糖原的合成和分解-讲义
生物化学下册第26章 糖原的分解和生物合成课件PPT
P178
糖原降解采用磷酸解而不是水解的生 物学意义: ① 磷酸解使降解下的葡萄糖分子带上 磷酸基团,形成葡萄糖-1-磷酸,消 耗无机磷酸,不消耗ATP;葡萄糖1-磷酸不需能量转变为葡萄糖-6-磷 酸,进入糖酵解等途径代谢,如水 解则生成葡萄糖,消耗1个ATP分子 转变为葡萄糖-6-磷酸; ② 磷酸解在肌肉细胞生成的葡萄糖-1磷酸不扩散到细胞外。
糖原磷酸化酶 糖原脱支酶 游离葡萄糖
葡糖磷酸 变位酶 葡萄糖-6-磷酸 糖酵解
糖原磷酸化酶
葡糖-1-磷酸
第26章 糖原的分解和生物合成
二、糖原的降解 (glycogen breakdown)
糖原磷酸化酶
催化非还原末端的α(1→4)糖苷键的磷酸解; 可连续移去非还原末端葡萄糖残基;
非还原末端
肝糖原
葡萄糖
葡糖-6-磷酸
葡萄糖-6-磷酸酶
糖酵解
丙酮酸
净生成 2个ATP
葡萄糖 血液 糖酵解 三羧酸循环 电子传递 脑细胞 红细胞 脂肪细胞
糖原
分解
葡糖-6-磷酸 (90%)
糖酵解
丙酮酸
净生成 3个ATP
肌糖原分解不能直接补充血糖的原因是:
肌肉组织缺乏葡萄糖-6-磷酸酶
第26章 糖原的分解和生物合成
游离葡萄糖
糖原分解是分支减少,分子变小的过程, 但糖原不能完全分解。
糖原磷酸化酶
第26章 糖原的分解和生物合成
二、糖原的降解 (glycogen breakdown)
葡萄糖磷酸变位酶
葡萄糖磷 酸变位酶
The reaction begins with the enzyme phosphorylated on a Ser residue.
糖原的合成与分解终极【共45张PPT】
磷酸化酶b (活性低)
磷酸化酶a-P (活性高)
2. 糖原磷酸化酶受别构调节
➢ 葡萄糖是磷酸化酶的别构抑制剂。
磷酸化酶 a (R) 葡萄糖 磷酸化酶 a (T)
[疏松型]
[紧密型]
磷酸化酶二种构像——紧密型(T)和疏松型(R), 其中T型的14位Ser暴露,便于接受前述的共价修 饰调节。
4.1.2糖原合酶受化学修饰和别构调节
α-1,4-糖苷键式结合
这两种关键酶的重要特点:
6 u/L,AST 72.
4. 耗能:UDPG----葡萄糖供体(消耗2个高能磷酸键) 通过以上的分析:就可以得出葡萄糖与肝糖原可以互相转变,而葡萄糖与肌糖原却只能从葡萄糖变成肌糖原,从肌糖原却不能直接变成葡萄糖的结论了.
注意:每条链都终止于一个非还原端.
糖原的合成与分解终极
目录
CONTENT
糖原概述 糖原合成
PART ONE
PART TWO
糖原分解
PART THREE
糖原合成与分解 的总结
PART FOUR
糖原积累症
PART FIVE
习题及病例
PART SIX
1.糖原概述
PART ONE
1.1糖原的定义
1.糖 原 (glycogen)是以葡萄糖为基本单位聚
G-6-P
G
己糖(葡萄糖)激酶
4.1糖原合成与分解受到严格调控
➢ 糖原的合成与分解是分别通过两条不同途径进 行的。这种合成与分解循两条不同途径进行的 现象,是生物体内的普遍规律。这样才能进行 精细的调节。
➢ 当糖原合成途径活跃时,分解途径则被抑制,才 能有效地合成糖原;反之亦然。
关键酶
① 糖原合成:糖原合酶 ② 糖原分解:糖原磷酸化酶
糖原的分解和生物合成(讲座)
糖原磷酸 化酶激酶
糖原磷酸 化酶激酶 P
糖原磷酸
PP1:磷蛋 无活性 化酶 b
白磷酸酶1
医药资料
糖原磷酸 化酶 a
P高活性
PP1
18
激素的级联放大作用:信号分子(激素)结合 于特异性膜受体后,通过激酶级联事件,即: 一系列蛋白质(酶)的逐级磷酸化,籍此使信 号逐级传送和放大。
肾上腺素级联系统对糖原分解的调节:
葡萄糖尿苷二磷酸
医药资料
37
葡萄糖
G-1-P
核糖 尿嘧啶 UDP-葡萄糖焦磷酸化酶(可逆)
葡萄糖
核糖 尿嘧啶
焦磷酸的迅速水解,使 反应在细胞内不可逆。
UDPG
葡萄糖参与糖原合成的活化形式
医药资料
38
3.3 糖原合酶及其催化的反应
糖原合酶:只能催化UDPG加在已有4个 (或 4个以上)糖基聚合的寡糖链非还原末端。
(3)血糖增高,不断刺激胰岛β-细胞分泌胰岛素,而 且长期的刺激可使β-细胞功能衰竭,而加重糖尿病病情。
(4)长期高血糖使脏器/组织病变,常见如:毛细血管管 壁增厚,管腔变细,红细胞不易通过,组织细胞缺氧; 肾小球硬化, 肾乳头坏死;神经细胞变性,神经纤维发 生节段性脱髓鞘病变;心、脑、下肢等多处动脉硬化等。
淀粉-植物体内葡萄糖贮存方式.
为何不是葡萄糖,而是以糖原形式贮存? 为何是糖原,而不是脂类?
医药资料
3
1.1 高血糖对人体的主要危害
(1)产生高渗性,导致尿量显著增多,可致机体脱水, 甚至发生高渗性非酮症糖尿病性昏迷,危及生命。
(2)随着大量液体排出,体内电解质也随之排出,引起 水、电解质紊乱,极易并发各种急性病症。
糖原磷酸化酶的共价修饰调节与构象改变
糖原的分解合成代谢 ppt课件
糖原的分解合成代谢
2.脱枝酶的作用 ①转移葡萄糖残基 ②水解-1,6-糖苷键
磷酸化酶
脱枝酶 (debranching enzyme)
转移酶活性
α-1,6糖 苷酶活性
在几个酶的共同作用下,最终产物中约85% 为1-磷酸葡萄糖,15糖%原的为分解游合成离代谢葡萄糖。
3.葡萄糖-1-磷酸转变成葡萄糖-6-磷酸
α-1,6-糖苷键
糖原的分解合成代谢
糖原合成过程中作为引物的第一个糖原分子 从何而来?
近来人们在糖原分子的核心发现了一种名为 glycogenin的蛋白质。Glycogenin可对其自身进行 共价修饰,将UDP-葡萄糖分子的C1结合到其酶分 子的酪氨酸残基上,从而使它糖基化。这个结合 上去的葡萄糖分子即成为糖原合成时的引物。
磷酸化酶b激酶- P
磷酸化酶b (活性低)
磷酸化酶a-P (活性高)
糖原的分解合成代谢
(二)糖原合酶是糖原合成的关键酶
糖原合酶的共价修饰调节
糖原合酶
糖原合酶-P
糖原的分解合成代谢
激素(胰高血糖素、肾上腺素等)+ 受体
腺苷环化酶
腺苷环化酶(有活性)
(无活性) ATP
cAMP
PKA
(无活性)
PKA
(uridine diphosphate glucose, UDPG)
UDPG可看作“活性葡萄糖”,在体内充 作葡萄糖供体。 糖原的分解合成代谢
4.α-1,4-糖苷键式结合
糖原合酶
(glycogen synthase)
糖原n + UDPG
糖原n+1 + UDP
UDP
UTP
核苷二磷酸激酶
ATP
糖原的合成与分解
糖原的合成与分解糖原是人体内重要的能量物质,它能够供给肝脏和肌肉组织所需的能量,以保持身体正常的生理功能。
在我们的日常生活中,食物中的碳水化合物会被分解成葡萄糖,随后再被合成成糖原存储在肝脏和骨骼肌里。
本文将对糖原的合成和分解进行探讨。
一、糖原的合成糖原的合成是通过糖异生途径完成的。
我们先来看一下这个过程的主要步骤:1.葡萄糖-6-磷酸酶催化下,葡萄糖形成葡糖醛酸。
2.葡糖醛酸先在核心蛋白质上形成个人工基底,然后再和UDP-葡萄糖结合,生成UDP-葡糖醛酸。
3. UDP-葡糖醛酸在磷酸醛酸转移酶的作用下,转化成为ATP-葡糖醛酸,并释放出UDP。
4. ATP-葡糖醛酸通过磷酸化作用,生成ATP-磷酸葡糖醛酸。
5. ATP-磷酸葡糖醛酸在支链酶的作用下,形成支链糖原。
通过上述步骤,我们可以得出一个结论:肝脏细胞和肌肉细胞能够自主地合成和分解糖原,并且维持一定的水平以供能量供给。
二、糖原的分解糖原的分解是通过糖异生途径完成的,也就是糖原通过一系列的反应转化成为葡萄糖。
关键酶是磷酸酯酶,主要控制糖原过程的速率。
具体步骤如下:1.肝脏或肌肉酶将糖原转化为葡萄糖-1-磷酸。
2.葡萄糖-1-磷酸酯酶的作用下,葡萄糖-1-磷酸转化为葡萄糖,并且释放出磷酸。
3.葡萄糖向到达全身各组织细胞的血液中流通,以为身体提供能量。
糖原在体内的分解一般分为糖原保护和糖原降解两种。
糖原保护指的是在饥饿、运动、压力等情况下,糖原会被分解为葡萄糖提供能量维持生理功能,但是人体会保留一定数量的糖原,以确保临界值的能量供给。
糖原降解指的是在糖尿病或酮症酸中毒的病人体内由于胰岛素水平偏低而导致身体无法充分利用葡萄糖,因此需要补充外源性胰岛素。
三、总结糖原的合成和分解是相辅相成的过程,它们保证了人类正常的生理功能和生存需要。
糖原在体内的含量是平衡而动态的,不同的环境因素(例如:节食、运动)都会影响糖原的合成和分解的速率,因此糖原作为人体内的重要储能物质需要人们高度重视和关注。
糖原的合成与分解讲课文档
6
108
6、糖原
快速、效率极 高。
血液
葡萄糖
1-磷酸葡萄糖
6-磷酸葡萄糖
葡萄糖
第三十四页,共45页。
激素通过cAMP-蛋白激酶调节代谢示意图
激素 受体 G蛋白 环化酶
细胞膜
ATP
cAMP+PPi
R
c
蛋白激酶 (无活性)
c+ R
蛋白激酶(有活性)
cAMP
ATP ADP
非磷酸化蛋白激酶
磷酸化蛋白激酶
内在蛋白质的磷酸化作用
糖原的合成与分解
第一页,共45页。
(优选)糖原的合成与分解
第二页,共45页。
还原端
1.糖原的结构特点
非还原端
形 状:树枝状
分子量:100~1000万
还原端:一个
非还原端:多个
第三页,共45页。
糖原的分布
肝糖原:
含量可达肝重的 5%(总量为90-100g)
肌糖原:
含量为肌肉重量的1~ 2%(总量为200-400g)
Pi
葡萄糖
第十五页,共45页。
糖分解代谢
一、糖原的合成作用
由葡萄糖和其它单糖如果糖、半乳糖 合成糖原的过程称为糖原合成,反应 在细胞质中进行 。
糖原的结构
第十六页,共45页。
3.糖原合成
定义:
由单糖合成糖原的过程称为糖 原的合成(glycogenesis)。
单糖:
葡萄糖(主要)、果糖、半乳糖等
部位:
第四十一页,共45页。
2.胰高血糖素
其升高血糖的机制包括:
①激活依赖cAMP的蛋白激酶,人而抑制糖 原合酶和激活磷酸化酶,迅速使肝糖原分解, 血糖升高。
糖原的合成与分解ppt课件
n
②抑制肝外组织摄取和利用葡萄糖,抑制点为丙酮酸的氧化脱羧。
原 (4)UDPG中的葡萄糖连接到糖原引物上
1-磷酸葡萄糖 ②抑制肝外组织摄取和利用葡萄糖,抑制点为丙酮酸的氧化脱羧。
(3)、激素对糖原合成与分解的调控
(2)糖原合酶的共价修饰调节
分 1-磷酸葡萄糖
6-磷酸葡萄糖
14糖基转移酶16糖苷酶脱支酶脱支酶从本质上说电位与电压是同一个概念电压指的是两点之间的电位差而电位指的是各点与参考点之间的电位差通常选取多条导线的交汇点作为参考点ohohoh1磷酸葡萄糖glucose1phosphateohohohohohoh磷酸葡萄糖变位酶6磷酸葡萄糖glucose6phosphate1磷酸葡萄糖6磷酸葡萄糖从本质上说电位与电压是同一个概念电压指的是两点之间的电位差而电位指的是各点与参考点之间的电位差通常选取多条导线的交汇点作为参考点葡萄糖glucoseoh6磷酸葡萄糖glucose6phosphate脑与肌肉中缺乏此酶从本质上说电位与电压是同一个概念电压指的是两点之间的电位差而电位指的是各点与参考点之间的电位差通常选取多条导线的交汇点作为参考点atpadp糖的分解代谢已糖激酶糖原的分解葡萄糖6磷酸酶从本质上说电位与电压是同一个概念电压指的是两点之间的电位差而电位指的是各点与参考点之间的电位差通常选取多条导线的交汇点作为参考点n1pi葡萄糖6磷酸酶从本质上说电位与电压是同一个概念电压指的是两点之间的电位差而电位指的是各点与参考点之间的电位差通常选取多条导线的交汇点作为参考点由葡萄糖和其它单糖如果糖半乳糖合成糖原的过程称为糖原合成反应在细胞质中进行糖原的结构从本质上说电位与电压是同一个概念电压指的是两点之间的电位差而电位指的是各点与参考点之间的电位差通常选取多条导线的交汇点作为参考点atpadpmg葡萄糖glucoseoh6磷酸葡萄糖glucose6phosphate葡萄糖atp6磷酸葡萄糖adp从本质上说电位与电压是同一个概念电压指的是两点之间的电位差而电位指的是各点与参考点之间的电位差通常选取多条导线的交汇点作为参考点6磷酸葡萄糖1磷酸葡萄糖ohohoh1磷酸葡萄糖glucose1phosphate磷酸葡萄糖变位酶ohohohohohoh6磷酸葡萄糖glucose6phosphate从本质上说电位与电压是同一个概念电压指的是两点之间的电位差而电位指的是各点与参考点之间的电位差通常选取多条导线的交汇点作为参考点ohoh1磷酸葡萄糖glucose1phosphateutp尿苷二磷酸葡萄糖udpguridinediposphateglucoseppiudpg焦磷酸化酶utp1磷酸葡萄糖udpgppi2pi从本质上说电位与电压是同一个概念电压指的是两点之间的电位差而电位指的是各点与参考点之间的电位
糖原的合成与分解
Pi
磷蛋白磷酸酶-1
–
糖原合酶
糖原合酶-P
磷酸化酶b 磷酸化酶a-P
Pi
磷蛋白磷酸酶-1
Pi
磷蛋白磷酸酶-1
–
–
磷蛋白磷酸酶抑制剂-P
PKA(有活性)
磷蛋白磷酸酶抑制剂
糖原合成与分解的调节
激素(胰高血糖素、肾上腺素等)+ 受体
腺苷环化酶
腺苷环化酶(有活性)
(无活性) ATP
cAMP
PKA
(无活性)
约10个葡萄糖单元处形 成分枝,分枝出葡萄糖 以α-1,6-糖苷键连接, 溶解度增加。
形状:树枝状
分子量:100~1000万
3
糖原的结构特点
非还原端 还原端
主链自还原端开始;
每条链都终止于一个非还 原端。
还原端:一个
非还原端:多个
糖原合成或分解时,其葡 萄糖残基的添加或去除, 均在其非还原端进行;非 还原端增多,利于其被酶 分解。
H2O
葡萄糖-6-磷酸酶
Pi
CH2OH
H
OH
OH OH H
OH OH
G-6-P + H2O
葡萄糖-6-磷酸酶
G + Pi
葡萄糖6-磷酸酶主要存在于肝、肾细胞, 肌肉组织中不含此酶,因此肌糖原不能分 解为葡萄糖,只能进入糖酵解或有氧氧化。
* 肌糖原的分解
肌糖原分解的前三步反应与肝糖原分解过程相 同,但是生成6-磷酸葡萄糖之后,由于肌肉组 织中不存在葡萄糖-6-磷酸酶,所以生成的6-磷 酸葡萄糖不能转变成葡萄糖释放入血,提供血 糖,而只能进入酵解途径进一步代谢。
22
1.水解:
包括三步反应,循环交替进行。 ⑴ 磷酸解:由糖原磷酸化酶(glycogen phosphorylase)催化对-1,4-糖苷键磷酸 解,生成G-1-P。
糖原在肝脏中的合成和分解
糖原在肝脏中的合成和分解糖原是一种多糖类物质,广泛存在于动物体内,尤其是肝脏和肌肉组织中。
它在机体内起着储存和供能的重要作用。
糖原的合成和分解是一个调控精细的过程,对于维持机体的能量平衡和血糖稳定至关重要。
一、糖原的合成糖原的合成主要发生在肝细胞中,由葡萄糖通过一系列的酶催化反应进行。
合成糖原的关键酶是糖原合成酶(glycogen synthase),它能将葡萄糖分子逐渐连接成糖原链。
合成过程中需要消耗ATP为能量来源,并依赖于辅酶A和UDP葡萄糖的参与。
当血糖浓度较高时,胰岛素释放增加,促使肝细胞内葡萄糖的更新合成糖原,以维持血糖的正常水平。
糖原的合成还受到许多调控因子的影响。
例如,高血糖状态下,胰岛素的释放增加,活化糖原合成酶,促进糖原的合成。
而在低血糖状态下,胰岛素的分泌减少,肝脏开始分解糖原来供给能量。
此外,一些荷尔蒙如肾上腺素和葡萄糖皮质激素也能调节糖原的合成和分解。
二、糖原的分解糖原的分解主要发生在肝细胞和肌肉细胞中,通过糖原分解酶(glycogen phosphorylase)的催化作用,将糖原分解为葡萄糖分子。
分解反应需要消耗无机磷酸为催化剂,同时也会产生一定量的磷酸酯。
磷酸酯进一步代谢供给能量需求,例如产生ATP。
糖原的分解也受到多种调控因子的调节。
在低血糖状态下,糖原分解酶被活化,促使体内的糖原分解产生葡萄糖,以提供能量。
而在高血糖状态下,糖原的分解受到抑制,胰岛素的分泌增加,促使肝脏将血糖转化为糖原以进行储存。
值得注意的是,糖原在肝脏和肌肉中的含量是有限的。
肝脏中约占总重量的5%左右,而肌肉中约占总重量的1-2%。
这些糖原储备能够供给机体相对较长时间的能量需求,但对于长时间的能量消耗或者长期的低血糖状态来说,糖原的储备是有限的。
总结起来,糖原在肝脏中的合成和分解是由多种酶的协同作用完成的。
它的合成和分解过程受到胰岛素、肾上腺素、葡萄糖皮质激素等多种激素的调控。
糖原作为机体的重要能量储备物质,对于维持血糖平衡和供给能量需求至关重要。
(精选课件)糖原合成与分解
合成部位 组织定位:主要在肝脏、肌肉 细胞定位:胞质
糖原合成途径
Glucose
Hexokinase 己糖激酶
Glucokinase 葡萄糖激酶(肝)
1、活化 2、变位 3、活化 4、缩合 5、分支化
磷酸葡萄糖变位酶
UDP-葡萄糖焦磷酸化 酶
葡萄糖-6-磷酸酶(肝、肾)
G-6-P
G
己糖(葡萄糖)激酶
三、糖原代谢生理意义
糖原代谢是为了维持合适的血糖水平, 缓冲间断进食对血糖水平的影响,使其保持 相对稳定。
进食时,血糖升高,肝细胞和肌细胞加 快摄取葡萄糖,主要用于合成糖原,使血糖 降低;禁食时,血糖下降,肝糖原分解加快 ,生成葡萄糖,释入血液,使血糖回到正常 水平。
糖原的结构特点及其意义
1. 葡萄糖单元以α-1,4-糖苷键形成长链; 2. 约8~14个葡萄糖单元处形成分支,分 支处葡萄糖单元以α-1,6-糖苷键连接,分 支增加,溶解度增加; 3. 每条链都终止于一个非还原端,它是 糖原磷酸化酶和糖原合酶的作用位点。
α-1,6-糖苷 键
一、糖原的合成代谢
糖 原 的 合 成 (glycogenesis) 指 由 葡 萄 糖 合 成 糖 原的过程。
全剧终
——谢谢观赏!
问题1:为什么贮存糖原而不是葡萄糖?
胞内渗透压的考虑:估算糖原贮存的葡萄糖残基 在一个肝细胞的总浓度约是0.4mol.L-1,而糖原的浓度 仅为10mmol.L-1,这种巨大的差别缓解了渗透压力。
问题2:糖原如何适应生物学功能?
对糖原结构上有要求-分支的程度和链长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磷酸烯醇丙酮酸
CO2
(PEP)
草酰乙酸 GTP GDP
糖
葡萄糖
A
A G-6-P磷酸酯酶
酵
G-6-P
B F-1.6-P磷酸酯酶
解
C1 丙酮酸羧化酶
和
F-6-P
B
C2 PEP羧激酶
葡
F-1.6-P
萄
3-P-甘油醛
磷酸二羟丙酮
糖 异 生 天冬氨酸
PEP
C2
草酰乙酸
丙酮酸
3-P-甘油 乳酸
甘油
的
-酮戊二酸 谷氨酸
脱枝酶(催化1.6-糖苷键断裂)
糖 非还原端 原 磷 酸 解 的 步 骤
还原端
磷酸化酶(释放8个1-P-G) 转移酶
脱枝酶(释放1个葡萄糖)
2、淀粉的分解
• 淀粉的酶促水解解
α-淀粉酶:在淀粉 分子内部任意水解α-1.4 糖苷键。(内切酶)
β-淀粉酶:从非还原 端开始,水解α-1.4糖 苷键,依次水解下一个β -麦芽糖单位(外切酶)
直链淀粉的螺旋结构
支链淀粉或糖原分子示意图
支链淀粉或糖原分支点的结构
纤维素一级结构
纤维素链
微纤维 细胞壁
纤维素片层结构
植物细胞中的 纤维素微纤维
植物细胞壁与纤维素的结构
多糖的酶促降解
1、糖原的分解 • 糖原的结构及其连接方式
-1,6糖苷键
-1,4-糖苷键
• 糖原的磷酸解
磷酸化酶(催化1.4-糖苷键断裂) 三种酶协同作用: 转移酶(催化寡聚葡萄糖片段转移)
H
+Pi
葡萄糖
糖异生途径关键反应之二
H2CO P O H2CO P
H HO
+ H2O
H
OH
OH H 1,6-二磷酸果糖
二磷酸果糖 磷酸酯酶
H2CO P
O H2COH
H HO + Pi
H
OH
OH H 6-磷酸果糖
糖异生途径关键反应之三
丙酮酸
CO2
ATP+H2O
ADP+Pi
丙酮酸羧化酶
PEP羧激酶
P
精品
糖原的合成和分解
目录
糖原的生物学意义 糖原的降解 糖原的生物合成 糖原代谢的调控
糖原的生物学意义
• 糖原:葡萄糖分子聚合而成的高聚物 • 生物学意义
储存能量、容易动员的多糖,是能 量的储存库。供应能量、维持血糖正常 水平
血糖
• 定义:血液中的葡萄糖 • 表示方法:100ml血液中所含葡萄糖的毫
2、蔗糖的合成
•蔗糖合成酶途径 •磷酸蔗糖合成酶途径 •蔗糖磷酸化酶途径
UDPG的结构
G
UDP
糖核苷酸的生成
+
1-磷酸葡萄糖
UTP
UDPG
+PPi
三、多糖的生物合成
1、 淀粉的生物合成 2、糖原的生物合成
淀粉的生物合成
• 淀粉的结构特点 • 直链淀粉合成
由淀粉合成酶催化,需引物(Gn),ADPG供糖基,形 成α-1.4糖苷键。
用下的支链淀粉的合成
m
n
A
B
Q酶(1)
m
+
n
A
B
Q酶(2)
A
m n
B
糖原的生物合成
糖原生物合成过程与植物支链淀粉合成过 程相似,但参与合成的引物、酶、糖基供体 等是不相同的。
引物:结合有一个寡糖链的多肽 酶:糖原合成酶,分支酶 糖基供体:UDPG
6-磷酸葡萄糖的生成
ATP
ADP
6-磷酸果糖 6-磷酸葡萄糖磷酸酯酶
果糖 激酶
1,6-二磷酸果糖
不可逆反应,利用 糖酵解途径其它 酶生成葡萄糖的 途径称为糖异生 。
3-磷酸甘油醛磷酸二羟丙酮
2磷酸烯醇丙酮酸
丙酮酸 激酶
PEP羧激酶 2草酰乙酸
2丙酮酸
丙酮酸羧化酶
糖异生途径关键反应之一
P
6-磷酸葡萄糖 磷酸酯酶
+ H2O
6-磷酸葡萄糖
脱支酶(R酶):水解 α-淀粉酶和β-淀粉酶 作用后留下的极限糊精中 的1.6 -糖苷键。
α-淀粉酶 β-淀粉酶
• 淀粉的磷酸解
淀粉磷酸化酶
淀粉+nH3PO4 脱支酶
nG-1-p+少量葡萄糖
糖的生物合成
一、单糖的生物合成 二、双糖的生物合成 三、多糖的生物合成
一、单糖的生物合成
1、葡萄糖生物合成的最基本途径:光合作用 2、糖异生作用
•糖异生作用的主要途径和关键反应 •糖酵解与糖异生作用的关系 •糖分解与糖异生作用的关系
光合作用
光能 CO2+H2O
(CH2O) +
1 2
O2
糖异生主要途径 和关键反应
糖原(或淀粉) 1-磷酸葡萄糖
非糖物质转化成
6-磷酸葡萄糖
己糖激酶 葡萄糖
糖代谢的中间产
二磷酸果糖
物 后 , 在 相 应 的 磷酸酯酶 酶催化下,绕过糖 酵解途径的三个
克数 • 正常水平:80mg-120mg/100ml • 意义:保持糖在体内的运输,氧化供能、
诊断疾病 • 血糖的来源和去路
消化道吸收 肝糖原分解 糖异生
血糖
氧化供能 合成糖原 变成其他糖类 随尿排出 变为非糖物质
淀粉和糖原结构
1.4nm
NRE NRE
直链淀粉
(1 6)分支点
RE
RE
0.8nm
6个残基
• 支链淀粉合成
淀粉合成酶:催化形成α-1.4糖苷键 Q酶(分支酶):既能催化α-1.4糖苷键的断裂,又
能催化α-1、6糖苷键的形成
非还原端 残基
淀粉的分枝结构
开始分枝的残基
两个葡萄糖单位之 间的1,6-糖苷键
两个葡萄糖单位之 间的1,4-糖苷键
直链淀粉的合成
+
引物(Gn)
A
ADPG
直链淀粉(Gn+1)
关
系
-酮戊二酸 谷氨酸
丙氨酸
(胞液) (线粒体)
天冬氨酸
草酰乙酸 C1 丙酮酸
乙酰CoA
TCA循环
糖分解和糖 异生的关系
天冬氨酸
(PEP) 丙酮酸
(胞液) (线粒体)
(转氨基作用) 谷氨酸
二、双糖的生物合成
1 、单糖基的活化——糖核苷酸(UDPG、ADPG、 GDPG等)的合成
糖核苷二磷酸在不同聚糖形成时,提供糖基和能量。植物 细胞中蔗糖合成时需UDPG,淀粉合成时需ADPG,纤维素合成 时需GDPG和UDPG;动物细胞中糖元合成时需UDPG。
磷酸激酶
1-磷酸葡萄糖的生成
变位酶
1-磷酸葡萄糖
UDP-葡萄糖的生成
+ UTP
1-磷酸葡萄糖
ppi UDP-葡萄糖
• 碳链的增长
UDP-葡萄糖 +
UDP
引物(Gn)
• 糖原的生成
THANK YOU