -ax 的定义域为(0,+∞),f ′(x )=1x-a .当a ≤0时,f ′(x )=1x-a >0,所以f (x )在(0,+∞)上单调递增,无极值点;当a >0时,由f ′(x )=1x -a >0,得0<x <1a ,由f ′(x )=1x -a <0,得x >1a ,所以f (x f (x )有极大值点1a,无极小值点.(2)由条件可得ln x -x 2-ax ≤0(x >0)恒成立,则当x >0时,a ≥ln xx-x 恒成立,令h (x )=ln x x -x ,x >0,则h ′(x )=1-x 2-ln xx 2,令k (x )=1-x 2-ln x ,x >0,则当x >0时,k ′(x )=-2x -1x <0,所以k (x )在(0,+∞)上单调递减,又k (1)=0,所以在(0,1)上,h ′(x )>0,在(1,+∞)上,h ′(x )<0,所以h (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以h (x )max =h (1)=-1,所以a ≥-1.即a 的取值范围为a ≥-1.【典例9】已知x =1e为函数f (x )=x aln x 的极值点.(1)求a 的值;(2)设函数g (x )=kxe x∀x 1∈(0,+∞),∃x 2∈R ,使得f (x 1)-g (x 2)≥0,求k 的取值范围.【解析】解(1)f ′(x )=axa -1ln x +x a ·1x=x a -1(a ln x +1),f ln1e+1a =2,当a =2时,f ′(x )=x (2ln x +1),函数f (x 递增,所以x =1e为函数f (x )=x aln x 的极小值点,因此a =2.(2)由(1)知f (x )min =f =-12e,函数g (x )的导函数g ′(x )=k (1-x )e -x.①当k >0时,当x <1时,g ′(x )>0,g (x )在(-∞,1)上单调递增;当x >1时,g ′(x )<0,g (x )在(1,+∞)上单调递减,对∀x 1∈(0,+∞),∃x 2=-1k ,使得g (x 2)=1e k <-1<-12e ≤f (x 1),符合题意.②当k =0时,g (x )=0,取x 1=1e,对∀x 2∈R 有f (x 1)-g (x 2)<0,不符合题意.③当k <0时,当x <1时,g ′(x )<0,g (x )在(-∞,1)上单调递减;当x >1时,g ′(x )>0,g (x )在(1,+∞)上单调递增,g (x )min =g (1)=ke,若对∀x 1∈(0,+∞),∃x 2∈R ,使得f (x 1)-g (x 2)≥0,只需g (x )min ≤f (x )min ,即k e ≤-12e,解得k ≤-12.综上所述,k -∞,-12∪(0,+∞).规律方法(1)由不等式恒成立求参数的取值范围问题的策略①求最值法,将恒成立问题转化为利用导数求函数的最值问题.②分离参数法,将参数分离出来,进而转化为a >f (x )max 或a <f (x )min 的形式,通过导数的应用求出f (x )的最值,即得参数的范围.(2)不等式有解问题可类比恒成立问题进行转化,要理解清楚两类问题的差别.【典例10】设函数f (x )=ax 2-a -ln x ,g (x )=1x -ee x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0;(3)确定a 的所有可能取值,使得f (x )>g (x )在区间(1,+∞)内恒成立.【解析】.(1)解f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0有x =12a.当x f ′(x )<0,f (x )单调递减;当x f ′(x )>0,f (x )单调递增.(2)证明令s (x )=e x -1-x ,则s ′(x )=e x -1-1.当x >1时,s ′(x )>0,所以e x -1>x ,从而g (x )=1x -1e x -1>0.(3)解由(2)知,当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a>1,由(1)有f (1)=0,而所以f (x )>g (x )在区间(1,+∞)内不恒成立;当a ≥12时,令h (x )=f (x )-g (x )(x ≥1),当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈12,+【典例11】已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).【解析】.解(1)f ′(x )=1x -x +1=-x 2+x +1x ,x ∈(0,+∞).由f ′(x )>0>0,x 2+x +1>0.解得0<x <1+52.故f (x )(2)令F (x )=f (x )-(x -1),x ∈(0,+∞).则有F ′(x )=1-x 2x.当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.(3)由(2)知,当k =1时,不存在x 0>1满足题意.当k >1时,对于x >1,有f (x )<x -1<k (x -1),则f (x )<k (x -1),从而不存在x 0>1满足题意.当k <1时,令G (x )=f (x )-k (x -1),x ∈(0,+∞),则有G ′(x )=1x -x +1-k =-x 2+(1-k )x +1x .由G ′(x )=0得,-x 2+(1-k )x +1=0.解得x 1=1-k -(1-k )2+42<0,x 2=1-k +(1-k )2+42>1.当x ∈(1,x 2)时,G ′(x )>0,故G (x )在[1,x 2)内单调递增.从而当x ∈(1,x 2)时,G (x )>G (1)=0,即f (x )>k (x -1).综上,k 的取值范围是(-∞,1).。
板块2 核心考点突破拿高分 专题2 第1讲 数列、等差数列与等比数列(小题)

等差数列的通项公式:an=a1+(n-1)d; 等比数列的通项公式:an=a1·qn-1.
na1+an
nn-1
等差数列的求和公式:Sn= 2 =na1+ 2 d;
等比数列的求和公式:Sn=a111--qqn=a11--aqnq,q≠1, na1,q=1.
2.等差数列、等比数列问题的求解策略 (1)抓住基本量,首项a1、公差d或公比q; (2)熟悉一些结构特征,如前n项和为Sn=an2+bn(a,b是常数)的形式的数列为等差 数列,通项公式为an=p·qn-1(p,q≠0)的形式的数列为等比数列; (3)由于等比数列的通项公式、前n项和公式中变量n在指数位置,所以常用两式相 除(即比值的方式)进行相关计算.
热点三 等差数列、等比数列的综合问题
解决数列的综合问题的失分点
(1)公式an=Sn-Sn-1适用于所有数列,但易忽略n≥2这个前提;
(2)对含有字母的等比数列求和时要注意
q=1
或
q≠1
的情况,公式
a11-qn Sn= 1-q
只适用于 q≠1 的情况.
例3 (1)已知Sn为等差数列{an}的前n项和,a3+S5=18,a5=7.若a3,a6,am成等 比数列,则m=_1_5__.
跟踪演练3 (1)(2019·黄冈、华师附中等八校联考)已知公差不为0的等差数列{an}
的首项a1=3,且a2,a4,a7成等比数列,数列{bn}的前n项和Sn满足Sn=2n(n∈N*),
数列{cn}满足cn=anbn(n∈N*),则数列{cn}的前3项和为
A.31
√B.34
C.62
D.59
解析 由于 a2,a4,a7 成等比数列,故 a24=a2·a7,
解析 数列an是正项等比数列且q≠1, 由a6=a5+2a4,得q2=q+2, 解得q=2(负根舍去).
板块2 核心考点突破拿高分 专题1 第2讲 三角恒等变换与解三角形(小题)

√A.a=2b
B.b=2a
C.A=2B
D.B=2A
解析 ∵等式右边=sin Acos C+(sin Acos C+cos Asin C)=sin Acos C+sin(A+C) =sin Acos C+sin B, 等式左边=sin B+2sin Bcos C, ∴sin B+2sin Bcos C=sin Acos C+sin B. 由cos C>0,得sin A=2sin B. 根据正弦定理,得a=2b.
√ A.α+β=π2
B.α-β=π4
C.αan
α=1-cossin2β2β=cos2β+csoisn22ββ--s2insi2nβ
βcos
β=cos
β+sin βcos cos β-sin
β-sin β2
β
=cos cos
β+sin β-sin
ββ=11+ -ttaann
例 3 (1)某游轮在 A 处看灯塔 B 在 A 的北偏东 75°的方向上,距 A 12 6 海里处,
灯塔 C 在 A 的北偏西 30°的方向上,距 A 8 3 海里处,游轮由 A 处向正北方向航行
到 D 处时再看灯塔 B 在南偏东 60°的方向上,则此时灯塔 C 与游轮的距离为
A.20 海里
√B.8 3 海里
ββ=tanπ4+β,
又因为 α∈0,π2,β∈0,π2, 所以 α=π4+β,即 α-β=π4.
热点二 利用正弦、余弦定理解三角形
1.正弦定理:在△ABC 中,sina A=sinb B=sinc C=2R(R 为△ABC 的外接圆半径). 变形:a=2Rsin A,b=2Rsin B,c=2Rsin C,sin A=2aR,sin B=2bR,sin C=2cR, a∶b∶c=sin A∶sin B∶sin C等.
2020版高考文科数学突破二轮复习新课标通用第2讲基本初等函数、函数与方程及函数的应用

ABCD 是正方形且和球心 O 在同一平面内,当此四棱锥的体积取得最大值时,其表面积等
于 8+ 8 3,则球 O 的体积等于 ( )
32 π A. 3
32 2π B. 3
C. 16 π
16 2π D. 3
【 解析 】
(1)如图 ,由题意知圆柱的中心 O 为这个球的球心 ,于是 ,球的半径 r = OB= OA2+ AB2 = 12+( 3) 2= 2.故这个球的表面积 S= 4πr 2= 16π.故选 D.
A . 32 32
C. 3
64 B. 3 D. 8
解析 :选 B.如图所示四棱锥 P-ABCD 为该几何体的直观图 , 底面 ABCD 是边长为 4 的
正方形.取 CD 的中点为 E,连接 PE,则 PE⊥ 平面 ABCD ,且 PE= 4.所以这个几何体的体
积
V=
1× 3
4×
4×
4=64 3
,
故选
13 π A. 2
15 π C. 2
B. 7π D. 8π
(2)(2019 高·考浙江卷 )祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则
积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式
V 柱体 = Sh,其中 S 是柱体
的底面积, h 是柱体的高.若某柱体的三视图如图所示
cm3)是 (
,
或是求出一些体积比等.
③割补法: 把不能直接计算体积的空间几何体进行适当分割或补形
,转化为易计算体积
的几何体.
[ 对点训练 ] 1.(2019 ·唐山市摸底考试 )已知某几何体的三视图如图所示 弧) ,则该几何体的表面积为 ( )
(俯视图中曲线为四分之一圆
2020版高考文科数学突破二轮复习新课标通用第2讲不等式选讲

- 5( x>2) 象,
如图.
由 f(x- 4)- f (x+1)>kx+ m 的解集为 (-∞, + ∞ ), 结合图象可知 k= 0,m<- 5, 所以 k+m<-5, 即 k+m 的取值范围是 (- ∞, - 5). 2.已知函数 f(x) =|x- a|,其中 a>1. (1)当 a= 2 时,求不等式 f( x)≥ 4- |x- 4|的解集; (2)已知关于 x 的不等式 |f (2x+ a)- 2f(x)|≤ 2 的解集为 { x|1≤ x≤ 2} ,求 a 的值.
含绝对值不等式的成立问题 (综合型 )
[知识整合 ] f(x)> a 恒成立 ? f(x)min> a;f(x)< a 恒成立 ? f( x)max< a;f (x)> a 有解 ? f(x)max> a;f( x) <a 有解 ? f(x)min< a; f(x)> a 无解 ? f(x)max≤ a; f(x) < a 无解 ? f(x )min≥a. 定理 1: 如果 a, b 是实数,则 |a+ b|≤ |a|+ |b|,当且仅当 ab≥0 时,等号成立. 定理 2:如果 a,b,c 是实数, 那么 |a- c|≤ |a- b|+ |b- c|,当且仅当 (a-b)(b-c)≥0 时, 等号成立.
[ 典型例题 ] (1) 已知 a>0 , b>0, a3+ b3= 2. 证明:① (a+ b)(a5+b5)≥4; ② a+ b≤ 2. (2)已知 a, b, c, d 为实数,且 a2+ b2=4, c2+ d2= 16,证明: ac+ bd≤ 8. 【 证明 】 (1) ① (a+ b)(a5+ b5)= a6+ ab5+ a5b+ b6
题型分类突破数学文科第二篇考点三

11
题型分析
例 4 如图,△ABC 内接于圆 O,AB 是圆 O 的直径,四边形 DCBE 为平行四边形,DC⊥平面 ABC,AB=2,BE= 3. (1)证明:平面 ACD⊥平面 ADE. (2)记 AC=x,V(x)表示三棱锥 A-CBE 的体积,求 V(x)的最大值.
12
分析 (1)要证平面 ACD⊥平面 ADE,只需证明 DE⊥平面 ADC,由已知 可证明 DC⊥BC,BC⊥AC,从而得证;(2)先利用体积公式求出 V(x)关于 x 的 解析式,再利用不等式求出最值.
2019
考点三 立体几何
2
01
考查角度1 立体几何中的平行与 垂直的证明
目录
02
考查角度2 立体几何中的翻折问 题与探索性问题
3
PART 01
立体几何中的平行 与垂直的证明
2 刷高考原题改编题
考查角度1
1
题型分析
3
刷最新模拟题
题型分析
分类透析一 证明平行关系
例 1 如图,在菱形 ABCD 中,∠BAD= 3 ,ED⊥平面 ABCD,EF∥DB,M 是线段 AE 的中 点,DE=EF= AD=2.
直,M 是������������上异于 C,D 的点. (1)证明:CM⊥平面 AMD. (2)设 P 是 AM 的中点,求证:MC∥平面 PDB.
解析
刷高考原题改编题
解析 (1)∵平面 ABCD⊥半圆面 CMD,∴AD⊥半圆面 CMD,∴AD⊥平面 MCD. ∵CM 在平面 MCD 内,∴AD⊥CM. 又 M 是半圆弧������������上异于 C,D 的点,∴CM⊥MD. 又 AD∩MD=D,∴CM⊥平面 AMD. (2)连接 AC 与 BD 交于点 O,连接 PO.在矩形 ABCD 中,O 是 AC 的中 点,P 是 AM 的中点, ∴OP∥MC.∵OP⊆平面 PDB,MC⊄平面 PDB,∴MC∥平面 PDB.
题型分类突破数学文科第二篇考点一

又 x∈[0,π],令 k=0,得 ≤x≤ ,
8 8
π
5π
所以 f(x)在 x∈[0,π]上的单调递减区间为 (3)因为 x∈ , 故当 x∈ ,
4 π 3π 3π 4 π 7π 4 4 4 4 π 3π 4
π 5π 8
,
8
.
π 4
,所以 ≤2x+ ≤ ,所以 -1≤sin 2x+
16
.
,k∈Z.
(2)将函数 f(x)的图象向左平移 个单位长度,再向上平移 1 个单位长度,得到函数 y=2sin 2x+1 的图象, 所以 g(x)=2sin 2x+1.令 g(x)=0,得 x=kπ+ 或 x=kπ+ (k∈Z). 12 12 若 y=g(x)在[0,b]上至少含有 10 个零点,则 b 不小于第 10 个零点的横坐标. 所以 b 的最小值为 4π+
≤ ,所以- 2≤f(x)≤1.
2
2
时,函数 f(x)的最大值为 1,最小值为- 2.
方法技巧
题型分析
方法技巧 (1)求三角函数的周期、单调区间、最值及判断三角函 数的奇偶性等问题时,往往先在定义域内化简三角函数式,尽量先化为 y=Asin(ωx+φ)+B 的形式,然后再求解.(2)讨论函数 y=Asin(ωx+φ)+B 的单调性、值域时,可以利用换元思想设 t=ωx+φ,转化成 y=Asin t+B 的形式,再结合函数的图象求解.
14
=2sin sin
3 π 6
π
π π 6
-
3
=2 × × 2 π 6
3