炼钢基本原理

合集下载

炼钢基本原理及原材料PPT课件

炼钢基本原理及原材料PPT课件
全铁折合法:
(%FeO) %FeO 0.90%Fe2O3 第13页/共60页
➢通常按全铁法将Fe2O3折算成FeO,原因是 取出的渣样在冷却的过程中,渣样表面的低 价铁有一部分被空气氧化成高价铁,即FeO 氧化成Fe3O4,用全铁法折算准确。
➢物理性质指熔渣的粘度、熔点;
第14页/共60页
三、炼钢过程的基本反应
第3页/共60页
现代炼钢方法:
氧气转炉炼钢, 电弧炉炼钢, 平炉炼钢(已淘汰)
第4页/共60页
二、炼钢原材料
➢ 金属料:铁水(或生铁块)、废钢、铁合金、直接还原铁等 ➢ 辅助原料(非金属料):造渣料、氧化剂、冷却剂
氧气转炉:一般以铁水为主要原料,适当加废 钢做为冷却剂; 电炉:一般采用废钢或直接还原铁做为主要原料;
锰的氧化反应有三种情况: I (1)锰与气相中的氧直接作用
[Mn]+ 1/2{O2}=(MnO)
第25页/共60页
(2)锰与溶于金属中的氧作用 [Mn]+ [O2] =(MnO)
(3)锰与炉渣中氧化亚铁作用 [Mn]+(FeO)=(MnO)+ [Fe]
第三个反应在炉渣——金属界面上进行,是锰氧化的主要反应。 锰的氧化还原与硅的氧化还原相比有以下基本特点: (1)在冶炼初期锰和硅一样被迅速大量氧化,但锰的氧化程度要低些, 这是由于硅与氧的结合能力大于锰与氧的结合能力; (2)MnO为弱碱性氧化物,在碱性渣中( MnO)大部分呈自由状态存 在。因此,在一定件下可以被还原。由于锰的氧化反应是放热反应,故温度 升高有利于锰的还原。所以在生产实践中冶炼后期熔池中会出现回锰现象, 是由于钢中有一定数量的残料
➢铁水(或生铁块)
• 转炉炼钢的主要原料,占70-85% • 转炉炼钢对铁水的要求:

炼钢基本原理

炼钢基本原理
2013-11-12/09:25:07
9
9
3.3.1 炼钢熔池中氧的来源及铁液中元素的氧化方式
氧的来源: 直接向熔池中吹入工业纯氧(>98%); 向熔池中加入富铁矿; 炉气中的氧传入熔池。
铁液中元素的氧化方式有两种:直接氧化和间 接氧化。
2013-11-12/09:25:07
10
[Si]氧化产生大量的化学热,是转炉炼钢的主 要热量来源之一,它可使吹炼初期熔池温度能 够较快升高,有利于转炉废钢加入量增加和初 期渣熔化成渣。
[Si]氧化反应产物SiO2是酸性很强的氧化物, 它影响到炼钢的炉渣碱度和石灰加入量。
炉渣中的SiO2易侵蚀碱性炉衬,降低炼钢炉的 炉龄。
2013-11-12/09:25:07
2013-11-12/09:25:07
13
13
多数意见认为氧气转炉炼钢以间接氧化为主
氧流是集中于作用区附近而不是高度分散在熔 池中; 氧流直接作用区附近温度高,Si和Mn对氧的亲 和力减弱
从反应动力学角度来看, C向氧气泡表面传质 的速度比反应速度慢,在氧气同熔池接触的表 面上大量存在的是铁原子,所以首先应当同Fe 结合成FeO。
14
14
3.3.2 炼钢熔池中元素的氧化次序
溶解在铁液中的元素的氧化次序可以通过与 1molO2的氧化反应的标准吉布斯自由能变化 来判断。 在标准状态下,反应的ΔGo负值越多,该元素 被氧化的趋势就越大,则该元素就优先被大量 氧化。 铁液中常规元素与氧反应的标准吉布斯自由能 变化与温度的关系绘制成图。
2013-11-12/09:25:07
8
8
3.3 炼钢过程的基本反应
3.3.1 炼钢熔池中氧的来源及铁液中元素的氧化方式 3.3.2 炼钢熔池中元素的氧化次序 3.3.3 脱碳反应 3.3.4 硅的氧化 3.3.5 锰的氧化与还原 3.3.6 脱磷反应 3.3.7 脱硫反应 3.3.8 钢的脱氧 3.3.9 脱气 3.3.10 去除钢中夹杂物

电炉炼钢原理及工艺

电炉炼钢原理及工艺

电炉炼钢原理及工艺以电炉炼钢原理及工艺为标题,本文将详细介绍电炉炼钢的原理和工艺流程。

一、电炉炼钢的原理电炉炼钢是利用电能将废钢或铁矿石熔化并加以冶炼的一种钢铁生产方法。

相比传统的炼钢方法,电炉炼钢具有灵活性高、能耗低、环保等优点,因此在现代钢铁工业中得到广泛应用。

电炉炼钢的基本原理是利用电弧放电的高温高能量特性,将电能转化为热能,使炉内的材料熔化。

电炉内设置有电极,通过电极产生的电弧放电,使炉内的钢块或铁矿石迅速升温至熔化点,完成炼钢过程。

二、电炉炼钢的工艺流程电炉炼钢的工艺流程主要包括原料准备、熔炼、冶炼和出钢等环节。

1. 原料准备:电炉炼钢的原料主要包括废钢和铁矿石。

废钢是指回收利用的废旧钢材,根据需要进行分类和预处理。

铁矿石经过破碎、磁选等工艺处理后,得到适合电炉炼钢的铁矿粉。

2. 熔炼:原料装入电炉后,通过电极引入高温电弧,将原料迅速加热至熔化点。

在熔炼过程中,电弧的高温作用下,原料中的杂质被氧化还原,炉内温度逐渐升高。

3. 冶炼:炉内温度达到要求后,加入适量的脱氧剂和合金元素,调整炉内成分,提高钢的质量。

同时,通过喷吹氧气等方式进行氧化剂的供给,控制冶炼过程中的氧化还原反应,进一步净化钢液。

4. 出钢:冶炼结束后,通过倒炉或倾炉等方式将炼好的钢液从电炉中倾出,进一步加工成所需的钢材。

出钢后,需要进行连铸、轧制等工艺,最终得到成品钢材。

三、电炉炼钢的特点和优势1. 灵活性高:电炉炼钢可灵活调整炉内温度和成分,适应不同的钢种和质量要求,具有较强的适应性和灵活性。

2. 能耗低:电炉炼钢相比传统炼钢方法,能耗更低。

电能可以高效转化为热能,提高能源利用效率,减少能源浪费。

3. 环保:电炉炼钢过程中没有燃料燃烧产生的废气和废渣,减少了对环境的污染。

另外,电炉炼钢可以使用废钢作为原料,有效促进了废钢的回收利用,减少了资源浪费。

4. 生产效率高:电炉炼钢的工艺流程简单,生产周期短,可以实现快速连续生产,提高生产效率。

炼钢基本原理

炼钢基本原理

炼钢基本原理
炼钢是指将生铁或钢水中的杂质和合金元素逐步除去,以获得符合规定化学成分和质量的金属材料的过程。

炼钢的基本原理是通过控制熔炼过程中的温度、氧化还原条件和流体动力学等因素,使金属中的杂质和合金元素发生物理化学变化,从而实现炼钢的目的。

首先,炼钢的原理是基于金属的化学性质。

在炼钢的过程中,通过控制熔炼温度和氧化还原条件,使金属中的氧化物、硫化物和氮化物等杂质得以去除。

同时,通过添加适量的合金元素,调整金属的化学成分,以满足不同用途的要求。

其次,炼钢的原理还涉及金属的物理性质。

在炼钢的过程中,通过控制金属的温度和流体动力学条件,使金属中的夹杂物和气体得以去除。

同时,通过合理的浇注和凝固工艺,调整金属的晶粒结构,提高金属的力学性能和加工性能。

此外,炼钢的原理还包括金属的热力学性质。

在炼钢的过程中,通过控制金属的熔化温度和熔化热量,实现金属的熔化和凝固。

同时,通过控制金属的过冷度和过热度,避免金属的结晶缺陷和组织偏析。

总之,炼钢的基本原理是通过控制金属的化学、物理和热力学性质,实现金属的净化和调整,从而获得符合规定化学成分和质量的金属材料。

在实际生产中,炼钢的原理是与炼钢的工艺、设备和操作密切相关的,需要综合考虑金属的成分、温度、流体动力学和热力学等因素,以实现炼钢的高效、节能和环保。

总的来说,炼钢基本原理是一个复杂而又精密的过程,需要工程师们在实际操作中不断积累经验和改进技术,以满足不同行业对金属材料的需求。

希望通过对炼钢基本原理的深入理解,能够为炼钢工艺的发展和提高提供一定的参考和帮助。

炼钢的基本原理

炼钢的基本原理

炼钢的基本原理
炼钢是利用高温条件下对矿石进行加热、还原和熔化的过程,以提取出其中的铁质,并通过添加适量的合金元素控制组织和性能的处理方法。

炼钢的基本原理包括:
1. 还原:将铁矿石中的氧化铁还原为金属铁。

在高温下,将富氧化铁的矿石与还原剂(如焦炭、煤粉等)一同放入高炉或电弧炉中,通过氧化铁与还原剂的反应,将氧还原为金属铁。

2. 熔化:将还原后的金属铁熔化成流动的铁水。

通过高温下的加热,金属铁达到熔点后转变为液态,在高炉或电弧炉中形成铁水。

3. 脱硫:将铁水中的硫含量降至合理范围。

通过向铁水中加入足量的脱硫剂(如氧化钙、氧化镁等),以及通过炉内搅拌、吹气等方式,将铁水中的硫元素与脱硫剂反应,从而降低硫含量。

4. 添加合金元素:根据需要,向炼钢炉中添加合金元素,如锰、铬、镍等,以改善钢的性能和组织。

这些合金元素可以提高钢的强度、硬度、耐磨性、耐腐蚀性等。

5. 出钢:将经过处理后的铁水浇铸成钢坯。

通过连铸机或浇注工艺,将熔融的铁水倒入铸型中,并经过冷却和凝固,形成钢坯。

总之,炼钢的基本原理是通过还原、熔化、脱硫、添加合金元素等步骤,将铁矿石转变为具有特定性能和组织的钢材。

钢铁的冶炼原理及生产工艺流程

钢铁的冶炼原理及生产工艺流程

炼铁过程本质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。

炼铁方法主要有高炉法、直接复原法、熔融复原法等,其原理是矿石在特定的氛围中(复原物质CO、H2、C;适合温度等)经过物化反响获得复原后的生铁。

生铁除了少部分用于锻造外,绝大多半是作为炼钢原料。

1、高炉炼铁的冶炼原理(应用最多的)一)炼铁的原理(如何从铁矿石中炼出铁)用复原剂将铁矿石中的铁氧化物复原成金属铁。

铁氧化物(Fe2O3、Fe3O4、FeO)+复原剂(C、CO、H2)铁( Fe)二)炼铁的方法(1)直接复原法(非高炉炼铁法)(2)高炉炼铁法(主要方法)三)高炉炼铁的原料及其作用(1)铁矿石:(烧结矿、球团矿)供给铁元素。

冶炼一吨铁大概需要— 2吨矿石。

(2)焦碳:冶炼一吨铁大概需要 500Kg 焦炭。

供给热量;供给复原剂;作料柱的骨架。

(3)熔剂:(石灰石、白云石、萤石)使炉渣融化为液体;去除有害元素硫( S)。

(4)空气:为焦碳焚烧供给氧。

2、工艺流程生铁的冶炼虽原理同样,但因为方法不一样、冶炼设施不一样,因此工艺流程也不一样。

下边分别简单予以介绍。

高炉生产是连续进行的。

一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。

生产时,从炉顶(一般炉顶是由料种与料斗构成,现代化高炉是钟阀炉顶和无料钟炉顶)不停地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风( 1000~1300 摄氏度),喷入油、煤或天然气等燃料。

装入高炉中的铁矿石,主假如铁和氧的化合物。

在高温下,焦炭中和喷吹物中的碳及碳焚烧生成的一氧化碳将铁矿石中的氧争夺出来,获得铁,这个过程叫做复原。

铁矿石经过复原反响炼出生铁,铁水从出铁口放出。

铁矿石中的脉石、焦炭及喷吹物中的灰分与加入炉内的石灰石等熔剂联合生成炉渣,从出铁口和出渣口分别排出。

煤气从炉顶导出,经除尘后,作为工业用煤气。

现代化高炉还能够利用炉顶的高压,用导出的部分煤气发电。

生铁是高炉产品(指高炉冶炼生铁),而高炉的产品不不过生铁,还有锰铁等,属于铁合金产品。

钢铁的制造原理

钢铁的制造原理

钢铁的制造原理钢铁是一种常见的金属材料,其制造原理涉及到矿石的炼制、炼钢过程以及后续的热处理等。

下面将详细介绍钢铁的制造原理。

钢铁的制造过程通常可以分为三个主要步骤:矿石的炼制、炼钢和热处理。

1. 矿石的炼制:钢铁的原料通常是铁矿石,其中含有较高比例的铁金属。

首先,矿石需要被开采并运输到冶炼厂。

然后,矿石会经过破碎和磨矿等处理,以使得矿石的粒度更加适合后续的冶炼过程。

接下来,通过矿石的还原,将氧化铁还原为金属铁。

常用的还原剂有焦炭和发热石油焦。

还原反应发生在高温和高压的环境中,一般使用高炉进行。

在高炉中,矿石和还原剂被加入,通过还原剂的剥离氧化铁中的氧元素,从而得到金属铁。

2. 炼钢:在获得金属铁之后,还需要将其转化为钢。

钢的制作通常涉及两个主要过程,即碱性炼钢和酸性炼钢。

- 碱性炼钢:通常采用转炉法。

在转炉中,金属铁被加入到含有适量废钢和废铁的炉渣中。

然后,通过吹入含有高浓度氧气的氧枪,使得金属铁中的不纯物质迅速燃烧,从而得到较纯净的金属铁。

在此过程中,还可以向转炉中添加适量的调质元素,如铬、镍、钼等,以获得特定性能的钢材。

- 酸性炼钢:通常采用电弧炉法。

在电弧炉中,金属铁和废钢被加入到炉膛中。

然后通过电弧加热炉膛,将金属铁熔化。

在炉膛中还可添加调质元素,如锰、硅等。

在炉膛中形成的电弧会使金属铁迅速熔化,并与被加入的废钢混合,以获得所需的钢材。

3. 热处理:在炼钢之后,钢通常还需要进行热处理以获得所需的性能。

热处理是通过加热和冷却来改变钢的结构和性能。

常见的热处理方法包括回火、淬火和正火等。

- 回火:将钢材加热到一定温度,然后缓慢冷却至室温。

这种处理方法可以消除内部应力,改善硬度和韧性之间的平衡。

- 淬火:将钢材加热到其临界温度以上,然后迅速冷却。

这种处理方法可以使钢材达到较高的硬度,但可能会牺牲一定的韧性。

- 正火:将钢材加热到一定温度,并在温度保持一段时间后,缓慢冷却。

这种处理方法可以得到比较均匀的组织结构,同时保持一定的硬度和韧性。

纯净钢的冶炼基本原理是

纯净钢的冶炼基本原理是

纯净钢的冶炼基本原理是纯净钢是指含碳量低于1.5%的低合金钢,其冶炼基本原理涉及多个方面,如原料的选择、炼钢工艺以及冶炼过程中的温度、压力等因素。

下面将详细介绍纯净钢的冶炼基本原理。

一、原料的选择纯净钢的冶炼需要优质的铁矿石作为主要原料,同时还需要加入适量的合金元素、提高炉渣的碱度等。

常用的铁矿石有磁铁矿、赤铁矿等,主要为了提供足够的铁和一定的矿物质含量。

合金元素通常选用锰、铬、钒等合金元素,以增强钢的特性。

二、炼钢工艺纯净钢的冶炼工艺通常采用电弧炉冶炼或转炉炼钢,这两种方法能够提供高温、高压的环境,有利于加快冶炼反应速度和提高炉渣的流动性。

1. 电弧炉冶炼:电弧炉是通过电弧加热材料,使其达到高温熔化,然后进行冶炼的炉子。

用于纯净钢冶炼的电弧炉通常分为直流电弧炉和交流电弧炉两种。

在电弧炉内,通过控制电流和电压,使炉内的原料得到足够高的温度,以便将铁矿石和其他合金元素熔化后进行反应。

同时,通过炉内的电弧和电流,还能够促进杂质和气体的脱除,提高钢的纯净度。

2. 转炉炼钢:转炉是一种倾转圆筒状的装置,使用转炉炼钢法,可以将铁矿石内的铁和其他合金元素完全熔化,实现冶炼和炉渣脱除的目标。

转炉分为氧气转炉和气体燃料转炉两种。

在炼钢过程中,通过喷吹氧气或其他气体使炉内氧气含量增加,从而提高炉内的热效应,促进炉渣中杂质的氧化和脱除。

三、冶炼过程中的温度、压力、气氛控制纯净钢的冶炼过程中,对温度、压力、气氛进行控制非常重要,直接影响到冶炼反应和最终钢材的质量。

1. 温度控制:纯净钢的冶炼需要高温环境,通常冶炼温度在1500以上。

通过控制电弧炉的电流和电压,或者通过喷吹氧气的方式,提高炉内的温度,使原料快速熔化并达到冶炼反应所需的温度。

2. 压力控制:在炼钢过程中,炉内的压力、流动速度等也会影响到冶炼反应和炉渣的脱除。

适当的压力可以促进炉渣的流动性,使炉渣中的杂质更容易脱离,提高钢的纯净度。

3. 气氛控制:炉内的气氛对于冶炼反应和钢材质量也有很大影响。

炼钢基本原理

炼钢基本原理

炼钢基本原理
炼钢是利用高温熔化铁矿石和脱除杂质的方法来生产高质量的钢材。

其基本原理包括清洁炼铁、脱硫脱磷、合金化和调质四个步骤。

清洁炼铁阶段主要目的是去除炼铁过程中产生的杂质,如硫、磷、钒、钨等。

通过加入氧化剂,如生铁、氧化亚铁或二氧化碳气体,使铁矿石中的杂质得以氧化,从而更容易被去除。

脱硫脱磷的过程主要依靠高温下的还原反应。

在加入适量的脱硫剂和脱磷剂的情况下,通过高温还原反应使硫和磷元素转移到熔渣中,从而实现脱除杂质的目的。

合金化是为了调整钢材的成分以满足特定要求。

在这一步骤中,需要加入适量的合金元素,如镍、钴、铬、钒等,来改变钢的性能和组织结构。

调质是通过控制冷处理过程中的工艺参数,使钢材达到期望的硬度和韧性。

常见的调质方法包括淬火和回火。

淬火过程中,钢材迅速冷却以产生硬质组织;而回火则是通过加热和保温过程来降低钢材的硬度和增加韧性。

通过这些基本原理,炼钢过程中的铁矿石和其他原料被转化为高质量的钢材。

不同的炼钢工艺会根据需要调整以上步骤的参数和顺序,以得到不同性能和用途的钢材。

炼钢的原理

炼钢的原理

炼钢的原理炼钢是将生铁或钢锭通过一系列的工艺操作,去除其中的杂质和控制成分,从而获得具有特定成分和性能的钢材的过程。

炼钢的原理包括原料的选取、熔炼和调控、去氧化物和硫化物、除碳杂质和硅杂质等多个方面。

下面将重点介绍炼钢的原理和一些常用的炼钢工艺。

1. 原料的选取炼钢的原料主要包括生铁、废钢、合金等。

生铁是从铁矿石中通过高炉冶炼得到的,含有大量的杂质和碳。

废钢是指已经使用过的钢材,在回收利用过程中,需要进行炼钢处理以去除其中的杂质。

合金是为了调节钢材的成分和性能而添加的,常见的合金有铬、镍、钼等。

2. 熔炼和调控炼钢的首要工艺是熔炼,熔炼的过程中需要提供高温条件,使得原料能够完全熔化,并使其中的杂质被氧化或还原。

常用的炉型包括高炉、转炉、电弧炉等。

在熔炼过程中,需要进行一系列的调控工艺,包括调整炉温、搅拌炉内液体的气体、添加合适的氧化剂等,以控制反应的进行和产物的形成。

3. 去氧化物和硫化物在炼钢过程中,氧化物和硫化物是主要的杂质之一,它们对钢材的性能有着显著的影响。

因此,在炼钢的过程中,需要进行去氧化物和硫化物的工艺操作。

常见的方法包括氧化捞渣、碱洗和真空处理等。

氧化捞渣是通过在炼钢过程中添加氧化剂,使得氧化物被氧化为气体或溶于渣中。

碱洗是通过加入适量的碱性物质,使得硫化物与碱反应生成硫化物,再通过熔渣的形式将其从炉料中分离出来。

真空处理则是在特定的条件下,将炉内的气体抽出,以降低气体对钢液中杂质的影响。

4. 除碳杂质和硅杂质碳是炼钢过程中需要控制的一个重要成分,过高或过低的碳含量都会影响钢材的性能。

在炼钢中,需要进行去碳杂质的操作,常用的方法有吹氧、调温除碳、精炼等。

吹氧是通过喷吹氧气,使得钢液中的杂质氧化并产生二氧化碳气泡,然后通过搅拌炉液将其排出。

调温除碳是利用钢液的温度变化,使得其中的含碳物质与炉底的反应速度不同,从而实现除碳的目的。

精炼则是通过特定的精炼剂和操作条件,将其中的碳杂质和硅杂质转化为易于析出的化合物,然后通过渣浇的方式将其分离。

炼钢的基本原理

炼钢的基本原理

炼钢的基本原理:生铁,矿石或加工处理后的废钢氧气等为主要原料炼钢的方法,一般可分为转炉炼钢、平炉炼钢和电炉炼钢三种方法。

现分别介绍如下:1.转炉炼钢法这种炼钢法使用的氧化剂是氧气。

把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。

在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。

因此转炉炼钢不需要另外使用燃料。

转炉炼钢是在转炉里进行。

转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。

开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。

这时液态生铁表面剧烈的反应,使铁、硅、锰氧化(FeO,SiO2,MnO,)生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。

几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。

炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。

最后,磷也发生氧化并进一步生成磷酸亚铁。

磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。

当磷于硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。

这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。

整个过程只需15分钟左右。

如果空气是从炉低吹入,那就是低吹转炉。

随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。

这种转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质量。

2.平炉炼钢法(平炉炼钢法也叫马丁法)平炉炼钢使用的氧化剂通入的空气和炉料里的氧化物,(废铁,废钢,铁矿石)。

反应所需的热量是由燃烧气体燃料(高炉煤气,发生炉煤气)或液体燃料(重油)所提供。

平炉的炉膛是一个耐火砖砌成的槽,上面有耐火砖制成的炉顶盖住。

平炉的前墙上有装料口,装料机就从这里把炉料装进去。

炼钢的基本原理

炼钢的基本原理

炼钢的基本原理
炼钢是炼钢厂的一种炼铁工序,其基本原理是利用高温金属熔液中的氧、氮等气体与熔融金属发生化学反应,生成新的合金。

钢是用生铁炼钢的。

生铁含碳量高,熔点低,易于熔化和锻造。

生铁中加入适量的废钢(约占生铁含量的70%),可降低钢中含碳量,从而提高钢的质量。

炼钢前将废钢放入转炉内加热到1200-1400℃(见铁水脱硫),然后将废钢中的碳还原成氧化亚铁。

当氧气吹入炉膛时,氧气与废钢中的碳发生反应生成二氧化碳和一氧化碳等气体。

这些气体随氧气进入铁水中,与铁水中的氧和氮反应生成新的合金元素——碳化物、氮化物和碳氮化物(见脱碳反应)。

同时,这些气体也随氧气进入铁水中与金属蒸汽相结合,生成新的合金。

钢水温度越高,形成碳化物和氮化物越多。

为了使钢材达到优质产品所要求的性能指标,必须控制钢中的碳含量(C)在0.05%-0.12%之间;控制钢中氮含量(N)在0.06%-0.10%之间;控制钢中磷含量(P)在0.015%-0.12%之间。

—— 1 —1 —。

转炉炼钢原理及工艺介绍

转炉炼钢原理及工艺介绍

锰的氧化反应有三种情况:
(1)锰与气相中的氧直接作用
[Mn]+ 1/2{O2}=(MnO)
(2)锰与溶于金属中的氧作用
[Mn]+ [O2] =(MnO)
(3)锰的氧化与还原
3)锰与炉渣中氧化亚铁作用
[Mn]+(FeO)=(MnO)+ [Fe]
第三个反应在炉渣——金属界面上迸行,是锰氧化的主要反应。
锰的氧化还原与硅的氧化还原相比有以下基本特点:
1)在冶炼初期锰和硅一样被迅速大量氧化,但锰的氧化程度要低些
,这是由于硅与氧的结合能力大于锰与氧的结合能力;
2)MnO为弱碱性氧化物,在碱性渣中( MnO)大部分呈自由状态存
在。因此,在一定条件下可以被还原。由于锰的氧化反应是放热反应,故
温度升高有利于锰的还原。所以在生产实践中冶炼后期熔池中会出现回锰
1)在某一温度下,几种元素同时和氧相遇时,位置低的元素先氧化。如1500℃ 时,氧化顺序为Al、Si、C、V、Mn。
2)位置低的元素可将位置高的氧化物还原。炼钢过程中脱氧就是利用Al、Si等 元素将FeO还原。
3)CO的分解压曲线的斜率与其它氧化物的不同,它与Si、Mn、V等的氧化物分 解与压CO曲分线解有压一曲交线点相,交此点点对所应对的应温的度温为度15称30为℃氧,化当转t>化15温30度℃。时例,如Si,先S于iOC2被分氧解化压;曲当线 t<1530℃时,则C先于Si被氧化。1530℃即为Si、C的氧化转化温度。
• 所谓炼钢,就是通过冶炼降低生铁中的 碳和去除有害杂质,在根据对钢性能的要求 加入适量的合金元素,使其成为具有高的强 度、韧性或其他特殊性能的钢。
•二、炼钢基本原理
• 因此,炼钢的基本任务可归纳为:

炼钢基本原理

炼钢基本原理
氧化特点

变化规律
铁和氧的亲和力小于Si、Mn、P与氧的亲和力,但由 于金属液中铁的浓度最大,质量分数为90%以上,所 以铁最先被氧化,生成大量的Fe0,并通过Fe0使其 与氧亲和力大的Si、Mn、P等被迅速氧化。

Fe的氧化图解
[Fe]+1/2{O2}=[FeO] (直接氧化) [Fe]+[O]= [FeO] [FeO]= (FeO) (间接氧化)
废钢应清洁干燥不得混有泥沙,水泥,耐火材料,爆炸 物和易燃易爆品以及有毒物品等。废钢的硫、磷含量均 不大于0.050%。不同性质的废钢分类存放。 3)铁合金 铁合金是脱氧及合金化材料。用于钢夜脱氧的铁合金叫 做脱氧剂,常用的有: 简单合金:Fe-Mn,Fe-Si,Fe-Cr,Fe-V, Fe-Ti, Fe-Mo,Fe-W等 复合脱氧剂:Ca-Si合金,Al-Mn-Si合金,Mn-Si合金, Cr-Si合金,Ba-Ca-Si合金,Ba-Al-Si合金等。
6.3 炼钢基本原理
由于各元素与氧的亲和力不同,元素氧化的顺序不同。
1、当温度T<1400℃时,元素的氧化顺序是:
Si
Mn
C
P
Fe
2、当1400℃<T<1530℃时元素的氧化顺序是: Si C Mn P Fe
3、当T>1530℃时,元素的氧化顺序是: C Si Mn P Fe
氧化图解 变化规律
1、Fe
n为3或4) 熔渣 界面
3(FeO)+(P2O5)=( 3FeO. P2O5)
- 2[P]+5(FeO) = (P2O5) +5[Fe]
(吹炼前期)
钢水
2[P]+5[O]=(P2O5) 2[P]+{O2}=(P2O5)
萤石:萤石的主要成分是 CaF2,焙烧约930℃。萤石能 使CaO和阻碍石灰溶解的2CaO•SiO2外壳的熔点显著降 低,生成低熔点3CaO•CaF2•2SiO2(熔点1362℃),加 速石灰溶解,迅速改善炉渣流动性。 萤石助熔的特点是作用快,时间短。但大量使用萤石会增 加喷溅,加剧炉衬侵蚀,污染环境。转炉用萤石要求:块 度在5-50mm,且要干燥,清洁。

炼钢基本原理及原材料

炼钢基本原理及原材料

炼钢炉渣的主要性质
炉渣的碱度 炉渣中碱性氧化物浓度总和与酸性氧化物浓度总 和之比称之为炉渣碱度,常用符号R表示。熔渣 碱度的大小直接对渣钢间的物理化学反应如脱磷、 脱硫、去气等产生影响。
炉料中w[P]<0.30%时 R wCaO wSiO 2
0.30%≤w[P]<0.60%时
R w CaO (wSiO 2 wP2O5 )
– 转炉炼钢的主要原料,占70-85% – 转炉炼钢对铁水的要求:
• 铁水成分直接影响转炉内的炉内温度、化渣和钢水质量 – Si、Mn、P、S
• 铁水温度(要求>1250 ℃ )
➢ 废钢
– 转炉冶炼加入一定废钢(15%-30%左右) – 电炉冶炼的主要原料
➢ 直接还原铁 ➢ 铁合金-作为脱氧剂和合金剂,调整钢水成分
炼钢原理及原材料
一、炼钢的基本任务
钢和铁都是以铁元素为基本成分的铁碳合金。生铁 和钢以在性能上有较大的差异,主要原因是由于含 碳量的不同。
生铁含碳高,硬而脆,冷热加工性能差;而钢则具 有较好的韧性,强度高,热加工性能和焊接性能比生 铁好,才能加工成各种类型的钢材而使用。生铁除含 有较高的碳外,还含有一定量的其他杂质。
直接氧化
直接向金属液吹入氧气,氧气与金属液直接接触
气体分子分解并吸附在铁液上 O2=2[O]吸附
[O]吸附=[O] 溶解到铁液中 [O]吸附+[Me]=MeO 与金属反应
O2+2[Me]=2MeO
条件:[O]能与金属接触,高度分散在熔池中
间接氧化
O2+Fe=(FeO)--在氧流区,Fe多
在熔池中, (FeO)=Fe+[O] [O]+[Fe]=[FeO] (FeO) 2[O]+[Si]=(SiO2) 5[O]+2[P]=(P2O5) [O]+[C]=CO

炼钢的原理化学方程式

炼钢的原理化学方程式

炼钢的原理化学方程式炼钢是一种重要的冶金工艺,通过炼钢可以将生铁中的杂质去除,从而得到高质量的钢材。

炼钢的原理主要是利用化学反应来去除杂质,下面我们就来详细了解一下炼钢的原理和化学方程式。

首先,炼钢的原理是利用氧气与生铁中的杂质发生氧化还原反应。

在炼钢过程中,首先需要将生铁加热至熔化状态,然后通过吹氧等方法向熔融的生铁中通入氧气。

氧气与生铁中的杂质发生化学反应,将杂质氧化成氧化物,从而使其脱离熔融的金属,最终形成渣浆。

这样就可以将杂质从生铁中去除,得到高质量的钢材。

其次,炼钢的化学方程式主要包括氧化反应和还原反应两种类型。

在氧化反应中,氧气与生铁中的碳、硅、锰等杂质发生氧化反应,生成相应的氧化物。

以碳为例,其氧化反应方程式为:Fe + C + O2 → FeO + CO2。

在这个方程式中,生铁中的碳与氧气发生反应,生成氧化铁和二氧化碳。

通过这样的氧化反应,可以将生铁中的碳氧化成氧化物,从而去除碳的杂质。

另外,还原反应也是炼钢过程中的重要化学反应。

在炼钢过程中,还原剂通常是氧化铁,它可以与生铁中的氧化物反应,将氧化物还原成金属。

以氧化铁为例,其还原反应方程式为:FeO + C → Fe + CO。

在这个方程式中,氧化铁与碳发生反应,生成铁和一氧化碳。

通过这样的还原反应,可以将生铁中的氧化物还原成金属,从而得到高质量的钢材。

总的来说,炼钢的原理化学方程式是通过氧化还原反应去除生铁中的杂质,从而得到高质量的钢材。

通过合理控制炼钢过程中的氧化还原反应,可以有效去除生铁中的杂质,提高钢材的质量。

希望通过本文的介绍,能够对炼钢的原理和化学方程式有更深入的了解。

炼钢原理_精品文档

炼钢原理_精品文档

【本章学习要点】本章学习炼钢炉渣的来源、组成和作用,钢中元素氧化的规律及铁、硅、锰的氧化情况,硫对钢性能的影响,炉渣脱硫的基本反应和条件,氧在钢中的危害及脱氧的任务,元素的脱氧能力及各种脱氧方法的的特点,钢中气体、夹杂物对钢性能的影响,减少钢中气体和减少钢中夹杂物的途径。

第一节 炼钢炉渣一、炉渣的来源、组成和作用1.炉渣的来源炉渣又叫熔渣,是炼钢过程中产生的。

炉渣的主要来源有:1) 由造渣材料或者炉料带入的物质。

如加入石灰、白云石、萤石等,金属材料中的泥沙或者铁锈,也将使炉渣中含有(FeO )、(SiO 2)等。

这是炉渣的主要来源。

2) 元素的氧化产物。

含铁原料中的部份元素如Si 、Mn 、P 、Fe 等氧化后生成的氧化物,如Si02、Mn0、Fe0、P 205等。

3) 炉衬的侵蚀和剥落材料。

由于高温、化学侵蚀、机械冲刷等方面原因使炉衬剥落,则耐火材料进入渣中。

4)合金元素脱氧产物及炉渣脱硫产物。

如用Al 脱氧化生成的(Al 2O 3),用Si 脱氧生成的(SiO 2),以及脱硫产物(CaS )等。

2.炉渣的组成化学分析表明,炼钢炉渣的主要成份是:Ca0、Si02、Fe 203、Fe0、Mg0、P 205、Mn0、CaS 等,这些物质在炉渣中能以多种形式存在,除了上面所说的简单份子化合物以外,还能形成复杂的复合化合物,如2Fe0·Si02、2Ca0·Si02、4Ca0·P 205等。

3.炉渣的作用炼钢过程中熔渣的主要作用可归纳成如下几点:1)通过调整炉渣的成份、性质和数量,来控制钢液中各元素的氧化还原反应过程,如脱碳、脱磷、脱氧、脱硫等;2)吸收金属液中的非金属夹杂物;3)覆盖在钢液上面,可减少热损失,防止钢液吸收气体;4)能吸收铁的蒸发物,能吸收转炉氧流下的反射铁粒,可稳定电弧炉的电弧;5)冲刷和侵蚀炉衬,好的炉渣能减轻这种不良影响,延长炉衬寿命。

由此可以看出:造好渣是实现炼钢生产优质、高产、低消耗的重要保证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
剧了钢的“热脆”现象的发生。
• 脱磷 一般情况下,磷是钢中有害元素之一。通常,磷使钢的韧性
降低,可略微增加钢的强度。[P]的突出危害是产生“冷 脆”,在低温下,w[P]越高,冲击性能(冲击功AK,单位为 J)降低就越大。 钢中的[P]含量允许范围:非合金钢中普通质量级钢 w[P]≤0.045%,优质级钢w[P]≤0.035%,特殊质量级钢 w[P]≤0.025%。普通低磷钢w[P]≤0.010%,超低磷钢, w[P]≤0.005%,极低磷钢w[P]≤0.002%。但有些钢种如炮弹 钢、耐腐蚀钢等,则需要加入磷元素。
将会发生氮化物的析出,使钢的强度、硬度上升,塑性 大大降低。这种现象称之为蓝脆。钢中的氮以氮化物的 形式存在,氮化物的析出速度很慢,逐渐改变着钢的性 能。氮含量高的钢种,若长时间放置,将会变脆。这一 现象称为“老化”或“时效”。
6.1.4 控制残余有害元素
Cu、Sn、As、Sb等残余有害元素对钢的质量和性能所造 成的危害主要有:恶化钢坯及钢材的表面质量,增加热脆 倾向;使低合金钢发生回火脆性;降低连铸坯的热塑性, 在含氢气氛中引起应力腐蚀;严重降低耐热钢持久寿命及 引起热应力腐蚀;严重恶化IF钢深冲性能等。
⑴ 通过对炉渣成分、性能及数量的调整,可以控制金属中各 元素的氧化和还原过程,如调整渣的碱度及渣中FeO的含量 来去除P、S等。 ⑵ 向钢中输送氧以氧化各种杂质,如平炉、电炉炉气中和矿 石中的氧,均通过炉渣传入钢液。 ⑶ 吸收钢液中的非金属夹杂物,并防止钢液吸气(H和N ⑷ 其它作用:电弧炉炉渣可起稳弧作用;电渣炉炉渣是电阻 发热体,可重熔和精炼金属;浇注过程中采用保护渣可改善 钢锭质量等。
炼钢的基本任务也可以归纳为“四脱”(脱碳、氧、磷和 硫)、“二去”(去气和去夹杂)、“二调整”(调整成分和 温度)。采用的主要技术手段为:供氧、造渣、升温、加 脱氧剂和合金化操作。
6.2 炼钢炉渣
炼钢炉渣的作用: 炉渣是炼钢过程中的必然产物,它直接参与炼钢过程的 物理化学反应和传热、传质过程。其具体作用如下:
第六章 炼钢基本原理
6.1炼钢的基本任务
所谓炼钢,就是将废钢、铁水等炼成具有所要求化学成分的 钢,并使钢具有一定的物理化学性能和力学性能。
钢和铁的区别
名称
含碳量/%
熔点/℃
特性
生铁
2.0~4.5
1100~1200
脆而硬,无韧性,不能锻、轧, 铸造特性好

<2.0 (工业上实用的 钢中一般w[C]<1.4%)
6.1.5 控制非金属夹杂
根据化学成分的不同,夹杂物可以分为: (1)氧化物夹杂,即FeO、MnO、SiO2、A12O3、Cr2O3等简 单的氧化物,FeO-Fe2O3、FeO-A12O3、MgO-A12O3等尖 晶石类和各种钙铝的复杂氧化物,以及2FeO-SiO2、 2MnO-SiO2、3MnO-A12O3-2SiO2等硅酸盐。 (2)硫化物夹杂,如FeS、MnS、CaS等。 (3)氮化物夹杂,如AlN、TiN、ZrN、VN、BN等。
炼钢炉渣的来源: ⑴废钢带入的泥沙和铁锈等;氧化物或冷却剂(矿石、烧 结矿等)带入的脉石。 ⑵加入的各种造渣材料(石灰、萤石、粘土砖等)以及被 侵蚀的炉衬耐火材料。 ⑶炼钢过程中化学反应的产物,即金属炉料、脱氧剂及合 金中的各元素被氧化后所生成的氧化物;还有少量硫化物。
炼钢炉渣的组成: 以各种金属氧化物为主,如SiO2、MnO、CaO、FeO(酸性电 弧炉渣),有的炼钢炉渣还含有P2O5、MgO、Al2O3,并含有 少量硫化物和氟化物如CaS、MnS(碱性平炉渣)。
• 脱氧
来源:炼钢是氧化还原过程。在吹炼过程中,向熔池吹入 了大量的氧气,到吹炼终点,钢水中含有过量的氧。
危害:如果不进行脱氧,将影响其后的浇注操作。而且在 钢的凝固过程中,氧以氧化物的形式大量析出,钢中也将 产生氧化物非金属夹杂,降低钢的塑性和冲击韧性,使钢 变脆。为此,要将钢水按不同钢种要求脱氧。

6.1.6调整钢的成分
为保证钢的各种物理、化学性能,应将钢的成分调整到 规定的范围之内。
➢碳 炼钢过程中要氧化脱除多余的碳,达到规定的要求。
➢锰 锰的冶金作用主要是消除MnS的热脆倾向,改变硫化物 的形态和分布以提高钢质。
➢硅 硅是钢中最基本的脱氧元素。普通钢中含硅0.17%~ 0.37%,是冶炼镇静钢的合适成分。
➢铝 炼钢生产中,铝是强脱氧元素,大部分钢均采用铝或含 铝的复合脱氧剂脱氧。
6.1.7调整钢液温度
铁水温度,一般只有1300℃左右,而钢水温度,必须高于 1500℃,才不至于凝固。钢水脱碳、脱磷、脱硫、脱氧、 去气、去非金属夹杂等过程,都需在液态条件下进行。此外, 为了将钢水浇注为铸坯(或钢锭),也要求出钢温度在1600℃ 以上,才能顺利进行。为此,在炼钢过程中,孺对金属料和 其他原料加热升温,使钢液温度达到出钢要求。
1450~1500
强度高,塑性好,韧性大,可以 锻、压、铸
6.1.1去除杂质
去除杂质,一般是指去除钢中硫、磷、氧、氢、氮和夹杂物。
• 脱硫 硫在钢中以FeS的形式存在,FeS的熔点为1193℃, Fe与 FeS组成的共晶体的熔点只有985℃。当钢中的硫含量超过 0.020%时,在1150~1200℃的热加工过程中,钢受压时造 成开裂,即发生“热脆”现象。如果钢中的氧含最较高,则 产生更低熔点的共晶化合物FeO-FeS(熔点为940℃),更加
➢ 改变夹杂物类别 通过向钢中喷吹适量的Si-Ca粉剂或喂入适量的Si-Ca线, 产生液态脱氧产物(12CaO·7Al2O3熔点1550℃),可避免 Al2O3产生的水口结瘤。钙处理可将带状硫化物(MnS)部 分或全部改性成球形硫化物(CaS),提高了横向性能。 稀土处理可改变夹杂物的变形能力。
➢ 改变夹杂物颗粒尺寸和分布
6.1.2去气(氮、氮)
➢ 钢中氢 来源:炼钢炉料带有水分或由于空气潮湿,都会使钢中 的含氢量增加。 危害:在钢的热加工过程中,钢中含有氢气的气孔会沿
着加工方向被拉长而形成发裂,从而引起钢材的强度、 塑性以及冲击韧性降低。这种现象称为氢脆。在钢的各 类标准中,对氢一般不作数量上规定,但氢会使钢产生 白点(发裂)、疏松和气泡缺陷。 ➢ 钢中氮 来源:氮由炉气进入钢中。当钢材由高温较快冷却时,
相关文档
最新文档