人工智能第3章通过搜索进行问题的求解

合集下载

《人工智能》课后答案

《人工智能》课后答案

《人工智能》课后答案第一章课后习题1、对N=5、k≤3时,求解传教士和野人问题的产生式系统各组成部分进行描述(给出综合数据库、规则集合的形式化描述,给出初始状态和目标条件的描述),并画出状态空间图。

2、对量水问题给出产生式系统描述,并画出状态空间图。

有两个无刻度标志的水壶,分别可装5升和2升的水。

设另有一水缸,可用来向水壶灌水或倒出水,两个水壶之间,水也可以相互倾灌。

已知5升壶为满壶,2升壶为空壶,问如何通过倒水或灌水操作,使能在2升的壶中量出一升的水来。

3、对梵塔问题给出产生式系统描述,并讨论N为任意时状态空间的规模。

相传古代某处一庙宇中,有三根立柱,柱子上可套放直径不等的N个圆盘,开始时所有圆盘都放在第一根柱子上,且小盘处在大盘之上,即从下向上直径是递减的。

和尚们的任务是把所有圆盘一次一个地搬到另一个柱子上去(不许暂搁地上等),且小盘只许在大盘之上。

问和尚们如何搬法最后能完成将所有的盘子都移到第三根柱子上(其余两根柱子,有一根可作过渡盘子使用)。

求N=2时,求解该问题的产生式系统描述,给出其状态空间图。

讨论N为任意时,状态空间的规模。

4、对猴子摘香蕉问题,给出产生式系统描述。

一个房间里,天花板上挂有一串香蕉,有一只猴子可在房间里任意活动(到处走动,推移箱子,攀登箱子等)。

设房间里还有一只可被猴子移动的箱子,且猴子登上箱子时才能摘到香蕉,问猴子在某一状态下(设猴子位置为a,箱子位置为b,香蕉位置为c),如何行动可摘取到香蕉。

5、对三枚钱币问题给出产生式系统描述及状态空间图。

设有三枚钱币,其排列处在"正、正、反"状态,现允许每次可翻动其中任意一个钱币,问只许操作三次的情况下,如何翻动钱币使其变成"正、正、正"或"反、反、反"状态。

6、说明怎样才能用一个产生式系统把十进制数转换为二进制数,并通过转换141.125这个数为二进制数,阐明其运行过程。

《人工智能》课程教学大纲.doc

《人工智能》课程教学大纲.doc

《人工智能》课程教学大纲课程代码:H0404X课程名称:人工智能适用专业:计算机科学与技术专业及有关专业课程性质:本科生专业基础课﹙学位课﹚主讲教师:中南大学信息科学与工程学院智能系统与智能软件研究所蔡自兴教授总学时:40学时﹙课堂讲授36学时,实验教学4学时﹚课程学分:2学分预修课程:离散数学,数据结构一.教学目的和要求:通过本课程学习,使学生对人工智能的发展概况、基本原理和应用领域有初步了解,对主要技术及应用有一定掌握,启发学生对人工智能的兴趣,培养知识创新和技术创新能力。

人工智能涉及自主智能系统的设计和分析,与软件系统、物理机器、传感器和驱动器有关,常以机器人或自主飞行器作为例子加以介绍。

一个智能系统必须感知它的环境,与其它Agent和人类交互作用,并作用于环境,以完成指定的任务。

人工智能的研究论题包括计算机视觉、规划与行动、多Agent系统、语音识别、自动语言理解、专家系统和机器学习等。

这些研究论题的基础是通用和专用的知识表示和推理机制、问题求解和搜索算法,以及计算智能技术等。

此外,人工智能还提供一套工具以解决那些用其它方法难以解决甚至无法解决的问题。

这些工具包括启发式搜索和规划算法,知识表示和推理形式,机器学习技术,语音和语言理解方法,计算机视觉和机器人学等。

通过学习,学生能够知道什么时候需要某种合适的人工智能方法用于给定的问题,并能够选择适当的实现方法。

二.课程内容简介人工智能的主要讲授内容如下:1.叙述人工智能和智能系统的概况,列举出人工智能的研究与应用领域。

2.研究传统人工智能的知识表示方法和搜索推理技术,包括状态空间法、问题归约法谓词逻辑法、语义网络法、盲目搜索、启发式搜索、规则演绎算法和产生式系统等。

3.讨论高级知识推理,涉及非单调推理、时序推理、和各种不确定推理方法。

4.探讨人工智能的新研究领域,初步阐述计算智能的基本知识,包含神经计算、模糊计算、进化计算和人工生命诸内容。

《人工智能导论》第3章 图搜索与问题求解

《人工智能导论》第3章 图搜索与问题求解
(4)对其余子节点配上指向N的返回指针后放入OPEN表中 某处, 或对OPEN表进行重新排序, 转步2。
第 3 章 图搜索与问题求解 图 3-5 修改返回指针示例
第 3 章 图搜索与问题求解
说明:
(1) 这里的返回指针也就是父节点在CLOSED表中的编 号。
(2) 步6中修改返回指针的原因是, 因为这些节点又被第 二次生成, 所以它们返回初始节点的路径已有两条, 但这两 条路径的“长度”可能不同。 那么, 当新路短时自然要走 新路。
第 3 章 图搜索与问题求解
3.1.5 加权状态图搜索
1.加权状态图与代价树
例3.6 图3-9(a)是一个交通图,设A城是出发地,E城 是目的地, 边上的数字代表两城之间的交通费。试求 从A到E最小费用的旅行路线。
第 3 章 图搜索与问题求解 图 3-9 交通图及其代价树
第 3 章 图搜索与问题求解
第 3 章 图搜索与问题求解
3. 状态图表示
一个问题的状态图是一个三元组 (S, F, G)
其中S是问题的初始状态集合, F是问题的状态转换 规则集合, G是问题的目标状态集合。
一个问题的全体状态及其关系就构成一个空间, 称为状态空间。所以,状态图也称为状态空间图。
第 3 章 图搜索与问题求解
例 3.7 迷宫问题的状态图表示。
的返回指针和f(x)值, 修改原则是“抄f(x)
”。
(2)对其余子节点配上指向N的返回指针后放入OPEN表中, 并对OPEN表按f(x)值以升序排序, 转步2。
第 3 章 图搜索与问题求解
算法中节点x的估价函数f(x)的计算方法是 f(xj)=g(xj)+h(xj) =g(xi)+c(xi, xj)+h(xj) (xj是xi的子节点)

第3章 图搜索与问题求解

第3章 图搜索与问题求解

( 4 )对其余子节点配上指向 N 的返回指针后放入 OPEN 表 中某处,或对OPEN表进行重新排序,转步2。
3.1.2 状态图搜索

树式算法的几点说明


返回指针指的是父节点在CLOSED表中的编号。 步6中修改指针的原因是返回初始节点的路径有两 条,要选择“短”的那条路径。 这里路径长短以节点数来衡量,在后面将会看到以 代价来衡量。按代价衡量修改返回指针的同时还要 修改相应的代价值。
3.1.2 状态图搜索
1 搜索方式


树式搜索 在搜索过程中记录所经过的所有节点和边。树式搜 索所记录的轨迹始终是一棵树,这棵树也就是搜索过 程中所产生的搜索树。 线式搜索 在搜索过程中只记录那些当前认为在所找路径上的 节点和边。

不回溯线式搜索 可回溯线式搜索
3.1.2 状态图搜索
2 搜索策略
3.1.2 状态图搜索



搜索:从初始节点出发,沿着与之相连的边试探 地前进,寻找目标节点的过程。 搜索过程中经过的节点和边,按原图的连接关系, 便会构成一个树型的有向图,这种树型有向图称 为搜索树。 搜索进行中,搜索树会不断增长,直到当搜索树 中出现目标节点,搜索便停止。这时从搜索树中 就可很容易地找出从初始节点到目标节点的路径 (解)来。
八数码深度优先搜索

3.1.4 启发式搜索
• 启发式搜索的目的 利用知识来引导搜索,达到减少搜索范围,降低问题复 杂度。 • 启发性信息的强弱 强:降低搜索的工作量,但可能导致找不到最优解。 弱:一般导致工作量加大,极限情况下变为盲目搜索, 但可能可以找到最优解。
3.1.4 启发式搜索

启发函数
步5 扩展N,选取其一个未在CLOSED表中出现过的

人工智能 第3章(确定性推理3-与或树搜索)

人工智能 第3章(确定性推理3-与或树搜索)
常用启发式函数
包括基于距离的启发式函数、基于成本的启发式函数、基于规则的启发式函数等。
节点排序和选择策略
节点排序的目的和意义
节点排序是为了在扩展节点时,按照一定的顺序选择下一个要扩展的节点,以优化搜索过程。
常用节点排序策略
包括最佳优先搜索、广度优先搜索、深度优先搜索等。最佳优先搜索根据启发式函数的值来选择最优节点; 广度优先搜索按照节点的层次顺序进行扩展;深度优先搜索则尽可能深地扩展节点。
盲目搜索方法比较与选择
• 宽度优先搜索、深度优先搜索和迭代加深搜索都是盲目搜索方法,它们在不同的场景下有不同的应用。 • 宽度优先搜索适用于问题空间较大、解存在于较浅层次的情况,因为它可以逐层遍历整个问题空间,找到最短
路径。 • 深度优先搜索适用于问题空间较小、解存在于较深层次的情况,因为它可以尽可能深地搜索树的分支,找到更
启发式信息获取途径
01
02
03
问题自身的特性
通过分析问题的性质、结 构、约束条件等,提取出 对搜索过程有指导意义的 启发式信息。
领域知识
利用领域内的经验、规则、 常识等,为搜索过程提供 有价值的启发式信息。
搜索过程中的信息
在搜索过程中,通过评估 当前状态、已搜索路径、 未搜索路径等,动态地获 取启发式信息。
04 与或树搜索优化技术
剪枝策略
01
剪枝的定义和目的
剪枝是在搜索过程中,通过某些评估标准,提前终止对某些无意义或低
效的节点的扩展,以减少搜索空间,提高搜索效率。
02 03
常用剪枝策略
包括限界剪枝、启发式剪枝、概率剪枝等。限界剪枝通过设置上下界来 限制搜索范围;启发式剪枝利用启发式函数来评估节点的重要性;概率 剪枝则根据节点的概率分布来进行剪枝。

6第六讲 第三章(盲目、启发搜索)

6第六讲  第三章(盲目、启发搜索)

二、有序搜索
用估价函数 f 来排列OPEN表上的节点。
应用某个算法选择OPEN表上具有最小f 值的节点作为
二、宽度优先搜索
例3.2 八数码问题 操作规定: 允许空格四周上、下、左、右的数码 块移入空格中,不许斜方向移动,不许返回先辈 结点。
1 2 3 8 5 7 4 6
1
4
1 3 8 2 5 7 4 6
2
1 2 3 8 4 5 7 6
3
1 2 3 8 5 7 4 6
5
1 2 3 8 5 7 4 6
深度优先搜索的特点
OPEN表为堆栈,操作是后进先出(LIFO) 深度优先又称纵向搜索。 一般不容易保证找到最优解(如下图所示) 防止搜索过程沿着无益的路径扩展下去,往往 给出一个节点扩展的最大深度——深度界限。
2、有界深度优先搜索
引入搜索深度限制值d,使深度优先搜索具有完备性 。 (1)深度界限的选择很重要 d若太小,则达不到解的深度,得不到解;若太大,既 浪费了计算机的存储空间与时间,降低了搜索效率。由于 解的路径长度事先难以预料,要恰当地给出d的值是比较 困难的。 (2)即使能求出解,它也不一定是最优解。 例3.3:设定搜索深度限制d=5的八数码问题。
4. 搜索过程框图
S0放入OPEN表 是 OPEN表空? 否 将OPEN表中第一个节点(n) 移至CLOSE表 否 n是目标节点? 扩展节点n,把n的后继节点放入 OPEN表末端,提供指向 节点n的指针 修改指针方针,重排OPEN表
失败

成功
一、图搜索策略(Graph Search) 5.图搜索方法分析:
3.2 启发式搜索
盲目搜索的不足:效率低,耗费空间与时间。 启发式搜索:利用问题本身特性信息(启发信息) 指导搜索过程。是有序搜索。 一、启发式搜索策略 启发式信息主要用途:

人工智能基础智慧树知到答案章节测试2023年武汉学院

人工智能基础智慧树知到答案章节测试2023年武汉学院

第一章测试1. 一般公认人工智能的鼻祖是谁?()A:图灵B:麦肯锡C:牛顿D:爱因斯坦答案:A2. 人工智能这一学科正式产生是()。

A:1956 年B:1945 年C:1980 年D:1957 年答案:A3. 智力包括 ( ) 。

A:控制情绪的能力B:超强的记忆能力C:集中精力的能力D:学习的能力答案:ACD第二章测试1. 用搜索求解问题的方法,就是数学中的建模方法。

()A:对B:错答案:B2. 用搜索求解问题一定可以找到最优解。

()A:错B:对答案:A3. 启发式信息按其形式可分为()和()。

答案:4. 通过搜索实现问题求解的基本步骤是定义()、( ) 和( ) 。

,答案:5. 搜索图分为()和()两种。

.答案:6. 状态表示可以是()。

A:树结构B:图片C:矩阵D:列表答案:ACD第三章测试1. 与或图中包含的关系有()。

A:And/OrB:OrC:否定D:And答案:ABD2. 如果问题有解,即SO→Sg存在一条路径,A*算法一定能找到最优解()A:错B:对答案:B3. 根据图对应的实际问题背景,图又可分为()和()。

答案:4. 在通用图搜索算法的第6步,为什么产生n 的一切后继节点构成的集合M中,其中不包括n 的先辈点?答案:5. 在通用图搜索算法的第7.2步,若PEG, 为什么要确定是否更改Tree中P到n 的指针。

答案:6. 什么是A 算法答案:第四章测试1. 下棋是非零和博弈。

()A:对B:错答案:B2. 极小极大搜索算法在扩展搜索树时,是以深度优先的方式。

()A:对B:错答案:B3. 极小极大搜索算法是以自顶向下的方式扩展搜索树,以自底向上的方式倒推评价值()A:错B:对答案:B4. αβ剪枝法的搜索过程中,α值永不上升,β值永不下降()A:错B:对答案:A5. 下棋的评价函数的要求是有利于程序方的势态, f(P)取()值,有利于对方的势态, f(P)取 ( ) 值。

,答案:6. 博弈算法MinMax 的基本思想,当轮到Min 走步的结点时, Max 应考虑f(p)取极()值;当轮到Max 走步的结点时, Max 应考虑f(p)取极 ( ) 值。

人工智能习题参考答案

人工智能习题参考答案

• 神经网络主要通过指导式(有师)学习算法和非指导式(无师)学习 算法。此外,还存在第三种学习算法,即强化学习算法;可把它看做 有师学习的一种特例。 • (1)有师学习 • 有师学习算法能够根据期望的和实际的网络输出(对应于给定输入) 间的差来调整神经元间连接的强度或权。因此,有师学习需要有个老 师或导师来提供期望或目标输出信号。有师学习算法的例子包括 Delta规则、广义Delta规则或反向传播算法以及LVQ算法等。 • (2)无师学习 • 无师学习算法不需要知道期望输出。在训练过程中,只要向神经网络 提供输入模式,神经网络就能够自动地适应连接权,以便按相似特征 把输入模式分组聚集。无师学习算法的例子包括Kohonen算法和 Carpenter-Grossberg自适应谐振理论(ART)等。 • (3)强化学习 • 强化(增强)学习是有师学习的特例。它不需要老师给出目标输出。 强化学习算法采用一个“评论员”来评价与给定输入相对应的神经网 络输出的优度(质量因数)。强化学习算法的一个例子是遗传算法 (GA)。
• • • • • • • • • •
• 6-2专家系统由哪些部分构成?各部分的作用为何? • 答: •
• 5-7遗传算法、进化策略和进化编程的关系如何?有何区别? • 遗传算法是一种基于空间搜索的算法,它通过自然选择、遗传、变异 等操作以及达尔文适者生存的理论,模拟自然进化过程来寻找所求问 题的解答。 • 进化策略(Evolution Strategies,ES)是一类模仿自然进化原理以求 解参数优化问题的算法。 • 进化编程根据正确预测的符号数来度量适应值。通过变异,为父代群 体中的每个机器状态产生一个子代。父代和子代中最好的部分被选择 生存下来。 • 进化计算的三种算法即遗传算法、进化策略和进化编程都是模拟生物 界自然进化过程而建立的鲁棒性计算机算法。在统一框架下对三种算 法进行比较,可以发现它们有许多相似之处,同时也存在较大的差别。 • 进化策略和进化编程都把变异作为主要搜索算子,而在标准的遗传算 法中,变异只处于次要位置。交叉在遗传算法中起着重要作用,而在 进化编程中却被完全省去,在进化策略中与自适应结合使用,起了很 重要的作用。 • 标准遗传算法和进化编程都强调随机选择机制的重要性,而从进化策 略的角度看,选择(复制)是完全确定的。进化策略和进化编程确定 地把某些个体排除在被选择(复制)之外,而标准遗传算法一般都对 每个个体指定一个非零的选择概率。

人工智能第三版课件第3章 搜索的基本策略

人工智能第三版课件第3章 搜索的基本策略

2.3.1 启发式信息的表示
(2) 启发式函数应能够估计出可能加速 达到目标的程度
这可以帮助确定当扩展一个节点时,那些 节点应从搜索树中删除。
启发式函数对搜索树(图)的每一节点的真正 优点估计得愈精确,解题过程就愈少走弯路。
2.3.1 启发式信息的表示
例 2.8 八 皇 后 问 题 (8-Queens problem)
弱法主要包括: .最佳优先法 .生成测试法 .爬山法 .广度优先法 .问题归约法 .约束满足法 .手段目的分析法。
1.生成测试法(Generateand-test)
生成测试法的基本步骤为: 1. 生成一个可能的解,此解是状态空 间一个点,或一条始于S0的路径。 2. 用生成的“解”与目标比较。 3. 达到目标则停止,否则转第一步。
确定一个启发式函数f(n), n 为被搜索 的节点,它把问题状态的描述映射成问题 解决的程度,通常这种程度用数值来表示, 就是启发式函数的值。这个值的大小用来 决定最佳搜索路径。
2.3.1 启发式信息的表示
(2)表示成规则
如AM的一条启发式规则为: 如 果 存 在 一 个 有 趣 的 二 元 函 数 f(x,y) , 那 么看看两变元相同时会发生什么?
2.3.1 启发式信息的表示
如何构造启发式函数? (1)启发式函数能够根据问题的当前状态, 确定用于继续求解问题的信息。
这样的启发式函数能够有效地帮助决定 那些后继节点应被产生。
2.3.1 启发式信息的表示
例2.7 八数码问题。
S0
283 16 4
Sg
75
123 84 7 65
问题空间为:
a11 a12 a13 a21 a22 a23 a31 a32 a33

3 产生式及搜索方法

3 产生式及搜索方法

第3 章 产生式系统及其搜索方法
3 . 1 产生式系统
3 . 1 . 3 产生式系统的类型
可分解的产生式系统
用图搜索方式求解这个问题时, 搜索得到的部分状态 空间图见图26。 图中只给出两条达到目标的路径和一条失 败的路径。实际搜索时有可能去探索更多的路径, 往往导 致效率降低。
对于个问题, 为了避免搜索多余的路径 , 可以将初 始数据库分解成几个可以独立加以处理的分量, 分别对它 们进行求解。 即可以分别对每一个分量数据库, 测试产 生式规则可以应用的条件, 如此进行下去, 直到分量数据 库满足某种结束条件为止。 要注意一般结 束条件应是所 有分量数据库都已满足结束条件。
第3 章 产生式系统及其搜索方法
3 . 1 产生式系统
3 . 1 . 3 产生式系统的类型
可分解的产生式系统
先研究一个重写问题的产生式系统, 初始数据库为 (C, B, Z), 产生式规则如下: • R1: C→(D, L) • R2: C→(B, M) • R3: B→(M, M) • R4: Z→(B, B, M) 结束条件是生成只包含M组成的数据库, 即(M, …, M)。
第3 章 产生式系统及其搜索方法
3 . 1 产生式系统
产生式系统使用类似于文法的规则, 对符号 串作替换运算。 它是智能软件中使用最普遍、最典 型的一种结构。为什么要采用产生式系统作为智能 软件的主要结构呢? 这可以有两点理由: (1) 用产生式系统结构求解问题的过程和人类求 解问题时的思维过程很相象, 因而可以用它来模拟 人类求解问题时的思维过程; (2) 可以把产生式系统作为智能软件中的基本结 构单元或基本模式看待, 就好象是 积木世界中的积 木块一样, 因而研究产生式系统的基本问题就具有 一般意义。

人工智能基础与实践 第3章 Python与人工智能 课件PPT

人工智能基础与实践 第3章 Python与人工智能 课件PPT

变量是指在运行过程中值可以被修改的量。变量的名称除必须符 合标识符的构成规则外,要尽量遵循一些约定俗成的规范: 除了循环控制变量可以使用i或者x这样的简单名字外,其他变量 最好使用有意义的名字,以提高程序的可读性。例如,表示平均 分的变量应使用average_score或者avg_score,而不建议用as或 者pjf。直接用汉字命名也是可以的,但限于输入烦琐和编程环境 对汉字兼容等因素,习惯上很少使用。 用英文名字时,多个单词之间为表示区隔,可以用下画线来连 接不同单词,或者把每个单词的首字母大写。 用于表示固定不变值的变量名称一般用全大写英文字母,例如 :PI,MAX_SIZE。变量一般使用大小写混合的方式。 因为以下画线开头的变量在Python中有特殊含义,所以,自定 义名称时,一般不用下画线作为开头字符。 此外,还要注意Python标识符是严格区分大小字母的。
2.3 Python的基本运算和表达式
2.3.1 变量 1.变量的赋值和存储 (1)变量定义 在Python中没有专门的变量定义语句,变量定义是 通过对变量第一次进行赋值来实现 (2)删除变量 使用del命令可以删除一个对象(包括变量、函数等 ),删除之后就不能再访问这个对象了,因为它已 经不存在了。当然,也可以通过再次赋值重新定义x 变量
(5)字符串切片 在Python程序中,可使用切片(slice)从字符串中提取子串。 切片的参数是用两个冒号分隔的三个数字:
• 第一个数字表示切片开始位置(默认为0) • 第二个数字表示切片截止位置(但不包含这个位置,默认为字符串长度) • 第三个数字表示切片的步长(默认为1),当步长省略时,可以顺便省略最
优雅、明确、简单 优美胜BE于xepa丑luict陋iiftui,lsisb显ebt式etettr优etrh于tahna隐nim式upgllicy.it.

人工智能课程习题与部分解答

人工智能课程习题与部分解答

《人工智能》课程习题与部分解答第1章 绪论什么是人工智能? 它的研究目标是什么?什么是图灵测试?简述图灵测试的基本过程及其重要特征. 在人工智能的发展过程中,有哪些思想和思潮起了重要作用? 在人工智能的发展过程中,有哪些思想和思潮起了重要作用? 人工智能的主要研究和应用领域是什么?其中,哪些是新的研究热点?第2章 知识表示方法什么是知识?分类情况如何?什么是知识表示?不同的知识表示方法各有什么优缺点? 人工智能对知识表示有什么要求? 用谓词公式表示下列规则性知识:自然数都是大于零的整数。

任何人都会死的。

[解] 定义谓词如下:N(x): “x 是自然数”, I(x): “x 是整数”, L(x): “x 大于0”, D(x): “x 会死的”, M(x): “x 是人”,则上述知识可用谓词分别表示为: )]()()()[(x I x L x N x ∨→∀ )]()()[(x D x M x →∀用谓词公式表示下列事实性知识:小明是计算机系的学生,但他不喜欢编程。

李晓新比他父亲长得高。

产生式系统由哪几个部分组成? 它们各自的作用是什么?可以从哪些角度对产生式系统进行分类? 阐述各类产生式系统的特点。

简述产生式系统的优缺点。

简述框架表示的基本构成,并给出框架的一般结构框架表示法有什么特点?试构造一个描述你的卧室的框架系统。

试描述一个具体的大学教师的框架系统。

[解] 一个具体大学教师的框架系统为:框架名:<教师-1>类属:<大学教师>姓名:张宇性别:男年龄:32职业:<教师>职称:副教授部门:计算机系研究方向:计算机软件与理论工作:参加时间:2000年7月工龄:当前年份-2000工资:<工资单>把下列命题用一个语义网络表示出来(1)树和草都是植物;(2)树和草都是有根有叶的;(3)水草是草,且生长在水中;(4)果树是树,且会结果;(5)苹果树是果树的一种,它结苹果。

人工智能ppt

人工智能ppt

2.1 状态空间法
➢状态空间法三要点 (1) 状态(state):表示问题解法中每 一步问题状况的数据结构; (2) 算符(operator):把问题从一种状 态变换为另一种状态的手段; (3) 状态空间方法:基于解答空间的问 题表示和求解方法,它是以状态和算符 为基础来表示和求解问题的。
2.1 状态空间法
2.2 问题归约法
➢问题归约法的概念
❖已知问题的描述,通过一系列变换把此 问题最终变为一个子问题集合;这些子 问题的解可以直接得到,从而解决了初 始问题。
❖该方法也就是从目标(要解决的问题)出发 逆向推理,建立子问题以及子问题的子 问题,直至最后把初始问题归约为一个 平凡的本原问题集合。这就是问题归约 的实质。
例1、用一个语义网络表示下列命题。 (1) 树和草都是植物; (2) 树和草是有根有叶的; (3) 水草是草,且长在水中; (4) 果树是树,且会结果; (5) 苹果树是果树中的一种,它结苹果。
分析: 问题涉及的对象有:
植物、树、草、水草、果树、苹果树 各对象的属性分别为:
树和草的属性:有根、有叶; 水草Байду номын сангаас属性:长在水中; 果树的属性:会结果; 苹果树的属性:结苹果。
➢由上可知,对一个问题的状态描述, 必须确定3件事: (1) 该状态描述方式,特别是初始状态 描述; (2) 操作符集合及其对状态描述的作用; (3) 目标状态描述的特性。
例2:(分油问题) 有A、B、C三个不带刻度的 瓶子,分别能装8kg, 5kg和3kg油。如果A瓶 装满油,B和C是空瓶,怎样操作三个瓶,使 A中的油平分两份?(假设分油过程中不耗油)
第三步:求解过程。
R(2,0)
1,1,0 R(1,1)

人工智能》教学大纲

人工智能》教学大纲

人工智能》教学大纲2.掌握Prolog语言的基本语法和常用操作;3.能够编写简单的Prolog程序,并能够运行和调试;4.了解Prolog语言在人工智能中的应用。

第三章搜索算法基本内容和要求:1.掌握深度优先搜索、广度优先搜索、启发式搜索等搜索算法的基本思想和实现方法;2.能够应用搜索算法解决一些典型问题;3.了解搜索算法在人工智能中的应用。

第四章知识表示与推理基本内容和要求:1.掌握命题逻辑、一阶逻辑等知识表示方法;2.了解基于规则、框架、语义网络等知识表示方法;3.掌握归结方法、前向推理、后向推理等推理方法;4.能够应用知识表示与推理解决一些典型问题。

第五章不确定性推理基本内容和要求:1.了解不确定性推理的基本概念和方法;2.掌握贝叶斯定理及其应用;3.掌握条件概率、独立性、条件独立性等概念;4.能够应用不确定性推理解决一些典型问题,如垃圾邮件过滤等。

五、教材和参考书目1)主教材:Stuart Russell。

Peter Norvig。

Artificial Intelligence: A Modern Approach。

3rd n。

Prentice Hall。

2009.2)参考书目:___。

机器研究。

___。

2016.___。

统计研究方法。

___。

2012.___。

___。

2017.六、教学进度安排第一周人工智能概述第二周逻辑程序设计语言Prolog第三周搜索算法第四周知识表示与推理第五周不确定性推理第六周期中考试第七周至第十周课程实验第十一周至第十三周课程实验第十四周课程总结与复第十五周期末考试一实验(实训)内容产生式系统实验学时分配4目的与要求:熟悉和掌握产生式系统的运行机制,掌握基于规则推理的基本方法。

实验(实训)内容:主要包括产生式系统的正、反向推理、基于逻辑的搜索等10余个相关演示性、验证性和开发性设计实验。

二实验(实训)内容搜索策略实验学时分配4目的与要求:熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N数码难题,理解求解流程和搜索顺序。

人工智能课件第3章 图搜索与问题求解

人工智能课件第3章 图搜索与问题求解

例 3-3 用全局择优搜索法解八数码难题。初始 棋局和目标棋局如下面的图3-8所示。
解 设启发函数h(x)为节点x的格局与目标格局 相比数码不同的位置个数。以这个函数制导的搜索树 如图3-8所示。此八数问题的解为:So, S1, S2, S3, Sg。
■教材的微课视 频中有搜索过 程的动画
图 3-8 八数码问题的全局择优搜索
(6) 扩展N, 将其所有子节点配上指向N的指针依次放入
OPEN表尾部, 转步(2)。
2.深度优先搜索 深度优先搜索就是
在搜索树的每一层始终 先只扩展一个子节点, 不断地向纵深前进,直 到不能再前进(到达叶 子节点或受到深度限制) 时,才从当前节点返回 到上一级节点,沿另一 方向又继续前进。这种 方法的搜索树是从树根 开始一枝一枝逐渐形成 的。
• 可回溯的线式搜索
(1) 把初始节点So放入CLOSED表中。 (2) 令N=So。 (3) 若N是目标节点, 则搜索成功, 结束。
(4) 若N不可扩展, 则移出CLOSED表的末端节点Ne,若Ne =So,则搜索失败, 退出。否则, 以CLOSED表新的末端节点Ne 作为N,即令N=Ne, 转步(4)。
r5: (X1==0)( X2==n) (X1=n) ( X2=0) r6: (X1==0)( X8==n) (X1=n) ( X8=0)
2组规则:
r7: (X2==0)( X1==n) (X2=n) ( X1=0) r8: (X2==0)( X3==n) (X2=n) ( X3=0) r9: (X2==0)( X0==n) (X2=n) ( X0=0)
盘子的搬动次数:
264-1=18 446 744 073 709 511 615
二阶梵塔问题

《人工智能》--课后习题问题详解

《人工智能》--课后习题问题详解

《人工智能》课后习题答案第一章绪论1.1答:人工智能就是让机器完成那些如果由人来做则需要智能的事情的科学。

人工智能是相对于人的自然智能而言,即用人工的方法和技术,研制智能机器或智能系统来模仿延伸和扩展人的智能,实现智能行为和“机器思维”,解决需要人类专家才能处理的问题。

1.2答:“智能”一词源于拉丁“Legere”,意思是收集、汇集,智能通常用来表示从中进行选择、理解和感觉。

所谓自然智能就是人类和一些动物所具有的智力和行为能力。

智力是针对具体情况的,根据不同的情况有不同的含义。

“智力”是指学会某种技能的能力,而不是指技能本身。

1.3答:专家系统是一个智能的计算机程序,他运用知识和推理步骤来解决只有专家才能解决的复杂问题。

即任何解题能力达到了同领域人类专家水平的计算机程序度可以称为专家系统。

1.4答:自然语言处理—语言翻译系统,金山词霸系列机器人—足球机器人模式识别—Microsoft Cartoon Maker博弈—围棋和跳棋第二章知识表达技术2.1解答:(1)状态空间(State Space)是利用状态变量和操作符号,表示系统或问题的有关知识的符号体系,状态空间是一个四元组(S,O,S0,G):S—状态集合;O—操作算子集合;S0—初始状态,S0⊂S;G—目的状态,G⊂S,(G可若干具体状态,也可满足某些性质的路径信息描述)从S0结点到G结点的路径被称为求解路径。

状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:O1 O2 O3 OkS0→−−−S1→−−−S2→−−−……→−−−G其中O1,…,Ok即为状态空间的一个解(解往往不是唯一的)(2)谓词逻辑是命题逻辑的扩充和发展,它将原子命题分解成客体和谓词两个部分。

与命题逻辑中命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式、复合谓词公式等概念。

一阶谓词逻辑是谓词逻辑中最直观的一种逻辑。

(3)语义网络是一种采用网络形式表示人类知识的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PPT模板下载:
3.4 无信息搜索策略 深度受限搜索
>当b有限时,搜索是完备的 >如果路径耗散是节点P深PT度模的板非下递载:减函数,则解是最优的。 >空间需求是O(bd)
<>确定性的
PPT模板下载:
-问题的解是行动的单一序列
-在问题求解的过程中感知信息不起作用
<>可观察的
3.1 问题求解Agent
罗马尼亚城镇地图:
PPT模板下载:
3.1 问题求解Agent
问题的解
<>解释从初始值到目标状态的路径 <>解的质量由路径耗散PP函T模数板值下最每个状态都有b个后继,解的深度是d,则找到解时,所访问过的节点
数为O(bd+1)。
PPT模板下载:
3.4 无信息搜索策略
代价一致搜索
-bfs算法的引伸:扩展路径消耗最低的节点 -有可能陷入无限循环 -和如最果优规性定。每一步的耗散PP都T模大板等下于载某:个小的正值常数,那么就能保证完备性 -复杂度与b和最优解的耗散值有关。
第三章 通过搜索进行问题的求解
PPT模板下载:
目录
3.1 问题求解Agent 3.2 问题实例 3.3 通过搜索求解 3.4 无信息搜索策略 3.5 有信息(启发式)的搜索策略 3.6 本章小结
问题求解
要进行问题求解,首先要讨论的是对问题以及其解的精确定义, 我们将通过一些实例来说明如何去描述一个问题及其解。 搜索,是指从问题出发寻找解的过程。
Agent设计三个步骤:形式化、搜索、执行。
形式化
搜索
行动序列 (问题的解)
执行
3.1 问题求解Agent
问题的形式化定义
<>可以用五部分形式化描述
•初始状态:智能体的起始状态
•对Agent可能行动的描述:给定一个特殊状态s,ACTION(s)返回状态s下可以执行
的动作集合。如,In(Arad)可应用行动为{Go(S)Go(T)Go(Z)}
•对每个动作的描述:转移模型,RESULT(s,a)表示,状态s下执行行动a后达到状
态.
PPT模板下载:
•目标测试:确定给定的状态是不是目标状态
•路径耗散:为每条路径分配一个数值化的耗散值
问题的解:从初始状态到目标状态的路径 最优解:路径耗散最小的解
3.1 问题求解Agent 环境特性
<>静态的 -完成问题形式化和求解的时候不在考虑环境可能的变化
3.3 通过搜索求解
搜索树
你会发现有回路产生,回路是冗余的特殊情况。有些问题的冗余是无法避 免,所以要避免探索的冗余就是记住曾经走过的路。 探索集:记录每一个以PP探T模索板的下节载点:
3.3 通过搜索求解
搜索算法基础
一个状态空间可以有无数条路径,即搜索树可有无数个节点。 例如,从Arad到Sibiu的路径可包括重复出现的节点。
状态:8个可能的状态
PPT模板下载:
3.2 问题实例
玩具问题
状态:由Agent位置和灰尘位置确定 初始状态:任何形态都可能被设计为初始。 后续函数:用来产生通PP过T模左板移下、载右:移、吸尘能够到达的合法状态 目标测试:用来检测是否所有的方格都干净 路径耗散:假设每一步的耗散值为1
3.2 问题实例 玩具问题
PPT模板下载:
3.2 问题实例
八角数码的游戏
<>状态:8个棋子以及空格在9格棋盘
<>初始:任意状态都可PP以T模作板为下初载始:, 但要达到一特定的目标态,只有一半的状态可以作为起点。 <>后继函数:产生4个行动(上,下,左,右)可以到达合法状态 <>目标测试:用来检测是否匹配右图。 <>路径耗散:每一步耗散值1
3.4 无信息搜索策略 代价一致搜索
PPT模板下载:
3.4 无信息搜索策略 深度优先搜索
>对内存的需求很少
>有可能错误地选择一条分支而且沿着一条很长的路径(甚至是无限)走
下去。 -非最优
PPT模板下载:
-非完备
-在最坏情况下,dfs所生成的节点数是O(bm)
3.4 无信息搜索策略 深度优先搜索
3.2 问题实例
八皇后问题
皇后可以攻击和她在同一行,同一列,同 一斜对角线的任何棋子。
有专用的算法,这里是搜索的测试用例 分--为增两量类形:式化:每次行动P添PT加模一板个下皇载后: 到状态中去。 --完整状态形式化:8个皇后都在棋盘 上并且不断移动。 状态:0-8个皇后任意摆放都是一个状态 初始状态:空棋盘 后续函数:将增加皇后的棋盘返回 目标测试:8个皇后都在棋盘上,并且无
3.1 问题求解Agent 例子: 罗马尼亚
Agent在罗马尼亚城市Arad度假,假设她有张第二天飞往
Bucharest的机票,而且是不能退票。
目标:前往BucharePstPT模板下载:
任务:找到能够使它到达目标的动作序列
Q: 决策所要考虑的行动和状态的种类?
a:在开车从一个主要城镇到另一个城镇的层次上考虑行动。
完备性:有解时能否保证找到解 最优性:是否有找到最优解 时间复杂度:根据搜索过程中产生的节点数目来度量 空间复杂度:在执行搜P索PT模的板过下程载中:需要的内存,取决于储存的最大节点数。
时间与空间的复杂度往往要与问题难度的某种度量一起考虑
3.4 无信息搜索策略
广度优先搜索
当b有限时,搜索是完备的
如果路径耗散是节点深度的非递减函数,则解是最优的。
节点的数据结构: -State:状态空间 PPT模板下载: -Parent-Node:搜索树中产生节点的节点 (父节点) -Action :父节点生成节点是所采取的行动 -Path-Cost:从初始状态到达该节点消耗
3.3 通过搜索求解 搜索算法基础
PPT模板下载:
3.3 通过搜索求解
问题求解算法性能
搜索树
在对问题进行格式化之后,我们现在需要对问题求解。 第一步,检测该节点是不是否为目标状态,如In(Arad),选择各种行动。生 成接一 着个从状其态中集选,择{一In个(S考ibPiP虑uT)模,,In板等(T下发),载In现:(Z不)}能。求解在选择其他的。
3.3 通过搜索求解 搜索树
PPT模板下载:
法相互攻击。
3.2 问题实例
现实世界
寻径问题 旅游时面临飞机航行问题
状态:位置和当前时间 初始状态:用户在咨询时P确PT定模板下载: 后续函数: 乘坐的航班、飞行时间、候机时间状态 目标测试:是否在预定时间到达目的地 路径耗散:等待时间、飞行时间、座位的质量、费用…
旅行商问题等等
3.3 通过搜索求解
相关文档
最新文档