二次函数与相似结合专题复习教案.doc

合集下载

中考数学复习学案40.二次函数与相似docx

中考数学复习学案40.二次函数与相似docx

编号40:二次函数与相似(2)姓名:1.如图,抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点.(1)求:抛物线的函数表达式;(2)求:抛物线与y轴的交点C的坐标及其对称轴(3)若抛物线对称轴上有一点P,使△COA∽△APB,求点P的坐标.2.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(4,0)、B (﹣1,0),与y轴交于点C,D为抛物线的顶点,过A、B、C作⊙P.(1)求b、c的值;(2)求证:线段AB是⊙P的直径;(3)连接AC,AD,在坐标平面内是否存在点Q,使得△CDA∽△CPQ?若存在,求出点Q的坐标;若不存在,请说明理由.3.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y 轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.4.操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的纸片进行如下设计:说明:方案一:图形中的圆过点A、B、C;方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点纸片利用率=×100%发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点.你认为小明的这个发现是否正确,请说明理由.(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.请帮忙计算方案二的利用率,并写出求解过程.探究:(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.说明:方案三中的每条边均过其中两个正方形的顶点.。

中考数学复习学案39.二次函数与相似docx

中考数学复习学案39.二次函数与相似docx

编号39:二次函数与相似(1)姓名:1.二次函数y=ax2+bx+4的图象与x轴交于两点A、B,与y轴交于点C,且A (﹣1,0)、B(4,0)(1)求此二次函数的表达式(2)如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N 为顶点的三角形与△FEN相似,求点N的坐标(3)如图2,点M在抛物线上,且点M的横坐标是1,点P为抛物线上一动点,若∠PMA=45°,求点P的坐标.2.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.3.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1.tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF 与△COD相似时,点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.4.已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?。

二次函数中的相似问题专题讲学案

二次函数中的相似问题专题讲学案

东升学校九年级上数学导学稿(编号:813)班级 姓名 组 号 时间 年 月 日课题:二次函数与相似问题 课型:新授 主备: 九年级数学组 审核 九年级数学组例1.已知抛物线经过A (-2,0),B (-3,3)及原点O ,顶点为C .(1)求抛物线的解析式;(2)P 是抛物线上第一象限内的动点,过点P 作PM ⊥x 轴,垂足为M ,是否存在点P 使得以点P 、M 、A 为顶点的三角形与△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.例2.把抛物线 向左平移1个单位,再向下平移4个单位,得到抛物线 所得抛物线与轴交于A,B 两点(点A 在点B 的左边),与轴交于点C ,顶点为D.(1)写出h,k 的值;(2)判断 的形状,并说明理由;(3)在线段AC 上是否存在点M ,使△AOM 与△ABC 相似?若存在,求出点M 的坐标;若不存在,说明理由.2y x =2()y x h k =-+ACD△例3.抛物线 与X 轴的两个交点分别为A (-3,0)、B (1,0), 过顶点C 作CH ⊥x 轴于点H .(1)直接填写:a= ,b = ,顶点C 的坐标为 ;(2)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.例4.如图,已知△ABC 的三个顶点坐标分别为A (-4,0)、B (1,0)、C (-2,6).(1)求经过A 、B 、C 三点的抛物线解析式;(2)设直线BC 交y 轴于点E ,连接AE ,求证:AE =CE(3)设抛物线与y 轴交于点D ,连接AD 交BC 于点F ,试问以A 、B 、F ,为顶点的三角形与△ABC 相似吗? 请说明理由.32++=bx axy练习一如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3:2.(1)求这条抛物线对应的函数关系式;(2)连接BD,试判断BD与AD的位置关系,并说明理由(3)连接BC交直线AD于点M,在直线AD上,是否存在这样的点N(不与点M重合),使得以A、B、N为顶点的三角形与△ABM相似?若存在,请求出点N的坐标;若不存在,请说明理由.练习二如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A,B两点,交y轴于点D,其中点B的坐标为(3,0)(1)求抛物线的解析式;(2)如图2,设E是抛物线上在第一象限内的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.练习三:如图①,已知二次函数223y x x =-++的图像与x 轴交于点,,A B 与y 轴交于点C(1)求ABC ∆的面积;(2)点M 在OB 边上以每秒1个单位的速度从点O 向点B 运动,点N 在BC 边上个单位的速度从点B 向点C 运动,两个点同时开始运动,同时停止。

二次函数复习教案-【通用,经典教学资料】

二次函数复习教案-【通用,经典教学资料】

二次函数复习教案一、教材分析二次函数时描述现实世界变量之间的重要数学模型,也是某些单变量最优化问题的数学模型,还是一种非常基本的初等函数,对二次函数的研究学习和复习,将为学生进一步学习函数,利用函数性质解决实际应用问题奠定基础积累经验。

在前面学习中,学生已经通过大量丰富有趣的现实背景,运用由简入繁从特殊到一般的研究方法从多方面探索研究了二次函数的概念、性质以及实际应用。

因为二次函数考查的知识点比较多,因此,在复习中,应注重学生对基本概念性质的掌握情况,通过大量不同实际问题,促使学生分析问题、解决问题意识和能力的的提高以及函数模型的进一步加深巩固。

二、学生情况分析初三的学生,已经具备一定的生活经验和有效学习方法,思维比较开阔,能独立思考和探索中形成自己的观点,他们能迅速利用周围的小组合作,共同探讨解决学习中的问题。

在复习课中,学生需要掌握二次函数的基本概念、性质以及有条理的思考和语言表达能力。

三、教学目标1、能根据具体问题,选取表格、表达式、图像这三种方式中适当的方法表示变量之间的二次函数关系2、会作二次函数的图象,并能根据图像对二次函数的基本性质进行分析表达。

3、能根据二次函数的表达式确定二次函数的开口方向、对称轴和定点坐标。

4、能利用二次函数解决实际问题,并能对变量的变化趋势进行预测。

四、教学理念和方式创设一种师生交往的互动、互惠的教学关系,师生之间彼此平等、互教互学,形成一个真正的“学习共同体”。

在这个过程中,教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求的新的发展,从而达到共识、共享、共进实现教学相长和共同发展。

教师在教学中是组织者、引导者、合作者;建立和谐的、民主的、平等的的师生关系。

整个过程学生是学习的主人,他们在教师的指导下进行主动的、富有个性的学习;教师应充分利用现实情景与先进教学技术,增加教学过程的趣味性,充分调动学生的积极性。

五、教学媒体选用为使教学活动有序高效进行,本节课通过多媒体辅助教学,将一些重难点进行分化演示,加深学生的理解掌握。

二次函数与相似三角形综合题教案

二次函数与相似三角形综合题教案

O 二次函数与相似三角形综合题教学目标:教学目标:1、会求二次函数解析式;、会求二次函数解析式;2、根据条件寻找或构造相似三角形,在二次函数的综合题中利用其性质求出线段的长度,从而得出点的坐标。

度,从而得出点的坐标。

教学重点:教学重点:1、求二次函数解析式;、求二次函数解析式;2、相似三角形的判定与性质在二次函数综合题中的运用。

、相似三角形的判定与性质在二次函数综合题中的运用。

教学难点:教学难点:根据条件构造相似三角形解决问题。

根据条件构造相似三角形解决问题。

情感与态度:情感与态度:1、培养学生积极参与教学学习活动的兴趣,增强数学学习的好奇心和求知欲。

、培养学生积极参与教学学习活动的兴趣,增强数学学习的好奇心和求知欲。

2、使学生感受在数学学习活动中获得成功的体验,锻炼学生克服困难的意志,建立自信心。

信心。

3、培养学生科学探索的精神。

、培养学生科学探索的精神。

教学过程:教学过程:一、复习巩固一、复习巩固如图,抛物线y=ax 2+b x -2与x 轴交于点A (-(-11,0),B (m ,0)两点,与y 轴交于C 点,且∠点,且∠ACB=90ACB=90ACB=90°,求抛物线的解析式°,求抛物线的解析式°,求抛物线的解析式. .分析:OC 2=OA·=OA·OB OB ∴4=1×4=1×m m ,m=4 ∴B (4,0)设抛物线解析式为y=a(x+1)(x -4) 代入C 点(0,-2) ∴抛物线解析式为213222y x x =--. 二、新授二、新授例题、如图,直线y =-x+3与x 轴、y 轴分别相交于B 、C ,经过B 、C 两点的抛物线y=ax 2+bx+c与x 轴另一交点为A ,顶点为P ,且对称轴是直线x=2x=2,,(1)求抛物线解析式;)求抛物线解析式;(2)连结AC AC,请问在,请问在x 轴上是否存在点Q ,使得以点P 、B 、Q 为顶点的三角形与△为顶点的三角形与△ACB ACB 相似,若存在,请求出Q 点坐标;若不存在,说明理由点坐标;若不存在,说明理由. .(3)D 点为第四象限的抛物线上一点,过点D 作DE ⊥x 轴,交CB 于E ,垂足于H ,过D 作DF ⊥CB ,垂足为F ,交x 轴于G ,试问是否存在这样的点D ,使得△DEF 的周长恰好被x 轴平分?若能,请求出D 点坐标;若不能,请说明理由. [解] (1) 直线3y x =-+与x 轴相交于点B , \当0y =时,3x =,\点B 的坐标为(30),. 又 抛物线过x 轴上的A B ,两点,且对称轴为2x =,根据抛物线的对称性,根据抛物线的对称性, \点A 的坐标为(10),. 3y x =-+ 过点C ,易知(03)C ,,3c \=.又 抛物线2y ax bx c =++过点(10)(30)A B ,,,, ∴(1)(3)y a x x =--,经过C 点(0,3)243y x x \=-+. (2)连结PB ,由2243(2)1y x x x =-+=--,得(21)P -,,设抛物线的对称轴交x 轴于点M ,在Rt PBM △中,1PM MB ==,452PBM PB \== ,∠. 由点(30)(03)B C ,,,易得3OB OC ==,在等腰直角三角形OBC 中,中,45ABC = ∠,由勾股定理,得32BC =.假设在x 轴上存在点Q ,使得以点P B Q ,,为顶点的三角形与ABC △相似.相似. ①当BQ PB BC AB=,45PBQ ABC == ∠∠时,PBQ ABC △∽△. 即2232BQ=,3BQ \=, 又3BO = ,\点Q 与点O 重合,1Q \的坐标是(00),.②当QB PB AB BC=,45QBP ABC == ∠∠时,QBP ABC △∽△. 即2232QB=,23QB \=. A B C P O xy2x =21P 273333OB OQ OB QB =\=-=-= ,, 2Q \的坐标是703æöç÷èø,. 180********PBx BAC PBx BAC =-=<\¹ ,,∠∠∠∠.\点Q 不可能在B 点右侧的x 轴上.轴上.综上所述,在x 轴上存在两点127(00)03Q Q æöç÷èø,,,,能使得以点P B Q ,,为顶点的三角形与ABC △相似.相似.(3)设D (a ,a 2-4a+34a+3)),则E (a ,-a+3) △DFE ∽△BOC ∴DE :BC=L △DEF :L △BOC ∴2332a a -+=632DFE L D + ∴L △DEF =(21+)×(-a 2+3a) ∴DH+DG=12DFE L D = (21)DH += 2(21)(43)a a +-+- = 12(21+)×(-a 2+3a) ∴243a a -+-=21(3)2a a -+ ∴a 1=2,a 2=3(舍) ∴D (2,-1)应用变式:应用变式:1、在此抛物线上是否存在P 点?使得∠1+∠2=45°,若存在,请求出P 点坐标;若不存在,请说明理由. 分析:分析:(1)延长CP 与x 轴交于E 点,∠1+∠2=45°=∠ABC=∠E+∠2 ∴∠1=∠E ,E E N 的坐标为(113,169)的坐标为(,39)2x -(,24)。

二次函数与相似结合专题复习教案

二次函数与相似结合专题复习教案

二次函数与相似结合专题复习上海市铁岭中学杨越一、教学目标设计1、会根据不同的条件,利用待定系数法求二次函数的解析式.2、选择合理的方法求二次函数的解析式。

3、根据图形特征和已知条件选择判定定理进行证明和计算二、教学重点及难点二次函数与相似结合的灵活应用三、教学过程回忆求二次函数解析式的方法1、已知一个二次函数图像经过A(0、1)、 B(1、3)、 C(-1、1)三点,求这个二次函数解析式2、已知:抛物线的顶点坐标(6,5),并经过A(0,2)求:抛物线的解析式3、二次函数与 y 轴的交点为(0,1),与x 轴的交点为(2,0),(6、0)求这个函数的解析式。

相似三角形有关定理回顾与思考请说出判断△ABC∽△DEF的定理有哪些?讨论:已知∠A=∠D,请添一个条件使△ABC与△DEF相似,则这个条件可以是什么?DAE FB C二次函数与相似结合的灵活应用例1、(本题满分12分,其中第(1)小题5分,第(2)小题7分)如图,已知点A (1,0)、B (3,0)、C (0,1).(1)若二次函数图像经过点A 、C 和点D (2,31)三点,求这个二次函数的解析式. (2)若点E 在线段BC 上,且△ABE 与△ABC 相似,求出点E 的坐标.第24题图例2、已知抛物线24y ax ax c =-+与y 轴交于点A (0,3),点B 是抛物线上的点, 且满足AB ∥x 轴,点C 是抛物线的顶点. (1)求抛物线的对称轴及B 点坐标;(2)若抛物线经过点(-2,0),求抛物线的表达式;(3)对(2)中的抛物线,点D 在线段AB 上,若以点A 、C 、D 为顶点的三角形与△AOC 相似,试求点D 的坐标. (4)若x 轴上有一点E 关于抛物线的对称轴的对称点是F 。

点E 坐标为(a,0)且a>2, 若以点A 、O 、 B 为顶点的三角形与△AOF 相似,试求a 的值.(第1题图)练习1、(本题满分12分)如图,△AOB 的顶点A 、B 在二次函数23312++-=bx x y 的图像上,又点A 、B 分别在y 轴和x 轴上,tan ∠ABO =1.(1)求此二次函数的解析式;(4分)(2)过点A 作AC ∥BO 交上述函数图像于点C ,点P 在上述函数图像上,当△POC 与△ABO 相似时,求点P 的坐标.(8分)练习2、(本题共2小题,5分+7分,满分12分)在平面直角坐标系中,O 为坐标原点,二次函数214y x bx c =-++的图像经过点A (4,0)、C (0,2).(1)试求这个二次函数的解析式;并判断点)0,2(-B 是否在该函数的图像上;(2)设所求函数图像的对称轴与x 轴交于点D ,点E 在对称轴上,若以点C 、D 、E 为顶点的三角形与△ABC 相似,试求点E 的坐标.. A. C .O xy 1。

中考数学 第五部分 二次函数与相似三角形(第12课时)复习学案-人教版初中九年级全册数学学案

中考数学 第五部分 二次函数与相似三角形(第12课时)复习学案-人教版初中九年级全册数学学案

word
1 / 1 二次函数与相似三角形
一、考点分析
二次函数与相似三角形问题是中考压轴题常考的题型,常以解答题的形式出现.
二、考点要求
1.掌握解决二次函数与三角形相似的固定方法;
2.能够运用三角函数和相似解决图形变换的问题;
3.渗透分类讨论和数形结合的数学思想方法.
三、考点梳理
四、典型例题
如图,抛物线y =x 2
-x -2经过A (-1,0)、 C (0,-2),过A ,C 画直线.点M 在抛物线上,过M 作MH ⊥AC ,垂足为H .若M 在y 轴右侧,且△CHM ∽△AOC (点C 与点A 对应),求点M 的坐标.
五、方法点睛
注意分类,相似的判定定理的条件. 六、巩固训练
1.抛物线y =-x 2+2x +3经过A (-1,0)、B (3,0)、D (0,3).在抛物线上是否存在一点T ,过点T 作x 轴的垂线,垂足为点M ,过点M 作MN ∥BD ,交线段AD 于点N ,连接MD ,使△DNM ∽△BMD ,若存在,求出点T 的坐标;若不存在,请说明理由.
2.如图,抛物线y =-x 2+2x +3与x 轴的右交点为A ,与y 轴的交点为B ,点C 与点B 关于抛物线的对称轴对称.设抛物线的对称轴与直线AB 交于点F ,问:在x 轴上是否存在点P ,
使得以P 、A 、F 为顶点的三角形与△ABC
理由.。

(完整版)二次函数复习课教案.docx

(完整版)二次函数复习课教案.docx

二次函数复习2016.06二次函数复习课题二次函数课型复习课掌握二次函数的图象及其性质,能灵活运用抛物线的知识解一些实际问题.通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.教学目标学生亲自经历巩固二次函数相关知识点的过程,体会解决问题策略的多样性.经历探索二次函数相关题目的过程,体会数形结合思想、化归思想在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活.教学重点二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.教学难点二次函数性质的灵活运用,能把相关应用问题转化为数学问题.课前准备(教具、活制作课件动准备等)教学过程教学步骤基础知识之自我构建基础知识之基础演练师生活动设计意图通过一个具体二次函数,请学生说出尽可能多的结论,x2主要让学生回忆二次函数有让学生思考函数 y4x 3 并写出相关关基础知识.同学们之间可以结论相互补充,体现团结协作精神.同时发展了学生的探究意识,培养了学生思维的广阔性.教者让学生思考 1-4题,然后让学生回答,第 1 题主要考查二次函其他同学可以补充.数图像平移知识点,二次函数1、求将二次函数y x22x 图像向右平移1图像平实质上就是点的平移.第 2,3,4 题都是开放性个单位,再向上平移 2 个单位后得到图像的函数题,答案不唯一,只要正确即表达式.可,让学生很大发挥空间,其2、请写出一个二次函数解析式,使其图像的中涉及二次函数解析式的求对称轴为 x=1,并且开口向下.法.3、请写出一个二次函数解析式,使其图象与第 5,6 题涉及二次函数x 轴的交点坐标为( 2,0)、(- 1, 0).图象性质,根据图象,正确表4、请写出一个二次函数解析式,使其图象与示解析式中字母的取值范y 轴的交点坐标为( 0, 2),且图象的对称轴在 y围.教者也可以在原图形基础轴的右侧.改变形状,让学生经历和体验教者让学生口答第5、 6 题.图形的变化过程,引导学生感悟知识的生成、发展和变化.情感态度解决问题知识技能数学思考5、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y①a0;②b0;③c0;x④ b24ac0;6、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y① abc0;② 2a-b0;?x③ a+b+c0; 1 0 1④ a-b+c0.1、二次函数y ax2bx c 的图象如下图,则方程 ax2bx c0 的解为当 x 为时, ax2bx c当 x 为时, ax2bx cy数形结合思想是一种重要的数学思想,第 1 题看似复杂,其实对照图象,很容易找;出题目答案.第 2 题考查学生二次函0 ;数与一元二次方程关系,具体为:一元二次方程无实根说明0 .相应二次函数图象与 x 轴无交点,再根据隐含条件对称轴为直线 x1,可见顶点在第301x2一象限.第 3题考查学生从图表基础知识之提炼信息的能力.灵活运用x n0 无实数根,2、关于 x 的一元二次方程x2则抛物线 y x2x n 的顶点在()A .第一象限 B.第二象限C. 第三象限D.第四象限3、根据下列表格的对应值:x 3.23 3.24 3.25 3.26y ax2 bx c-0.06-0.020.030.09不解方程,试判断方程 ax2bx c0(a0,a,b,c 为常数)一个解 x 的范围是()A 、 3 x 3.23B、 3.23x 3.24C、 3.24x 3.25D、 3.25x 3.26难点突破之思维激活1、已知抛物线y ax2bx c 的对称轴为x=2,第 1,2 题考查抛物线轴对称性.且经过点(3,0),则 a+b+c 的值为.第 3 题考查二次函数图像2、已知抛物线y ax2bx c 经过点A(-2,7),及其性质的相关知识.本部分 3 道题目不能呆板B(6,7), C(3,- 8),则该抛物线上纵坐标为地应用二次函数的基础知识,-8 的另一点坐标是 ___________.而要综合相关知识,以达到能3、下图是抛物线y ax2bx c 的一部分,且经力提升之目的.过点(- 2 , 0),则下列结论中正确的个数有()①a <0;②b<0;③c>0;④抛物线与 x 轴的另一个交点坐标可能是(1,0);⑤抛物线与 x 轴的另一个交点坐标可能是( 4,0).A.2 个B.3 个C.4 个D.5 个y20x难点突破之聚焦中考教者出示一道函数类应用题,让学生思考,本题首先读懂题意,正确教者点拨.求出二次函数解析式.二次函例题:某商场销售一批名牌衬衫,平均每天可售数的最值是体现二次函数实出 20 件,进价是每件 80 元,售价是每件 120 元,际应用价值的一种常见题型,为了扩大销售,增加盈利,减少库存,商场决定它在优选方案、减小投入、增采取适当的降价措施,经调查发现,如果每件衬大收益中意义非凡.解题时通衫降低 1 元,商场平均每天可多售出 2 件,但每常借助顶点坐标来求,但有时件最低价不得低于108 元.由于实际问题实际意义的限⑴若每件衬衫降低x 元( x 取整数),商场平制,需结合自变量的取值范围均每天盈利 y 元,试写出 y 与 x 之间的函数关系进行调整.本题由图象可知,式,并写出自变量x 的取值范围.抛物线顶点(15,1250)不在⑵每件衬衫降低多少元时,商场每天(平均)本题图象上,它不是最高点,盈利最多?最高点应该是(12,1232)或者这样理解:顶点横坐标是反思与提高1、本节课你印象最深的是什么?2、通过本节课的函数学习,你认为自己还有哪些地方是需要提高的?3、在下面的函数学习中,我们还需要注意15,不满足 0 x 12 ,因此不能理解为:当 x 15 时, y 取最大值为 1250 元.让学生自己总结一节课的得失,教者进行适当的点评.真正体现出学生是学习的主体.为今后自主学习奠定基哪些问题?础,由此达到数学教学的新境教者归纳本章知识网络图示界——提升思维品质,形成数学素养.实际问题二次函数y ax2bx c目标实际问题利用二次函数的图的答案象和性质求解。

二次函数相似综合专题

二次函数相似综合专题

二次函数相似综合专题知识要点1.求抛物线的解析式(载体作用,注意利用顶点式隐藏顶点坐标或利用比根式隐藏与x 轴两交点的坐标).2.结合质点运动,探索两个几何变量之间的函数关系; 3.探索存在问题(面积、线段、角度等); 4.几何最值、几何定值与几何推理;5.全等、相似、轴对称、旋转、平移、解直角三角形、圆的相关知识的综合运用; 6.注意结合抛物线的图象变换构建存在性问题. 例题解析【例1】已知抛物线y =223x x --与x 轴交于A ,B 两点,与y 轴交于点C .①若抛物线的顶点为M ,求四边形ACMB 的面积; ②在第一象限的抛物线上求点P ,使S △ABP =10; ③在第一象限的抛物线上求点P ,使S △ACP =10; ④在②的条件下,在抛物线上求点Q ,使S △APQ =S △BPQ ;⑤在②的条件下,在抛物线上求点Q ,使S △APQ ∶S △BPQ =1∶3.〖练1〗如图,□OABC 中,点A 坐标为(2,0),抛物线y =24ax bx ++经过点A ,B ,C三点,交y 轴于点D . ①求此抛物线的解析式;②P 是抛物线上一点,且△OBP ≌△ODP ,求P 点坐标;③直线MN ∥x 轴,交抛物线于N ,交y 轴于M ,连线段BN ,AM ,BN 交OD 于E ,若AM ∥BN ,求线段MN 的长.第①问图第②问图第③问图【例2】已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A,C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B,D.(1)求点A的坐标(用m表示);(2)求抛物线的解析式;(3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.【例3】如图,在平面直角坐标系中,点O为坐标原点,直与x轴交于点A,过点A的抛物线y=2ax bx+与直线y=4x-+交于另一点B,且点B的横坐标为1.(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A,B重合),过点P作PM∥OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间函数关系式(不要求写出自变量的取值范围);(3)在(2)的条件下,当S△ACN=S△PMN时,连接ON,点Q在线段BP上,过点Q 作QR∥MN交ON于点R,连接MQ,BR,当∠MQR-∠BRN=45°时,求点R的坐标.〖练2〗已知抛物线C 1:y =223x x --与x 轴交于A ,B 两点(A 在B 点左侧),与y 轴交于点C .(1)求A ,B ,C 三点坐标;(2)将抛物线向右平移2个单位,向上平移3个单位,得到抛物线C 2,将线段AC绕坐标平面内的某点旋转后,得到线段MN ,且MN ⊥AC ,M ,N 点恰好落在抛物线C 2上,如图,求M 点的坐标;(3)设抛物线C 1的顶点为D ,DE ⊥AB 于E ,M 为x 轴下方抛物线C 1上一动点(不与点D 重合),MN ⊥BC 于N ,是否存在这样的点M ,使△MND 与△BED 相似?若存在,求M 点的坐标;若不存在,请说明理由.【例4】在平面直角坐标系xOy 中,已知抛物线y =24(2)9x c --+与x 轴交于A ,B 两点(点A 在点B 的左侧),交y 轴的正半轴于点C ,其顶点为M ,MH ⊥x 轴于点H ,MA 交y 轴于为N ,sin ∠MOH. (1)求此抛物线的函数表达式;(2)过H 的直线与y 轴相交于点P ,过O ,M 两点作直线PH 的垂线,垂足分别为E ,F ,若HE HF=12JF ,求点P 的坐标; (3)将(1)中的抛物线沿y 轴折叠,使点A 落在点D 处,连接MD ,Q 为(1)中的抛物线上一动点,直线NQ 交x 轴于点G ,当Q 点在抛物线上运动时,是否存在点Q ,使△ANG 与△ADM 相似?若存在,求出所有符合条件的直线QG 的解析式;若不存在,请说明理由.〖练3〗抛物线y =2(1)4a x --的顶点为D ,与x 轴交于A ,B 两点,与y 轴负半轴交于点C ,对称轴与x 轴交于点H ,且HD =AB . (1)求此抛物线的解析式;(2)若M 为对称轴右侧抛物线上一点,MN ∥x 轴交抛物线于另一点N ,以MN 为斜边的直角三角形的直角顶点在x 轴上,当这个直角三角形的顶点至少有一个时,求M 点纵坐标的取值范围;(3)经过C ,D 两点的直线与x 轴交于E 点,P 为对称轴右侧抛物线上一点,CP交对称轴于点F ,是否存在这样一点P ,使△CDF 与△EAC 相似、若存在,求点P 的坐标;若不存在,请说明理由.【例5】已知抛物线C 1:y =2(1)2a x +-的顶点为A ,且经过点B (-2,-1).(1)求A 点的坐标和抛物线C 1的解析式;(2)如图1,将抛物线C 1向下平移2个单位后得到抛物线C 2,且抛物线C 2与直线AB 相交于C ,D 两点,求S △OAC ∶S △OAD 的值;(3)如图2,若过P (-4,0),Q (0,2)的直线为l ,点E 在(2)中抛物线C 2对称轴右侧部分(含顶点)运动,直线m 过点C 和点E .问:是否存在直线m,使直线l ,m 与x 轴围成的三角形和直线l ,m 与y 轴围成的三角形相似?若存在,求出直线m 的解析式;若不存在,请说明理由.〖练4〗如图1,抛物线C 1:y =2ax bx c ++的顶点为A (1,134-),与y 轴的负半轴交于点B .(1)求点B 的坐标;(2)如图2,将抛物线C 1向下平移与直线AB 相交于C ,D 两点,若BC +AD =AB ,求平移后的抛物线C 2的解析式;(3)如图3,在(2)中,设抛物线C 2与y 轴交于G 点,顶点为E ,EF ⊥x 轴于F点,点M (m ,0)是x 轴上一动点,点N 在线段EF 上,若∠MNG =90°,请你分析实数m 的变化范围;图1图2图1图3图2【例6】如图,已知抛物线y =2x bx c ++与x 轴交于点A (1,0)和点B ,与y 轴交于点C(0,-3).(1)求抛物线的解析式;(2)如图1,已知点H (0,-1),问在抛物线上是否存在点G (点G 在y 轴的左侧),使得S △GHC =S △GHA ?若存在,求出点G 的坐标;若不存在,请说明理由; (3)如图2,抛物线上点D 在x 轴上的正投影为点E (-2,0),F 是OC 的中点,连接DF ,P 为线段BD 上的一点,若∠EPF =∠BDF ,求线段PE 的长.〖练5〗如图,抛物线1y =22ax ax b -+经过点A (-1,0),C (0,32)两点,与x 轴交于点一点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点(不与点B 重合),点Q 在线段MB 上移动,且∠MPQ =45°,设线段OP =x ,MQ2y ,求2y 与x 的函数关系式,并直接写出自变量x 的取值范围;(3)在同一平面直角坐标系中,两条直线x =m ,x =n 分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,H ,问四边形EFGH 能否为平行四边形?若能,求出m ,n 之间的数量关系;若不能,请说明理由.图1图2【例7】如图1,抛物线y =(1)(3)a x x -+交x 轴于A ,B 两点,交y 轴于点C ,OC 2=3OA ·OB .(1)求此抛物线的解析式;(2)如图2,点E 为线段OA 上的一点,过点E 且垂直x 轴的直线交抛物线于点F ,若直线AC 将△AEF 分成面积之比为1∶2的两部分,求点E 的坐标;(3)如图3,若直线y =12x b +交x 轴于点M ,交y 轴于点N ,将△MON 沿直线MN 折叠,得到△MPN ,点O 的对称点为P ,是否存在这样的b 值,使点P 恰好落在抛物线上?若存在,求出b 的值;若不存在,请说明理由.〖练6〗如图1,抛物线y =2(21)4a x ax b --+与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,直线BC 的解析式:y =3kx k -,tan ∠OCB =1. (1)求此抛物线的解析式;(2)如图2,若y 轴负半轴上点M ,此抛物线上点N ,关于直线AC 对称,求点N的坐标;(3)设D 为该抛物线的顶点,在此抛物线的对称轴上是否存在一点P ,使得△P AD与△ABC 相似、若存在,请求出点P 的坐标;若不存在,请说明理由.备用图【例8】在平面直线坐标系中,抛物线y =23ax bx ++交x 轴于A ,B 两点(A 点在B 点左侧),交y 轴于C 点,对称轴为直线x =1,sin ∠OCA. (1)求此抛物线的解析式,并求顶点E 的坐标;(2)将(1)中的抛物线向下平移,若平移后,在四边形ABEC 中满足S△BCE=S △ABC ,求此时直线BC 的解析式;(3)将(1)中的抛物线作适当的平移,若平移后,在四边形ABED 中满足S △BCE=2S △AOC ,且顶点E 恰好落在直线y =43x -+上,求此时抛物线的解析式.〖练7〗如图1,在平面直角坐标系中,直线l :y =3342x --沿x 轴翻折后,与x 轴交于点A ,与y 轴交于点B ,抛物线y =22()3x h -与y 轴交于点D ,与直线AB 交于点E ,F (点F 在点E 的右侧). (1)求直线AB 的解析式;(2)若线段DF ∥x 轴,求抛物线的解析式;(3)如图2,在(2)的条件下,过F 作FH ⊥x 轴于点G ,与直线l 交于点H,在备用图备用图抛物线上是否存在P ,Q 两点(点P 在点Q 的上方),PQ 与AP 交于点M ,与FH 交于点N ,使得直线PQ 既平分△AFH 的周长又平分△AFH 的面积?如果存在,求出P ,Q 的坐标;若不存在,请说明理由.图2图1。

二次函数的复习教案

二次函数的复习教案

二次函数的复习教案教案标题:二次函数的复习教案教案目标:1. 复习学生对二次函数的基本概念和性质的理解。

2. 强化学生对二次函数图像、顶点、轴对称性和零点的掌握。

3. 提高学生解决与二次函数相关的实际问题的能力。

教学时长:2个课时教学步骤:第一课时:1. 导入(5分钟)- 通过提问引起学生对二次函数的兴趣,例如:你知道什么是二次函数吗?它有哪些特点?2. 复习基本概念(15分钟)- 提醒学生二次函数的一般形式为f(x) = ax^2 + bx + c,并解释a、b、c的含义。

- 回顾二次函数的图像特点,如开口方向、顶点位置等。

- 强调二次函数的轴对称性和零点的概念。

3. 图像练习(20分钟)- 展示几个不同形态的二次函数图像,要求学生根据图像特点判断函数的开口方向、顶点和轴对称性。

- 给学生一些简单的二次函数,要求他们画出对应的图像,并标出顶点和轴对称线。

4. 零点练习(15分钟)- 提供一些二次函数的方程,要求学生解方程求出零点。

- 引导学生思考零点与图像的关系,例如:零点在图像上对应什么位置?第二课时:1. 复习顶点和轴对称线(10分钟)- 提醒学生顶点是二次函数图像的最高点或最低点,轴对称线通过顶点并将图像分为两部分。

2. 实际问题解决(20分钟)- 提供一些与实际问题相关的二次函数,要求学生解决问题。

- 引导学生将问题转化为二次函数的方程,并解方程求出答案。

3. 总结(10分钟)- 回顾本节课所学内容,强调二次函数的重要性和应用。

- 鼓励学生通过做更多的练习来巩固所学知识。

教学方法和教学资源:1. 教学方法:- 提问法:通过提问引导学生思考和回忆所学知识。

- 演示法:展示二次函数图像和实际问题,帮助学生理解和解决问题。

2. 教学资源:- PowerPoint幻灯片或白板,用于展示图像和问题。

- 二次函数练习题,包括图像练习和实际问题练习。

评估方法:1. 课堂表现评估:- 观察学生在课堂上的参与度和回答问题的准确性。

人教版数学九年级上册26.2.2《二次函数复习》教学设计2

人教版数学九年级上册26.2.2《二次函数复习》教学设计2

人教版数学九年级上册26.2.2《二次函数复习》教学设计2一. 教材分析人教版数学九年级上册26.2.2《二次函数复习》是对九年级学生学习二次函数知识的总结和提升。

本节内容主要包括二次函数的图像和性质,以及二次函数的应用。

通过复习,使学生掌握二次函数的基本知识,能够熟练运用二次函数解决实际问题。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解,但部分学生对二次函数的应用还比较陌生。

因此,在教学过程中,需要关注学生的学习差异,有针对性地进行教学,提高学生的学习效果。

三. 教学目标1.了解二次函数的图像和性质,掌握二次函数的基本知识。

2.能够运用二次函数解决实际问题,提高学生的应用能力。

3.培养学生的逻辑思维能力,提高学生的学习兴趣。

四. 教学重难点1.二次函数的图像和性质2.二次函数的应用五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究二次函数的图像和性质。

2.利用案例教学,让学生通过实际问题,掌握二次函数的应用。

3.采用小组合作学习,培养学生的团队协作能力。

六. 教学准备1.准备相关的教学案例,用于讲解二次函数的应用。

2.准备多媒体教学设备,用于展示二次函数的图像。

七. 教学过程1.导入(5分钟)通过提问方式,回顾二次函数的基本知识,引导学生进入复习状态。

2.呈现(10分钟)利用多媒体展示二次函数的图像,让学生观察和分析二次函数的性质。

3.操练(10分钟)让学生通过计算器,绘制二次函数的图像,加深对二次函数性质的理解。

4.巩固(10分钟)让学生解决一些与二次函数有关的实际问题,巩固二次函数的应用。

5.拓展(10分钟)引导学生思考二次函数在实际生活中的应用,进行知识拓展。

6.小结(5分钟)对本节课的内容进行总结,强调二次函数的图像和性质,以及应用。

7.家庭作业(5分钟)布置一些有关二次函数的练习题,让学生巩固所学知识。

8.板书(5分钟)板书本节课的主要内容,方便学生复习。

《二次函数复习》教案

《二次函数复习》教案

《二次函数复习》教案教学目的:经过温习,使先生能熟习二次函数的几种基本表达式,会选用适宜的表达式解题;学会数形结合的数学思想;学会知识的迁移才干,会实际联络实践,处置实践效果。

六、教学进程:二次函数是初中代数的重要内容之一,也是历年中考的重点。

这局部知识命题方式比拟灵敏,既有填空题、选择题,又有解答题,而且常与方程、几何、三角等综合在一同,出如今压轴题之中。

因此,熟练掌握二次函数的相关知识,会灵敏运用普通式、顶点式、交点式求二次函数的解析式是处置综合运用题的基础和关键。

一、二次函数常用的几种解析式确实定普通式:顶点式:交点式:平移式:二、求二次函数解析式的思想方法1、求二次函数解析式的常用方法:待定系数法、配方法、数形结合等。

2、求二次函数解析式的常用思想:转化思想 : 解方程或方程组3、二次函数解析式的最终方式:无论采用哪一种解析式求解,最后结果最好化为普通式。

三、运用举例例1、二次函数的图像如下图,求其解析式。

针对练习:1、二次函数的图像过原点,当x=1时,y有最小值为-1,求其解析式。

2、二次函数与x 轴的交点坐标为(-1,0),(1,0),点(0,1)在图像上,求其解析式。

例2、将抛物线向左平移4个单位,再向下平移3个单位,求平移后所得抛物线的解析式。

针对练习:3、将二次函数的图像向右平移1个单位,再向上平移4个单位,求其解析式。

例3、:如图,是某一抛物线形拱形桥,拱桥底面宽度OB是12米,当水位是2米时,测得水面宽度AC是8米。

(1)求拱桥所在抛物线的解析式;(2)当水位是2.5米时,高1.4米的船能否经过拱桥?请说明理由(不思索船的宽度。

船的高度指船在水面上的高度)。

针对练习:4、如图;有一个抛物线形的隧道桥拱,这个桥拱的最大高度为3.6m,跨度为7.2m.一辆卡车车高3米,宽1.6米,它能否经过隧道?5. 刘炜在距离篮下4米处跳起投篮,篮球运转的路途是抛物线,当球运转的水平距离为2.5米时,到达最高度3.5米,然后准确落入蓝筐.蓝筐中心到空中距离为3.05米.假设刘炜的身高为1.9米,在这次跳投中,球在头顶上方0.15米处出手,问求出手时,他跳离空中的高度是多少?七、课堂小结1、二次函数常用解析式2、求二次函数解析式的普通方法:图象上三点坐标,通常选择普通式。

初三数学 二次函数与相似三角形的综合问题教案

初三数学 二次函数与相似三角形的综合问题教案

二次函数与相似三角形的综合问题适用学科适用区域初中数学全国通用适用年级课时时长(分钟)初中三年级120知识点教学目标教学重点教学难点二次函数综合;勾股定理;相似三角形的性质;1.熟练运用所学知识解决二次函数综合问题2.灵活运用数形结合思想巧妙运用数形结合思想解决综合问题;灵活运用技巧及方法解决综合问题;教学过程一、课堂导入二次函数的综合问题是中考压轴题常考题型之一,考点分值12分,难度较大。

主要考查形式为二次函数与一些简单几何图形的点存在性问题,既考查了学生的数形结合能力,又考查学生的计算能力。

此类问题出现后,大多学生都无从下手,主要是学生的综合能力、解题技巧及实战经验不足所致。

就本节二次函数与相似三角形的点存在性问题,主要考查了学生能否将相似三角形的性质与判定融入到二次函数,在函数图像中构造相似图形的能力。

二、复习预习勾股定理及逆定理1.定理:直角三角形两直角边a,b的平方和等于斜边c的平方。

(即:a2+b2=c2)2.勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边和另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题3.逆定理:如果三角形的三边长:a,b,c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

4.用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边为c。

(2)验证c2和a2+b2是否具有相等的关系,若a2+b2=c2,则△ABC是以∠C为直角的直角三角形。

4ac b b 而言,其顶点坐标为(- , ).对于 y=a (x -h )2+k 而言其顶点坐标为(h ,k ),•由于二次函数的图像为三、知识讲解考点 1二次函数的基础知识1.一般地,如果 y=ax 2+bx+c (a ,b ,c 是常数且 a≠0),那么 y 叫做 x 的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据.当 b=c=0 时,二次函数 y=ax 2是最简单的二次函数.2.二次函数 y=ax 2+bx+c (a ,b ,c 是常数,a≠0)的三种表达形式分别为:一般式:y=ax 2+bx+c ,通常要知道图像 上的三个点的坐标才能得出此解析式;顶点式: y=a (x -h )2+k ,通常要知道顶点坐标或对称轴才能求出此解析式;交点式:y=a (x -x 1)(x -x 2),通常要知道图像与 x 轴的两个交点坐标 x 1,x 2 才能求出此解析式;对于 y=ax 2+bx+c22a 4a抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点.考点2相似三角形的概念及其性质1.定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。

二次函数复习课教案精选全文完整版

二次函数复习课教案精选全文完整版

可编辑修改精选全文完整版《二次函数》复习课教案一、课标要求二、命题分析三、复习目标:知识目标:1、了解二次函数解析式的三种表示方法;2、抛物线的开口方向、顶点坐标、对称轴以及抛物线与对称轴的交点坐标等;3、掌握二次函数的图像和性质以及抛物线的平移规律技能目标:培养学生运用函数知识解决数学综合题和实际问题的能力。

情感目标:1、通过问题情境和探索活动的创设,激发学生的学习兴趣;2.让学生感受到数学与人类生活的密切联系,体会到学习数学的乐趣。

复习重、难点:函数综合题型复习方法:自主探究、合作交流四、复习过程:(一)、二次函数的定义•定义: y=ax²+ bx + c ( a 、 b 、 c 是常数, a ≠ 0 )•定义要点:①a ≠ 0 ②最高次数为2•③代数式一定是整式•练习:1、y=-x²,y=2x²-2/x,y=100-5 x²,•y=3 x²-2x³+5,其中是二次函数的有____个。

2.当m_______时,函数y=(m+1)χm^2-m - 2χ+1是二次函数?(二)、二次函数的图像及性质1、填表:2、二次函数y=ax+bx+c,当a>0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而;当a<0时,在对称轴右侧,y随x的增大而 , 在对称轴左侧,y随x的增大而3、抛物线y=ax2+bx+c,当a>0时图象有最点,此时函数有最值;当a<0时图象有最点,此时函数有最值4、巩固练习:已知二次函数y=x2+2x-3 的图象是一条,它的开口方向,顶点坐标是,对称轴是,它与x 轴有个交点,交点坐标是;在对称轴的左侧,y 随着x 的增大而;在对称轴的右侧,y随着x的增大而;当x= 时,函数y 有最值,是.(三)、二次函数解析式的三种表示方法:1、(1)顶点式:(2)交点式:(3)一般式:2、求抛物线解析式的三种方法:(1)、一般式:已知抛物线上的三点,通常设解析式为________________(2)、顶点式:已知抛物线顶点坐标(h, k),通常设抛物线解析式为_______________ 求出表达式后化为一般形式.(3)、交点式:已知抛物线与x 轴的两个交点(x 1,0)、 (x 2,0),通常设解析式为_____________求出表达式后化为一般形式.3、例1、已知二次函数y=ax 2+bx+c 的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。

相似及二次函数第二次复习

相似及二次函数第二次复习
D
A
E
B
(第 1 题)
C
2.已知 Δ ABC∽Δ A′B′C′,Δ ABC 的周长是 20cm,Δ A′B′C′的周长是 12cm,Δ ABC 的最长边为 8cm,则 Δ A′B′C′的最长边是 cm. .
B D F
3.如图,四边形 BDEF 是 RtΔ ABC 的内接正方形,若 AB=6,BC=4,则 DE=
2
4.二次函数与一元二次方程的关系 相似
1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。互为相似形的三角形叫相似三角形 相似形的识别:对应边成比例,对应角相等。 成比例线段(简称比例线段):对于四条线段 a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的 比相等,即
a,则点 B 的横坐标是(

1 A. a 2
1 C. (a 1) 2
1 B. (a 1) 2 1 D. (a 3) 2
7.如图,正方形 ABCD 内接于等腰三角形 PQR,则 PA∶PQ 等于( A.1∶ 2 B.1∶2 C.1∶3 D.2∶3
)
二、填空题 1.如图,在 Δ ABC 中,DE∥BC,且 AD∶BD=1∶2,则 S ADE :S四边形DBCE .
a c (或 a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线段。 b d
2.相似三角形的判定方法: 根据相似图形的特征来判断。 (对应边成比例,对应角相等) ○.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似; 1 ○.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似; 2 3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似; ○ 4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似; ○ 3.直角三角形相似判定定理: 1 ○.斜边与一条直角边对应成比例的两直角三角形相似。 2 ○.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似, 并且分成的两个直角三角形也相 似。 4. 相似的性质 (1)相似三角形对应角相等,对应边成比例。 (2)相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比 等于相似比。 (3)相似三角形周长的比等于相似比。 (4)相似三角形面积的比等于相似比的平方。 (5)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方 (6)若 a:c =c:b,即 c =ab,则 c 叫做 a,b 的比例中项 (7)c/d=a/b 等同于 ad=bc. 二次函数巩固练习 一、选择题 1.下列函数中,当 x>0 时 y 值随 x 值增大而减小的是( A.y = x

人教版数学九年级上册26.2.2《二次函数复习》教学设计3

人教版数学九年级上册26.2.2《二次函数复习》教学设计3

人教版数学九年级上册26.2.2《二次函数复习》教学设计3一. 教材分析人教版数学九年级上册26.2.2《二次函数复习》是对九年级学生学习二次函数知识的总结和提高。

本节课的主要内容是让学生掌握二次函数的性质,包括图像、顶点、对称轴等,并能运用二次函数解决实际问题。

教材通过例题和练习题的形式,帮助学生巩固二次函数的知识,并提高解题能力。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像、顶点、对称轴等概念有一定的了解。

但部分学生对这些知识的掌握不够扎实,对一些复杂问题的解决能力有待提高。

此外,学生的学习兴趣和学习积极性对课堂效果有很大影响,因此,教师在教学过程中要注重激发学生的学习兴趣,提高学生的学习积极性。

三. 教学目标1.掌握二次函数的性质,包括图像、顶点、对称轴等。

2.能够运用二次函数解决实际问题。

3.提高学生的解题能力,培养学生的逻辑思维能力。

4.激发学生的学习兴趣,提高学生的学习积极性。

四. 教学重难点1.重点:二次函数的性质,包括图像、顶点、对称轴等。

2.难点:运用二次函数解决实际问题,特别是复杂问题的解决。

五. 教学方法1.讲授法:教师讲解二次函数的性质和相关概念,引导学生理解并掌握。

2.案例分析法:通过分析典型例题,让学生了解二次函数在实际问题中的应用。

3.练习法:让学生通过练习题,巩固所学知识,提高解题能力。

4.小组讨论法:让学生分组讨论,培养学生的合作意识和团队精神。

六. 教学准备1.教材:人教版数学九年级上册。

2.教案:详细的教学设计。

3.PPT:用于辅助教学的课件。

4.练习题:用于巩固知识的练习题。

5.黑板:用于板书重要知识点和解题过程。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾二次函数的基本知识,如二次函数的定义、图像、顶点、对称轴等。

2.呈现(10分钟)教师通过PPT展示二次函数的图像,引导学生观察并总结二次函数的性质。

同时,教师给出典型例题,让学生分析并解答。

二次函数的复习课教案

二次函数的复习课教案

二次函数复习课(1)复习目标:1、通过复习使学生对二次函数知识的理解系统化;2、通过复习进一步强化对二次函数概念的理解;2、熟练运用二次函数的图像、性质,借助数形结合解决有关问题;4、灵活掌握二次函数解析式的求法。

复习重点:1、二次函数的图像与性质。

2、二次函数解析式的确定。

复习难点:如何正确利用图像信息解决二次函数的相关问题。

复习方法:讲练结合教学用具:多媒体辅助教学复习过程小结:①知识点考察:二次函数的概念②出题的两种题型③再次强调次数与系数三、二次函数的图像与性质1.(1)已知二次函数图象如图,你能直观从图中得到哪些信息?答:a<0,b>0,c>0,△>0小结:复习a、b、c、△的作用:a——开口方向a、b——对称轴c——与y轴交点△——与x轴交点个数1.已知二次函数图象如图,函数图象与x轴的两个交点(-1,0)和(3,0),你还能从此函数图像中得到哪些信息?答:对称轴:x=1增减性:当x<1时,y随x的增大而增大当x≥1时,y随x的增大而减小当-1<x<3时,y>0当x<-1或x>3时,y<02.刚才通过图像得到了a、b、c、△的范围,下面如果给出a、b、c能否得到函数的图像?学生独立完成,然后回答问题,教师小结学生看图回答问题复习a、b、c、△的作用回答问题两道题分别是考题中经常出现的类型,再次总结关键在于二次项的次数与系数,时间关系不再展开。

通过二次函数的大致图像得到a、b、c、△的范围,这是第一层次的要求通过具体的题来复习a、b、c、△的作用通过增加条件来复习二次函数的性质-1 3练习:二次函数y=x 2+2x-1图象的大致位置是( )A B C D 小结:由a 、b 、c 的符号确定图像 四、解析式的确定刚才我们由函数图像得到了开口方向、对称轴,增减性等,那么如果我们再增加一个条件,能否得到它的解析式。

1.(3)你能否根据此函数图像求出函数的解析式? 答案:复习:解析式的三种形式:一般式、顶点式、两根式 此题分组分别采取三种方法解答。

二次函数与相似三角形结合问题

二次函数与相似三角形结合问题

⼆次函数与相似三⾓形结合问题琢⽟教育个性化辅导讲义教师姓名学科上课时间年⽉⽇学⽣姓名年级讲义序号课题名称教学⽬标1.会根据题⽬条件求解相关点的坐标和线段的长度;2.掌握⽤待定系数法求解⼆次函数的解析式;3.能根据题⽬中的条件,画出与题⽬相关的图形,继⽽帮助解题;教学重点难点1.体会利⽤⼏何定理和性质或者代数⽅法建⽴⽅程求解的⽅法;2.会应⽤分类讨论的数学思想和动态数学思维解决相关问题。

课前检查上次作业完成情况:优□良□中□差□建议_______________________________教学内容知识结构:⼀.⼆次函数知识点梳理:下图中0a≠⼆.特殊的⼆次函数:下图中0a≠34y x=与BC边交于D点.(1)求D点的坐标;(2)若抛物线2y ax bx=+经过A、D两点,求此抛物线的表达式;(3)设(2)中的抛物线的对称轴与直线OD交于点M,点P是对称轴上⼀动点,以P、O、M为顶点的三⾓形与△OCD相似,求出符合条件的点P.⽅法总结:1.已知:如图,在平⾯直⾓坐标系xOy中,⼆次函数cbxxy++-的图像经过点A(-1,1)和点B(2,2),该函数图像的对称轴与直线OA、OB分别交于点C和点D.⼆次函数背景下相似三⾓形的解题⽅法和策略:1.根据题意,先求解相关点的坐标和相关线段的长度;2.待定系数法求解相关函数的解析式;3.相似三⾓形中,注意寻找不变的量和相等的量(⾓和线段);4.当三⾓形的三边不能⽤题⽬中的未知量表⽰时,注意利⽤相似三⾓形的转化求解;5.根据题⽬条件,注意快速、正确画图,⽤好数形结合思想;6.注意利⽤好⼆次函数的对称性;7.利⽤⼏何定理和性质或者代数⽅法建⽴⽅程求解都是常⽤⽅法。

(1)求这个⼆次函数的解析式和它的对称轴;(4分)(2)求证:∠ABO=∠CBO;(4分)(3)如果点P在直线AB上,且△POB与△BCD相似,求点P的坐标.(6分)2.如图,抛物线215222y x x=-+-与x轴相交于A、B,与y轴相交于点C,过点C作CD ∥x轴,交抛物线于点D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名师精编优秀教案
二次函数与相似结合专题复习
上海市铁岭中学杨越
一、教学目标设计
1、会根据不同的条件,利用待定系数法求二次函数的解析式.
2、选择合理的方法求二次函数的解析式。

3、根据图形特征和已知条件选择判定定理进行证明和计算
二、教学重点及难点
二次函数与相似结合的灵活应用
三、教学过程
回忆求二次函数解析式的方法
1、已知一个二次函数图像经过A( 0、1)、 B (1、 3)、 C( -1 、 1)三点,
求这个二次函数解析式
2、已知:抛物线的顶点坐标(6, 5),并经过A(0,2)
求:抛物线的解析式
3、二次函数与y轴的交点为(0, 1),与 x 轴的交点为( 2, 0),( 6、 0)
求这个函数的解析式。

相似三角形有关定理回顾与思考
请说出判断△ ABC∽△ DEF的定理有哪些?
讨论:已知∠ A=∠ D,请添一个条件使△ABC与△ DEF相似,则这个条件可以是什么?
A D
E F
B C
二次函数与相似结合的灵活应用
例 1、(本题满分 12 分,其中第( 1)小题 5 分,第( 2)小题 7 分)如
图,已知点 A(1,0)、 B(3,0)、 C(0,1) .
1
( 1)若二次函数图像经过点A、C和点 D(2,)三点,求这个二次函数的解析式.
3
( 2)若点E在线段BC上,且△ABE与△ABC相似,求出点 E 的坐标.
y
2
1 C
A B
- 1O 1 2 3 x
- 1
第 24题图
例 2、已知抛物线y ax2 4ax c 与y轴交于点A(0,3),点且满足AB∥ x 轴,点 C 是抛物线的顶点 .
(1)求抛物线的对称轴及 B 点坐标;
(2)若抛物线经过点 (-2,0) ,求抛物线的表达式;
(3)对( 2)中的抛物线,点D在线段 AB上,若以点A、C、D为顶点的三角形与△AOC相似,试求点D的坐标 .
(4)若 x 轴上有一点 E 关于抛物线的对称轴的对称点是F。

点 E 坐标为( a,0 )且 a>2, 若以点 A、 O、 B 为顶点的三角形与△ AOF相似,试求 a 的值 . B是抛物线上的点,
y
O x
(第 1 题图)
练习 1、(本题满分 12 分)
如图,△ AOB 的顶点 A 、 B 在二次函数 y
1 x
2 bx
3 的图像上,又点 A 、 B
3
2
分别在 y 轴和 x 轴上, tan ∠ABO = 1.
( 1)求此二次函数的解析式; ( 4 分)
( 2)过点 A 作 AC ∥ BO 交上述函数图像于点 C ,
点 P 在上述函数图像上,当△ POC 与△ ABO 相似时,求点 P 的坐标.( 8 分)
y A
B
O
(图
2)
x
练习 2、(本题共 2 小题, 5 分+7 分,满分 12 分)
在平面直角坐标系中, O 为坐标原点,二次函数 y 1 x 2 bx c 的图像经过点 A ( 4, 0)、 C ( 0, 2).
4
(1)试求这个二次函数的解析式;并判断点
B ( 2,0) 是否在该函数的图像上;
( 2)设所求函数图像的对称轴与 x 轴交于点 D ,点 E 在对称轴上,若以点
C 、
D 、
E 为顶点
的三角形与△ 相似,试求点 E 的坐标.
ABC
y
C .


O
1
A
x。

相关文档
最新文档