matlab习题及答案
matlab期末复习题及答案
![matlab期末复习题及答案](https://img.taocdn.com/s3/m/dad4d328ce84b9d528ea81c758f5f61fb636287e.png)
matlab期末复习题及答案1. MATLAB基础操作在MATLAB中,如何创建一个名为"myMatrix"的3x3矩阵,其元素分别为1, 2, 3, 4, 5, 6, 7, 8, 9?答案:在MATLAB中,可以通过直接输入矩阵元素来创建矩阵。
例如,要创建一个名为"myMatrix"的3x3矩阵,可以使用以下命令:```matlabmyMatrix = [1 2 3; 4 5 6; 7 8 9];```这样,MATLAB就会创建一个3x3的矩阵,其元素按照行顺序排列。
2. 矩阵运算给定两个矩阵A和B,其中A = [1 2; 3 4],B = [5 6; 7 8],计算矩阵A和B的和。
答案:在MATLAB中,可以使用加号(+)来计算两个矩阵的和。
对于给定的矩阵A和B,可以使用以下命令来计算它们的和:```matlabA = [1 2; 3 4];B = [5 6; 7 8];C = A + B;```执行上述命令后,矩阵C的结果将是:```C = [6 8;10 12];```3. 条件语句编写一个MATLAB脚本,判断一个给定的数n是否为质数,并输出相应的信息。
答案:在MATLAB中,可以使用if-else语句来判断一个数是否为质数。
以下是一个简单的脚本示例:```matlabn = input('请输入一个数:');if mod(n, 2) == 0 && n > 2disp('该数不是质数');elseif n == 1disp('1不是质数');elseisPrime = true;for i = 2:sqrt(n)if mod(n, i) == 0isPrime = false;break;endendif isPrimedisp('该数是质数');elsedisp('该数不是质数');endend```该脚本首先接收用户输入的数n,然后通过一个for循环检查n是否有除了1和它自身以外的因数,从而判断n是否为质数。
matlab考试题库及答案大学
![matlab考试题库及答案大学](https://img.taocdn.com/s3/m/5de96ce0fc0a79563c1ec5da50e2524de518d0d7.png)
matlab考试题库及答案大学# MATLAB考试题库及答案大学一、选择题1. MATLAB中用于生成0到1之间均匀分布随机数的函数是: - A. rand- B. randi- C. randperm- D. randn答案:A2. 下列哪个命令可以用于绘制函数图像?- A. plot- B. text- C. title- D. xlabel答案:A3. MATLAB中,以下哪个不是矩阵的属性?- A. size- B. length- C. rank- D. transpose答案:D4. 以下哪个函数可以用于求解线性方程组?- A. solve- B. linsolve- C. linprog- D. fsolve答案:A5. MATLAB中,用于计算矩阵特征值的函数是:- A. eig- B. eign- C. eigen- D. eigenvalue答案:A二、填空题1. MATLAB的基本数据单位是________。
答案:矩阵2. 使用MATLAB进行数值计算时,可以利用________来存储数据。
答案:变量3. MATLAB中的向量可以是________或________。
- 答案:行向量;列向量4. 矩阵的转置可以通过________操作实现。
答案:.'5. MATLAB中,使用________函数可以计算矩阵的行列式。
答案:det三、简答题1. 简述MATLAB中使用循环结构的注意事项。
答案:在MATLAB中使用循环结构时,应注意以下几点:确保循环体内部逻辑正确,避免无限循环;使用for循环时,循环变量的初始化和步长设置要合理;使用while循环时,循环条件要明确,确保循环能够正常退出。
2. 描述MATLAB中如何实现数组的多维索引。
答案:在MATLAB中,多维数组的索引可以通过使用圆括号来实现,每个维度的索引用逗号分隔。
例如,对于一个三维数组A,可以使用A(i,j,k)来访问第i行、第j列、第k层的元素。
大学matlab考试题及答案
![大学matlab考试题及答案](https://img.taocdn.com/s3/m/3ba2b5f3b1717fd5360cba1aa8114431b90d8efe.png)
大学matlab考试题及答案大学MATLAB考试题及答案一、选择题1. MATLAB的全称是什么?A. Matrix LaboratoryB. Microprocessor Application Tool SetC. Microsoft Advanced Tool SetD. Microprocessor Application Test System答案:A2. 在MATLAB中,以下哪个命令用于绘制三维图形?A. plotB. scatterC. surfD. bar答案:C3. MATLAB中用于求解线性方程组的函数是?A. solveB. linsolveC. linprogD. fsolve答案:A二、简答题1. 简述MATLAB的基本数据类型有哪些,并给出至少两个每种类型的示例。
答案:MATLAB的基本数据类型包括数值数组、字符数组和单元数组。
数值数组可以是向量、矩阵或多维数组。
例如,向量 `v = [1 2 3]`,矩阵 `M = [1 2; 3 4]`。
字符数组是由单引号或双引号括起来的字符序列,如 `C = 'Hello'`。
单元数组可以包含不同类型的数据,如`{1, 'text', [1; 2; 3]}`。
2. 描述如何在MATLAB中实现矩阵的转置和翻转。
答案:矩阵的转置可以通过 `'T'` 来实现,例如 `A'` 表示矩阵A 的转置。
矩阵的翻转可以通过 `flip` 函数实现,例如 `flip(A)` 可以翻转矩阵A的所有行和列,`flipud(A)` 仅翻转矩阵A的行,而`fliplr(A)` 仅翻转矩阵A的列。
三、编程题1. 编写一个MATLAB函数,该函数接受一个向量作为输入,并返回向量中所有元素的和以及平均值。
```matlabfunction [sumVal, avgVal] = calculateSumAndAverage(V)sumVal = sum(V);avgVal = mean(V);end```2. 设计一个MATLAB脚本来解决以下问题:给定一个3x3的矩阵,找出其中最大的元素,并显示其位置。
matlab课后习题答案(附图)
![matlab课后习题答案(附图)](https://img.taocdn.com/s3/m/4682936c5bcfa1c7aa00b52acfc789eb172d9eb1.png)
matlab课后习题答案(附图)习题2.1画出下列常见曲线的图形y (1)⽴⽅抛物线3x命令:syms x y;ezplot('x.^(1/3)')(2)⾼斯曲线y=e^(-X^2);命令:clearsyms x y;ezplot('exp(-x*x)')(3)笛卡尔曲线命令:>> clear>> syms x y;>> a=1;>> ezplot(x^3+y^3-3*a*x*y)(4)蔓叶线命令:>> clear>> syms x y;>> a=1ezplot(y^2-(x^3)/(a-x))(5)摆线:()()tsin-=,=-by1命令:>> clear>> t=0:0.1:2*pi;>> x=t-sin(t);>>y=2*(1-cos(t)); >> plot(x,y)7螺旋线命令:>> clear >> t=0:0.1:2*pi; >> x=cos(t); >> y=sin(t); >> z=t;>>plot3(x,y,z)(8)阿基⽶德螺线命令:clear>> theta=0:0.1:2*pi;>> rho1=(theta);>> subplot(1,2,1),polar(theta,rho1)(9) 对数螺线命令:cleartheta=0:0.1:2*pi;rho1=exp(theta);subplot(1,2,1),polar(theta,rho1)(12)⼼形线命令:>> clear >> theta=0:0.1:2*pi; >> rho1=1+cos(theta); >> subplot(1,2,1),polar(theta,rho1)练习2.21. 求出下列极限值(1)nnn n3→命令:>>syms n>>limit((n^3+3^n)^(1/n)) ans = 3(2))121(lim n n n n ++-+∞→命令:>>syms n>>limit((n+2)^(1/2)-2*(n+1)^(1/2)+n^(1/2),n,inf) ans = 0(3)x x x 2cot lim 0→命令:syms x ;>> limit(x*cot(2*x),x,0) ans = 1/2 (4))(coslimcm xx ∞→命令:syms x m ; limit((cos(m/x))^x,x,inf) ans = 1(5))111(lim 1--→exx x命令:syms x>> limit(1/x-1/(exp(x)-1),x,1) ans =(exp(1)-2)/(exp(1)-1) (6))(2lim x x xx -+∞>> limit((x^2+x)^(1/2)-x,x,inf)ans = 1/2练习2.41. 求下列不定积分,并⽤diff 验证:(1)+x dxcos 1>>Clear >> syms x y >> y=1/(1+cos(x)); >> f=int(y,x) f =tan(1/2*x) >> y=tan(1/2*x); >> yx=diff(y ,x); >> y1=simple(yx) y1 =1/2+1/2*tan(1/2*x)^2 (2)+exdx1clear syms x yy=1/(1+exp(x));f=int(y,x) f =-log(1+exp(x))+log(exp(x)) syms x yy=-log(1+exp(x))+log(exp(x)); yx=diff(y,x); y1=simple(yx) y1 = 1/(1+exp(x)) (3)dx x x ?sin 2syms x yy=x*sin(x)^2; >> f=int(y,x) f =x*(-1/2*cos(x)*sin(x)+1/2*x)-1/4*cos(x)^2-1/4*x^2 clearsyms x y y=x*(-1/2*cos(x)*sin(x)+1/2*x)-1/4*cos(x)^2-1/4*x^2; yx=diff(y,x); >> y1=simple(yx) y1 = x*sin(x)^2 (4)xdx ?sec3syms x y y=sec(x)^3;f=int(y,x) f =1/2/cos(x)^2*sin(x)+1/2*log(sec(x)+tan(x)) clear syms x yy=1/2/cos(x)^2*sin(x)+1/2*log(sec(x)+tan(x)); yx=diff(y,x); y1=simple(yx) y1 =1/cos(x)^32. 求下列积分的数值解 1)dx x-10clearsyms xy=int(x^(-x),x,0,1) y =int(x^(-x),x = 0 .. 1) vpa(y,10) ans =1.291285997 2)xdx e x cos3202?πclearsyms xy=int(exp(2*x)*cos(x)^3,x, clear syms xy=int((1/(2*pi)^(1/2))*exp(-x^2/2),x,0,1) y =7186705221432913/36028797018963968*erf(1/2*2^(1/2))*2^(1/2)*pi^(1/0,2*pi) y =22/65*exp(pi)^4-22/65vpa(ans,10)(3)dx xe21221-π>> clear >> syms x>> y=int(1/(2*pi)^(1/2)*exp(-x^2/2),0,1); >> vpa(y,14) ans =.341344746068552(4)>> clear >> syms x>> y=int(x*log(x^4)*asin(1/x^2),1,3); Warning: Explicit integral could not be found. > In sym.int at 58 >> vpa(y,14) ans = 2.45977212823752(5) >> clear >> syms x1判断下列级数的收敛性,若收敛,求出其收敛值。
matlab试题及答案
![matlab试题及答案](https://img.taocdn.com/s3/m/f1916d9d5ebfc77da26925c52cc58bd63186938b.png)
matlab试题及答案# MATLAB试题及答案一、选择题1. MATLAB的基本数据单位是:A. 矩阵B. 向量C. 标量D. 数组答案:A2. 下列哪个命令可以用来绘制函数图形?A. `plot`B. `graph`C. `draw`D. `chart`答案:A3. MATLAB中,以下哪个是正确的矩阵转置操作?A. `transpose(A)`B. `A'`C. `A^T`D. `flip(A)`答案:B二、简答题1. 简述MATLAB中矩阵的基本操作。
答案:在MATLAB中,矩阵是最基本的数据结构,可以进行加、减、乘、除等基本运算。
矩阵的创建可以使用方括号`[]`,例如`A = [1 2;3 4]`。
矩阵的转置使用单引号`'`,例如`A'`。
矩阵的求逆使用`inv`函数,例如`inv(A)`。
2. MATLAB中如何实现循环结构?答案:MATLAB中实现循环结构主要有两种方式:`for`循环和`while`循环。
`for`循环用于已知迭代次数的情况,例如:```matlabfor i = 1:5disp(i);end````while`循环用于迭代次数未知的情况,例如:```matlabi = 1;while i <= 5disp(i);i = i + 1;end```三、计算题1. 给定矩阵A和B,请计算它们的乘积C,并求C的行列式。
A = [1 2; 3 4]B = [5 6; 7 8]答案:首先计算矩阵乘积C:```matlabC = A * B;```然后计算C的行列式:```matlabdetC = det(C);```结果为:```matlabC = [19 22; 43 50]detC = -16```2. 编写一个MATLAB函数,计算并返回一个向量的范数。
答案:```matlabfunction norm_value = vector_norm(v)norm_value = norm(v);end```四、编程题1. 编写一个MATLAB脚本,实现以下功能:- 随机生成一个3x3的矩阵。
matlab课后习题与答案
![matlab课后习题与答案](https://img.taocdn.com/s3/m/0cad0eff360cba1aa911da02.png)
习题二1.如何理解“矩阵是MATLAB最基本的数据对象”?答:因为向量可以看成是仅有一行或一列的矩阵,单个数据(标量)可以看成是仅含一个元素的矩阵,故向量和单个数据都可以作为矩阵的特例来处理。
因此,矩阵是MATLAB最基本、最重要的数据对象。
2.设A和B是两个同维同大小的矩阵,问:(1)A*B和A.*B的值是否相等?答:不相等。
(2)A./B和B.\A的值是否相等?答:相等。
(3)A/B和B\A的值是否相等?答:不相等。
(4)A/B和B\A所代表的数学含义是什么?答:A/B等效于B的逆右乘A矩阵,即A*inv(B),而B\A等效于B矩阵的逆左乘A矩阵,即inv(B)*A。
3.写出完成下列操作的命令。
(1)将矩阵A第2~5行中第1, 3, 5列元素赋给矩阵B。
答:B=A(2:5,1:2:5); 或B=A(2:5,[1 3 5])(2)删除矩阵A的第7号元素。
答:A(7)=[](3)将矩阵A的每个元素值加30。
答:A=A+30;(4)求矩阵A的大小和维数。
答:size(A);ndims(A);(5)将向量t的0元素用机器零来代替。
答:t(find(t==0))=eps;(6)将含有12个元素的向量x转换成34矩阵。
答:reshape(x,3,4);(7)求一个字符串的ASCII码。
答:abs(‘123’); 或double(‘123’);(8) 求一个ASCII 码所对应的字符。
答:char(49);4. 下列命令执行后,L1、L2、L3、L4的值分别是多少?A=1:9;B=10-A;...L1=A==B;L2=A<=5;L3=A>3&A<7;L4=find(A>3&A<7);答:L1的值为[0, 0, 0, 0, 1, 0, 0, 0, 0]L2的值为[1, 1, 1, 1, 1, 0, 0, 0, 0]L3的值为[0, 0, 0, 1, 1, 1, 0, 0, 0]L4的值为[4, 5, 6]5. 已知23100.7780414565532503269.5454 3.14A -⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦完成下列操作:(1) 取出A 的前3行构成矩阵B ,前两列构成矩阵C ,右下角32⨯子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E 。
matlab期末考试题目及答案
![matlab期末考试题目及答案](https://img.taocdn.com/s3/m/6d468a867e192279168884868762caaedd33baec.png)
matlab期末考试题目及答案1. 题目:编写一个MATLAB函数,实现矩阵的转置操作。
答案:可以使用`transpose`函数或`.'`操作符来实现矩阵的转置。
例如,对于一个矩阵`A`,其转置可以通过`A'`或`transpose(A)`来获得。
2. 题目:使用MATLAB求解线性方程组Ax=b,其中A是一个3x3的矩阵,b是一个3x1的向量。
答案:可以使用MATLAB内置的`\`操作符来求解线性方程组。
例如,如果`A`和`b`已经定义,求解方程组的代码为`x = A\b`。
3. 题目:编写MATLAB代码,计算并绘制函数f(x) = sin(x)在区间[0, 2π]上的图像。
答案:首先定义x的范围,然后计算对应的函数值,并使用`plot`函数绘制图像。
代码示例如下:```matlabx = linspace(0, 2*pi, 100); % 定义x的范围y = sin(x); % 计算函数值plot(x, y); % 绘制图像xlabel('x'); % x轴标签ylabel('sin(x)'); % y轴标签title('Plot of sin(x)'); % 图像标题```4. 题目:使用MATLAB编写一个脚本,实现对一个给定的二维数组进行排序,并输出排序后的结果。
答案:可以使用`sort`函数对数组进行排序。
如果需要对整个数组进行排序,可以使用`sort`函数的两个输出参数来获取排序后的索引和值。
代码示例如下:```matlabA = [3, 1, 4; 1, 5, 9; 2, 6, 5]; % 给定的二维数组[sortedValues, sortedIndices] = sort(A(:)); % 对数组进行排序sortedMatrix = reshape(sortedValues, size(A)); % 将排序后的值重新构造成矩阵disp(sortedMatrix); % 显示排序后的结果```5. 题目:编写MATLAB代码,实现对一个字符串进行加密,加密规则为将每个字符的ASCII码值增加3。
Matlab 考题题整理 带答案
![Matlab 考题题整理 带答案](https://img.taocdn.com/s3/m/3e2373e79b89680203d825bf.png)
MATLAB 考试试题(1)产生一个1x10的随机矩阵,大小位于(-5 5),并且按照从大到小的顺序排列好!(注:要程序和运行结果的截屏)答案:a=10*rand(1,10)-5;b=sort(a,'descend')1.请产生一个100*5的矩阵,矩阵的每一行都是[1 2 3 4 5]2. 已知变量:A=’ilovematlab’;B=’matlab’, 请找出:(A)B在A中的位置。
(B)把B放在A后面,形成C=‘ilovematlabmatlab’3. 请修改下面的程序,让他们没有for循环语句!A=[1 2 3; 4 5 6; 7 8 9];[r c]=size(A);for i=1:1:rfor j=1:1:cif (A(i,j)>8 | A(i,j)<2)A(i,j)=0;endendend4. 请把变量A=[1 2 3; 4 5 6; 7 8 9]写到文件里(output.xls),写完后文件看起来是这样的1 2 3 4 5 6 7 8 95.试从Yahoo网站上获得微软公司股票的2008年9月的每日收盘价。
6.编写M文件,从Yahoo网站批量读取60000.SH至600005.SH在2008年9月份的每日收盘价(提示:使用字符串函数)。
7. 将金牛股份(000937)2005年12月14日至2006年1月10日的交易记录保存到Excel中,编写程序将数据读入MATLAB中,进一步将数据读入Access数据库文件。
8.已知资产每日回报率为0.0025,标准差为0.0208,资产现在价值为0.8亿,求5%水平下资产的10天在险价值(Var)。
9.a=[1 2 3 4 5],b=a(1)*a(5)+a(2)*a(4)+a(3)*a(3)+a(4)*a(2)+a(5)*a(1).试用MATLAB中最简单的方法计算b,注意最简单哦。
1、求下列联立方程的解3x+4y-7z-12w=45x-7y+4z+ 2w=-3x +8z- 5w=9-6x+5y-2z+10w=-8求系数矩阵的秩;求出方程组的解。
matlab期末考试题及答案
![matlab期末考试题及答案](https://img.taocdn.com/s3/m/76ffc3255bcfa1c7aa00b52acfc789eb162d9e5d.png)
matlab期末考试题及答案MATLAB期末考试题及答案一、选择题(每题2分,共20分)1. MATLAB中用于创建向量的函数是:A. vectorB. arrayC. linspaceD. ones答案:D2. 下列哪个命令可以计算矩阵的行列式?A. detB. diagC. traceD. rank答案:A3. 在MATLAB中,以下哪个选项是用于绘制三维图形的?A. plotB. plot3C. barD. scatter答案:B4. MATLAB中,用于计算向量范数的函数是:A. normB. meanC. medianD. std答案:A5. 下列哪个命令可以用于创建一个二维数组?A. array2dB. matrixC. create2dD. make2d答案:B6. MATLAB中,用于求解线性方程组的函数是:A. solveB. linsolveC. equationD. linprog答案:A7. 以下哪个函数可以用于生成随机数?A. randB. randomC. randnD. randi答案:A8. MATLAB中,用于实现循环结构的关键字是:A. loopB. forC. whileD. repeat答案:B9. 下列哪个命令可以用于绘制函数图形?A. plotB. graphC. drawD. functionplot答案:A10. MATLAB中,用于计算矩阵特征值的函数是:A. eigB. eigenvalueC. characteristicD. eigen答案:A二、简答题(每题5分,共30分)1. 简述MATLAB中矩阵的基本操作有哪些?答案:矩阵的基本操作包括矩阵的创建、矩阵的加法、减法、乘法、转置、求逆、求行列式等。
2. MATLAB中如何实现条件语句?答案:MATLAB中实现条件语句主要使用if-else结构,也可以使用switch-case结构。
3. 请解释MATLAB中的函数定义方式。
matlab开卷考试题及答案
![matlab开卷考试题及答案](https://img.taocdn.com/s3/m/714c3b64bfd5b9f3f90f76c66137ee06eff94eeb.png)
matlab开卷考试题及答案MATLAB开卷考试题及答案一、选择题(每题2分,共20分)1. MATLAB中用于创建一个3x3的单位矩阵的命令是:A. `eye(3)`B. `ones(3)`C. `zeros(3)`D. `identity(3)`答案:A2. 下列哪个函数用于计算矩阵的逆?A. `inv()`B. `det()`C. `eig()`D. `trace()`答案:A3. MATLAB中,用于绘制二维图形的函数是:A. `plot()`B. `surf()`C. `mesh()`D. `bar()`答案:A4. 如何在MATLAB中计算向量的范数?A. `norm()`B. `abs()`C. `length()`D. `size()`答案:A5. MATLAB中,用于创建一个随机数矩阵的函数是:A. `rand()`B. `randi()`C. `randn()`D. `randperm()`答案:A6. 下列哪个命令用于在MATLAB中求解线性方程组?A. `solve()`B. `fsolve()`C. `fzero()`D. `linsolve()`答案:A7. MATLAB中,用于计算矩阵的行列式的函数是:A. `det()`B. `trace()`C. `eig()`D. `inv()`答案:A8. 如何在MATLAB中创建一个全1的3x3矩阵?A. `ones(3,3)`B. `eye(3,3)`C. `zeros(3,3)`D. `rand(3,3)`答案:A9. MATLAB中,用于计算矩阵的特征值的函数是:A. `eig()`B. `eigs()`C. `svd()`D. `qr()`答案:A10. 下列哪个函数用于计算矩阵的奇异值分解?A. `eig()`B. `svd()`C. `qr()`D. `lu()`答案:B二、填空题(每题3分,共30分)1. MATLAB中,用于创建一个3x3的零矩阵的命令是 `____`。
matlab习题及答案
![matlab习题及答案](https://img.taocdn.com/s3/m/58134de4f424ccbff121dd36a32d7375a417c61c.png)
matlab习题及答案Matlab习题及答案Matlab是一种强大的数学计算软件,被广泛应用于科学计算、数据分析和工程设计等领域。
在学习和使用Matlab的过程中,习题是一种非常有效的学习方式。
本文将给出一些常见的Matlab习题及其答案,帮助读者更好地掌握Matlab的使用技巧。
一、基础习题1. 计算1到100之间所有奇数的和。
解答:```matlabsum = 0;for i = 1:2:100sum = sum + i;enddisp(sum);```2. 编写一个函数,计算任意两个数的最大公约数。
解答:```matlabfunction gcd = computeGCD(a, b)while b ~= 0temp = b;a = temp;endgcd = a;end```3. 编写一个程序,生成一个5×5的随机矩阵,并计算矩阵的行和列的平均值。
解答:```matlabmatrix = rand(5);row_average = mean(matrix, 2);col_average = mean(matrix);disp(row_average);disp(col_average);```二、进阶习题1. 编写一个程序,实现插入排序算法。
解答:```matlabfunction sorted_array = insertionSort(array)n = length(array);for i = 2:nj = i - 1;while j > 0 && array(j) > keyarray(j+1) = array(j);j = j - 1;endarray(j+1) = key;endsorted_array = array;end```2. 编写一个程序,实现矩阵的转置。
解答:```matlabfunction transposed_matrix = transposeMatrix(matrix) [m, n] = size(matrix);transposed_matrix = zeros(n, m);for i = 1:mfor j = 1:ntransposed_matrix(j, i) = matrix(i, j);endendend```3. 编写一个程序,实现二分查找算法。
matlab模拟试题及答案
![matlab模拟试题及答案](https://img.taocdn.com/s3/m/cc11f48b18e8b8f67c1cfad6195f312b3169eba9.png)
matlab模拟试题及答案MATLAB模拟试题及答案1. 编写一个MATLAB函数,计算并返回一个向量中所有元素的和。
```matlabfunction sumVector = sumVectorElements(vector)sumVector = sum(vector);end```2. 给定一个矩阵A,编写一个MATLAB脚本,找出矩阵中的最大元素及其位置。
```matlabA = [1, 2, 3; 4, 5, 6; 7, 8, 9];[maxValue, maxIndex] = max(A(:));[maxRow, maxCol] = ind2sub(size(A), maxIndex);disp(['最大元素为: ', num2str(maxValue), ',位于第',num2str(maxRow), '行,第', num2str(maxCol), '列。
']);```3. 编写一个MATLAB函数,实现一个向量元素的排序。
```matlabfunction sortedVector = sortVector(vector)sortedVector = sort(vector);end4. 给定两个向量X和Y,编写一个MATLAB脚本,计算这两个向量的点积。
```matlabX = [1, 2, 3];Y = [4, 5, 6];dotProduct = dot(X, Y);disp(['X和Y的点积为: ', num2str(dotProduct)]);```5. 编写一个MATLAB函数,计算一个矩阵的行列式。
```matlabfunction determinant = calculateDeterminant(matrix)determinant = det(matrix);end```6. 给定一个向量,编写一个MATLAB脚本,找出向量中的最大值和最小值。
matlab试题及答案开卷
![matlab试题及答案开卷](https://img.taocdn.com/s3/m/b9bc5888b9f67c1cfad6195f312b3169a451eae6.png)
matlab试题及答案开卷1. MATLAB基础操作在MATLAB中,如何创建一个名为“myMatrix”的3x3矩阵,其元素从1到9按顺序排列?答案:在MATLAB中,可以使用以下命令创建名为“myMatrix”的3x3矩阵:```matlabmyMatrix = [1 2 3; 4 5 6; 7 8 9];```或者使用内置函数`magic`:```matlabmyMatrix = magic(3);```2. 矩阵运算给定两个矩阵A和B,其中A = [2 3; 4 5],B = [6 7; 8 9],计算A+B的结果。
答案:在MATLAB中,可以使用加号`+`来计算两个矩阵的和:```matlabA = [2 3; 4 5];B = [6 7; 8 9];C = A + B;```计算结果C为:```matlabC = [8 10; 12 14];```3. 向量操作创建一个从0到1的等差数列,步长为0.1。
答案:在MATLAB中,可以使用`linspace`函数或`:`操作符来创建等差数列:```matlabv = 0:0.1:1;```或者使用`linspace`函数:```matlabv = linspace(0, 1, 11);```两种方法都将得到一个包含11个元素的向量,从0开始,到1结束,步长为0.1。
4. 条件语句编写一个MATLAB脚本,判断一个给定的数n是否为素数。
答案:可以通过以下MATLAB脚本来判断一个数n是否为素数:```matlabfunction isPrime = isPrimeNumber(n)if n <= 1isPrime = false;elsefor i = 2:sqrt(n)if mod(n, i) == 0isPrime = false;return;endendisPrime = true;endend```调用此函数时,传入一个数值n,函数将返回一个布尔值,表示n 是否为素数。
matlab试题及答案
![matlab试题及答案](https://img.taocdn.com/s3/m/1a1e57205bcfa1c7aa00b52acfc789eb172d9efe.png)
matlab试题及答案一、单项选择题(每题2分,共10分)1. MATLAB中用于创建向量的命令是:A. vectorB. arrayC. linspaceD. colon答案:D2. 在MATLAB中,以下哪个函数用于计算矩阵的行列式?A. detB. rankC. invD. eig答案:A3. MATLAB中用于进行矩阵转置的运算符是:A. 'B. .C. ^D. !答案:A4. 若A是一个3x3的矩阵,执行命令A(2,:)=0;后,矩阵A的第二行将变为:A. [0 0 0]B. [1 0 0]C. [0 1 0]D. [0 0 1]答案:A5. MATLAB中,以下哪个函数用于绘制三维曲面图?A. plotB. surfC. barD. hist答案:B二、填空题(每题3分,共15分)1. MATLAB中,使用________命令可以清除所有变量。
答案:clear2. 若要在MATLAB中创建一个从0到1的100个元素的向量,可以使用命令________。
答案:linspace(0,1,100)3. MATLAB中,使用________函数可以计算矩阵的特征值。
答案:eig4. 在MATLAB中,________函数用于计算两个矩阵的点乘。
答案:dot5. 若要在MATLAB中绘制一个圆,可以使用________函数。
答案:plot三、简答题(每题5分,共20分)1. 请解释MATLAB中矩阵索引的概念。
答案:在MATLAB中,矩阵索引指的是通过行号和列号来访问矩阵中特定元素的过程。
例如,A(2,3)表示访问矩阵A的第二行第三列的元素。
2. MATLAB中如何实现矩阵的元素乘法?答案:在MATLAB中,矩阵的元素乘法可以通过使用点乘运算符(.*)来实现。
例如,C = A .* B,其中A和B是相同大小的矩阵。
3. 请说明MATLAB中如何使用循环结构。
答案:MATLAB中可以使用for循环和while循环两种循环结构。
(完整版)matlab经典习题及解答
![(完整版)matlab经典习题及解答](https://img.taocdn.com/s3/m/c9b0dfe80740be1e640e9a99.png)
第1章 MATLAB 概论1.1 与其他计算机语言相比拟,MATLAB 语言突出的特点是什么?MATLAB 具有功能强大、使用方便、输入简捷、库函数丰富、开放性强等特点。
1.2 MATLAB 系统由那些局部组成?MATLAB 系统主要由开发环境、MATLAB 数学函数库、MATLAB 语言、图形功能和应用程序接口五个局部组成。
1.4 MATLAB 操作桌面有几个窗口?如何使某个窗口脱离桌面成为独立窗口?又如何将脱离出去的窗口重新放置到桌面上?在MATLAB 操作桌面上有五个窗口,在每个窗口的右上角有两个小按钮,一个是关闭窗口的Close 按钮,一个是可以使窗口成为独立窗口的Undock 按钮,点击Undock 按钮就可以使该窗口脱离桌面成为独立窗口,在独立窗口的view 菜单中选择Dock ……菜单项就可以将独立的窗口重新防止的桌面上。
1.5 如何启动M 文件编辑/调试器?在操作桌面上选择“建立新文件〞或“翻开文件〞操作时,M 文件编辑/调试器将被启动。
在命令窗口中键入edit 命令时也可以启动M 文件编辑/调试器。
1.6 存储在工作空间中的数组能编辑吗?如何操作?存储在工作空间的数组可以通过数组编辑器进行编辑:在工作空间浏览器中双击要编辑的数组名翻开数组编辑器,再选中要修改的数据单元,输入修改内容即可。
1.7 命令历史窗口除了可以观察前面键入的命令外,还有什么用途?命令历史窗口除了用于查询以前键入的命令外,还可以直接执行命令历史窗口中选定的内容、将选定的内容拷贝到剪贴板中、将选定内容直接拷贝到M 文件中。
1.8 如何设置当前目录和搜索路径,在当前目录上的文件和在搜索路径上的文件有什么区别?当前目录可以在当前目录浏览器窗口左上方的输入栏中设置,搜索路径可以通过选择操作桌面的file 菜单中的Set Path 菜单项来完成。
在没有特别说明的情况下,只有当前目录和搜索路径上的函数和文件能够被MATLAB 运行和调用,如果在当前目录上有与搜索路径上相同文件名的文件时那么优先执行当前目录上的文件,如果没有特别说明,数据文件将存储在当前目录上。
matlab期末考试试题及答案
![matlab期末考试试题及答案](https://img.taocdn.com/s3/m/e137912cf342336c1eb91a37f111f18583d00c2e.png)
matlab期末考试试题及答案### MATLAB期末考试试题及答案#### 一、单选题(每题2分,共20分)1. MATLAB中,以下哪个函数用于计算矩阵的逆?A. invB. detC. eigD. rank答案:A2. MATLAB中,如何生成一个1到10的向量?A. `1:10`B. `1..10`C. `1..10`D. `1..10`答案:A3. MATLAB中,以下哪个命令用于绘制函数f(x)=x^2的图像?A. `plot(x, x^2)`B. `plot(x, f(x))`C. `fplot(x^2)`D. `fplot(x, x^2)`答案:A4. MATLAB中,如何计算矩阵A和B的点积?A. `dot(A, B)`B. `A * B`C. `A .* B`D. `A . B`答案:C5. MATLAB中,以下哪个函数用于求解线性方程组?A. `solve`B. `fsolve`C. `ode45`D. `fminsearch`答案:A#### 二、填空题(每题3分,共15分)1. MATLAB中,使用____函数可以计算矩阵的行列式。
答案:det2. 若向量`x = [1, 2, 3]`,则`x(2)`的值为____。
答案:23. MATLAB中,使用____函数可以创建一个3x3的单位矩阵。
答案:eye4. 若要在MATLAB中绘制函数f(x)=sin(x)的图像,可以使用____函数。
答案:plot5. MATLAB中,使用____函数可以计算矩阵的特征值。
答案:eig#### 三、编程题(每题10分,共30分)1. 编写一个MATLAB函数,计算并返回一个向量中所有元素的平方和。
```matlabfunction sum_of_squares = calculateSumOfSquares(vector)sum_of_squares = sum(vector.^2);end```2. 编写一个MATLAB脚本,使用while循环计算1到100之间所有奇数的和。
MATLAB平时练习题(附答案)
![MATLAB平时练习题(附答案)](https://img.taocdn.com/s3/m/cd744a1aba1aa8114431d9bd.png)
一、填空题1、MATLAB常用操作界面包括、工作空间窗口、、、内存数组编辑器、M文件编辑/调试器、帮助导航/浏览器、图形窗口等。
2、MATLAB中Inf或inf表示、NaN或nan表示、nargout表示。
3、MATLAB中逗号主要用作;用作输入量与输入量之间的分隔符;。
4、工作空间浏览器主要用于内存变量的、和。
5、MATLAB实现将全下标转换为单下标的指令为、据单下标换算出全下标的指令为。
6、二维数组的标识有、、“逻辑1”标识。
二、简述下列命令在MATLAB中的作用1.clf %清除图对象clear %清除工作空间内的所有变量clc %清除当前屏幕上显示的所有内容,但不清除工作空间中的数据2.ceil %沿+∞方向取整factor %符号计算的因式分解3.sph2cart %球坐标变为直角坐标pow2 %2的幂4.digits(d) %设置当前的可变算术精度的位数为整数 d 位vpa(pi,100) %设置当前pi的小数位数为1005.box on %打开框状坐标轴开grid off %网格关6.logspace %对数分度向量cat %串接成高维数组7.sym2poly %符号多项式转变为双精度多项式系数向量poly2sym %双精度多项式系数转变为向量符号多项式8.plot3 %三维线图poly2str %以习惯方式显示多项式9.bar %二维直方图pie %二维饼图10.zoom on %打开图形缩放模式 edit %M文件编辑11.whos %对当前工作空间变量的信息进行列表figure %生成图形窗口12.cart2sph %直角坐标变为球坐标pol2cart % 极或柱坐标变为直角坐标13.diff %数值差分、符号微分14.ezplot3 %画三维曲线的简捷指令fix %向零取整factor %符号计算的因式分解三简答题1.叙述MATLAB的主要窗口包括哪些?其作用是什么?命令窗口(Commend Window)——供输入命令,实现计算或绘图功能。
MATLAB习题及答案
![MATLAB习题及答案](https://img.taocdn.com/s3/m/4932b8da85868762caaedd3383c4bb4cf7ecb7cf.png)
填空题1. MATLAB于1984年由美国Mathworks公司推出,其后每年更新(两次。
2. MATLAB是一种以(矩阵)运算为基础的交互式程序设计语言。
3. MATLAB具有卓越的数值计算能力和符号计算、文字处理、可视化建模仿真和实时控制等众多功能,其每个变量代表一个(矩阵),每个元素都看作(复数)。
4.通过命令(help)、(lookfor),可以查找所有命令或函数的使用方法。
5.执行语句a=1:2:10,得到的一维数组是(1 3 5 7 9).6.执行语句b=linspace(1,10,10)后,一维数组b包含(10)个元素,最大值是10)7.函数rem()的功能是取(余)数。
8.若p=[1 0 0;1 1 0],则p|〜p=([1 1 1;1 1 1]).(注:填空时请用本题的p的方式表示结果)9.若p=[1 0 0;1 1 0],则all(p)=([1 0 0]).10.矩阵的加减运算,要求相加减的矩阵阶数相同。
若A=[1 2 3 4;2 3 1 8],则执行语句:[n,m]=size(A),则n=(2 ),m=(4 ).11.对于一维矩阵,求其长度的函数是(length()).12.数组和数组之间的运算,尤其是对于乘除运算和乘方运算,如果采用点方式进行计算,表明是数组的(元素)之间的运算关系。
13.求矩阵运算A*B时,要求在维度上,A的(列)数与B的(行)数相等。
二、判断题1.MATLAB只有一种数据类型,一种标准的输入输出语句,不需编译,可直接运行。
(对2.MATLAB的特殊常量是一些预选定义好的数值变量。
(对3.MATLAB变量名不区分大小写。
(错4.i是特殊常量。
(对5.NAN是非数。
(对6.MATLAB中所有的变量都表示一个矩阵或一个向量。
(对7.MATLAB中变量不需要先定义后使用,会自动根据实际赋值的类型对变量类型进行定义。
(对8.clc命令可以从内存中删除一个、多个和所有变量。
MATLAB考试试题及答案
![MATLAB考试试题及答案](https://img.taocdn.com/s3/m/33be77a70d22590102020740be1e650e53eacf72.png)
MATLAB考试试题及答案一、选择题(每题5分,共25分)1. 在MATLAB中,下列哪个命令用于创建一个行向量?A. v = [1; 2; 3]B. v = [1 2 3]C. v = [1, 2, 3]D. v = (1, 2, 3)答案:B2. 在MATLAB中,下列哪个命令用于计算矩阵A的行列式?A. det(A)B. det(A')C. det(inv(A))D. det(A^2)答案:A3. 在MATLAB中,下列哪个命令用于计算矩阵A的逆?A. inv(A)B. A^(-1)C. pinv(A)D. A\B答案:A4. 在MATLAB中,下列哪个命令用于求解线性方程组Ax= b?A. A\bB. A/BC. B/AD. A^-1b答案:A5. 在MATLAB中,下列哪个命令用于绘制二维图形?A. plot(x, y)B. scatter(x, y)C. bar(x, y)D. pie(x, y)答案:A二、填空题(每题5分,共25分)6. 在MATLAB中,可以使用______命令创建一个等差数列。
答案:linspace7. 在MATLAB中,可以使用______命令创建一个等比数列。
答案:logspace8. 在MATLAB中,可以使用______命令计算矩阵A的特征值。
答案:eig(A)9. 在MATLAB中,可以使用______命令计算矩阵A的特征向量。
答案:eigenvector(A)10. 在MATLAB中,可以使用______命令计算矩阵A的奇异值。
答案:svd(A)三、解答题(每题25分,共75分)11. 编写MATLAB程序,求解以下线性方程组:2x + 3y - z = 1x - y + 2z = 03x + 2y - 4z = -3答案:```A = [2 3 -1; 1 -1 2; 3 2 -4];b = [1; 0; -3];x = A\b;disp('解为:');disp(x);```12. 编写MATLAB程序,绘制以下函数的图形:y = sin(x) + cos(x),x ∈ [0, 2π]答案:```x = linspace(0, 2pi, 100);y = sin(x) + cos(x);plot(x, y);title('y = sin(x) + cos(x)');xlabel('x');ylabel('y');grid on;```13. 编写MATLAB程序,计算以下矩阵的特征值和特征向量:A = [1 2 3; 4 5 6; 7 8 9]答案:```A = [1 2 3; 4 5 6; 7 8 9];[V, D] = eig(A);disp('特征值:');disp(diag(D));disp('特征向量:');disp(V);```14. 编写MATLAB程序,使用牛顿迭代法求解方程f(x) = x^3 - 4x + 2 = 0在x = 1附近的根。
matlab期末试题库及答案
![matlab期末试题库及答案](https://img.taocdn.com/s3/m/b22e377242323968011ca300a6c30c225801f04d.png)
matlab期末试题库及答案一、选择题1. 下列关于MATLAB的说法中,错误的是:A. MATLAB是一种高级技术语言和环境B. MATLAB可以进行数值计算和数据可视化C. MATLAB支持矩阵运算和线性代数操作D. MATLAB无法处理大规模数据答案:D2. 在MATLAB中,下列哪个命令用于清除当前工作空间的变量:A. clearB. deleteC. closeD. refresh答案:A3. MATLAB中,用于创建行向量的命令是:A. rowvecB. linerowC. linspaceD. colon答案:D4. 在MATLAB中,如何计算数组a的平均值?A. mean(a)B. average(a)C. avg(a)D. meanval(a)答案:A5. 下列哪个命令用于将MATLAB中的向量a按从小到大排序?A. sort(a)B. order(a)C. arrange(a)D. rank(a)答案:A二、填空题1. MATLAB中表示pi的符号是______。
答案:pi2. MATLAB中用于计算2的10次方的命令是______。
答案:2^103. MATLAB中通过命令______可以生成从1到10的整数向量。
答案:1:104. MATLAB中用于求解线性方程组的命令是______。
答案:solve5. MATLAB中用于生成随机数的命令是______。
答案:rand三、计算题1. 计算下列矩阵的乘积:A = [1 2 3; 4 5 6; 7 8 9]B = [9 8 7; 6 5 4; 3 2 1]答案:C = A * B2. 解下列线性方程组:2x + y = 43x - y = 2答案:syms x yeq1 = 2*x + y == 4;eq2 = 3*x - y == 2;sol = solve([eq1, eq2], [x, y]);四、应用题题目:某电商公司的销售数据如下,请使用MATLAB进行分析和可视化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.用MATLAB 语句输入矩阵A 和B3.假设已知矩阵A ,试给出相应的MATLAB 命令,将其全部偶数行提取出来,赋给B 矩阵,用magic(8)A =命令生成A 矩阵,用上述命令检验一下结果是不是正确。
4.用数值方法可以求出∑=++++++==6363622284212i i S ,试不采用循环的形式求出和式的数值解。
由于数值方法是采用double 形式进行计算的,难以保证有效位数字,所以结果不一定精确。
试采用运算的方法求该和式的精确值。
5.选择合适的步距绘制出下面的图形。
(1))/1sin(t ,其中)1,1(-∈t ; (2))tan(sin )sin(tan t t -,其中),(ππ-∈t6.试绘制出二元函数2222)1(1)1(1),(yx yx y x f z ++++-==的三维图和三视图7.试求出如下极限。
(1)xxxx 1)93(lim +∞→; (2)11lim0-+→→xy xy y x ; (3)22)()cos(1lim222200y x y x ey x y x +→→++-8.已知参数方程⎩⎨⎧-==t t t y t x sin cos cos ln ,试求出x y d d 和3/22d d π=t x y9.假设⎰-=xyt t e y x f 0d ),(2,试求222222yfy x f x f y x ∂∂+∂∂∂-∂∂ 10.试求出下面的极限。
(1)⎥⎦⎤⎢⎣⎡-++-+-+-∞→1)2(1161141121lim 2222n n ; (2))131211(lim 2222ππππn n n n n n n ++++++++∞→ 11.试求出以下的曲线积分。
(1)⎰+ls y x d )(22,l 为曲线)sin (cos t t t a x +=,)cos (sin t t t a y -=,)20(π≤≤t 。
(2)⎰-+++ly y y xe x e yx )dy 2(xy d )(33,其中l 为22222c y b x a =+正向上半椭圆。
12.试求出Vandermonde 矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1ee e e 1d d d d 1c c c c 1b b b b1a a a a 234234234234234A 的行列式,并以最简的形式显示结果。
13.试对矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=22120.54.50.520.50.51.500.50.50.52A 进行Jordan 变换,并得出变换矩阵。
14.试用数值方法和解析方法求取下面的Sylvester 方程,并验证得出的结果。
⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------3664461652141129122921234304001101013376364224150463X X15.假设已知矩阵A 如下,试求出At e ,At sin ,)sin(2t e A e At At 。
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------=3110 1.52.511.50.50.540.5 1.50.504.5A 第二部分数学问题求解与数据处理(4 学时)主要问题:掌握代数方程与最优化问题、微分方程问题、数据处理问题的MATLAB求解方法。
1.对下列的函数)(t f 进行Laplace 变换。
(1)ttt f a αsin )(=;(2)t t t f b αsin )(5=;(3)t t t f c αcos )(8= 2.对下面的)(s F 式进行Laplace 反变换。
(1)))((1)(222b s a s s s F a +-=;(2)b s a s s F b ---=)(;(3)bs as s F c --=ln)(。
3.试求出下面函数的Fourier 变换,对得出的结果再进行Fourier 反变换,观察是否能得出原来函数。
(1)ππ20),23()(2≤≤-=x x x x f ;(2)ππ20,)2()(22≤≤-=t t t t f 。
4.请将下述时域序列函数)(kT f 进行Z 变换,并对结果进行反变换检验。
(1))cos()(kaT kT f a =;(2)akT b e kT kT f -=2)()(;(3))1(1)(akT c e akT akT f -+-=5.用数值求解函数求解下述一元和二元方程的根,并对得出的结果进行检验。
(1))25sin(2/)1()(2+++-=x x ex f π;(2)xyy xe xy y x y xf ---++=22)(),(226.试求出使得⎰-102d )(x cx e x 取得极小值的c 值。
7.试求解下面的非线性规划问题。
min )12424(22122211++++x x x x x e x x ⎪⎪⎩⎪⎪⎨⎧≤≤--≥≥++-≤+10,10105.10.s.t 2121212121x x x x x x x x x x8.求解下面的整数线性规划问题。
max )23374855273381592(7654321x x x x x x x ++++++x ⎩⎨⎧≤++++++≥1195673044515285891767235635340.s.t 7654321x x x x x x x x9.试求出微分方程x e x x y xx y x x y 52)()11()()12()(-=-+-- 的解析解通解,并求出满足边界条件1)(,)1(==ππy y 的解析解。
10.试求出下面微分方程的通解。
(1)1)()(2)(2+=++t t x t t x t t x ;(2)2)(2)(x xe x xy x y-=+11.考虑著名的ssler oR 化学反应方程组⎪⎩⎪⎨⎧-+=+=--=zc x b zay x y z y x )( ,选定2.0==b a ,7.5=c ,且)0()0()0(321x x x ==,绘制仿真结果的三维相轨迹,并得出其在x-y 平面上的投影。
在实际求解中建议将c b a ,,作为附加参数,同样的方程若设2.0=a ,5.0=b ,10=c 时,绘制出状态变量的二维图和三维图。
12.试选择状态变量,将下面的非线性微分方程组转换成一阶显式微分方程组,并用MATLAB 对其求解,绘制出解的相平面或相空间曲线。
⎪⎪⎩⎪⎪⎨⎧==-===----=+++---=-6)1(,7)1(,2)1(4)1(,2)1(26)()3()3(32y y y x x t e x y y t y y x y x x x13.考虑简单的线性微分方程)3/4sin(246553)3()4(π++=++++--t e e y y y y y t t,且方程的初值为1)0(=y ,2/1)0()0(==yy ,2.0)0()3(=y ,试用Simulink 搭建起系统的仿真模型,并绘制出仿真结果曲线。
14.用t e t t y t sin )(52-=生成一组较稀疏的数据,并用一维数据插值的方法对给出的数据进行曲线拟合,并将结果与理论曲线相比较。
第一部分第二题 (1)>> A=[1,2,3,4;4,3,2,1;2,3,4,1;3,2,4,1] A =1 2 3 4 4 3 2 1 2 3 4 1 3 2 4 1 (2) >>B=[1+4j,2+3j,3+2j,4+1j;4+1j,3+2j,2+3j,1+4j;2+3j,3+2j,4+1j,1+4j;3+2j,2+3j,4+1j,1+4j]B =1.0000 + 4.0000i2.0000 +3.0000i 3.0000 + 2.0000i4.0000 + 1.0000i 4.0000 + 1.0000i 3.0000 + 2.0000i 2.0000 + 3.0000i 1.0000 + 4.0000i2.0000 +3.0000i 3.0000 + 2.0000i4.0000 + 1.0000i 1.0000 + 4.0000i3.0000 + 2.0000i 2.0000 + 3.0000i4.0000 + 1.0000i 1.0000 + 4.0000i 第三题>> A=magic(8);>> B=A(2:2:end,:)B =9 55 54 12 13 51 50 1640 26 27 37 36 30 31 3341 23 22 44 45 19 18 488 58 59 5 4 62 63 1第四题>> i=0:63;s=sum(2.^i)s =1.8447e+019第五题(1)>> t=[-1:0.001:1];>> y=sin(1./t);Warning: Divide by zero.>> plot(t,y)(2)t=[-pi:0.05:-1.8,-1.799:0.001:-1.2,-1.2:0.05:1.2,1.201:0.001:1.8,1.81:0.05:pi]; >> y=sin(tan(t))-tan(sin(t));>> plot(t,y)第六题>> xx=[-2:0.1:-1.2,-1.1:0.02:-0.9,-0.8:0.1:0.8,0.9:0.02:1.1,1.2:0.1:2]; >> yy=[-1:0.1:-0.2,-0.1:0.02:0.1,0.2:0.1:1];[x,y]=meshgrid(xx,yy);>> z=1./(sqrt((1-x).^2+y.^2))+1./(sqrt((1+x).^2+y.^2));Warning: Divide by zero.Warning: Divide by zero.>> subplot(224),surf(x,y,z)>> subplot(221),surf(x,y,z),view(0,90)>> subplot(222),surf(x,y,z),view(90,0)>> subplot(223),surf(x,y,z),view(0,0)第七题(1)>> syms x;f=(3^x+9^x)^(1/x);l=limit(f,x,inf)l =9(2)>> syms x y;f=x*y/(sqrt(x*y+1)-1);limit(limit(f,x,0),y,0)ans =2(3)>> syms x y;f=(1-cos(x^2+y^2))*exp(x^2+y^2)/(x^2+y^2);limit(limit(f,x,0),y,0)ans =第八题>> syms t;x=log(cos(t));y=cos(t)-t*sin(t);diff(y,t)/diff(x,t)ans =-(-2*sin(t)-t*cos(t))/sin(t)*cos(t)>> f=diff(y,t,2)/diff(x,t,2);subs(f,t,sym(pi)/3)ans =3/8-1/24*pi*3^(1/2)第九题>> syms x y t>> s=int(exp(-t^2),t,0,x*y);>> x/y*diff(f,x,2)-2*diff(diff(f,x),y)+diff(f,y,2)ans =2*x^2*y^2*exp(-x^2*y^2)-2*exp(-x^2*y^2)-2*x^3*y*exp(-x^2*y^2)第十题(1)>> syms k n;symsum(1/((2*k)^2-1),k,1,inf)ans =1/2>> limit(symsum(1/((2*k)^2-1),k,1,n),n,inf)ans =1/2(2)>> limit(n*symsum(1/(n^2+k*pi),k,1,n),n,inf)ans =1第十一题(1)>> syms a t;x=a*(cos(t)+t*sin(t));y=a*(sin(t)-t*cos(t));>> f=x^2+y^2;I=int(f*sqrt(diff(x,t)^2+diff(y,t)^2),t,0,2*pi) I =2*a^2*pi^2*(a^2)^(1/2)+4*a^2*pi^4*(a^2)^(1/2)(2)>> syms x y a b c t;x=c*cos(t)/a;y=c*sin(t)/b;>> P=y*x^3+exp(y);Q=x*y^3+x*exp(y)-2*y;>> ds=[diff(x,t);diff(y,t)];I=int([P Q]*ds,t,0,pi)I =-2/15*c*(-2*c^4+15*b^4)/b^4/a第十二题>> syms a b c d e;A=vander([a b c d e])A =[ a^4, a^3, a^2, a, 1][ b^4, b^3, b^2, b, 1][ c^4, c^3, c^2, c, 1][ d^4, d^3, d^2, d, 1][ e^4, e^3, e^2, e, 1]>> det(A),simple(ans)ans =a^4*b^3*c^2*d-a^4*b^3*c^2*e-a^4*b^3*d^2*c+a^4*b^3*d^2*e+a^4*b^3*e^2*c-a^4*b^3*e ^2*d-a^4*c^3*b^2*d+a^4*c^3*b^2*e+a^4*c^3*d^2*b-a^4*c^3*d^2*e-a^4*c^3*e^2*b+a^4* c^3*e^2*d+a^4*d^3*b^2*c-a^4*d^3*b^2*e-a^4*d^3*c^2*b+a^4*d^3*c^2*e+a^4*d^3*e^2*b -a^4*d^3*e^2*c-a^4*e^3*b^2*c+a^4*e^3*b^2*d+a^4*e^3*c^2*b-a^4*e^3*c^2*d-a^4*e^3* d^2*b+a^4*e^3*d^2*c-b^4*a^3*c^2*d+b^4*a^3*c^2*e+b^4*a^3*d^2*c-b^4*a^3*d^2*e-b^4 *a^3*e^2*c+b^4*a^3*e^2*d+b^4*c^3*a^2*d-b^4*c^3*a^2*e-b^4*c^3*d^2*a+b^4*c^3*d^2* e+b^4*c^3*e^2*a-b^4*c^3*e^2*d-b^4*d^3*a^2*c+b^4*d^3*a^2*e+b^4*d^3*c^2*a-b^4*d^3 *c^2*e-b^4*d^3*e^2*a+b^4*d^3*e^2*c+b^4*e^3*a^2*c-b^4*e^3*a^2*d-b^4*e^3*c^2*a+b^ 4*e^3*c^2*d+b^4*e^3*d^2*a-b^4*e^3*d^2*c+c^4*a^3*b^2*d-c^4*a^3*b^2*e-c^4*a^3*d^2 *b+c^4*a^3*d^2*e+c^4*a^3*e^2*b-c^4*a^3*e^2*d-c^4*b^3*a^2*d+c^4*b^3*a^2*e+c^4*b^ 3*d^2*a-c^4*b^3*d^2*e-c^4*b^3*e^2*a+c^4*b^3*e^2*d+c^4*d^3*a^2*b-c^4*d^3*a^2*e-c ^4*d^3*b^2*a+c^4*d^3*b^2*e+c^4*d^3*e^2*a-c^4*d^3*e^2*b-c^4*e^3*a^2*b+c^4*e^3*a^ 2*d+c^4*e^3*b^2*a-c^4*e^3*b^2*d-c^4*e^3*d^2*a+c^4*e^3*d^2*b-d^4*a^3*b^2*c+d^4*a ^3*b^2*e+d^4*a^3*c^2*b-d^4*a^3*c^2*e-d^4*a^3*e^2*b+d^4*a^3*e^2*c+d^4*b^3*a^2*c-d^4*b^3*a^2*e-d^4*b^3*c^2*a+d^4*b^3*c^2*e+d^4*b^3*e^2*a-d^4*b^3*e^2*c-d^4*c^3*a ^2*b+d^4*c^3*a^2*e+d^4*c^3*b^2*a-d^4*c^3*b^2*e-d^4*c^3*e^2*a+d^4*c^3*e^2*b+d^4* e^3*a^2*b-d^4*e^3*a^2*c-d^4*e^3*b^2*a+d^4*e^3*b^2*c+d^4*e^3*c^2*a-d^4*e^3*c^2*b +e^4*a^3*b^2*c-e^4*a^3*b^2*d-e^4*a^3*c^2*b+e^4*a^3*c^2*d+e^4*a^3*d^2*b-e^4*a^3* d^2*c-e^4*b^3*a^2*c+e^4*b^3*a^2*d+e^4*b^3*c^2*a-e^4*b^3*c^2*d-e^4*b^3*d^2*a+e^4*b^3*d^2*c+e^4*c^3*a^2*b-e^4*c^3*a^2*d-e^4*c^3*b^2*a+e^4*c^3*b^2*d+e^4*c^3*d^2* a-e^4*c^3*d^2*b-e^4*d^3*a^2*b+e^4*d^3*a^2*c+e^4*d^3*b^2*a-e^4*d^3*b^2*c-e^4*d^3 *c^2*a+e^4*d^3*c^2*bsimplify:a^4*b^3*c^2*d-a^4*b^3*c^2*e-a^4*b^3*d^2*c+a^4*b^3*d^2*e+a^4*b^3*e^2*c-a^4*b^3*e ^2*d-a^4*c^3*b^2*d+a^4*c^3*b^2*e+a^4*c^3*d^2*b-a^4*c^3*d^2*e-a^4*c^3*e^2*b+a^4* c^3*e^2*d+a^4*d^3*b^2*c-a^4*d^3*b^2*e-a^4*d^3*c^2*b+a^4*d^3*c^2*e+a^4*d^3*e^2*b -a^4*d^3*e^2*c-a^4*e^3*b^2*c+a^4*e^3*b^2*d+a^4*e^3*c^2*b-a^4*e^3*c^2*d-a^4*e^3* d^2*b+a^4*e^3*d^2*c-b^4*a^3*c^2*d+b^4*a^3*c^2*e+b^4*a^3*d^2*c-b^4*a^3*d^2*e-b^4 *a^3*e^2*c+b^4*a^3*e^2*d+b^4*c^3*a^2*d-b^4*c^3*a^2*e-b^4*c^3*d^2*a+b^4*c^3*d^2* e+b^4*c^3*e^2*a-b^4*c^3*e^2*d-b^4*d^3*a^2*c+b^4*d^3*a^2*e+b^4*d^3*c^2*a-b^4*d^3 *c^2*e-b^4*d^3*e^2*a+b^4*d^3*e^2*c+b^4*e^3*a^2*c-b^4*e^3*a^2*d-b^4*e^3*c^2*a+b^ 4*e^3*c^2*d+b^4*e^3*d^2*a-b^4*e^3*d^2*c+c^4*a^3*b^2*d-c^4*a^3*b^2*e-c^4*a^3*d^2 *b+c^4*a^3*d^2*e+c^4*a^3*e^2*b-c^4*a^3*e^2*d-c^4*b^3*a^2*d+c^4*b^3*a^2*e+c^4*b^ 3*d^2*a-c^4*b^3*d^2*e-c^4*b^3*e^2*a+c^4*b^3*e^2*d+c^4*d^3*a^2*b-c^4*d^3*a^2*e-c ^4*d^3*b^2*a+c^4*d^3*b^2*e+c^4*d^3*e^2*a-c^4*d^3*e^2*b-c^4*e^3*a^2*b+c^4*e^3*a^ 2*d+c^4*e^3*b^2*a-c^4*e^3*b^2*d-c^4*e^3*d^2*a+c^4*e^3*d^2*b-d^4*a^3*b^2*c+d^4*a ^3*b^2*e+d^4*a^3*c^2*b-d^4*a^3*c^2*e-d^4*a^3*e^2*b+d^4*a^3*e^2*c+d^4*b^3*a^2*c-d^4*b^3*a^2*e-d^4*b^3*c^2*a+d^4*b^3*c^2*e+d^4*b^3*e^2*a-d^4*b^3*e^2*c-d^4*c^3*a ^2*b+d^4*c^3*a^2*e+d^4*c^3*b^2*a-d^4*c^3*b^2*e-d^4*c^3*e^2*a+d^4*c^3*e^2*b+d^4* e^3*a^2*b-d^4*e^3*a^2*c-d^4*e^3*b^2*a+d^4*e^3*b^2*c+d^4*e^3*c^2*a-d^4*e^3*c^2*b +e^4*a^3*b^2*c-e^4*a^3*b^2*d-e^4*a^3*c^2*b+e^4*a^3*c^2*d+e^4*a^3*d^2*b-e^4*a^3* d^2*c-e^4*b^3*a^2*c+e^4*b^3*a^2*d+e^4*b^3*c^2*a-e^4*b^3*c^2*d-e^4*b^3*d^2*a+e^4 *b^3*d^2*c+e^4*c^3*a^2*b-e^4*c^3*a^2*d-e^4*c^3*b^2*a+e^4*c^3*b^2*d+e^4*c^3*d^2* a-e^4*c^3*d^2*b-e^4*d^3*a^2*b+e^4*d^3*a^2*c+e^4*d^3*b^2*a-e^4*d^3*b^2*c-e^4*d^3 *c^2*a+e^4*d^3*c^2*bradsimp:a^4*b^3*c^2*d-a^4*b^3*c^2*e-a^4*b^3*d^2*c+a^4*b^3*d^2*e+a^4*b^3*e^2*c-a^4*b^3*e ^2*d-a^4*c^3*b^2*d+a^4*c^3*b^2*e+a^4*c^3*d^2*b-a^4*c^3*d^2*e-a^4*c^3*e^2*b+a^4* c^3*e^2*d+a^4*d^3*b^2*c-a^4*d^3*b^2*e-a^4*d^3*c^2*b+a^4*d^3*c^2*e+a^4*d^3*e^2*b -a^4*d^3*e^2*c-a^4*e^3*b^2*c+a^4*e^3*b^2*d+a^4*e^3*c^2*b-a^4*e^3*c^2*d-a^4*e^3* d^2*b+a^4*e^3*d^2*c-b^4*a^3*c^2*d+b^4*a^3*c^2*e+b^4*a^3*d^2*c-b^4*a^3*d^2*e-b^4 *a^3*e^2*c+b^4*a^3*e^2*d+b^4*c^3*a^2*d-b^4*c^3*a^2*e-b^4*c^3*d^2*a+b^4*c^3*d^2* e+b^4*c^3*e^2*a-b^4*c^3*e^2*d-b^4*d^3*a^2*c+b^4*d^3*a^2*e+b^4*d^3*c^2*a-b^4*d^3 *c^2*e-b^4*d^3*e^2*a+b^4*d^3*e^2*c+b^4*e^3*a^2*c-b^4*e^3*a^2*d-b^4*e^3*c^2*a+b^ 4*e^3*c^2*d+b^4*e^3*d^2*a-b^4*e^3*d^2*c+c^4*a^3*b^2*d-c^4*a^3*b^2*e-c^4*a^3*d^2 *b+c^4*a^3*d^2*e+c^4*a^3*e^2*b-c^4*a^3*e^2*d-c^4*b^3*a^2*d+c^4*b^3*a^2*e+c^4*b^3*d^2*a-c^4*b^3*d^2*e-c^4*b^3*e^2*a+c^4*b^3*e^2*d+c^4*d^3*a^2*b-c^4*d^3*a^2*e-c ^4*d^3*b^2*a+c^4*d^3*b^2*e+c^4*d^3*e^2*a-c^4*d^3*e^2*b-c^4*e^3*a^2*b+c^4*e^3*a^ 2*d+c^4*e^3*b^2*a-c^4*e^3*b^2*d-c^4*e^3*d^2*a+c^4*e^3*d^2*b-d^4*a^3*b^2*c+d^4*a ^3*b^2*e+d^4*a^3*c^2*b-d^4*a^3*c^2*e-d^4*a^3*e^2*b+d^4*a^3*e^2*c+d^4*b^3*a^2*c-d^4*b^3*a^2*e-d^4*b^3*c^2*a+d^4*b^3*c^2*e+d^4*b^3*e^2*a-d^4*b^3*e^2*c-d^4*c^3*a ^2*b+d^4*c^3*a^2*e+d^4*c^3*b^2*a-d^4*c^3*b^2*e-d^4*c^3*e^2*a+d^4*c^3*e^2*b+d^4* e^3*a^2*b-d^4*e^3*a^2*c-d^4*e^3*b^2*a+d^4*e^3*b^2*c+d^4*e^3*c^2*a-d^4*e^3*c^2*b +e^4*a^3*b^2*c-e^4*a^3*b^2*d-e^4*a^3*c^2*b+e^4*a^3*c^2*d+e^4*a^3*d^2*b-e^4*a^3* d^2*c-e^4*b^3*a^2*c+e^4*b^3*a^2*d+e^4*b^3*c^2*a-e^4*b^3*c^2*d-e^4*b^3*d^2*a+e^4 *b^3*d^2*c+e^4*c^3*a^2*b-e^4*c^3*a^2*d-e^4*c^3*b^2*a+e^4*c^3*b^2*d+e^4*c^3*d^2* a-e^4*c^3*d^2*b-e^4*d^3*a^2*b+e^4*d^3*a^2*c+e^4*d^3*b^2*a-e^4*d^3*b^2*c-e^4*d^3 *c^2*a+e^4*d^3*c^2*bcombine(trig):a^4*b^3*c^2*d-a^4*b^3*c^2*e-a^4*b^3*d^2*c+a^4*b^3*d^2*e+a^4*b^3*e^2*c-a^4*b^3*e ^2*d-a^4*c^3*b^2*d+a^4*c^3*b^2*e+a^4*c^3*d^2*b-a^4*c^3*d^2*e-a^4*c^3*e^2*b+a^4* c^3*e^2*d+a^4*d^3*b^2*c-a^4*d^3*b^2*e-a^4*d^3*c^2*b+a^4*d^3*c^2*e+a^4*d^3*e^2*b -a^4*d^3*e^2*c-a^4*e^3*b^2*c+a^4*e^3*b^2*d+a^4*e^3*c^2*b-a^4*e^3*c^2*d-a^4*e^3* d^2*b+a^4*e^3*d^2*c-b^4*a^3*c^2*d+b^4*a^3*c^2*e+b^4*a^3*d^2*c-b^4*a^3*d^2*e-b^4 *a^3*e^2*c+b^4*a^3*e^2*d+b^4*c^3*a^2*d-b^4*c^3*a^2*e-b^4*c^3*d^2*a+b^4*c^3*d^2* e+b^4*c^3*e^2*a-b^4*c^3*e^2*d-b^4*d^3*a^2*c+b^4*d^3*a^2*e+b^4*d^3*c^2*a-b^4*d^3 *c^2*e-b^4*d^3*e^2*a+b^4*d^3*e^2*c+b^4*e^3*a^2*c-b^4*e^3*a^2*d-b^4*e^3*c^2*a+b^ 4*e^3*c^2*d+b^4*e^3*d^2*a-b^4*e^3*d^2*c+c^4*a^3*b^2*d-c^4*a^3*b^2*e-c^4*a^3*d^2 *b+c^4*a^3*d^2*e+c^4*a^3*e^2*b-c^4*a^3*e^2*d-c^4*b^3*a^2*d+c^4*b^3*a^2*e+c^4*b^ 3*d^2*a-c^4*b^3*d^2*e-c^4*b^3*e^2*a+c^4*b^3*e^2*d+c^4*d^3*a^2*b-c^4*d^3*a^2*e-c ^4*d^3*b^2*a+c^4*d^3*b^2*e+c^4*d^3*e^2*a-c^4*d^3*e^2*b-c^4*e^3*a^2*b+c^4*e^3*a^ 2*d+c^4*e^3*b^2*a-c^4*e^3*b^2*d-c^4*e^3*d^2*a+c^4*e^3*d^2*b-d^4*a^3*b^2*c+d^4*a ^3*b^2*e+d^4*a^3*c^2*b-d^4*a^3*c^2*e-d^4*a^3*e^2*b+d^4*a^3*e^2*c+d^4*b^3*a^2*c-d^4*b^3*a^2*e-d^4*b^3*c^2*a+d^4*b^3*c^2*e+d^4*b^3*e^2*a-d^4*b^3*e^2*c-d^4*c^3*a ^2*b+d^4*c^3*a^2*e+d^4*c^3*b^2*a-d^4*c^3*b^2*e-d^4*c^3*e^2*a+d^4*c^3*e^2*b+d^4* e^3*a^2*b-d^4*e^3*a^2*c-d^4*e^3*b^2*a+d^4*e^3*b^2*c+d^4*e^3*c^2*a-d^4*e^3*c^2*b +e^4*a^3*b^2*c-e^4*a^3*b^2*d-e^4*a^3*c^2*b+e^4*a^3*c^2*d+e^4*a^3*d^2*b-e^4*a^3* d^2*c-e^4*b^3*a^2*c+e^4*b^3*a^2*d+e^4*b^3*c^2*a-e^4*b^3*c^2*d-e^4*b^3*d^2*a+e^4 *b^3*d^2*c+e^4*c^3*a^2*b-e^4*c^3*a^2*d-e^4*c^3*b^2*a+e^4*c^3*b^2*d+e^4*c^3*d^2* a-e^4*c^3*d^2*b-e^4*d^3*a^2*b+e^4*d^3*a^2*c+e^4*d^3*b^2*a-e^4*d^3*b^2*c-e^4*d^3 *c^2*a+e^4*d^3*c^2*bfactor:(c-d)*(b-d)*(b-c)*(a-d)*(a-c)*(a-b)*(-d+e)*(e-c)*(e-b)*(e-a)expand:a^4*b^3*c^2*d-a^4*b^3*c^2*e-a^4*b^3*d^2*c+a^4*b^3*d^2*e+a^4*b^3*e^2*c-a^4*b^3*e ^2*d-a^4*c^3*b^2*d+a^4*c^3*b^2*e+a^4*c^3*d^2*b-a^4*c^3*d^2*e-a^4*c^3*e^2*b+a^4* c^3*e^2*d+a^4*d^3*b^2*c-a^4*d^3*b^2*e-a^4*d^3*c^2*b+a^4*d^3*c^2*e+a^4*d^3*e^2*b -a^4*d^3*e^2*c-a^4*e^3*b^2*c+a^4*e^3*b^2*d+a^4*e^3*c^2*b-a^4*e^3*c^2*d-a^4*e^3* d^2*b+a^4*e^3*d^2*c-b^4*a^3*c^2*d+b^4*a^3*c^2*e+b^4*a^3*d^2*c-b^4*a^3*d^2*e-b^4 *a^3*e^2*c+b^4*a^3*e^2*d+b^4*c^3*a^2*d-b^4*c^3*a^2*e-b^4*c^3*d^2*a+b^4*c^3*d^2* e+b^4*c^3*e^2*a-b^4*c^3*e^2*d-b^4*d^3*a^2*c+b^4*d^3*a^2*e+b^4*d^3*c^2*a-b^4*d^3 *c^2*e-b^4*d^3*e^2*a+b^4*d^3*e^2*c+b^4*e^3*a^2*c-b^4*e^3*a^2*d-b^4*e^3*c^2*a+b^ 4*e^3*c^2*d+b^4*e^3*d^2*a-b^4*e^3*d^2*c+c^4*a^3*b^2*d-c^4*a^3*b^2*e-c^4*a^3*d^2 *b+c^4*a^3*d^2*e+c^4*a^3*e^2*b-c^4*a^3*e^2*d-c^4*b^3*a^2*d+c^4*b^3*a^2*e+c^4*b^ 3*d^2*a-c^4*b^3*d^2*e-c^4*b^3*e^2*a+c^4*b^3*e^2*d+c^4*d^3*a^2*b-c^4*d^3*a^2*e-c ^4*d^3*b^2*a+c^4*d^3*b^2*e+c^4*d^3*e^2*a-c^4*d^3*e^2*b-c^4*e^3*a^2*b+c^4*e^3*a^ 2*d+c^4*e^3*b^2*a-c^4*e^3*b^2*d-c^4*e^3*d^2*a+c^4*e^3*d^2*b-d^4*a^3*b^2*c+d^4*a ^3*b^2*e+d^4*a^3*c^2*b-d^4*a^3*c^2*e-d^4*a^3*e^2*b+d^4*a^3*e^2*c+d^4*b^3*a^2*c-d^4*b^3*a^2*e-d^4*b^3*c^2*a+d^4*b^3*c^2*e+d^4*b^3*e^2*a-d^4*b^3*e^2*c-d^4*c^3*a ^2*b+d^4*c^3*a^2*e+d^4*c^3*b^2*a-d^4*c^3*b^2*e-d^4*c^3*e^2*a+d^4*c^3*e^2*b+d^4* e^3*a^2*b-d^4*e^3*a^2*c-d^4*e^3*b^2*a+d^4*e^3*b^2*c+d^4*e^3*c^2*a-d^4*e^3*c^2*b +e^4*a^3*b^2*c-e^4*a^3*b^2*d-e^4*a^3*c^2*b+e^4*a^3*c^2*d+e^4*a^3*d^2*b-e^4*a^3* d^2*c-e^4*b^3*a^2*c+e^4*b^3*a^2*d+e^4*b^3*c^2*a-e^4*b^3*c^2*d-e^4*b^3*d^2*a+e^4 *b^3*d^2*c+e^4*c^3*a^2*b-e^4*c^3*a^2*d-e^4*c^3*b^2*a+e^4*c^3*b^2*d+e^4*c^3*d^2* a-e^4*c^3*d^2*b-e^4*d^3*a^2*b+e^4*d^3*a^2*c+e^4*d^3*b^2*a-e^4*d^3*b^2*c-e^4*d^3 *c^2*a+e^4*d^3*c^2*bcombine:a^4*b^3*c^2*d-a^4*b^3*c^2*e-a^4*b^3*d^2*c+a^4*b^3*d^2*e+a^4*b^3*e^2*c-a^4*b^3*e ^2*d-a^4*c^3*b^2*d+a^4*c^3*b^2*e+a^4*c^3*d^2*b-a^4*c^3*d^2*e-a^4*c^3*e^2*b+a^4* c^3*e^2*d+a^4*d^3*b^2*c-a^4*d^3*b^2*e-a^4*d^3*c^2*b+a^4*d^3*c^2*e+a^4*d^3*e^2*b -a^4*d^3*e^2*c-a^4*e^3*b^2*c+a^4*e^3*b^2*d+a^4*e^3*c^2*b-a^4*e^3*c^2*d-a^4*e^3* d^2*b+a^4*e^3*d^2*c-b^4*a^3*c^2*d+b^4*a^3*c^2*e+b^4*a^3*d^2*c-b^4*a^3*d^2*e-b^4 *a^3*e^2*c+b^4*a^3*e^2*d+b^4*c^3*a^2*d-b^4*c^3*a^2*e-b^4*c^3*d^2*a+b^4*c^3*d^2* e+b^4*c^3*e^2*a-b^4*c^3*e^2*d-b^4*d^3*a^2*c+b^4*d^3*a^2*e+b^4*d^3*c^2*a-b^4*d^3 *c^2*e-b^4*d^3*e^2*a+b^4*d^3*e^2*c+b^4*e^3*a^2*c-b^4*e^3*a^2*d-b^4*e^3*c^2*a+b^ 4*e^3*c^2*d+b^4*e^3*d^2*a-b^4*e^3*d^2*c+c^4*a^3*b^2*d-c^4*a^3*b^2*e-c^4*a^3*d^2 *b+c^4*a^3*d^2*e+c^4*a^3*e^2*b-c^4*a^3*e^2*d-c^4*b^3*a^2*d+c^4*b^3*a^2*e+c^4*b^ 3*d^2*a-c^4*b^3*d^2*e-c^4*b^3*e^2*a+c^4*b^3*e^2*d+c^4*d^3*a^2*b-c^4*d^3*a^2*e-c ^4*d^3*b^2*a+c^4*d^3*b^2*e+c^4*d^3*e^2*a-c^4*d^3*e^2*b-c^4*e^3*a^2*b+c^4*e^3*a^ 2*d+c^4*e^3*b^2*a-c^4*e^3*b^2*d-c^4*e^3*d^2*a+c^4*e^3*d^2*b-d^4*a^3*b^2*c+d^4*a ^3*b^2*e+d^4*a^3*c^2*b-d^4*a^3*c^2*e-d^4*a^3*e^2*b+d^4*a^3*e^2*c+d^4*b^3*a^2*c-d^4*b^3*a^2*e-d^4*b^3*c^2*a+d^4*b^3*c^2*e+d^4*b^3*e^2*a-d^4*b^3*e^2*c-d^4*c^3*a^2*b+d^4*c^3*a^2*e+d^4*c^3*b^2*a-d^4*c^3*b^2*e-d^4*c^3*e^2*a+d^4*c^3*e^2*b+d^4* e^3*a^2*b-d^4*e^3*a^2*c-d^4*e^3*b^2*a+d^4*e^3*b^2*c+d^4*e^3*c^2*a-d^4*e^3*c^2*b +e^4*a^3*b^2*c-e^4*a^3*b^2*d-e^4*a^3*c^2*b+e^4*a^3*c^2*d+e^4*a^3*d^2*b-e^4*a^3* d^2*c-e^4*b^3*a^2*c+e^4*b^3*a^2*d+e^4*b^3*c^2*a-e^4*b^3*c^2*d-e^4*b^3*d^2*a+e^4 *b^3*d^2*c+e^4*c^3*a^2*b-e^4*c^3*a^2*d-e^4*c^3*b^2*a+e^4*c^3*b^2*d+e^4*c^3*d^2* a-e^4*c^3*d^2*b-e^4*d^3*a^2*b+e^4*d^3*a^2*c+e^4*d^3*b^2*a-e^4*d^3*b^2*c-e^4*d^3 *c^2*a+e^4*d^3*c^2*bconvert(exp):a^4*b^3*c^2*d-a^4*b^3*c^2*e-a^4*b^3*d^2*c+a^4*b^3*d^2*e+a^4*b^3*e^2*c-a^4*b^3*e ^2*d-a^4*c^3*b^2*d+a^4*c^3*b^2*e+a^4*c^3*d^2*b-a^4*c^3*d^2*e-a^4*c^3*e^2*b+a^4* c^3*e^2*d+a^4*d^3*b^2*c-a^4*d^3*b^2*e-a^4*d^3*c^2*b+a^4*d^3*c^2*e+a^4*d^3*e^2*b -a^4*d^3*e^2*c-a^4*e^3*b^2*c+a^4*e^3*b^2*d+a^4*e^3*c^2*b-a^4*e^3*c^2*d-a^4*e^3* d^2*b+a^4*e^3*d^2*c-b^4*a^3*c^2*d+b^4*a^3*c^2*e+b^4*a^3*d^2*c-b^4*a^3*d^2*e-b^4 *a^3*e^2*c+b^4*a^3*e^2*d+b^4*c^3*a^2*d-b^4*c^3*a^2*e-b^4*c^3*d^2*a+b^4*c^3*d^2* e+b^4*c^3*e^2*a-b^4*c^3*e^2*d-b^4*d^3*a^2*c+b^4*d^3*a^2*e+b^4*d^3*c^2*a-b^4*d^3 *c^2*e-b^4*d^3*e^2*a+b^4*d^3*e^2*c+b^4*e^3*a^2*c-b^4*e^3*a^2*d-b^4*e^3*c^2*a+b^ 4*e^3*c^2*d+b^4*e^3*d^2*a-b^4*e^3*d^2*c+c^4*a^3*b^2*d-c^4*a^3*b^2*e-c^4*a^3*d^2 *b+c^4*a^3*d^2*e+c^4*a^3*e^2*b-c^4*a^3*e^2*d-c^4*b^3*a^2*d+c^4*b^3*a^2*e+c^4*b^ 3*d^2*a-c^4*b^3*d^2*e-c^4*b^3*e^2*a+c^4*b^3*e^2*d+c^4*d^3*a^2*b-c^4*d^3*a^2*e-c ^4*d^3*b^2*a+c^4*d^3*b^2*e+c^4*d^3*e^2*a-c^4*d^3*e^2*b-c^4*e^3*a^2*b+c^4*e^3*a^ 2*d+c^4*e^3*b^2*a-c^4*e^3*b^2*d-c^4*e^3*d^2*a+c^4*e^3*d^2*b-d^4*a^3*b^2*c+d^4*a ^3*b^2*e+d^4*a^3*c^2*b-d^4*a^3*c^2*e-d^4*a^3*e^2*b+d^4*a^3*e^2*c+d^4*b^3*a^2*c-d^4*b^3*a^2*e-d^4*b^3*c^2*a+d^4*b^3*c^2*e+d^4*b^3*e^2*a-d^4*b^3*e^2*c-d^4*c^3*a ^2*b+d^4*c^3*a^2*e+d^4*c^3*b^2*a-d^4*c^3*b^2*e-d^4*c^3*e^2*a+d^4*c^3*e^2*b+d^4* e^3*a^2*b-d^4*e^3*a^2*c-d^4*e^3*b^2*a+d^4*e^3*b^2*c+d^4*e^3*c^2*a-d^4*e^3*c^2*b +e^4*a^3*b^2*c-e^4*a^3*b^2*d-e^4*a^3*c^2*b+e^4*a^3*c^2*d+e^4*a^3*d^2*b-e^4*a^3* d^2*c-e^4*b^3*a^2*c+e^4*b^3*a^2*d+e^4*b^3*c^2*a-e^4*b^3*c^2*d-e^4*b^3*d^2*a+e^4 *b^3*d^2*c+e^4*c^3*a^2*b-e^4*c^3*a^2*d-e^4*c^3*b^2*a+e^4*c^3*b^2*d+e^4*c^3*d^2* a-e^4*c^3*d^2*b-e^4*d^3*a^2*b+e^4*d^3*a^2*c+e^4*d^3*b^2*a-e^4*d^3*b^2*c-e^4*d^3 *c^2*a+e^4*d^3*c^2*bconvert(sincos):a^4*b^3*c^2*d-a^4*b^3*c^2*e-a^4*b^3*d^2*c+a^4*b^3*d^2*e+a^4*b^3*e^2*c-a^4*b^3*e ^2*d-a^4*c^3*b^2*d+a^4*c^3*b^2*e+a^4*c^3*d^2*b-a^4*c^3*d^2*e-a^4*c^3*e^2*b+a^4* c^3*e^2*d+a^4*d^3*b^2*c-a^4*d^3*b^2*e-a^4*d^3*c^2*b+a^4*d^3*c^2*e+a^4*d^3*e^2*b -a^4*d^3*e^2*c-a^4*e^3*b^2*c+a^4*e^3*b^2*d+a^4*e^3*c^2*b-a^4*e^3*c^2*d-a^4*e^3* d^2*b+a^4*e^3*d^2*c-b^4*a^3*c^2*d+b^4*a^3*c^2*e+b^4*a^3*d^2*c-b^4*a^3*d^2*e-b^4 *a^3*e^2*c+b^4*a^3*e^2*d+b^4*c^3*a^2*d-b^4*c^3*a^2*e-b^4*c^3*d^2*a+b^4*c^3*d^2* e+b^4*c^3*e^2*a-b^4*c^3*e^2*d-b^4*d^3*a^2*c+b^4*d^3*a^2*e+b^4*d^3*c^2*a-b^4*d^3*c^2*e-b^4*d^3*e^2*a+b^4*d^3*e^2*c+b^4*e^3*a^2*c-b^4*e^3*a^2*d-b^4*e^3*c^2*a+b^ 4*e^3*c^2*d+b^4*e^3*d^2*a-b^4*e^3*d^2*c+c^4*a^3*b^2*d-c^4*a^3*b^2*e-c^4*a^3*d^2 *b+c^4*a^3*d^2*e+c^4*a^3*e^2*b-c^4*a^3*e^2*d-c^4*b^3*a^2*d+c^4*b^3*a^2*e+c^4*b^ 3*d^2*a-c^4*b^3*d^2*e-c^4*b^3*e^2*a+c^4*b^3*e^2*d+c^4*d^3*a^2*b-c^4*d^3*a^2*e-c ^4*d^3*b^2*a+c^4*d^3*b^2*e+c^4*d^3*e^2*a-c^4*d^3*e^2*b-c^4*e^3*a^2*b+c^4*e^3*a^ 2*d+c^4*e^3*b^2*a-c^4*e^3*b^2*d-c^4*e^3*d^2*a+c^4*e^3*d^2*b-d^4*a^3*b^2*c+d^4*a ^3*b^2*e+d^4*a^3*c^2*b-d^4*a^3*c^2*e-d^4*a^3*e^2*b+d^4*a^3*e^2*c+d^4*b^3*a^2*c-d^4*b^3*a^2*e-d^4*b^3*c^2*a+d^4*b^3*c^2*e+d^4*b^3*e^2*a-d^4*b^3*e^2*c-d^4*c^3*a ^2*b+d^4*c^3*a^2*e+d^4*c^3*b^2*a-d^4*c^3*b^2*e-d^4*c^3*e^2*a+d^4*c^3*e^2*b+d^4* e^3*a^2*b-d^4*e^3*a^2*c-d^4*e^3*b^2*a+d^4*e^3*b^2*c+d^4*e^3*c^2*a-d^4*e^3*c^2*b +e^4*a^3*b^2*c-e^4*a^3*b^2*d-e^4*a^3*c^2*b+e^4*a^3*c^2*d+e^4*a^3*d^2*b-e^4*a^3* d^2*c-e^4*b^3*a^2*c+e^4*b^3*a^2*d+e^4*b^3*c^2*a-e^4*b^3*c^2*d-e^4*b^3*d^2*a+e^4 *b^3*d^2*c+e^4*c^3*a^2*b-e^4*c^3*a^2*d-e^4*c^3*b^2*a+e^4*c^3*b^2*d+e^4*c^3*d^2* a-e^4*c^3*d^2*b-e^4*d^3*a^2*b+e^4*d^3*a^2*c+e^4*d^3*b^2*a-e^4*d^3*b^2*c-e^4*d^3 *c^2*a+e^4*d^3*c^2*bconvert(tan):a^4*b^3*c^2*d-a^4*b^3*c^2*e-a^4*b^3*d^2*c+a^4*b^3*d^2*e+a^4*b^3*e^2*c-a^4*b^3*e ^2*d-a^4*c^3*b^2*d+a^4*c^3*b^2*e+a^4*c^3*d^2*b-a^4*c^3*d^2*e-a^4*c^3*e^2*b+a^4* c^3*e^2*d+a^4*d^3*b^2*c-a^4*d^3*b^2*e-a^4*d^3*c^2*b+a^4*d^3*c^2*e+a^4*d^3*e^2*b -a^4*d^3*e^2*c-a^4*e^3*b^2*c+a^4*e^3*b^2*d+a^4*e^3*c^2*b-a^4*e^3*c^2*d-a^4*e^3* d^2*b+a^4*e^3*d^2*c-b^4*a^3*c^2*d+b^4*a^3*c^2*e+b^4*a^3*d^2*c-b^4*a^3*d^2*e-b^4 *a^3*e^2*c+b^4*a^3*e^2*d+b^4*c^3*a^2*d-b^4*c^3*a^2*e-b^4*c^3*d^2*a+b^4*c^3*d^2* e+b^4*c^3*e^2*a-b^4*c^3*e^2*d-b^4*d^3*a^2*c+b^4*d^3*a^2*e+b^4*d^3*c^2*a-b^4*d^3 *c^2*e-b^4*d^3*e^2*a+b^4*d^3*e^2*c+b^4*e^3*a^2*c-b^4*e^3*a^2*d-b^4*e^3*c^2*a+b^ 4*e^3*c^2*d+b^4*e^3*d^2*a-b^4*e^3*d^2*c+c^4*a^3*b^2*d-c^4*a^3*b^2*e-c^4*a^3*d^2 *b+c^4*a^3*d^2*e+c^4*a^3*e^2*b-c^4*a^3*e^2*d-c^4*b^3*a^2*d+c^4*b^3*a^2*e+c^4*b^ 3*d^2*a-c^4*b^3*d^2*e-c^4*b^3*e^2*a+c^4*b^3*e^2*d+c^4*d^3*a^2*b-c^4*d^3*a^2*e-c ^4*d^3*b^2*a+c^4*d^3*b^2*e+c^4*d^3*e^2*a-c^4*d^3*e^2*b-c^4*e^3*a^2*b+c^4*e^3*a^ 2*d+c^4*e^3*b^2*a-c^4*e^3*b^2*d-c^4*e^3*d^2*a+c^4*e^3*d^2*b-d^4*a^3*b^2*c+d^4*a ^3*b^2*e+d^4*a^3*c^2*b-d^4*a^3*c^2*e-d^4*a^3*e^2*b+d^4*a^3*e^2*c+d^4*b^3*a^2*c-d^4*b^3*a^2*e-d^4*b^3*c^2*a+d^4*b^3*c^2*e+d^4*b^3*e^2*a-d^4*b^3*e^2*c-d^4*c^3*a ^2*b+d^4*c^3*a^2*e+d^4*c^3*b^2*a-d^4*c^3*b^2*e-d^4*c^3*e^2*a+d^4*c^3*e^2*b+d^4* e^3*a^2*b-d^4*e^3*a^2*c-d^4*e^3*b^2*a+d^4*e^3*b^2*c+d^4*e^3*c^2*a-d^4*e^3*c^2*b +e^4*a^3*b^2*c-e^4*a^3*b^2*d-e^4*a^3*c^2*b+e^4*a^3*c^2*d+e^4*a^3*d^2*b-e^4*a^3* d^2*c-e^4*b^3*a^2*c+e^4*b^3*a^2*d+e^4*b^3*c^2*a-e^4*b^3*c^2*d-e^4*b^3*d^2*a+e^4 *b^3*d^2*c+e^4*c^3*a^2*b-e^4*c^3*a^2*d-e^4*c^3*b^2*a+e^4*c^3*b^2*d+e^4*c^3*d^2* a-e^4*c^3*d^2*b-e^4*d^3*a^2*b+e^4*d^3*a^2*c+e^4*d^3*b^2*a-e^4*d^3*b^2*c-e^4*d^3 *c^2*a+e^4*d^3*c^2*bcollect(e):a^4*b^3*c^2*d-a^4*b^3*d^2*c-a^4*c^3*b^2*d+a^4*c^3*d^2*b+a^4*d^3*b^2*c-a^4*d^3*c ^2*b-b^4*a^3*c^2*d+b^4*a^3*d^2*c+b^4*c^3*a^2*d-b^4*c^3*d^2*a-b^4*d^3*a^2*c+b^4* d^3*c^2*a+c^4*a^3*b^2*d-c^4*a^3*d^2*b-c^4*b^3*a^2*d+c^4*b^3*d^2*a+c^4*d^3*a^2*b -c^4*d^3*b^2*a-d^4*a^3*b^2*c+d^4*a^3*c^2*b+d^4*b^3*a^2*c-d^4*b^3*c^2*a-d^4*c^3* a^2*b+d^4*c^3*b^2*a+(a^3*b^2*c-a^3*b^2*d-a^3*c^2*b+a^3*c^2*d+a^3*d^2*b-a^3*d^2* c-b^3*a^2*c+b^3*a^2*d+b^3*c^2*a-b^3*c^2*d-b^3*d^2*a+b^3*d^2*c+c^3*a^2*b-c^3*a^2 *d-c^3*b^2*a+c^3*b^2*d+c^3*d^2*a-c^3*d^2*b-d^3*a^2*b+d^3*a^2*c+d^3*b^2*a-d^3*b^ 2*c-d^3*c^2*a+d^3*c^2*b)*e^4+(-a^4*b^2*c-c^4*d*b^2-c^4*d^2*a+c^4*d^2*b+a^4*b^2* d+a^4*c^2*b-a^4*c^2*d-c^4*a^2*b+c^4*a^2*d+c^4*b^2*a+b^4*a^2*c-b^4*a^2*d-b^4*c^2 *a+c^2*d*b^4+b^4*d^2*a-d^2*c*b^4-a^4*d^2*b+a^4*d^2*c+d^4*a^2*b-d^4*a^2*c-d^4*b^ 2*a+c*d^4*b^2+d^4*c^2*a-c^2*d^4*b)*e^3+(b^4*a^3*d-c^4*b^3*a-a^4*c^3*b-c*d^4*b^3 +c^4*d*b^3-a^4*b^3*d-b^4*a^3*c+a^4*c^3*d+a^4*b^3*c-a^4*d^3*c-c^3*d*b^4+d^4*b^3* a+a^4*d^3*b+b^4*c^3*a-c^4*a^3*d-d^4*a^3*b+c^4*d^3*a+c^4*a^3*b-c^4*d^3*b-b^4*d^3 *a+c*d^3*b^4+d^4*a^3*c-d^4*c^3*a+c^3*d^4*b)*e^2+(a^4*b^3*d^2+c^4*a^3*d^2-b^4*c^ 3*a^2-a^4*b^3*c^2+a^4*d^3*c^2+d^4*c^3*a^2-c^4*d^2*b^3-a^4*c^3*d^2+c^4*d^3*b^2+c ^4*b^3*a^2-c^4*d^3*a^2-a^4*d^3*b^2-b^4*a^3*d^2+b^4*d^3*a^2+b^4*a^3*c^2-c^3*d^4* b^2-d^4*a^3*c^2+c^2*d^4*b^3+a^4*c^3*b^2+c^3*d^2*b^4-c^2*d^3*b^4-c^4*a^3*b^2+d^4 *a^3*b^2-d^4*b^3*a^2)*emwcos2sin:a^4*b^3*c^2*d-a^4*b^3*c^2*e-a^4*b^3*d^2*c+a^4*b^3*d^2*e+a^4*b^3*e^2*c-a^4*b^3*e ^2*d-a^4*c^3*b^2*d+a^4*c^3*b^2*e+a^4*c^3*d^2*b-a^4*c^3*d^2*e-a^4*c^3*e^2*b+a^4* c^3*e^2*d+a^4*d^3*b^2*c-a^4*d^3*b^2*e-a^4*d^3*c^2*b+a^4*d^3*c^2*e+a^4*d^3*e^2*b -a^4*d^3*e^2*c-a^4*e^3*b^2*c+a^4*e^3*b^2*d+a^4*e^3*c^2*b-a^4*e^3*c^2*d-a^4*e^3* d^2*b+a^4*e^3*d^2*c-b^4*a^3*c^2*d+b^4*a^3*c^2*e+b^4*a^3*d^2*c-b^4*a^3*d^2*e-b^4 *a^3*e^2*c+b^4*a^3*e^2*d+b^4*c^3*a^2*d-b^4*c^3*a^2*e-b^4*c^3*d^2*a+b^4*c^3*d^2* e+b^4*c^3*e^2*a-b^4*c^3*e^2*d-b^4*d^3*a^2*c+b^4*d^3*a^2*e+b^4*d^3*c^2*a-b^4*d^3 *c^2*e-b^4*d^3*e^2*a+b^4*d^3*e^2*c+b^4*e^3*a^2*c-b^4*e^3*a^2*d-b^4*e^3*c^2*a+b^ 4*e^3*c^2*d+b^4*e^3*d^2*a-b^4*e^3*d^2*c+c^4*a^3*b^2*d-c^4*a^3*b^2*e-c^4*a^3*d^2 *b+c^4*a^3*d^2*e+c^4*a^3*e^2*b-c^4*a^3*e^2*d-c^4*b^3*a^2*d+c^4*b^3*a^2*e+c^4*b^ 3*d^2*a-c^4*b^3*d^2*e-c^4*b^3*e^2*a+c^4*b^3*e^2*d+c^4*d^3*a^2*b-c^4*d^3*a^2*e-c ^4*d^3*b^2*a+c^4*d^3*b^2*e+c^4*d^3*e^2*a-c^4*d^3*e^2*b-c^4*e^3*a^2*b+c^4*e^3*a^ 2*d+c^4*e^3*b^2*a-c^4*e^3*b^2*d-c^4*e^3*d^2*a+c^4*e^3*d^2*b-d^4*a^3*b^2*c+d^4*a ^3*b^2*e+d^4*a^3*c^2*b-d^4*a^3*c^2*e-d^4*a^3*e^2*b+d^4*a^3*e^2*c+d^4*b^3*a^2*c-d^4*b^3*a^2*e-d^4*b^3*c^2*a+d^4*b^3*c^2*e+d^4*b^3*e^2*a-d^4*b^3*e^2*c-d^4*c^3*a ^2*b+d^4*c^3*a^2*e+d^4*c^3*b^2*a-d^4*c^3*b^2*e-d^4*c^3*e^2*a+d^4*c^3*e^2*b+d^4* e^3*a^2*b-d^4*e^3*a^2*c-d^4*e^3*b^2*a+d^4*e^3*b^2*c+d^4*e^3*c^2*a-d^4*e^3*c^2*b +e^4*a^3*b^2*c-e^4*a^3*b^2*d-e^4*a^3*c^2*b+e^4*a^3*c^2*d+e^4*a^3*d^2*b-e^4*a^3* d^2*c-e^4*b^3*a^2*c+e^4*b^3*a^2*d+e^4*b^3*c^2*a-e^4*b^3*c^2*d-e^4*b^3*d^2*a+e^4 *b^3*d^2*c+e^4*c^3*a^2*b-e^4*c^3*a^2*d-e^4*c^3*b^2*a+e^4*c^3*b^2*d+e^4*c^3*d^2* a-e^4*c^3*d^2*b-e^4*d^3*a^2*b+e^4*d^3*a^2*c+e^4*d^3*b^2*a-e^4*d^3*b^2*c-e^4*d^3*c^2*a+e^4*d^3*c^2*bans =(c-d)*(b-d)*(b-c)*(a-d)*(a-c)*(a-b)*(-d+e)*(e-c)*(e-b)*(e-a)>>第十三题>> A=[-2,0.5,-0.5,0.5;0,-1.5,0.5,-0.5;2,0.5,-4.5,0.5;2,1,-2,-2];[V J]=jordan(sym(A))V =[ 0, 1/2, 1/2, -1/4][ 0, 0, 1/2, 1][ 1/4, 1/2, 1/2, -1/4][ 1/4, 1/2, 1, -1/4]J =[ -4, 0, 0, 0][ 0, -2, 1, 0][ 0, 0, -2, 1][ 0, 0, 0, -2]第十四题数值方法>> A=[3,-6,-4,0,5;1,4,2,-2,4;-6,3,-6,7,3;-13,10,0,-11,0;0,4,0,3,4];>> B=[3,-2,1;-2,9,2;-2,-1,9];>> C=[-2,1,-1;4,1,2;5,-6,1;6,-4,-4;-6,6,-3];>> X=lyap(A,B,C)X =-2.3192 -0.4678 0.1505-3.6284 0.1579 0.06295.4246 -1.0516 -0.5090-0.5718 2.5848 -0.36493.0417 -0.6265 0.1580>> norm(A*X+X*B+C)ans =3.8830e-014解析方法>> editfunction X=lyap(A,B,C)if nargin==2,C=B;B=A';end[nr,nc]=size(C);A0=kron(A,eye(nc))+kron(eye(nr),B');tryC1=C';x0=-inv(A0)*C1(:);X=reshape(x0,nc,nr)';catch,error('singular matrix found.'),end>> A=[3,-6,-4,0,5;1,4,2,-2,4;-6,3,-6,7,3;-13,10,0,-11,0;0,4,0,3,4];>> B=[3,-2,1;-2,-9,2;-2,-1,9];>> C=[-2,1,-1;4,1,2;5,-6,1;6,-4,-4;-6,6,-3];X=lyap(sym(A),B,C)X =[ -0/1, -50/3, 2/3][ 3809507498/1, 73/3, -8/3][ 73/1, 67/3, -49/3][ 4/1, 22/3, -6/3][ 8/1, 813/3, -77/3]>> A*X+X*B+Cans =[ 0, 0, 0][ 0, 0, 0][ 0, 0, 0][ 0, 0, 0][ 0, 0, 0]第十五题(1)>> A=[-4.5,0,0.5,-1.5;-0.5,-4,0.5,-0.5;1.5,1,-2.5,1.5;0,-1,-1,-3];>> A=sym(A);syms t;>> expm(A*t)ans =[ 1/2*exp(-3*t)-1/2*t*exp(-3*t)+1/2*exp(-5*t)+1/2*t^2*exp(-3*t), 1/2*exp(-5*t)-1/2*exp(-3*t)+t*exp(-3*t),1/2*t*exp(-3*t)+1/2*t^2*exp(-3*t),1/2*exp(-5*t)-1/2*exp(-3*t)-1/2*t*exp(-3*t)+1/2*t^2*exp(-3*t)][ 1/2*t*exp(-3*t)+1/2*exp(-5*t)-1/2*exp(-3*t), 1/2*exp(-3*t)+1/2*exp(-5*t),1/2*t*exp(-3*t), 1/2*t*exp(-3*t)+1/2*exp(-5*t)-1/2*exp(-3*t)] [ 1/2*t*exp(-3*t)-1/2*exp(-5*t)+1/2*exp(-3*t), -1/2*exp(-5*t)+1/2*exp(-3*t),exp(-3*t)+1/2*t*exp(-3*t),1/2*t*exp(-3*t)-1/2*exp(-5*t)+1/2*exp(-3*t)][ -1/2*t^2*exp(-3*t), -t*exp(-3*t), -1/2*t^2*exp(-3*t)-t*exp(-3*t), exp(-3*t)-1/2*t^2*exp(-3*t)](2)>> A=[-4.5,0,0.5,-1.5;-0.5,-4,0.5,-0.5;1.5,1,-2.5,1.5;0,-1,-1,-3];>> A=sym(A);syms t;>> sin(A*t)ans =[ -sin(9/2*t), 0, sin(1/2*t), -sin(3/2*t)][ -sin(1/2*t), -sin(4*t), sin(1/2*t), -sin(1/2*t)][ sin(3/2*t), sin(t), -sin(5/2*t), sin(3/2*t)][ 0, -sin(t), -sin(t), -sin(3*t)](3)第二部分第一题(1)>> syms a t;f=sin(a*t)/t;laplace(f)ans =atan(a/s)(2)>> syms t a;f=t^5*sin(a*t);laplace(f)ans =60*i*(-1/(s-i*a)^6+1/(s+i*a)^6)(3)>> syms t a;f=t^8*cos(a*t);laplace(f)ans =20160/(s-i*a)^9+20160/(s+i*a)^9第二题(1)>> syms s a b;F=1/(s^2*(s^2-a^2)*(a+b));ilaplace(F) ans =1/(a+b)*(-1/a^2*t+1/a^3*sinh(a*t))(2)>> syms s a b;F=sqrt(s-a)-sqrt(s-b);ilaplace(F)ans =1/2/t^(3/2)/pi^(1/2)*(exp(b*t)-exp(a*t))(3)>> syms s a b;F=log((s-a)/(s-b));ilaplace(F)ans =1/t*(exp(b*t)-exp(a*t))第三题(1)>> syms x;f=x^2*(3*sym(pi)-2*abs(x));F=fourier(f)F =-6*(4+pi^2*dirac(2,w)*w^4)/w^4>> ifourier(F)ans =x^2*(-4*x*heaviside(x)+3*pi+2*x)(2)>> syms t;f=t^2*(t-2*sym(pi))^2;F=fourier(f)F =2*pi*(-4*pi^2*dirac(2,w)+4*i*pi*dirac(3,w)+dirac(4,w)) >> ifourier(F)。