重点讲解滤波器原理开关电容滤波器原理

合集下载

开关电源工作原理超详细解析

开关电源工作原理超详细解析

开关电源工作原理超详细解析开关电源(Switching Power Supply)是一种先将输入交流电转换为直流电,再通过变换器和开关元件进行调制和控制,最终输出所需电压和电流的电源装置。

它可以高效地进行能量转换,减少功耗,适用于各种电子设备。

下面将详细解析开关电源的工作原理。

1.开关电源的基本组成开关电源由输入滤波器、整流器、脉宽调制器、变压器、输出滤波器和反馈电路组成。

-输入滤波器:用于滤除输入电源中的干扰信号,并平滑输送到整流器。

-整流器:将交流电转换为直流电,常用的整流方式有全波整流和半波整流。

-脉宽调制器:根据反馈信号调整开关管的导通时间,控制开关元件的开关频率和占空比。

-变压器:将输入电压转换为所需的输出电压,并通过与脉宽调制器协调工作来控制输出电压的稳定性。

-输出滤波器:用于平滑输出电压,减少纹波幅度,并滤波输出电流。

-反馈电路:通过采样输出电压并与目标电压进行比较,产生反馈信号控制脉宽调制器的输出。

2.工作原理-输入滤波:交流电经过输入滤波器后,去除干扰信号,并保持电压稳定。

输入滤波器通常由电容和电感组成,它们通过电压和电流的交替变化,将输入电源趋于稳定。

-变压:通过变压器将输入电压进行转换,以获得需要的输出电压。

变压器一般由磁性材料、绕线、磁心等组成,通过众多的绕线匝数比实现输入电压于输出电压的变化。

-输出滤波:经过变压器的输出信号包含较多的纹波幅度,通过输出滤波器将纹波幅度减小到可以忽略不计的程度。

输出滤波器通常包括电感和电容,通过滤除高频杂波和平滑输出电流。

3.脉宽调制脉宽调制器是开关电源中至关重要的一个部件,负责控制开关元件(如晶体管或MOSFET)的开关频率和占空比,以调节输出电压的稳定性。

- 控制开关频率:脉宽调制器根据输出电压的需求,采用不同的控制方式,例如固定频率PWM(Pulse-Width Modulation)、可变频率PWM和电流模式控制。

通过调整开关频率,可以实现对输出电压的精确控制。

滤波器基本原理

滤波器基本原理

R,C,L串联可以搭建二阶带通滤波器等等。

个小电容并联。

也可以采用RC滤波的方式来实现电源的稳定,最好不要在电路板电源的根部采用RC滤波,而是在需要电源形成很大的压降,导致输出电压变小,而在芯片根处采用RC滤波,一般芯片的工作电流在几十mA,这时R的选择余地会比较大,而且滤波效果较好。

LC滤波我不经常使用,不是很了解,不知道大家的理解如何。

最近使用了美信的可编程滤波器和引脚可配置滤波器,它们采用都是开关电容滤波器。

右边时,电容器C1向电压源u2放电。

当开关以高于信号的频率fc工作时,使C1在u1和u2的两个电压节点之间交替换接,那么C1在u1、u2之间传递的电荷可形成平均电流I=fC1(u1-u2),相当于图1a的u1和u2之间接入了一个等效电阻,其值为1/fC1。

推导是这样的:在信号源向电容充电时Q=C1*U,然后这个电流供给运放使用,因此平均电流为I=C1*U/T,如果T足够短,可以近似认为这个过程是连续的,因而可以在两节点间定义一个等效电路Req=U/I=T/C1=1/f*C1。

这个电路的等效时间常数就是τ=RC2=C2/f*C1.我开始使用的是MAX274,这款开关电容滤波器是通过改变引脚的电阻值来改变中心频率f0,增益G,带宽Q。

它不需要外接时钟信号来提供开关频率用,估计是采用了内部RC振荡电路。

设计MAX274是美信官网上有个辅助软件,把所需的参数输进去,会自动计算出各个电阻的阻值,实践发现即使自己搭电路的阻值取得跟软件计算出的阻值有一点差别,中心频率等差别也不会很大。

后来觉得274改变参数太麻烦,采用了另外一款开关电容滤波器MAX262,这是个引脚可编程滤波器,使用起来非常方便,需要外接时钟信号提供f。

这样的好处是开关频率非常稳,使得中心频率也能够做到跟设定值1%的误差。

使用MAX262也有个辅助软件,但我觉得这个软件计算的MAX262的参数值是错的,还是以数据手册为准!使用MAX262也很方便,就是往寄存器里写入几个值(应该是ROM型,掉电不丢失),通过给定的时钟频率,然后除以想要的中心频率,得出的N值写出寄存器就可以了,N通过查表可以得到,这样可以设定F0.同时可以设定Q,Q对应的也有N值,写到对应的寄存器里。

开关电容滤波器的设计

开关电容滤波器的设计

开关电容低通滤波器的设计原理分析为了滤除信号中掺杂的高频噪声,设计一种六阶级联式开关电容低通滤波器,以数据采样技术代替传统有源RC滤波器中的大电阻,有利于电路的大规模集成。

滤波器由双二阶子电路级联而成,电路中的电容值利用动态定标技术计算确定。

用Hspice进行仿真验证,结果表明:开关电容低通滤波器能较好地时信号进行整形,其频率特性符合设计指标。

滤波技术是信号分析和处理中的重要分支,它的作用是从接收到的信号中提取有用的信息,抑制或消除无用的或有害的干扰信号,有助于提高信号完整度和系统稳定性。

滤波器正是采用滤波技术的具有一定传输选择性的信号处理装置。

随着现代集成电路技术和MOS工艺的飞速发展,模拟集成滤波器的实现已经成为现代工业的一个重大课题,也是当今国际上的前沿课题。

传统的连续时间模拟滤波器采用有源RC结构,能够应用到较高的频率,但是电路中多采用大电容和大电阻,在集成电路制造时会占用大量的芯片面积。

在现代集成电路工艺中,很难得到精确的电阻值和电容值,而且电阻值随温度变化很大,精度只能达到30%。

1972年,美国科学家Fried发表了用开关和电容模拟电阻R的论文,由此开关电容技术成为模拟集成滤波器设计中常用的方法。

开关电容滤波器是由运算放大器、电容器和MOS开关组成的有源开关电容网络,以数据采样技术代替大电阻,减小了芯片的面积和功耗,且电路的极点和时间常数由电容的比值确定,可实现高精度的模拟集成滤波器。

本文设计一种开关电容低通滤波器,用于滤除有用信号中掺杂的高频噪声。

1 开关电容技术的原理图1中的开关电容等效电阻电路由两个独立的电压源V1、V2,两个受控开关S1、S2和电容C组成。

开关S1和S2受两相不交叠的时钟φ1和φ2控制,时钟频率均为fs。

在时钟φ1和φ2的控制下,两个开关周而复始地闭合与断开。

φ1闭合时,C充电到V1,φ2闭合时,C放电到V2,传输的总电荷为C(V1-V2),流向V2的平均电流为:I=Qfs=C(V1-V2)*fs (1)根据欧姆定律,可知此开关电容电路的等效电阻(如图1(b)所示)为:Req=1/Cfs (2)利用开关电容等效电阻电路的最大优点是节省了硅片面积。

开关电容滤波器详解

开关电容滤波器详解

图 6 幅频响应曲线
2、在实际开关电路中输入幅值 100mv,频率分别为 500Hz,1kHz,5kHz 的的正弦波信号,
C4 20p
得到三个暂态响应如分别下图 7、图 8、图 9。
图 7
500Hz 时的暂态响应
图 8
1kHz 时的暂态响应
图 9
5kHz 的暂态响应
可以看到 500kHz 时, 输出信号幅值约为 100mv, 没有衰减。 1kHz 时, 输出信号幅值约为 700mv, 衰减了大约-3db。5kHz 时,输出信号的幅值只有 20mv 左右,衰减了很多。另外 5kHz 时可 以明显看到输出波形中有明显台阶, 这是因为在 100kHz 的开关频率下, 输入 5kHz 的正弦波, 则每个周期只包含 20 个台阶,所以看起来很明显,输入正弦波频率越低,则每个周期包含 的台阶数越多,看起来越不明显。注意以上的结果只是在一阶的情况下,如果将多个一阶滤 波器串联则可以得到高阶滤波器。这里将 4 个一阶滤波器串联,输入一个 1kHz 的方波验证 其滤波效果,如下图 10。v(3)~v(6),分别是 1~4 阶滤波器的滤波输出,v(2)是输入的方波。 可以发现,滤波器的阶数越高,输出的波形越接近正弦波。
图 10
正弦波滤波效果验证
四、感想 通过此次作业我学会了写电路网表、使用 hspice,复习了开关电容的相关知识,增进了 对电路的理解。在不断修改电路参数的过程中,我体会到了模拟电路设计中的魅力 ----在不 断取舍中获取最佳的效果。例如开关如果采用传输门的形式它的导通电阻会比单个 nmos 管 小很多,且宽长比越大,导通电阻越小,但是这会带来更大的寄生电容,且后者对电路的影 响更大。因此在反复实验后我选择了最小宽长比的 nmos 作为开关。同样,如果取开关的工 作频率越高,每个正弦波周期里包含的台阶也会越多,但过高的开关频率,对 nmos 管的开 关速度带来了考验,因此最后折衷选取了 100kHz 的开关频率。

滤波器原理简介

滤波器原理简介

谐振器模型(过滤单元)
左图为单个谐振腔的电场模型及其等 效电路原理图。
图为不带圆盘的谐振杆的圆腔谐振器, 谐振杆顶部与盖板形成的电容,可以 理解成等效电路中的端接电容。
等效电路中的谐振频率计算公式为:
f
1
为谐振杆加入圆盘,相当于 加大了端接电容,圆盘越大,电 容越大,谐振频率越低; 同样加入调谐螺杆,也相当 于加大端接电容,螺杆进得越深, 端接电容值越大,谐振频率越低。 所以,将所有的调谐螺杆往 里进,则滤波器通带低偏。
滤波器抽头模型(阀门)
抽头为带通滤波器的馈电 装置。其结构关系到馈电强 度,以及与外部接口的匹配,
不同带宽,不同种类的滤波器 所用到的抽头是不一样的。总 的来讲有两种形式: 电耦合:通过电流或者电场 来进行耦合。 磁耦合:通过磁场进行耦合, 也称感性耦合。
a
b
对于同轴谐振器带通滤波 器,必须将输入/输出端的 抽头都设计到位,才能保证 通带驻波较小。不合理的抽 头设计,会导致输入能量较 多被反射,S11较大,驻波调 不下来,通带插损增大。
c
金属同轴滤波器的电耦合方式有两种,一种是探针耦合(b),一 种是直接馈电耦合(a)。 对于a中抽头,通过壁电流直接馈电,可以适用于带宽较宽的情况 ,结构稳定性好,是最常用的一种抽头方式。 对于b中的探针馈电方式,通过电场使得外部电路和第一个谐振腔 进行耦合,可以适用于窄带情况下,结构稳定性不好,不常用。 对于c中的磁耦合方式,一般适用于窄带滤波器,结构可靠性高, 但装配不方便。
以WCDMA的一个产品为例介绍滤波器的设计流程
谢 谢!
2012-9-7
29
容飞结构
感飞结构
容飞
感飞
几种传输零点
图为三种传输零点的响应。 传输零点可以增加相应频点的S12衰减。飞杆越强,则零点越靠近通带;飞 杆越弱,则零点越远离通带。

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用来减少开关电源产生的电磁干扰(EMI)的一种装置。

EMI是指开关电源工作时产生的高频干扰信号,可能会对其他电子设备、无线通信和无线电接收产生干扰,影响它们的正常工作。

EMI滤波器通过合理设计,能有效地抑制开关电源产生的EMI信号,从而减少对其他设备的干扰。

EMI滤波器的原理是基于电流和电压的相位关系来实现的。

开关电源在工作时会产生高频电流脉冲,而这些电流脉冲会通过开关电源输入端的电容等元件,从而形成高频电流回路。

EMI滤波器通过给开关电源输入端加上一个电感元件,阻断高频电流回路的形成,从而减小EMI信号的辐射。

设计EMI滤波器时需要考虑以下几个因素:1.工作频率范围:EMI滤波器需要在开关电源产生EMI信号的频率范围内有效工作。

根据具体的应用环境和要求,选择合适的滤波器工作频率范围。

2.滤波特性:滤波器需要具有良好的滤波特性,对于较高频率的EMI信号能够有较好的抑制效果。

常用的滤波器类型有低通滤波器、带通滤波器和带阻滤波器等。

3.过渡区域:滤波器在过渡区域需要平衡阻抗和频率之间的变化。

过渡区域越宽,滤波器的性能越好。

过渡区域的宽度需要根据具体要求进行设计。

4.安全和可靠性:EMI滤波器需要满足安全和可靠性的要求。

在设计过程中,需要考虑电源参数范围、电流和电压的安全范围等因素,以确保滤波器的稳定性和可靠性。

设计EMI滤波器的方法有多种,可以根据需求选择不同的设计方法。

常见的方法包括线性滤波器设计、Pi型滤波器设计和C型滤波器设计等。

其中,Pi型滤波器是应用最广泛的一种,它由两个电感和一个电容组成,能够对高频信号进行抑制。

总之,开关电源EMI滤波器的原理和设计研究是为了降低开关电源产生的电磁干扰,保证其他设备的正常工作。

通过合理的滤波器设计和选择合适的滤波器类型,可以有效地减少EMI信号对其他设备的干扰,提高系统的抗干扰性能。

第3章 模拟电路设计_2

第3章  模拟电路设计_2

3.3 滤波器设计3.3.1 滤波器的基本特性✓滤波器是一种频域变换电路。

它能让指定频段的信号顺利通过,甚至还能放大,而对非指定频段的信号予以衰减。

✓仅仅采用R、L、C元件组成的滤波器称无源滤波器,含有晶体管或运算放大器的称为有源滤波器,后者的储能元件只用电容器C 。

厦门理工学院电子与电气工程系12厦门理工学院电子与电气工程系3滤波器幅频响应四种理想滤波器的频域与时域特性厦门理工学院电子与电气工程系4滤波器幅频响应3阶Bessel 、Butterworth 、Chebyshev (1dB ripple)滤波器幅频响应3阶Chebyshev、Inverse Chebyshev厦门理工学院电子与电气工程系5滤波器幅频响应3阶椭圆(Elliptic or Cauer)厦门理工学院电子与电气工程系6典型有源滤波器电路Sallen-Key (压控电压源)对运放的要求不高,元件的比值较小。

厦门理工学院电子与电气工程系7厦门理工学院电子与电气工程系8典型有源滤波器电路Multiple feedback (多重反馈)对运放要求较高。

一般使用于低Q的应用中厦门理工学院电子与电气工程系9典型有源滤波器电路KHN (状态变量滤波器)。

对运放的非理想特性有较低的灵敏度。

可以精确地调整参数;可以获得HP 、BP 、LP厦门理工学院电子与电气工程系10典型有源滤波器电路Tow-Thomas (双二阶滤波器)可以精确地调整参数,可以获得BP 、LP 、-LP11厦门理工学院电子与电气工程系12end厦门理工学院电子与电气工程系13end 通带纹波和电压波动百分比的对应关系厦门理工学院电子与电气工程系14有源滤波器设计步骤归一化设计。

即将滤波器的截至频率视为1,其它频率除以它进行处理。

1.根据给定的通带频率fc阻带衰减fs计算陡度系数A=fc/fs2.查归一化图表,根据陡峭度、纹波、具体应用要求,查得滤波器阶数。

3.确定电路形式(Sallen Key KHN Two-Thomas)4.如果是二阶滤波器,可以直接计算得到元件的值。

滤波器基本知识

滤波器基本知识

有源滤波器Active Filter(信号分离电路) 测量系统从传感器拾取的信号往往包含噪声和许多与被测量无关的信号,并且原始的测量信号经传输、放大、变换、运算及各种其它处理过程,也会混入各种不同形式的噪声,从面影响测量精度。

这些噪声一般随机性很强,很难从时域中直接分离,但限于其产生的机理,其噪声功率是有限的,并按一定规律分布于频率域中某一特定频带中。

滤波器(信号分离电路):从频域中实现对噪声的抑制,提取所需要的信号,是各种测控系统中必不可少的组成部分。

对滤波器的要求:(1)滤波特性好;(2)级联特性好(输入,输出);(3)滤波频率便于改变滤波器举例:心电信号的滤波:主要受到50Hz的工频干扰,采用50Hz陷波(带阻)滤波器。

一.滤波器的基本知识⒈按处理信号的形式分类:模拟:连续的模拟信号(又分为:无源和有源)数字:离散的数字信号。

⒉理想滤波器对不同频率的作用:通带内,使信号受到很小的衰减而通过。

阻带内,使信号受到很大的衰减而抑制,无过渡带。

⒊按频谱结构分为5种类型:滤波器对信号不予衰减或以很小衰减让其通过的频段称为通带;对信号的衰减超过某一规定值的频段称为阻带;位于通带和阻带之间的频段称为过渡带。

根据通带和阻带所处范围的不同,滤波器功能可分为以下几种:低通(Low Pass Filter)高通(High Pass Filter)带通(Band Pass Filter)带阻(Band Elimination Filter)全通(All Pass Filter)(理想)各种频率信号都能通过,但不同的频率信号的相位有不同的变化,一种移相器。

图2-2 按频谱结构分类的各种滤波器的衰减(1-幅频)特性几个定义:(1)通带的边界频率:一般来讲指下降—3dB即对应的频率。

(2)阻带的边界频率:由设计时,指定。

(3)中心频率:对于带通或带阻而言,用f0或ω0表示。

(4)通带宽度:用Δf0或Δω0表示。

(5)品质因数:衡量带通或带阻滤波器的选频特性。

电源设计中最常见的四种滤波电路原理及特点解析

电源设计中最常见的四种滤波电路原理及特点解析

电源设计中最常见的四种滤波电路原理及特点解析引言在整流电路输出的电压是单向脉动性电压,不能直接给电子电路使用。

所以要对输出的电压进行滤波,消除电压中的交流成分,成为直流电后给电子电路使用。

在滤波电路中,主要使用对交流电有特殊阻抗特性的器件,如:电容器、电感器。

本文对其各种形式的滤波电路进行分析。

一、滤波电路种类滤波电路主要有下列几种:电容滤波电路,这是最基本的滤波电路;π 型 RC 滤波电路;π 型 LC 滤波电路;电子滤波器电路。

二、滤波原理1. 单向脉动性直流电压的特点如图 1(a)所示。

是单向脉动性直流电压波形,从图中可以看出,电压的方向性无论在何时都是一致的,但在电压幅度上是波动的,就是在时间轴上,电压呈现出周期性的变化,所以是脉动性的。

但根据波形分解原理可知,这一电压可以分解一个直流电压和一组频率不同的交流电压,如图1(b)所示。

在图1(b)中,虚线部分是单向脉动性直流电压 U。

中的直流成分,实线部分是 UO 中的交流成分。

2. 电容滤波原理根据以上的分析,由于单向脉动性直流电压可分解成交流和直流两部分。

在电源电路的滤波电路中,利用电容器的“隔直通交”的特性和储能特性,或者利用电感“隔交通直”的特性可以滤除电压中的交流成分。

图 2 所示是电容滤波原理图。

图 2(a)为整流电路的输出电路。

交流电压经整流电路之后输出的是单向脉动性直流电,即电路中的 UO。

图 2(b)为电容滤波电路。

由于电容 C1 对直流电相当于开路,这样整流电路输出的直流电压不能通过C1 到地,只有加到负载 RL 图为 RL 上。

对于整流电路输出的交流成分,因 C1 容量较大,容抗较小,交流成分通过 C1 流到地端,而不能加到负载 RL。

这样,通过电容C1 的滤波,从单向脉动性直流电中取出了所需要的直流电压+U。

滤波电容C1 的容量越大,对交流成分的容抗越小,使残留在负载 RL 上的交流成分越小,滤波效果就越好。

3. 电感滤波原理图 3 所示是电感滤波原理图。

滤波的工作原理

滤波的工作原理

从电气工程上,所有的元件可以归纳为三类最基本的元件,即电阻,电感和电容.电阻的阻值与交流电的频率无关.电感的阻值(称为感抗)Xl=2πfL,即与交流电的频率成正比.频率越高,感抗越大.电容元件则与电感元件相反,它的容抗Xc=1/2πfC,即与交流电频率反比.因此,电气工程上,常利用LC元件对不同频率交流电量的电抗不同,对交流电量进行分流,称为滤波.按不同功能,滤波器通常分三类:低通,高通,带通.它们在电气电路及电子电路中都有着广泛的应用.最简单和最典型的一个例子就是我们常用的直流稳压电源中,整流电路后面接入的电容,就是为了减小交流脉动而设置的.它是一个低通滤波器.上面学习的整流电路,它们的输出电压都含有较大的脉动成分,只在一些特殊的场合使用,一般的直流电路都需要较理想的一条直线似的的直流电压,这就要平滑脉动的电压使其达到,这种措施就是滤波.滤波器一般由电感或电容以及电阻等元件组成.电容滤波,简单的说,滤波是利用电容对特定频率的等效容抗小,近似短路来实现的(与谐振无关)。

容抗Xc=1/(ωC)=1/(2πfC),滤高频用0.1uF陶瓷电容---它对1MHz信号的等效容抗只有1.6欧姆,而对50Hz的工频信号等效容抗有近似32千欧,所以只能滤高频;而要滤工频,2000uF电容的等效容抗才能与0.1uF对1MHz信号的等效容抗相当。

利用电容两端电压不能突变只能充放电的特性来达到平滑脉冲的电压的目的.在正半周D导通时分两个电流:一是电流IL向负载供电,二是IC向电容充电;如忽略D的压降则在电容上的电压等于U2,当U2达到最大的峰值后开始下降, 此时电容C上的电压UC也将由于放电而逐渐下降,当U2<UC时,二极管被反偏而截止,于是UC向负载供电且电压继续下降,直到下一个正半周 U2>UC时二极管再导通,再次循环下去.但半波整流滤波的输出的电压还是带有锯齿装的成分现在多用桥式整流滤波电路;原理同上.根据上面的分析可知,采用电容滤波后,有如下特点:1、负载电压中的脉动的成分降低了许多;2、负载电压的平均值有所提高。

带通带阻滤波器开关电容滤波器(1)

带通带阻滤波器开关电容滤波器(1)
作的用信是号阻通止 过为某, 中达一心到频频抗段率干内扰 的目特的性,曲又线名是陷: 波器。 电路由宽路并图度由联可越低 而知 窄通 成,Q和 ,值其高越思通大路滤, 阻是波带:电 双T带阻滤波电路如图:
频率特性为:
低B通W 高通
阻 带
fH f0 fL
式中
uo
LPF
ui
HPF

用带通和相加器组成的带阻滤波器其框图如图4—27所示。 例如,采用图4—25(a)的带通滤波器和相加器组合便构成
4.3.1 一阶高通滤波电路(HPF)
电路可由一阶LPF互换R C得到 传递函数为:
u+
uo
uI
令s=j有 式中
高通截止频率
-3
+20dB/十倍频
4.3.2 二阶压控电压源高通滤波电路
频率特性:
u+
uo
式中:
要求:Aup﹤3
其幅频特性曲线如图:
运放作为无限增益放大器的多重反馈有源滤波器
Y4
Y5
滤波器或移相器,其传递 图4—30一阶全通滤波器(移相器)电路
函数为Auf(源自s)1 1
sR1C sR1C
Auf ( j ) 1
( j ) 2 arctan RC
(4—40) (4—41a)
(4—41b)
A(ω) 1
0 ω
(ω)
0
1/R1C
ω
- 90 °
图4—31一阶移相器的幅频特性及相频特性
K
1 R2C 2
s2 3 K s RC
1 R2C 2

Ko2
s2

o
Q
s
o2
(4—29)

为什么要使用滤波电容

为什么要使用滤波电容

为什么要使用滤波电容滤波电容在电子电路设计中起到了重要的作用。

它可以对电流或电压信号进行滤波处理,去除掉不需要的高频噪声或者波动,使得电路能够更加稳定地工作。

本文将探讨为什么要使用滤波电容,并分析其工作原理和应用场景。

一、滤波电容的作用和原理滤波电容是一种用于滤波的被动元件,可以在电路中起到低通滤波器的作用。

它通过存储和释放电荷的方式,将高频信号通过电容器的高阻抗通路绕过,从而实现对高频噪声的滤除。

滤波电容的工作原理基于其对不同频率信号的阻抗特性。

根据频率的不同,电容器的阻抗会发生变化。

对于低频信号,电容器的阻抗较大,可以阻止低频信号的通过;而对于高频信号,电容器的阻抗较小,可以让高频信号绕过电容器。

通过选择合适的电容值,可以实现对不同频率信号的滤波效果。

二、滤波电容的应用场景1. 防止电源噪声传导:滤波电容通常被应用于电源线路中,用来阻止电源噪声的传导。

电源线路中的滤波电容可以将噪声电压分流到地线上,使得噪声不会影响到其他电路。

2. 平滑直流信号:滤波电容也常用于平滑直流信号,去除其中的纹波。

在直流电源电路中,通过串联滤波电容,可以使得输出信号更加平稳,减小纹波幅度。

3. 减少开关电源干扰:在开关电源的设计中,滤波电容可以用来减少开关器件产生的高频噪声对其他电路的干扰。

通过将电容器放置在开关器件的输入端和输出端之间,可以有效地吸收和衰减高频噪声。

4. 信号调理和解耦:在模拟电路设计中,滤波电容可以用来调理信号,去除掉噪声和杂散分量,提高信号质量。

此外,滤波电容还可以用于解耦电路中的元件,提供稳定的工作环境,避免互相干扰。

三、滤波电容的选择和设计要点在选择和设计滤波电容时,需要考虑以下几个要点:1. 电容值选择:电容值的选取与待滤除的频率和信号要求相关。

一般来说,需要滤除的高频噪声越大,电容值就应该越大。

但是过大的电容值可能会导致电路响应过慢,因此需要在滤波效果和响应速度之间进行权衡。

2. 电容器类型:滤波电容的类型有很多,常见的有陶瓷电容、铝电解电容和钽电解电容等。

开关滤波电容电路

开关滤波电容电路

6.3.3 开关电容滤波器基本开关电容单元开关电容滤波器开关电容电路由受时钟脉冲信号控制的模拟开关、电容器和运算放大电路组成。

开关电容电路应用MOS工艺,故尺寸小、功耗低,工艺过程简单,易于制成大规模集成电路。

开关电容电路应用:滤波器、振荡器、平衡调制器和自适应均衡器等各种模拟信号处理电路之中。

一、基本开关电容单元如图(6316)所示为基本开关电容单元电路,当,;,,它们分别控制电子开关。

当S1闭合,S2断开,对当;当S1断开,S2闭合,对C放电,放C充电,充电电荷电电荷。

设开关的周期为,节点从左到右传输的总电荷为等效电流如果时钟脉冲的频率足够高,以至于可以认为在一个时钟周期内两个端口的电压基本不变,则基本开关电容单元就可以等效为电阻,其值为基本开关电容单元开关电容滤波器下图所示为开关电容低通滤波器及它的原型电路。

电路正常工作的条件是和的频率远大于输入电压的频率f,因而开关电容单元可等效成电阻R,且。

电路的通带截止频率决定于时间常数由于是时钟脉冲,频率相当稳定;而且是两个电容的电容量之比,在集成电路制作时易于做到准确和稳定,所以开关电容电路容易实现稳定准确的时间常数,从而使滤波器的截止频率稳定。

实际电路如下图所示,在上述电路的后面加电压跟随器或同相比例运算电路。

二、开关电容滤波电路如下图所示为开关电容低通滤波器及它的原型电路。

电路正常工作的条件是和的频率远大于输入电压的频率f,因而开关电容单元可等效成电阻R,且。

电路的通带截止频率决定于时间常数由于是时钟脉冲,频率相当稳定;而且是两个电容的电容量之比,在集成电路制作时易于做到准确和稳定,所以开关电容电路容易实现稳定准确的时间常数,从而使滤波器的截止频率稳定。

实际电路如下图所示,在上述电路的后面加电压跟随器或同相比例运算电路。

基本开关电容单元开关电容滤波器第八章>>第六节开关电容滤波器8.6 开关电容滤波器一、开关电容滤波器基本原理图 1开关电容滤波器是由MOS 电容、开关和运放组成,其整体结构简单、制造简易、价廉,性能较好,大有取代一般滤波器的趋势。

开关电源工作原理详细解析

开关电源工作原理详细解析

开关电源工作原理详细解析开关电源是一种将输入电源变换为输出电源的电源转换装置,其主要特点是高效率、轻便、体积小和输出电压稳定等。

本文将详细解析开关电源的工作原理。

开关电源的基本组成部分包括输入滤波器、整流器、能量存储元件、开关管、控制电路和输出变压器等。

1.输入滤波器:开关电源将电源直流电压转换为高频脉冲电压,因此需要通过输入滤波器消除输入电源中的高频干扰和杂散信号。

2.整流器:开关电源首先将输入交流电压通过整流器转换为直流电压,常用的整流器包括二极管整流器和桥式整流器。

二极管整流器只能进行半波整流,而桥式整流器则能进行全波整流。

3.能量存储元件:开关电源通过能量存储元件来实现电能转换,常用的能量存储元件包括电感和电容。

电感在工作过程中能够储存磁能,并通过改变电流来改变电压;而电容则能够储存电能,并通过改变电荷来改变电压。

4.开关管:开关电源中的开关管根据需要周期性地切断和闭合电路,以控制能量的传输和流动。

开关管主要有晶体管、IGBT和MOSFET等。

晶体管可完成小功率的开关控制,IGBT适用于中高功率的开关控制,而MOSFET则适用于高频开关。

5.控制电路:开关电源的控制电路负责控制开关管的导通和关断,以确保输出电压稳定。

控制电路主要包括脉宽调制(PWM)控制电路和反馈控制电路。

脉宽调制控制电路通过改变开关管的导通时间来调节输出电压;反馈控制电路则通过与输出电压进行比较,并改变PWM信号的占空比来实现输出电压的稳定控制。

6.输出变压器:开关电源中的输出变压器将高频脉冲电压转换为所需的输出电压。

输出变压器主要由一对或多对线圈组成,通过互感作用来实现电能的传输和变压。

开关电源的工作过程如下:1.输入交流电压通过输入滤波器进入整流器,经二极管或桥式整流器转换为直流电压。

2.直流电压通过能量存储元件(电感和电容)进行储能和滤波,以保证输出电压的平稳。

3.控制电路根据反馈信号和设定值,通过脉宽调制控制电路生成PWM信号,控制开关管的导通和关断。

电容在电路中的作用及电容滤波原理

电容在电路中的作用及电容滤波原理

电容在电路中的作用及电容滤波原理The manuscript was revised on the evening of 2021电容在电路中的作用及电容滤波原理电容器在电子电路中几乎是不可缺少的储能元件,它具有隔断直流、连通交流、阻止低频的特性。

广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等电路中。

熟悉电容器在不同电路中的名称意义,有助于我们读懂电子电路图。

1、滤波电容:接在直流电源的正、负极之间,以滤除直流电源中不需要的交流成分,使直流电变平滑。

一般采用大容量的电解电容器或钽电容,也可以在电路中同时并接其他类型的小容量电容以滤除高频交流电。

2、去耦电容:幷接在放大电路的电源正、负极之间,防止由于电源内阻形成的正反馈而引起的寄生震荡。

3、耦合电容:接在交流信号处理电路中,用于连接信号源和信号处理电路或者作两放大器的级间连接,用以隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。

4、旁路电容:接在交、直流信号的电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。

5、调谐电容:连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。

6、衬垫电容与谐振电容:主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,幷能显着地提高低频端的振荡频率。

是当地选定衬垫电容的容量,可以将低端频率曲线向上提升,接近于理想频率跟踪曲线。

7、补偿电容:与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。

8、中和电容:并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管间电容造成的自激振荡。

9、稳频电容:在振荡电路中起稳定振荡频率的作用。

10、定时电容:在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。

11、加速电容:接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。

开关电容滤波器实验

开关电容滤波器实验

实验四 开关电容滤波器实验一、实验目的 1、熟悉及掌握集成开关电容滤波器的构成原理及应用 2、掌握滤波器的滤波特性 二、实验原理及电路1、集成滤波器MF10芯片简介集成滤波器MF10芯片内部框图及其引脚图如图10-1所示开关电容集成滤波器MF10是一种通用型开关电容滤波器集成电路,依外部接法不同,可实现低通、高通、带通、带阻和全通等滤波特性。

开关电容集成滤波器无需外接决定滤波频率的电阻和电容,其滤波频率仅由输入时钟clk f 决定,通常时钟频率clk f 应高于信号频率的50倍或100倍。

其内部集成了两组MF5,两个MF5既可分别构成两个独立的二阶开关电容滤波器,又可级联成四阶开关电容滤波器。

其内部框图及引脚图如图10-1所示,第4(17)脚为内部运放反相输入端A INV (B INV );第5(16)脚为求和输入端SIA (SIB );第1(20)脚为低通输出端LPA (LPB );第2(19)脚为带通输出端B PA (B PB );第3(18)脚为带阻/全通/高通输出端)HPB /AP /N (HPA /AP /N ,第10(11)脚为时钟输入端)CLKB (CLKA ;图10-1MF10内部框图及引脚图第12脚用于设定时钟频率clk f 与滤波器的频率0f 的比值;当第12脚接高电平时,500=f f clk ,则500clk f f =;接地时,1000=f f clk ,则1000clk ff =;只要在时钟输入端)CLKB (CLKA 控制输入的时钟频率,就可以改变滤波频率,这样可以实现滤波频率的数字控制。

滤波器的Q 值通过外接电阻设定。

2、电路说明实验电路原理图如图10-2所示。

短接1J 的1-2,2J 的1-2,3J 的2-3,4J 的1-2时,则构成二阶低通滤波器; 短接1J 的1-2,2J 的1-2,3J 的2-3,4J 的4-5时,则构成二阶高通滤波器; 短接1J 的1-2,2J 的1-2,3J 的2-3,4J 的2-3时,则构成二阶带通滤波器; 短接1J 的2-3,2J 的1-2,3J 的1-2,4J 的4-5时,则构成二阶带阻滤波器; 短接1J三、实验设备1、测控电路(二)实验挂箱2、函数信号发生器3、虚拟示波器 四、实验内容及步骤 1、测控电路(二)实验挂箱接入5V ±直流电源;2、时钟信号的观察把“U10 开关电容滤波器”单元的“时钟信号”端接入示波器,观察时钟信号的波形; 3、调节信号发生器,使之输出正弦信号,接入输入端,输出端接示波器,按照前面“电路说明”部分,通过切换短路帽分别接成低通、高通、带通、带阻、全通滤波器,用虚拟示波器同时观察输入信号与输出信号,改变输入信号的频率,记录输出信号的幅度及相位随输入信号频率变化的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

讲解滤波器原理开关电容滤波器原理
对于滤波器原理,很多朋友充满好奇。

但对于不同类型滤波器而言,其滤波器原理往往有所不同。

所以对于滤波器原理的学习,需尽可能多的了解各式各样的滤波器。

本王中,将主要为大家讲解开关电容滤波器原理,并带来与开关电容滤波器相关的内容。

对于滤波器原理,很多朋友充满好奇。

但对于不同类型滤波器而言,其滤波器原理往往有所不同。

所以对于滤波器原理的学习,需尽可能多的了解各式各样的滤波器。

本王中,将主要为大家讲解开关电容滤波器原理,并带来与开关电容滤波器相关的内容。

1. 简介
开关电容滤波器是由MOS开关、MOS电容和MOS运算放大器构成的一种大规模集成电路滤波器。

开关电容滤波器可直接处理模拟信号,而不必像数字滤波器那样需要A/D、D/A变换,简化了电路设计,提高了系统的可靠性。

此外,由于MOS器件在速度、集成度、相对精度控制和微功耗等方面都有独特的优势,为开关电容滤波器电路的迅猛发展提供了很好的条件。

2. 基本原理
SCF电路的实质是采样数据系统,它直接处理模拟连续信号。

与数字滤波器相比,省去了A/D、D/A装置,这也是SCF能很快进入应用的原因之一。

因此,SCF虽然在离散域工作,但仍属模拟滤波器之列。

各类SCF的设想主要起因于流过电阻器与开关电容的电荷相同。

这一点是很自然的,有源RC滤波技术已有效地取代了电感器,开关电容技术首先的设想当然是试图用开关电容(SC)来取代电阻器。

开关电容滤波器的基本原理是,电路的两节点间接有带高速开关的电容器,其效果相当于该两节点间连接一个电阻。

由MOS开关、电容器和运算放大器构成的一种离散时间模拟滤波器。

开关电容滤波器广泛应用于通信系统的脉冲编码调制。

在实际应用中它们通常做成单片集成电路或与其他电路做在同一个芯片上。

通过外部端子的适当连接可获得不同的响应特性。

某些单独的开关电容滤波器可作为通用滤波器应用。

例如自适应滤波、跟踪滤波、振动分析以及语言和音乐合成等。

但运算放大器带宽、电路的寄生参数、开关与运算放大器的非理想特性以及MOS器件的噪声等,都会直接影响这类滤波器的性能。

开关电容滤波器的工作频率尚不高,其应用范围目前大多限于音频频段。

开关电容滤波器基本原理最简单的开关电容滤波器
见图1。

开关K置于左边时,信号电压源u1向电容器C1充电;K 倒向右边时,电容器C1向电压源u2放电。

当开关以高于信号的频率fc工作时,使C1在u1和u2的两个电压节点之间交替换接,那么C1在u1、u2之间传递的电荷可形成平均电流
I=fcC1(u1-u2),相当于图1a的u1和u2之间接入了一个等效电阻,其值为1/fcC1。

这样,图1a的开关电容电路就可等效于一阶有源低通滤波器(图1b),其传递函数为
从上式可见,开关电容滤波器的传递特性取决于比值C1/C2和开关频率fc。

事实上,图1b是一个积分电路,因此,开关电容滤波器可用于模拟滤波器的相应电路,以实现LC滤波器、有源滤波器等的特性。

设计设计开关电容滤波器的方法,大致可归结为两大类。

一类以模拟连续滤波器为基础,通过一定的变换关系把连续系统的网络函数变换为对应的离散时间系统网络函数,以便直接在离散时间域内精确设计。

这时可把网络函数分解为低阶函数,然后用开关电容电路模块通过级联或反馈结构实现。

另一类是以LC 梯形滤波器为原型用信号流图法或阻抗模拟法以开关电容电路取代LC电路中的各支路或电阻、电感,元件之间有一一对应关系。

跳耦型开关电容滤波器有源滤波器跳耦电路的实现,是基于对无源LC梯形滤波器的模拟。

这时跳耦电路的各支路分别对应于无源滤波器原型各支路,且其导纳都是以积分函数形式出现的。

开关电容滤波器如果将跳耦电路各支路的积分函数用差分输入的开关电容积分器(图2)实现,并计入端接负载的影响,就可以得到和五阶LC低通滤波电路(图3a)相对应的开关电容滤波器电路(图3b),而且仍然保持原型无源LC滤波器的低灵敏度特性。

开关电容积分器在每个时钟周期对输入信号取样一次,为了避免输出信号产生附加相移,严重影响滤波响应,必须如图3b 那样,使相邻积分器的开关向相反的方向投掷。

开关电容滤波器,电压反向开关型开关电容滤波器,也是用LC滤波器为原型电路,但用开关电容等效元件替换模拟元件。

电路工作时要求用“电压反向开关”控制电容网络中的电荷流动,使等效元件内部开关动作时元件所构成的环路中没有电荷流动。

实现“电压反向开关”的方法很多,图4a是用运算放大器构成的电压跟随器形式的电压反向开关,图4b是它的电路符号。

其工作过程是:当开关K1闭合、K2打开时,因电压跟随作用,电容器CH上的电压uH等于输入电压ua,即uH=ua;而在开关K1打开、K2闭合时,电容CH上的电压反向加在运算放大器输入端。

这样,因运算放大器虚短路,在每个开关周期内,端口上电压恰好反向。

开关电容滤波器图5a是按这种方法构成的五阶低通电压反向开关型开关电容滤波器的电原理图,图5b是它的原型电路。

与跳耦型开关电容滤波器相比,这种型式的电路需要的运算放大器数目较少,且仍能保持无源LC网络的低灵敏度特性,但它的开关时钟相位关系比较复杂。

开关电容滤波器还有许多种构成方式,如在波数字滤波器原理基础上用开关电容实现的波开关电容滤波器。

这种滤波器的原型电路可以是LC滤波器,也可以是含单位元的电路;而对选择性要求比较尖锐的窄带通滤波特性,可用N通道及伪N通道开关电容滤波器所呈现的梳状滤波特性实现。

它们大多也以LC滤波器或含单位元电路为原型。

由于它们各具特点,可用来构成型式多样、用途广泛的滤波电路。

开关电容滤波器中的开关是周期工作的,它的接通时间只占一个周期的一部分。

如果几组开关轮流在一个周期内工作,就可构成时间复用的开关电容滤波器,并可节省运算放大器,简化电路。

改变时钟频率可改变电路参数,如中心率、峰值增益、选择性等,因此可构成通用型多功能滤波器或可编程序开关电容滤波器。

制造技术开关电容滤波器可用NMOS或CMOS工艺制造。

制造技术关系到分布电容、开关的通导电阻、放大器的带宽、电容器公差以及电压节点的泄漏电流。

按标准工艺制造,通常能
够满足应用于音频范围的要求。

运用某些改进的技术可以扩展工作频段和进一步减小电容器公差。

相关文档
最新文档