机器视觉基本原理

合集下载

机器视觉技术的原理及应用

机器视觉技术的原理及应用

机器视觉技术的原理及应用随着人工智能技术的不断发展,机器视觉技术也逐渐成为了人们关注的焦点之一。

机器视觉技术是一种通过计算机模拟人眼进行图像识别和分析的技术,其主要应用于工业自动化、安防监控、医疗健康、智能家居等领域。

本文将详细介绍机器视觉技术的原理及应用。

一、机器视觉技术的原理机器视觉技术是基于数字图像的处理,通过对传感器采集的视觉信息进行图像处理和分析,从而实现对图像的识别和理解。

机器视觉技术的核心技术是图像处理技术和模式识别技术。

1. 图像处理技术图像处理技术是机器视觉技术的基础。

它包括图像获取、预处理、特征提取、分割、增强、变形、压缩和重构等过程。

其中,预处理是将采集到的图像进行去噪、滤波和几何校正等处理,使图像更加清晰、准确。

特征提取是从预处理后的图像中提取出被识别物体的特征,如颜色、纹理、形状、大小等。

分割是将图像中的前景和背景进行分离,以便进一步处理。

增强是通过图像处理技术提高图像质量,如增强对比度、锐度等。

2. 模式识别技术模式识别技术是机器视觉技术的核心部分,其主要任务是对预处理后的图像进行解析、分类和识别。

机器视觉技术主要采用的模式识别技术包括统计学、人工神经网络、支持向量机和决策树等。

其中,人工神经网络是最常用的模式识别技术之一,其模拟人类大脑的神经元构建识别模型,通过学习训练数据来实现对图像的分类和识别。

二、机器视觉技术的应用机器视觉技术在工业自动化、安防监控、医疗健康、智能家居等领域有广泛的应用。

1. 工业自动化机器视觉技术在工业制造中的应用主要是利用计算机视觉系统对制造过程进行监控和控制。

例如,机器人在生产过程中通过图像检测技术实现自我定位和精确定位,从而提高了生产效率和制品质量。

在生产线上,机器视觉技术实现了产品的缺陷检测和质量控制,从而提高了产品的一致性和可靠性。

2. 安防监控机器视觉技术在安防监控领域是一种非常有效的技术。

通过数字摄像机、视频处理和传输技术,将监控的图像信号传输给计算机进行处理和分析。

机器视觉技术简介

机器视觉技术简介

机器视觉技术简介机器视觉技术是一种模拟人类视觉的技术,利用计算机和摄像机等设备,使计算机能够接收、处理和解释图像或视频数据。

它结合了图像处理、模式识别、计算机视觉和人工智能等多个学科,被广泛应用于制造业、医疗保健、交通监控、军事安全等领域。

一、机器视觉的基本原理机器视觉的基本原理是通过摄像机采集图像,然后利用图像处理算法对图像进行处理和解读。

首先,摄像机将物体拍摄下来,并将其转换为数字图像。

然后,图像处理算法对图像进行滤波、增强、分割等操作,以提取出图像中的有用信息。

最后,模式识别算法对处理后的图像进行分析和识别,以实现对物体的检测、定位、跟踪等任务。

二、机器视觉的应用领域1. 制造业:机器视觉技术在制造业中常用于产品质量检测、零部件定位、装配验证等任务。

例如,在汽车制造过程中,机器视觉可以检测车身表面的瑕疵,以及零部件的尺寸和位置是否符合要求。

2. 医疗保健:机器视觉技术在医疗保健领域有着广泛的应用,例如医学影像分析、病例诊断和手术辅助等。

通过对医学图像的处理和分析,机器视觉可以帮助医生更准确地诊断疾病,并提供更有效的治疗方案。

3. 交通监控:机器视觉技术在城市交通监控中起到了重要作用。

通过安装摄像头和采用机器视觉算法,可以实现车辆违章检测、交通流量统计和事故预警等功能。

这些技术可以提高道路交通的效率和安全性。

4. 军事安全:机器视觉技术在军事领域的应用日益广泛,如目标识别、目标跟踪和情报分析等。

通过机器视觉系统的帮助,可以实现实时监测和分析敌方目标的动态,提供有效的军事情报支持。

三、机器视觉技术的挑战与发展机器视觉技术虽然在许多领域取得了突破性的进展,但仍面临一些挑战。

首先,图像数据的多样性和复杂性给图像处理和模式识别算法带来了挑战。

其次,计算机硬件性能的提升以及深度学习等人工智能算法的兴起,为机器视觉技术的发展提供了更大的空间。

未来,机器视觉技术有望在更多领域得到应用。

随着人工智能领域的不断发展,机器视觉技术可能会与自动驾驶、智能机器人、增强现实等技术相结合,创造更多的商业和科研价值。

3. 机器视觉的工作原理是什么?

3. 机器视觉的工作原理是什么?

3. 机器视觉的工作原理是什么?11 机器视觉的定义机器视觉是指通过光学装置和非接触式的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动等任务的技术。

111 成像原理机器视觉系统依靠光源照明,使物体反射或发射光线。

相机或其他图像传感器捕捉这些光线,并将其转换为电信号。

112 图像处理这些电信号经过数字化后,进入图像处理软件或硬件进行分析和处理。

处理过程可能包括图像增强、滤波、分割、特征提取等操作。

113 模式识别和决策通过对处理后的图像进行模式识别和分析,提取出有用的信息,如物体的形状、尺寸、位置、颜色等,并根据预设的规则和算法做出决策。

12 机器视觉的工作流程121 图像采集选择合适的光源、相机和镜头等组件,以确保能够获得清晰、准确的图像。

122 图像预处理对采集到的原始图像进行去噪、增强对比度、校正畸变等操作,提高图像质量。

123 特征提取从预处理后的图像中提取出有代表性的特征,如边缘、轮廓、纹理等。

124 目标识别与分类利用提取的特征,通过模式识别算法对目标物体进行识别和分类。

125 测量与定位确定目标物体的尺寸、位置、姿态等参数。

13 机器视觉的应用领域131 工业检测用于产品质量检测,如外观缺陷检测、尺寸测量等,提高生产效率和产品质量。

132 机器人引导为机器人提供视觉反馈,使其能够准确地抓取、装配物体。

133 医疗诊断辅助医生进行疾病诊断,如医学影像分析。

134 自动驾驶帮助车辆识别道路、交通信号和其他车辆,实现自动驾驶功能。

14 机器视觉的优势141 高精度能够实现微米级甚至更高精度的测量和检测。

142 高速度快速处理大量图像,满足高速生产线上的实时检测需求。

143 非接触式不会对被测物体造成损伤,适用于各种易碎、易变形物体的检测。

15 机器视觉的发展趋势151 智能化结合人工智能技术,提高系统的自适应性和智能决策能力。

152 3D 视觉实现对物体的三维测量和建模,拓展应用范围。

机器视觉技术的基本原理与设计方法

机器视觉技术的基本原理与设计方法

机器视觉技术的基本原理与设计方法机器视觉技术作为人工智能领域的一个分支,在最近几年发展迅速。

它是指利用计算机视觉算法和技术,对人类视觉的模拟和延伸,从而实现对物体、场景和动作的自动识别和分析。

机器视觉技术为我们带来了更加智能化、高效、准确的解决方案。

一、机器视觉技术的基本原理1、图像采集在机器视觉技术中,图像采集是第一步。

它通过电子传感器,如CCD摄像头、USB摄像头、网络摄像头等,来获取实时视频、静态图像等。

这些数据包含了需要进行分析和处理的原始信息。

2、图像处理图像处理是机器视觉中的核心环节,它主要是对采集到的图像进行处理和优化。

处理的具体任务包括图像分割、边缘检测、滤波、特征提取、匹配等。

通过处理后,可以提取出图像中的有用信息。

3、特征提取特征提取是机器视觉的一个关键环节。

它可以将图像中的信息提取出来,例如,物体的特征、颜色、形状、纹理等。

通过这些特征,可以实现对物体的自动识别。

4、识别与分类识别与分类是机器视觉中实现自动化的一个重要部分。

它将特征提取后的数据与预先设定的类别进行比较,从而实现对图像进行自动分类。

例如,将图像中的人脸与人脸数据库进行比对,从而实现自动识别。

二、机器视觉技术的设计方法机器视觉技术的设计方法一般可以分为以下几个步骤:1、需求分析首先需要了解用户的需求和实际应用场景,从而明确机器视觉应用的目的与要求。

在这一步中,需要确定识别对象的特征、光照情况、拍摄角度和距离等因素。

2、图像采集与处理根据需求分析的结果,选择合适的图像采集设备和图像处理算法。

在这一步中,可以采用一系列图像处理技术,如降噪、增强、去除干扰物等,来优化图像质量。

3、特征提取与分类根据应用要求,选择合适的特征提取和分类算法。

例如,对于人脸识别,可以采用PCA、特征金字塔等算法来提取特征,并使用SVM等分类算法对人脸进行分类。

4、应用集成根据应用场景的实际需求,将采集、处理、特征提取和分类等模块进行集成。

机器视觉技术的基础原理与图像处理方法

机器视觉技术的基础原理与图像处理方法

机器视觉技术的基础原理与图像处理方法机器视觉技术是指让计算机通过摄像机等设备获取图像信息,并通过图像处理算法来实现对图像的分析、理解以及决策。

在工业、医疗、安防、交通等领域,机器视觉技术发挥着越来越重要的作用。

本文将介绍机器视觉技术的基础原理和常用的图像处理方法。

机器视觉的基础原理主要包括图像的获取、图像的处理和图像的分析三个方面。

图像的获取是机器视觉的第一步,通常使用摄像机或其他传感器将物体的视觉信息转化为数字信号。

摄像机中的图像传感器负责将光信号转化为电信号,然后经过模数转换,数字信号就能被计算机处理。

在图像的获取过程中,要考虑光照、目标运动等因素,以获得清晰、准确的图像。

获得图像后,需要进行图像的处理。

图像处理的目标是增强图像特征、去除图像噪声、调整图像亮度、对比度等,以便于后续的分析。

常用的图像处理方法包括滤波、边缘检测、直方图均衡化、图像去噪等。

其中,滤波是常用的图像处理方法之一,可以去除图像中的噪声,增强图像的细节。

边缘检测能够提取出图像中的边缘信息,对于目标检测、识别等任务非常重要。

直方图均衡化可以调整图像的亮度、对比度等,使得图像更加清晰、鲜明。

图像去噪是去除图像中的干扰信号,保留图像细节的方法。

图像的分析是机器视觉的核心任务,其目的是通过对图像的处理和解析来理解图像中的内容。

图像分析的主要方法包括特征提取、目标检测与识别、图像分割等。

特征提取是指从图像中提取出具有代表性的特征,以便于后续的目标检测和识别。

常用的特征包括边缘、纹理、颜色等。

目标检测与识别是将图像中的目标进行识别和分类,常用的方法包括模板匹配、分类器(如支持向量机、卷积神经网络)等。

图像分割是将图像分成若干个具有独立意义的子区域,常用的方法有阈值分割、基于区域的分割、基于边缘的分割等。

除了基本的图像处理方法外,机器视觉还涵盖了很多高级的图像处理方法,如深度学习、三维重建、运动分析等。

深度学习是一种基于神经网络的机器学习方法,通过大量的图像数据进行训练,可以实现图像的分类、分割等任务。

机器视觉技术的原理及应用案例

机器视觉技术的原理及应用案例

机器视觉技术的原理及应用案例一、机器视觉技术的原理机器视觉是利用计算机对图像进行处理和分析来获取相关信息的技术。

它主要包括采集图像、图像处理和图像识别三个环节。

1. 采集图像采集图像是机器视觉的第一步。

常用的采集设备有CCD相机、工业相机、激光扫描仪等。

这些设备可以按照不同的需求选择不同的分辨率、灵敏度、速度和适应不同环境的设备。

2. 图像处理图像处理是机器视觉中最重要的环节。

根据不同的应用场景,可以采取不同的算法和技术,在此只介绍一些常用的技术。

(1)图像增强:将原始图像变成更容易被处理的高质量图像的方法,包括暗区增强、对比度调整、锐化等技术。

(2)特征提取:通过将图像的特征提取出来进行分析,如边缘检测、色彩分析、形状分析等,得到有用的信息。

(3)图像配准:将两幅图像的特征匹配,以便进行更深层次的分析和计算。

如点匹配、区域匹配等。

(4)背景分割:将图像中的前景和背景分离,进而更好的完成下一步的处理和分析。

3. 图像识别图像识别是机器视觉的核心技术,它是基于特征提取和处理得到的信息进行分类和判断的过程。

常用的技术包括:(1)分类器技术:将特征分类并分配给预定的对象,如SVM、神经网络等。

(2)匹配技术:将提取的特征与预定的模型匹配,以确定图像所属对象的过程。

(3)语义分析:将从图像中提取出的关键信息与背景知识结合起来进行分析,以提高识别的准确性。

二、机器视觉技术的应用案例机器视觉技术已经广泛应用于各个领域,以下列举了一些具有代表性的应用案例。

1. 工业制造机器视觉技术在工业制造领域中有着广泛的运用,包括自动化制造、品质检测和安全监测等方面。

如汽车生产中的精密零件测量、电子产品中的质量检测、钢铁厂的物料分拣等。

2. 医疗保健机器视觉技术在医疗保健领域中主要应用于影像检测和医疗辅助诊断。

如CT、MRI等扫描器的影像识别、医疗图像分类、医疗图像分割等。

3. 农业机器视觉技术在农业领域中的应用也越来越广泛,主要应用于作物检测、品种识别和病虫害监测等方面。

机器视觉 原理

机器视觉 原理

机器视觉原理
机器视觉是一种通过计算机和摄像机等设备进行图像的获取、处理和分析,从而实现对图像信息的理解和识别的技术。

其原理主要包括以下几个方面:
1. 图像获取:通过摄像机或其他图像传感器采集目标物体的图像数据,并转换为数字形式,用于后续的处理和分析。

2. 图像预处理:对采集到的图像数据进行预处理,包括去噪、滤波、增强对比度等操作,以提高图像的质量和清晰度。

3. 特征提取:通过对图像进行分析和处理,提取出图像中的特征信息,如边缘、纹理、颜色等,用于后续的模式识别和分析。

4. 模式识别:使用机器学习和模式识别算法,将提取到的特征与预先训练好的模型进行比对和匹配,从而对图像中的目标物体进行识别和分类。

5. 目标检测和跟踪:通过对图像进行分析和处理,识别出图像中的目标物体,并对其进行跟踪和定位。

6. 三维重建:通过对多幅图像进行分析和处理,推算出目标物体的三维结构和空间位置。

通过以上原理,机器视觉可以应用于各个领域,如工业自动化、智能交通、医疗诊断等,实现自动化和智能化的目标。

机器视觉的基本原理和应用

机器视觉的基本原理和应用

机器视觉的基本原理和应用1. 什么是机器视觉?机器视觉(Machine Vision)是一种使用摄像机和计算机技术来模拟和实现人类视觉的技术。

它通过捕捉、处理和分析图像来获取和理解信息。

机器视觉系统可以在不同的环境下进行图像识别、目标检测和测量等任务。

2. 机器视觉的基本原理机器视觉的基本原理包括图像获取、图像处理和图像分析。

2.1 图像获取图像获取是机器视觉的第一步,它使用摄像机或其他图像采集设备来获取物体的图像。

图像采集的质量和分辨率对后续的图像处理和分析非常重要。

2.2 图像处理图像处理是对获取到的图像进行预处理和增强,以提取特征并改善图像质量。

它包括图像去噪、图像平滑、图像增强和图像压缩等操作。

2.3 图像分析图像分析是机器视觉的核心部分,它使用图像处理技术和模式识别算法来理解和解释图像信息。

图像分析可以包括目标检测、目标识别、图像分类和测量等任务。

3. 机器视觉的应用机器视觉在各个领域都有广泛的应用。

以下是机器视觉的一些主要应用领域:3.1 工业自动化机器视觉在工业自动化中起着重要的作用。

它可以用于产品质量控制、生产线监测和机器人导航等任务。

通过机器视觉技术,可以实现对产品的外观、尺寸和位置的快速检测和测量,提高生产效率和质量。

3.2 医学影像诊断机器视觉在医学影像诊断中有广泛的应用,如X射线图像分析、病理图像处理和医学图像分类等任务。

通过机器视觉技术,可以帮助医生快速准确地诊断疾病,提高医疗效率和准确性。

3.3 交通安全机器视觉在交通安全领域有重要的应用,如车牌识别、交通流量监测和智能交通系统等任务。

通过机器视觉技术,可以实现对车辆和行人的识别和跟踪,提高交通安全和管理效率。

3.4 农业领域机器视觉在农业领域中有广泛应用,如农作物的识别和分类、果实的检测和采摘等任务。

通过机器视觉技术,可以实现农作物的自动化种植和采摘,提高农业生产效率和质量。

3.5 安防监控机器视觉在安防监控中有重要的应用,如视频监控和人脸识别等任务。

机器视觉基本原理

机器视觉基本原理

机器视觉基本原理
机器视觉技术是利用计算机和机器设备来模拟人眼的视觉功能,实现对实物的自动检测、识别、测量等一系列操作。

它的基本原理大致如下:首先是自动定位,它是指机器视觉在一定视窗中对要处理的物件进行定位的过程,通常由一个特定的图像采集器(如摄像机)捕捉照片,产生图像信号,发送给运算机处理。

接着是形状检测、特征提取和分类判断。

形状检测是指通过机器视觉对图像中物件的形状进行分析,对物件的形状进行处理和识别。

特征提取是指从图像中提取物件的特征点,使图像可以被计算机识别。

分类判断是指机器视觉根据特征点和物件的形状等特征来判断物件的类别。

再次是测量,它是指机器视觉根据图像特征进行物件三维尺寸测量和表面形貌测量的技术。

最后是图像处理,它是指对图像进行处理和分析的过程,可以将图像分成多个局部区域,结合光学原理和信号处理技术,来提高图像的质量。

以上就是机器视觉的基本原理。

机器视觉技术可以解决各种实际应用中的检测、识别和测量问题,具有广泛的应用前景。

机器视觉与模式识别

机器视觉与模式识别

机器视觉与模式识别机器视觉和模式识别是人工智能领域中非常重要的研究方向,它们通过模拟和实现人类视觉系统的功能,让计算机能够“看”和“理解”图像或视频数据。

在现代科技发展迅猛的时代,机器视觉和模式识别的应用日益广泛,涉及医疗、安全、交通、农业等诸多领域,为人们的生活带来了诸多便利。

一、机器视觉的基本原理机器视觉的基本原理是通过摄像头等设备获取图像或视频数据,然后利用计算机视觉算法对这些数据进行处理和分析,从而实现对图像内容的理解和识别。

机器视觉技术主要包括图像采集、图像预处理、特征提取、特征匹配和目标识别等过程,其中每个环节都有其独特的算法和方法。

在图像采集阶段,机器通过摄像头等设备捕获图像,并将其转换为数字信号,以便计算机进行处理。

图像预处理包括去噪、滤波、边缘检测等操作,旨在提高图像质量和减少后续处理的复杂性。

特征提取是机器视觉的核心环节,通过提取图像中的特征点、轮廓、纹理等信息,将图像转化为可供计算机理解的数据形式。

二、机器视觉的应用领域机器视觉技术已经被广泛应用于各个领域,为人们的生活和工作带来了诸多便利。

在医疗领域中,机器视觉能够帮助医生进行疾病诊断、手术辅助等工作,提高医疗水平和效率。

在安全领域中,机器视觉可以实现人脸识别、车辆追踪等功能,提升监控系统的智能化水平。

此外,机器视觉还广泛应用于交通领域、农业领域、工业领域等各个领域。

在交通领域,机器视觉可以实现交通信号识别、车辆检测等功能,提高道路交通的安全性和流畅性。

在农业领域,机器视觉可以帮助农民进行作物识别、病虫害检测等工作,提高农业生产的效率和质量。

在工业领域,机器视觉可以实现产品质量检测、智能制造等功能,提高生产线的自动化水平和品控水平。

三、模式识别的基本原理模式识别是利用模式匹配算法从数据中识别出特定的模式或规律,是机器学习和人工智能领域中的重要分支之一。

模式识别的基本原理是通过对数据的特征进行提取和匹配,找出其中隐藏的规律和结构,从而实现对数据的分类、识别和预测。

基于机器视觉的工业机器人视觉定位及路径规划

基于机器视觉的工业机器人视觉定位及路径规划

基于机器视觉的工业机器人视觉定位及路径规划机器视觉技术在工业领域的应用越来越广泛,尤其是在工业机器人的视觉定位和路径规划中起到了关键作用。

本文将从机器视觉的基本原理出发,探讨基于机器视觉的工业机器人视觉定位及路径规划的关键技术和应用场景。

一、机器视觉的基本原理机器视觉是模仿人类视觉系统的一种技术,通过摄像头、图像处理算法和智能控制系统实现对物体的识别、定位和测量。

其基本原理是通过感光传感器将光线转化为电信号,经过图像处理算法进行特征提取和模式识别,最终实现对物体的定位和测量。

二、视觉定位的关键技术1. 特征提取和匹配:机器视觉系统需要提取出物体的特征点,并通过特征点的匹配来进行定位。

常用的特征点包括边缘、角点、斑点等,通过匹配这些特征点的位置和描述子,可以得到物体在图像中的位置和姿态信息。

2. 相机标定:相机标定是一项重要的前期工作,通过确定相机的内外参数,可以消除图像失真和畸变,提高定位的精度。

3. 姿态估计:根据物体的特征点,可以估计出物体的姿态,包括平移和旋转变换,进而确定物体在三维空间中的位置。

4. 运动估计:利用多帧图像的信息,可以估计物体的运动轨迹,从而实现对物体的跟踪和定位。

三、路径规划的关键技术1. 场景建模:通过对工作环境进行三维重构和场景建模,可以获取到工作空间中各个物体的几何形状和位置信息,为路径规划提供基础数据。

2. 障碍物检测与避障:通过机器视觉技术对工作环境进行实时监测和分析,可以检测到目标物体以外的障碍物,并通过路径规划算法避开这些障碍物,保证机器人的安全运行。

3. 路径优化和规划:根据工作任务的需求和机器人的运动能力,通过路径规划算法生成机器人的运动轨迹,使得机器人能够高效、准确地到达目标位置。

4. 运动控制:通过控制机械臂和底盘的运动,使机器人按照规划的路径进行移动,实现对工作任务的自动化完成。

四、基于机器视觉的工业机器人视觉定位及路径规划的应用场景1. 零件定位与装配:通过机器视觉系统对零件进行定位和识别,可以实现对零件的自动装配和拼装,提高生产效率和产品质量。

机器视觉的基本原理与应用

机器视觉的基本原理与应用

机器视觉的基本原理与应用机器视觉是一种模拟人类视觉系统的技术,利用计算机和相关算法来模拟和实现图像的获取、处理、分析和理解。

它主要基于图像处理、模式识别和人工智能等领域的技术,广泛应用于工业自动化、智能监控、医疗诊断、无人驾驶等众多领域。

本文将介绍机器视觉的基本原理和应用。

一、基本原理1. 图像获取机器视觉的第一步是通过摄像头或其他图像传感器获取图像。

这些图像可以是静态图像,也可以是视频流。

在图像获取过程中,需要考虑光照、视角、噪声等因素对图像质量的影响。

2. 图像预处理获取到的图像通常需要进行预处理,以提高后续处理的效果。

预处理包括消除噪声、调整对比度、增强边缘等操作。

常用的预处理技术包括滤波、直方图均衡化和边缘检测等。

3. 特征提取特征提取是机器视觉中的关键步骤,它将原始图像转换为能够描述目标或区域的特征向量。

这些特征可以是图像的颜色、纹理、形状等。

常用的特征提取算法有边缘提取、角点检测和SIFT等。

4. 物体检测与识别物体检测与识别是机器视觉的核心任务之一。

它通过比较图像的特征与已知模型或特征数据库中的数据进行匹配,从而实现对目标物体的检测和识别。

常用的物体检测与识别算法有模板匹配、支持向量机和卷积神经网络等。

5. 目标跟踪与定位目标跟踪与定位是机器视觉的另一个重要任务,它用于在连续的图像序列中追踪和定位目标物体。

目标跟踪与定位可以通过运动模型、特征匹配和背景建模等方法来实现。

二、应用领域1. 工业自动化机器视觉在工业自动化中具有广泛的应用。

例如,在生产线上,机器视觉可以用于产品质量检测、缺陷检测和尺寸测量等。

它能够快速、准确地完成对产品的检测和判断,提高生产效率和质量。

2. 智能监控机器视觉在智能监控领域发挥着重要作用。

它可以通过图像分析和识别技术,实现对监控画面中的人员、车辆和行为进行监测和分析。

这有助于提高监控系统的智能化水平,提供更加安全和高效的监控服务。

3. 医疗诊断机器视觉在医疗诊断中有着广泛的应用前景。

机器视觉的基本原理

机器视觉的基本原理

机器视觉的基本原理机器视觉这一技术越来越受到广泛的关注和应用,很多企业和机构正加快开发和应用相关技术。

那么,什么是机器视觉呢?简单的说,机器视觉是一种通过计算机程序实现对图片、视频等视觉数据的处理和分析的技术。

在这里,我们将详细介绍机器视觉的基本原理。

一、影像采集在机器视觉技术中,最基本的操作是影像采集。

影像采集是指通过摄像头、扫描仪等设备,将真实世界中的图像转化成电子信号存储在计算机中。

影像采集的质量通常受到采集设备的性能、采集环境的灯光等因素影响,因此在进行机器视觉操作之前,通常需要对影像进行预处理,使其更适合后续的分析处理。

二、影像预处理影像预处理是指在使用机器视觉技术之前,对采集的影像进行一些必要的处理和修正。

影像预处理通常包括以下几个步骤:1. 色彩空间转换:根据具体的需求,将影像从RGB颜色空间转换成其他颜色空间,比如灰度颜色空间。

2. 去噪:通过滤波等方式去除影像中的噪点和干扰,使得影像更加干净和清晰。

3. 对比度增强:增加影像的亮度对比度,以便更好的进行后续的分析。

4. 边缘检测:通过对影像进行边缘检测,可以更出色地识别出影像中的物体和图形,提高机器视觉技术的准确性和有效性。

三、特征提取和分析影像预处理过后,需要从影像中提取出对后续分析处理有意义的“特征”。

特征是指影像中具有代表性的标志和信息,比如图像的边缘、颜色、纹理等。

在机器视觉技术中,因为涉及到的影像数据量非常庞大,因此特征提取和分析是技术的核心部分。

基本的特征提取算法包括SIFT, SURF, HOG等算法,每种算法都有其特殊的优势和适用范围。

提取到的特征形成了一个独特的向量,该向量可以用于后续的计算和分析。

四、机器学习特征提取过后,还需要对特征进行分析和处理,以便更好的对影像进行计算机识别。

这个时候,机器学习技术发挥了重要的作用。

机器学习是指让计算机根据大量、丰富的数据,通过不断优化算法模型,自主地“学习”和提高识别和分析的能力。

工业自动化中的机器视觉系统

工业自动化中的机器视觉系统

工业自动化中的机器视觉系统工业自动化是指应用先进的技术和设备,使得工业生产过程实现自动化、智能化的一种方式。

机器视觉系统作为其中重要的一环,广泛应用于工业生产中的质检、检测、测量等环节。

本文将对机器视觉系统在工业自动化中的应用进行探讨。

一、机器视觉系统的基本原理和组成1. 机器视觉系统的基本原理机器视觉系统是指通过使用摄像机、图像处理软件和控制系统等技术,对产品或物体进行图像获取和图像处理,从而实现对产品的检测、识别和测量等功能。

其基本原理是通过摄像机获取图像,然后通过图像处理软件进行图像处理和分析,最终由控制系统进行判断和控制。

2. 机器视觉系统的基本组成机器视觉系统主要由以下几个组成部分构成:(1)图像获取设备:通常使用摄像机进行图像的获取。

不同的应用场景和需求会选择不同类型的摄像机,如CCD摄像机或CMOS摄像机。

摄像机的选择应该根据应用环境的光线、速度等条件来确定。

(2)光源系统:光源系统用于提供光线照明,以便于摄像机获取清晰的图像。

常见的光源有LED光源、激光光源等。

(3)图像处理软件:图像处理软件用于对图像进行处理和分析,包括图像预处理、特征提取、模式匹配等。

(4)控制系统:控制系统根据图像处理软件的结果,进行相应的判断和控制。

可以是一个PLC控制器、PC控制器或其他数字控制设备。

二、机器视觉系统在工业自动化中的应用1. 质量检测机器视觉系统在工业生产中广泛应用于产品质量的检测。

例如在流水线上,通过机器视觉系统对产品的尺寸、颜色、外观等进行检测和判断,一旦发现不合格品,系统会自动进行剔除或标记,保证产品质量的稳定和一致性。

2. 缺陷检测机器视觉系统能够精准地检测产品表面的缺陷,如裂纹、划痕、异物等。

通过对图像进行处理分析,系统能够判断出产品是否存在缺陷,并及时采取相应的措施进行处理。

3. 检测与定位机器视觉系统能够对产品进行定位和对位。

通过对产品图像进行处理和分析,系统能够识别和定位产品的位置,确保产品在生产过程中正确地摆放和装配。

机器视觉技术的工作原理与应用

机器视觉技术的工作原理与应用

机器视觉技术的工作原理与应用机器视觉技术(Machine Vision Technology)是一种通过计算机算法和数学模型实现的视觉检测技术。

它模拟人眼的视觉系统,利用计算机对数据的处理和分析能力,从而对生产过程中的产品进行自动检测、检验和控制。

机器视觉技术已经被广泛地应用在工业自动化、生产制造、质量控制和智能安防等领域。

一、机器视觉技术的工作原理机器视觉技术通过摄像机、光源、影像处理系统等多重设备将图像信息采集为数字信号,以便用计算机进行处理和分析。

首先,摄像机捕获并采集图像信息,将其转换成数字信号。

图像处理系统对该数字信号进行处理和分析,通过算法模拟人类视觉系统和轮廓、颜色、纹理等识别方式,从而对图像进行解析和测量。

最后,计算机将处理后的数据与事先设定的判定条件进行比较,根据判定结果控制设备进行相关操作。

机器视觉技术的工作原理主要包括以下几个方面:1.光源设计原理:在机器视觉系统中,光源是获取高质量图像的关键。

不同的图像需要不同的光源,例如在低照明环境下需要使用强光源。

高质量光源可以改善图像的出现,减少反射和眩光等问题。

2.镜头技术原理:镜头是光学系统中一个重要的组成部分,必须根据不同的物体和环境设计适当的镜头。

不同的镜头有不同的参数,例如视场角、变焦比例、放大比例等。

3.图像采集原理:图像采集是指通过摄像机或者扫描仪等设备将光学信号转换为数字信号。

采集器的工作原理是将场景上的光线反射到面阵传感器上,并将其转化为数字信号,传递到计算机进行处理。

4.图像处理原理:图像处理是机器视觉的核心,它通过计算机算法对采集的图像进行处理和解析。

包括预处理、特征提取、图像分割、目标识别、模型训练和分类等步骤。

预处理过程包括图像稳定、去噪、滤波等操作;特征提取是指从图像中提取出具有分类意义的特征;分割过程是将图像按照不同的特征进行分割;目标识别过程是识别出图像中的目标;模型训练包括特征选择、特征权重、分类器训练等操作;最后通过分类器对目标进行分类。

机器视觉在工业质量检测中的应用研究

机器视觉在工业质量检测中的应用研究

机器视觉在工业质量检测中的应用研究随着工业自动化程度的不断提高和全球产业的不断发展,产品的质量控制越来越受到重视。

而在产品生产中,对产品质量的检测和控制是至关重要的。

机器视觉作为一种先进的自动化检测技术,已经被广泛地应用于工业质量检测中。

本文将探讨机器视觉在工业质量检测中的应用研究。

一、机器视觉的基本原理机器视觉是一种通过计算机软件和硬件设备对图像数据进行处理、分析、识别等操作的系统,主要由数字图像处理技术和人工智能技术构成。

其基本原理就是通过与人眼相似的方式,将成像系统采集到的光学图像转化为数字信号,然后通过数字图像处理技术进行数据处理和计算,从而实现对图像信息的提取、分析、识别等任务。

二、机器视觉在工业质量检测中的应用1.产品外观检测在生产过程中,产品外观的检测是必不可少的一项任务。

机器视觉可以通过高速的图像采集和数字图像处理技术,实现对产品表面缺陷、变形、颜色偏差等外观缺陷的检测,并自动分类为合格品或不合格品。

2.形状精度检测形状精度是一种重要的产品质量指标,机器视觉可以通过对产品的三维形状进行测量和分析,实现对产品形状精度的检测,进而得出产品是否符合质量标准。

3.尺寸测量尺寸测量是指对产品各个尺寸参数(如长度、宽度、高度等)进行精确测量和控制。

机器视觉可以根据需要,通过自动或半自动的方式,对产品的尺寸进行测量,极大地提高了产品尺寸测量的准确性和效率。

4.自动识别和分类通过机器视觉的技术手段,可以实现对不同类别产品的自动识别和分类。

例如,对于不同规格的机器零部件,可以通过摆放在机器视觉检测系统下,自动分拣出不同规格的产品。

三、机器视觉技术的发展趋势机器视觉在工业质量检测中的应用,是未来产业智能化、自动化的重要支撑。

未来,机器视觉将继续发展,呈现出以下趋势:1.更加高效的图像算法随着硬件设备的不断升级和计算机技术的不断发展,机器视觉的图像算法将越来越有效,越来越快速。

图像算法的高效性将更好地服务于工业质量检测的实际应用需求。

机器视觉的工作原理

机器视觉的工作原理

机器视觉的工作原理
机器视觉是一种模拟人类视觉功能的技术,它利用计算机算法和模型来获取、处理和理解图像或视频数据。

其工作原理基本可以分为以下几步:
1. 图像或视频采集:采用摄像机、摄像头等设备获取图像或视频数据,并转换为数字信号。

2. 图像预处理:对采集到的图像或视频数据进行去噪、增强和平滑等预处理操作,以提高图像质量和特征的准确性。

3. 物体检测与分割:通过目标检测算法,识别图像或视频中的物体,并将其分割出来。

常用的目标检测算法包括卷积神经网络(CNN)、支持向量机(SVM)等。

4. 特征提取与描述:对于每个检测到的物体,提取其特征,并通过特征描述符将其转换为可用于比较和匹配的数值向量。

常用的特征提取算法包括尺度不变特征变换(SIFT)、加速稳健特征(SURF)等。

5. 特征匹配与识别:将检测到的物体的特征与预先训练好的模型进行比较和匹配,以识别物体的类别或实现目标跟踪等。

常用的匹配算法包括最近邻算法(KNN)、支持向量机(SVM)等。

6. 结果分析与应用:根据识别的结果,进行进一步的数据分析和处理,如目标跟踪、图像分割、三维重建等,并根据应用需求决定采取的后续操作。

总之,机器视觉的工作原理主要包括图像采集、图像预处理、物体检测与分割、特征提取与描述、特征匹配与识别等关键步骤。

通过这些步骤,机器可以模拟人类的视觉感知和认知过程,实现图像理解和智能应用。

机器视觉技术在安全检查中的使用教程分享

机器视觉技术在安全检查中的使用教程分享

机器视觉技术在安全检查中的使用教程分享安全检查是保障公共安全和个人财产安全的重要手段之一。

随着科技的不断发展,机器视觉技术在安全检查中的应用越来越广泛。

本文将分享机器视觉技术在安全检查中的使用教程,包括其基本原理、技术分类、应用案例等方面的内容。

一、机器视觉技术的基本原理机器视觉技术是一种模仿人眼视觉系统的技术,通过摄像头等设备采集图像或视频信息,再通过图像处理和分析算法进行信息提取和识别。

其基本原理包括图像采集、图像处理和图像分析三个过程。

1. 图像采集:通过摄像头等设备将现实世界中的图像转换为电子信号,并传输给计算机进行后续处理。

2. 图像处理:对采集到的图像进行预处理,包括图像增强、降噪、去除背景等操作,以便提高图片质量和识别准确度。

3. 图像分析:利用图像处理的结果,进行目标检测、特征提取、形态学分析等操作,最终实现对图像中目标物体的识别、分类和定位。

二、机器视觉技术的分类机器视觉技术根据应用场景和处理要求的不同,可以分为以下几类:1. 图像识别和分类:利用机器学习和深度学习算法,训练模型对图像进行分类和识别,如人脸识别、车辆识别等。

2. 运动目标检测:监控场景中,通过对连续帧图像进行差分运算或光流算法,实现对运动目标的检测和跟踪。

3. 缺陷检测:在产品制造过程中,通过视觉系统对产品表面进行检测,实现对产品缺陷的自动检测和分析。

4. 安防监控和入侵检测:通过视频监控系统对场景进行即时监控,并自动识别和报警对异常情况,实现对安全隐患的及时发现和处理。

5. 人机交互:通过摄像头等设备,实现与计算机或其他设备的交互,如手势识别、表情识别等。

三、机器视觉技术在安全检查中的应用案例1. 安全出入口检查:利用机器视觉技术,对进出人员进行自动识别和背景检测,实现对潜在危险因素的快速排查。

2. 行李安检:通过机器视觉技术对行李进行自动识别和分类,快速检测出携带危险物品的乘客,并发出警报。

3. 交通违规监测:通过视觉系统对交通违规行为进行监测和记录,如闯红灯、违规掉头等,并生成证据材料供执法部门使用。

机器视觉技术的基本原理和应用

机器视觉技术的基本原理和应用

机器视觉技术的基本原理和应用随着科技的不断发展,机器视觉技术已成为科技领域中一种非常重要的技术,也被广泛应用于各个领域。

那么,机器视觉技术是什么?它的基本原理是什么?又有哪些应用呢?下文将为大家详细介绍。

一、机器视觉技术是什么?机器视觉技术是一种通过计算机对图像进行处理和分析的技术。

简单来说,它通过接收摄像头拍摄的图像,然后利用图像处理算法将图像中的有用信息提取出来,再进行特征比对,从而实现识别、跟踪、检测等功能。

机器视觉技术不仅能够简化人们的工作流程,还可以节省人力、提高工作效率。

二、机器视觉技术的基本原理1. 图像获取机器视觉技术的第一步是获取图像,因为只有获取了图像才能对其进行后续的处理和分析。

目前,常用的图像获取设备有摄像机、扫描仪、数字相机等。

2. 图像处理接下来对图像进行处理,包括图像增强、滤波、去噪、分割、特征提取等。

在图像处理过程中,需要运用一些图像处理算法,比如Sobel算子、Canny算子、SIFT算法、SURF算法等。

3. 特征比对在图像处理后,需要对图像进行特征比对,从而判断图像中的目标是否符合预设的标准。

常用的特征比对算法有模板匹配算法、支持向量机算法、神经网络算法等。

4. 结果输出最后,通过输出结果来实现目标的跟踪与识别。

输出结果可以是图像、数字、文字等形式。

三、机器视觉技术的应用1. 工业自动化在工业自动化中,机器视觉技术被广泛应用于生产线上的品质检测、物料解析、机器人视觉、目标识别等方面。

机器视觉技术可以有效降低生产线的缺陷率,提高生产线的效率,减少人力资源的投入。

2. 安防监控在安防监控领域,机器视觉技术被广泛应用于视频监控、人脸识别、交通监控、热成像等方面。

机器视觉技术可以有效帮助人们监控动态环境,自动识别人物、车辆等信息,并及时报警。

3. 医疗保健在医疗保健领域,机器视觉技术被广泛应用于影像诊断、疾病预测、药物研究等方面。

机器视觉技术可以有效提高诊断的准确性和速度,降低医疗成本,提高医生的工作效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3 机器视觉系统的构成
1. 2. 3. 4.
5.
6.
照明光源 镜头 工业摄像机 图像采集/处理卡 图像处理系统 其它外部设备
计算机或处理器
显 示 器
图像采 集卡
摄像机 及镜头 照明光源
被测物(产品 纸张)
编码器
服务器
控制及报警信号
网络交换机+显示共享器+信号分配器
左侧微缩文字 监制章检 票面检测计算机 测计算机 检测计算机 右侧微缩文字 检测计算机
1.1 机器视觉系统的原理

图像处理技术 彩色图像转换技术 图像分割技术 模式识别技术 数学形态学方法 专家系统及人工智能技术 视觉神经网络技术 小波分析技术 分形学方法
1.2 机器视觉系统与人的视觉的对比
人类视觉
适应性 适应性强,可在复杂及变化的环境中识别目标



夏日阳光下 100000Lux 阴天室外 10000Lux 电视台演播室 1000Lux 距60W台灯60cm桌面 300Lux 室内日光灯 100Lux 黄昏室内 10Lux 20cm处烛光 10-15Lux 晴朗的月夜地面照度约0.2 lx
2. 照明光源-主要参数

4. 工业摄像机
按输出图像信号格式划分 模拟摄像机

PAL(黑白为CCIR),中国,625行,50场 NTSC(黑白为EIA),日本,525行,60场 SECAM S-VIDEO 分量传输 IEEE1394 USB2.0 DCOM3 RS-644 LVDS Channel Link Camera Link 千兆网
2. 照明光源
简单视功能原理:人眼视网膜里存在着大量 光敏细胞,按其形状可分为杆状和锥状两 种。杆状光敏细胞的灵敏度极高,主要靠 它在低照度时辨别明暗,但它对彩色是不 敏感的;而锥状细胞既可辨别明暗,也可 辨别彩色。白天的视觉过程主要靠锥状细 胞来完成,夜晚视觉则由杆状细胞起作用。 所以在较暗处无法辨别彩色应用,应选择与日光接近 的光源,光谱要宽,而且连续。光源照射 在物体上,物体所产生的颜色效果要客观、 真实,既光源的显色性好。其它场合可使 用各种单色光和特殊光源。
2. 照明光源-主要参数

色温,单位是开尔文(K):当光源所 发出的光的颜色与“黑体”在某一温度下 辐射的颜色相同时,“黑体的温度就称为 该光源的色温。“黑体”的温度越高,光 谱中蓝色的成分则越多,而红色的成分则 越少。例如:白炽灯的光色是暖白色,其 色温为2700K左右,而日光色荧光灯的色 温则是6400K左右。白炽灯的色温一般在 2700K左右、日光灯的色温在27006400K左右、钠灯的色温在2000K左右
3. 镜头-有关镜头的基本概念
3. 镜头-有关镜头的基本概念
3. 镜头-常见光学镜头的种类


按光学放大倍率及焦距划分 显微镜: 体视显微镜、生物显微镜、金相显微镜、测量显微镜 常规镜头: 鱼眼镜头:6-16mm 超广角:17-21mm 广角:24-35mm 标头:45-75mm 长焦:150-300mm 超长焦:300mm以上 特殊镜头: 微距镜头 远距镜头 远心镜头 红外镜头 紫外镜头
机器视觉
适应性差,容易受复杂背景及环境变化的影响
智能
具有高级智能,可运用逻辑分析及推理能力识 别变化的目标,并能总结规律 对色彩的分辨能力强,但容易受人的心理影响, 不能量化 差,一般只能分辨64个灰度级
虽然可利用人工智能及神经网络技术,但智能很差,不 能很好地识别变化的目标 受硬件条件的制约,目前一般的图像采集系统对色彩的 分辨能力较差,但具有可量化的优点 强,目前一般使用256灰度级,采集系统可具有10bit、 12bit、16bit等灰度级 目前有4K×4K的面阵摄像机和8K的线阵摄像机,通过 备置各种光学镜头,可以观测小到微米大到天体的 目标 快门时间可达到10微妙左右,高速像机帧率可达到1000 以上,处理器的速度越来越快 从紫外到红外的较宽光谱范围,另外有X光等特殊摄像 机 对环境适应性强,另外可加防护装置
4. 工业摄像机
但是不论CCD或者CMOS对于图像感应都 没有用,真正感应的传感器称做“图像半 导体”,CCD和CMOS传感器实际使用的 都是同一种传感器“图像半导体”,图像 半导体是一个P N结合半导体,能够转换光 线的光子爆炸结合处成为成比例数量的电 子。电子的数量被计算信号的电压,光线 进入图像半导体得越多,电子产生的也越 多,从传感器输出的电压也越高。
机器视觉系统原 理及基础知识
主讲人: 王亚鹏 2005.10
中国大恒(集团)有限公司北京图像视觉技术分公司
1.
2.
3.
4.
5.
6.
机器视觉系统基本原理 照明光源 镜头 工业摄像机 图像采集/处理卡 图像处理系统
第1章 机器视觉系统基本原理
1.1 机器视觉系统的原理 1.2 机器视觉系统与人的视觉的对比 1.3 机器视觉系统的构成
镜头 镜头
3. 镜头
机器视觉系统的基本光学参数: 视场角 工作距离 分辨率 景深
3. 镜头-镜头的理想模型
薄透镜模型,薄透镜是指透镜没有厚度,当 然这种透镜是不存在的,而且我们一般用 的镜头都是多组镜片组合在一起的。我们 通常使用中会忽略厚度对透镜的影响,在 去除透镜参数中的厚度后,可简化许多光 学计算公式。


寿命。光源的半衰期要长,且在半衰期内, 光谱稳定,亮度衰减小。 发热特性。光源的工作温度要低,避免高 温损坏被检测物。 信噪比高,抗干扰能力强。 闪烁频率,交流、直流。 外形尺寸,便于安装。
2. 照明光源-分类



按照射方式可分为四大类: 背向照明 前向照明 结构光 频闪照明。 各种照明方式:平面照明、环形光源、同 轴光源、平行光源、点光源、低角度光源、 线光源、光栅;
2. 照明光源-主要参数

照度:单位被照面上接收到的光通量称为 照度。如果每平方米被照面上接收到的光 通量为1(lm),则照度为1(lx)。单位: 勒克斯(lx或Lux)。1勒克斯(lx)相当 于每平方米被照面上光通量为1流明(lm) 时的照度。在高速运动条件下拍摄图像, 曝光时间很短,只有高亮度的光源才能得 到足够亮度的图像。
3. 镜头-常见光学镜头的种类
按其它性能划分 固定焦距镜头 变焦镜头


自动变焦 手动变焦 C接口(后截距17.526mm) CS接口(后截距12.5mm) F接口(尼康口) M42 其它:哈苏、徕卡、AK

不同接口方式的镜头

3. 镜头-各种镜头常用配件

近拍接圈 偏振镜 滤色片
点照明 线照明 环形照明
第3章 镜头
3. 镜头-影响图像质量的因素
图像质量的参数 影响图像质量的因素
分辨力(Resolution),指能分 镜头 摄像机 清楚物体的能力,单位LP/mm 图像采集卡 显示器 (Line pairs/Milimeter)
对比度(Contrast) 景深(Depth of Field),指镜 头当物体在对焦清晰范围内, 维持一定品质的能力 失真(Distortion),也叫畸变 投影误差 镜头 照明光源 镜头 摄像机
票面图像 采集系统
监制章图像 采集系统
微缩文字 图像采集 系统
微缩文字 图像采集 系统
第2 章
照明光源
2. 照明光源
在我国国家标准GB 5698-85中,颜色定义 为:“色是光作用于人眼引起除形象以外的视觉 特性”。既:颜色是一种光学现象,是光刺激人 眼的结果,有光才有色。彩色也是一种心理感觉, 它与照明光源的辐射能力分布及观看者的视觉生 理结构有关。人眼可以感知的光谱范围为 380nm-780nm,但人感知一个物体的颜色一般 是指在日光照明的环境下所显示的色彩,对于同 一物体在不同光线的照射下人会感觉到不同的色 彩,可见光源对于正确认知物体的色彩是至关重 要的。



UV镜 雷登镜 增温镜 各色滤镜 带通滤镜


增倍镜 分光镜 棱镜
第4章 工业摄像机
4. 工业摄像机
按不同芯片类型划分: CCD摄像机,CCD称为电荷耦合器件,CCD实际 上只是一个把从图像半导体中出来的电子有组织 地储存起来的方法。 CMOS摄像机,CMOS称为“互补金属氧化物半 导体”,CMOS实际上只是将晶体管放在硅块上 的技术,没有更多的含义。CMOS可以将光敏元 件、放大器、A/D转换器、存储器、数字信号处 理器和计算机接口控制电路集成在一块硅片上, 具有结构简单、处理功能多、速度快、耗电低、 成本低等特点。
彩色识别能力
灰度分辨力
空间分辨力
分辨率较差,不能观看微小的目标
速度
0.1秒的视觉暂留使人眼无法看清较快速运动的 目标 400nm-750nm范围的可见光
感光范围
环境要求
对环境温度、湿度的适应性差,另外有许多场 合对人有损害 精度低,无法量化 主观性,受心理影响,易疲劳
观测精度 其它
精度高,可到微米级,易量化 客观性,可连续工作
1.1 机器视觉系统的原理

机器视觉系统的目的就是给机器或自动 生产线添加一套视觉系统,其原理是由计 算机或图像处理器以及相关设备来模拟人 的视觉行为,完成得到人的视觉系统所得 到的信息。人的视觉系统是由眼球、神经 系统及大脑的视觉中枢构成,计算机视觉 系统则是由图像采集系统、图像处理系统 及信息综合分析处理系统构成。
2. 照明光源
三原色学说:该学说认为在视网膜上分 布有三种不同的视锥细胞,分别含有对红 (700nm)、绿(546.1nm)、蓝(435.8nm) 三种光敏感的视色素;当某一定波长的光线 作用于视网膜时,以一定的比例使三种视锥 细胞分别产生不同程度的兴奋,这样的信息 传至中枢,就产生某一种颜色的感觉。
相关文档
最新文档