高等数学第六版上册总复习PPT

合集下载

高数同济六版课件D8总复习

高数同济六版课件D8总复习
• 求投影曲线
三元方程组 或参数方程 (如, 圆柱螺线)
设空间曲线C的一般方程为 消去 z 得投影柱面 则C在xOy 面上的投影曲线 C´为
z
C
H ( x, y ) 0 z0
类似地,消去 x 得C 在yOz 面上的 投影曲线方程,消去y 得C在zOx 面上 的投影曲线方程。
y
x
C
1) 2) (为实数)
第二节 目录 上页 下页 返回 结束
设 a (a x , a y , a z ) , b (bx , by , bz ) , c (c x , c y , c z )
1. 向量运算 加减: 数乘: 点积: 叉积:
a b (a x bx , a y by , a z bz )
三元二次方程
椭圆抛物面
双曲抛物面
x2 y2 z 2 p 2q • 双曲面: 单叶双曲面 双叶双曲面 2 2 x2 y2 x y 2 2 1 1 2 2 a b a b x2 y2 • 椭圆锥面: 2 z2 a2 b
目录 上页 下页 返回 结束
( p, q 同号)
• 空间曲线
下页
返回
结束
五、向量的模、方向角、投影
1. 向量的模与两点间的距离公式
则有 设 r ( x , y , z ), 作 OM r ,
OP NM r OM ON OQ OR 由勾股定理得
r OM
对两点 与 因
R
O
z
M Q y
N x x2 y2 z 2
P
得两点间的距离公式:
s ( m , n , p ) 为直线的方向向量.
目录 上页 下页 返回 结束

高等数学-同济大学第六版--高等数学课件第一章函数与极限

高等数学-同济大学第六版--高等数学课件第一章函数与极限

函数与极限
x
4
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2024/7/17
函数与极限
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2024/7/17
函数与极限
2
数集分类: N----自然数集 Z----整数集
2024/7/17
函数与极限
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
(通常说周期函数的周期是指其最小正周期).
3l
l
2
2
l 2
3l 2
2024/7/17
函数与极限
25
四、反函数
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
2024/7/17
函数与极限
26
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数

高等数学上期末复习资料大全ppt课件.ppt

高等数学上期末复习资料大全ppt课件.ppt

,
其中系数A1、B1、C1与A2、B2、C2不成比例.
考虑三元一次方程:
A1xB1yC1zD1(A2xB2 yC2zD2)0,

(A1A2)x(B1B2)y(C1C1)zD1D20,
其中为任意常数.
上述方程表示通过定直线L的所有平面的全体, 称为平面
束.
1. 函数的极值问题 第一步 利用必要条件在定义域内找驻点.
如对二元函数 z f (x, y), 即解方程组
f f
x yBiblioteka (x, (x,y) y)
0 0
第二步 利用充分条件 判别驻点是否为极值点 .
2. 函数的条件极值问题
(1) 简单问题用代入法
(2) 一般问题用拉格朗日乘数法
例20 要设计一个容量为 V0 的长方体开口水箱, 试问
水箱长、宽、高等于多少时所用材料最省?
直线
x4 5
y
3 2
z 1
x4
5
y
3
2
y3, 2
z. 1
2x 5y 23
y
2z
3
0.
0,
设通过直线L 的平面方程为:2x 5y 23 ( y 2z 3) 0,
将x=3,y=1,z=-2代入上式,得 11.
再将
11
4 代入上式得所求平面方程:
4
8x 9y 2z 59 0.
z y
Fy Fz
xz y xexz
.
导时,将方程 F(x,y,z)=0中x,y,z 视作独立变量.
解法2 利用隐函数求导
方程两端关于x求偏导,得 方程两端关于y求偏导,得
z
x
y y
ze xz xexz

《高等数学》电子课件(同济第六版)01第一章第1节函数

《高等数学》电子课件(同济第六版)01第一章第1节函数
复合函数的实际应用
复合函数在数学、物理、工程等领域有广 泛的应用。
反函数
反函数的定义
反函数是原函数关于y=x对称的函数。
反函数的性质
反函数具有原函数的性质,如连续性、可导性等。
反函数的求导法则
反函数的求导法则与原函数有关,可以通过交换x和y的导数来实现。
反函数的应用
反函数在数学、物理、工程等领域有广泛的应用,如解方程、优化问题等。
函数单调性的定义
如果对于函数的定义域内的任意两个数$x_1$和$x_2$,当$x_1 < x_2$时,都 有$f(x_1) leq f(x_2)$(或$f(x_1) geq f(x_2)$),则称函数在该区间内单调递 增(或单调递减)。
单调性的判定方法
通过比较函数在不同区间内的增减性,可以判断函数的单调性。此外,导数也 是判断函数单调性的重要工具,如果函数在某区间内的导数大于0,则函数在该 区间内单调递增;如果导数小于0,则函数单调递减。
04
函数的图像与性质
函数的图像
函数图像的概念
函数图像是表示函数值的点在平面上 的集合。通过函数图像,我们可以直 观地了解函数的形态和变化趋势。
函数图像的绘制方法
绘制函数图像通常需要确定函数的定 义域和值域,然后根据函数的解析式 ,在坐标系上标出对应的点,最后用 光滑的曲线将它们连接起来。
函数的单调性
答案与解析
$|x|$ 是偶函数。
$x^3$ 是奇函数。
判断下列函数是否为奇函 数或偶函数
01
03 02
答案与解析
$frac{1}{x}$ 是奇函数。
解析:奇函数的定义是对于定义域内的任意 $x$,都有 $f(-x) = -f(x)$;偶函数的定义是对 于定义域内的任意 $x$,都有 $f(-x) = f(x)$。 根据这些定义,可以判断出 $x^3$、$|x|$ 和 $frac{1}{x}$ 的奇偶性。

同济高等数学第六版上册第四章ppt

同济高等数学第六版上册第四章ppt
目录 上页 下页 返回 结束
5. 求下列积分: dx ; (1) 2 2 x (1 x ) 提示:
dx ( 2) 2 . 2 sin x cos x
(1)
1 1 (1 x 2 ) x 2 1 2 2 2 2 2 2 x 1 x x (1 x ) x (1 x )
arcsin u C
(直接配元)
f [ ( x)] ( x)dx f ( ( x))d ( x)
2 12 C C 1
因此所求曲线为 y x 1
2
O
x
目录
上页
下页
返回
结束
从不定积分定义可知: d f ( x)d x f ( x) 或 d f ( x)dx f ( x) dx (1) dx
( 2)
F ( x) dx F ( x) C k dx
第四章 不定积分
微分法: F ( x) ( ? ) 积分法: ( ? ) f ( x) 互逆运算
第一节 不定积分的概念与性质
一、 原函数与不定积分的概念 二、 基本积分表 三、不定积分的性质
第四章
目录
上页
下页
返回
结束
问题: 1. 在什么条件下, 一个函数的原函数存在 ? 2. 若原函数存在, 它如何表示 ? 定理1. 若函数 f ( x ) 在区间 I 上连续 , 则 f ( x ) 在 I 上 (下章证明) 存在原函数 . 初等函数在定义区间上连续
x x e d x e C
(12)
x a C (13) a x dx ln a
目录
上页
下页
返回
结束
dx 例2. 求 3 . x x

《高等数学》电子课件(同济第六版)01第一章 第1节 函数

《高等数学》电子课件(同济第六版)01第一章 第1节 函数

2.函数的单调性:
x1,x2I, 当 x1 x2时,
若 f(x1)f(x2),称f (x)为I上的单调增加函数; 若 f(x1)f(x2),称f (x)为I上的单调减少函数;
如 yx,yx3 单增
yx2?
精选课件ppt
21
3.函数的奇偶性:
设 D关于原, 对 点 于 对 xD 称 , 有
f(x)f(x)
o
x
精选课件ppt
27
(2)单值函数的反 一函 定数 是不 单值函数
如y : x2
反函数x: y. (3)若y f(x)单调增(减),
其反函数也单调增(减 )。
精选课件ppt
28
六、基本初等函数
1.幂函数
yx (是常)数
y
y x2
yx
1
y x (1,1)
o1
x
y 1 x
精选课件ppt
29
2.指数函数 yax (a0,a1) y e x
(1)子集; ( 2)集合相等; (3)空集;
精选课件ppt
2
( 4)集合运算: 如A B {xx A 且 x B }
AB{xxA 或x者 B }
3、常用数的集合:
N----自然数集
Z----整数集
Q----有理数集
数集间的关系:
R----实数集
N Z ,Z Q ,Q R .
精选课件ppt
第一节 映射与函数
一、集合
二、函数概念 三、映射 四、函数的特性 五、反函数
六、基本初等函数 七、复合函数 初等函数
精选课件ppt
1
第一节 映射与函数
一.集合:
1、集合
M {x x具有特定性}质

高等数学同济第六版上册课件CH4-4

高等数学同济第六版上册课件CH4-4
1 x2 x 1
A x 1
Bx C x2 x 1
通分 x2 2x 2 A( x2 x 1) (Bx C)( x 1) x2 2x 2 (A B)x2 (A B C)x A C
A B 1 A B C 2
A C 2
A 1 B 2
C 1
x2
2x x3 1
x 2
sin 2
x 2
2 1 tan 2
x
2
sec2 x
1 1
u2 u2
2
例1

1
sin sin x
x
cos
x
dx.
解: 由万能置换 u tan x 2
dx
1
2 u2
du,
sin
x
1
2u u2
,
cos
x
1 1
u2 u2
1
sin x sin x cos
x
dx
(1
2u u)(1
u2
du )
已解决
3
x
Ax 2
B px
q
dx
4
x
2
Ax px
B
q
n
dx
(重点解决) (利用递推公式)
(1) 若 Δ=p2-4q<0,即分母无法分解因式
利用公式
du a2 u2
1 arctan a
u a
C
例1

9x2
1 dx 6x 2
解:
原式=
(3x
1 1)2
dx 1
=1 3
d (3x 1) (3x 1)2
多项式及部分分式之和
三角函数有理式
三角代换

高等数学同济大学第六版1-01-函数课件

高等数学同济大学第六版1-01-函数课件

x cos y
y arccos x
反正弦函数 y arcsin x
证明 x 1,1 , arcsin x arccos x
y arcsin x

2
记 arcsin x [ , ], 2 2 arccos x [0, ],
x [1,1], y arcsin x [
0, x a H ( x) 1, x a
1
o a x
Heaviside 是一位英国的电子工程师,他 用 Heaviside 函数来描述事物由量变到质 变的一个过程与状态。
在自变量的不同变化范围中, 对应法则用不同的
式子来表示的函数,称为分段函数.
例如,
Байду номын сангаас
2 x 1, f ( x) 2 x 1,

, ] cos 2 2
1 sin 2 1 x 2 ,
sin 1 cos 2 1 x 2 , x 2 1 x 2 1,
反余弦函数 y arccos x
sin( ) sin cos cos sin
函 数
微积分研究的是客观世界的数量反映
——函数的性质、取值规律和函数值的 变化情况。
微积分研究的是客观世界的数量反映
——函数的性质、取值规律和函数值的 变化情况。 微积分的研究是以极限的思想为基 本思想,以极限的方法为基本方法—— 极限是基本工具。 但根本上,微积分这一学说的诞生 的基础是——笛卡儿的解析几何。
2 2
y x2 1
x0 x0
y 2x 1
函数的几何特性
1.函数的有界性:

精品PPT课件----高等数学(上册)—复习课—理共111页

精品PPT课件----高等数学(上册)—复习课—理共111页
精品PPT课件----高等数学(上册)— 复习课—理
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背习是劳动,是充满思想的劳动。——乌申斯基
谢谢!

同济高等数学第六版上册第一章ppt精编版

同济高等数学第六版上册第一章ppt精编版
k
k
lim x 2 k 1 1;
lim x 2 k 1
目录
上页
下页
返回
结束
内容小结
1. 数列极限的 “ – N ” 定义及应用 2. 收敛数列的性质: 唯一性 ; 有界性 ; 保号性; 任一子数列收敛于同一极限
目录
上页
下页
返回
结束
第三节 函数的极限
对 y f ( x) , 自变量变化过程的六种形式: ( 4) x ( 1 ) x x0
定义
如果对于任意给定的正数 (不论它多么
小),总存在正数 N ,使得对于 n N 时的一切 x n , 不等式 x n a 都成立,那末就称常数 a 是数列
x n 的极限,或者称数列 x n 收敛于a ,记为
lim x n a , 或 x n a ( n ).
n

n (1) n 1 n

n (1) n lim xn lim 1 n n n
目录 上页 下页 返回 结束
例2. 设 q 1 , 证明等比数列 1 , q , q 2 , , q n 1 , 的极限为0 . 证:
n 1
n 1
n 1
xn 0 q
,;
n ( 1) { n
n 1
}
3 , 3 3 , , 3 3 3 ,
1.数列对应着数轴上一个点列.可看作一 注 意: 动点在数轴上依次取 x1 , x 2 , , x n , .
x3
x1
x2 x4
xn
2.数列是整标函数 x n f ( n).
目录 上页 下页 返回 结束
第一章
( 2) x x 0 (3) x x0 本节内容 :

高等数学(同济第六版)课件 第一章 3.函数的极限(一)

高等数学(同济第六版)课件  第一章  3.函数的极限(一)

且a >b, (或a<b)
则正数X, 当x<-X时, 都有f(x) >b . (或f(x)<b) 当x>X时, 当|x|>X时,
(4) 充要条件:
lim lim lim f ( x ) A x f ( x ) A且 x f ( x ) A.
x
证: " " 0, X 1 0, 当x>X1 时,成立 f ( x ) A .
得 | x x0 |
x0
当 | x x0 | x0 时,才能使x>0, 取 min{ x0 , x0 } 当 0 x x0 时, 成立 | x x0 |
lim x
x x0
x0
" "定义
x x0
lim f ( x ) A
2 x2 x 1 3 lim x 1 x 1 2 x2 x 1 3 | 2 | x 1 | ( x 1) 0, | x 1 2 x2 x 1 3 | 当x与1多么接近时? | x 1 | x 1 | 2
2 x2 x 1 0, 当 0 | x 1 | 时, 成立 | 3 | 2 x 1
lim f ( x ) 0, 则 lim f ( x ) g( x ) 0
x x
1 x (7) 重要极限:lim (1 ) e x x
特点:(1)1 型 (2)底数减1等于指数的倒数 。
例2 求下列极限
2 x3 3 x2 5 (1) lim 3 2 x 7 x 4 x 1
二、 自变量趋向有限值时函数的极限 若当x无限接近于x0时,函数f(x)无限接近于常数A, 称常数A为当x趋于x0时,函数f(x)的极限。 记作 lim f ( x ) A

同济高等数学第六版上册第一章ppt.

同济高等数学第六版上册第一章ppt.

第一章二、收敛数列的性质三、极限存在准则一、数列极限的定义第二节数列的极限∞第一章一、自变量趋于有限值时函数的极限第三节,)(x f y =对0)1(x x →+→0)2(x x -→0)3(x x ∞→x )4(+∞→x )5(-∞→x )6(自变量变化过程的六种形式:二、自变量趋于无穷大时函数的极限本节内容:函数的极限x 0定理2 .若在0x 的某去心邻域内0)(≥x f )0)((≤x f , 且,)(lim 0A x f x x =→则.0≥A )0(≤A 证:用反证法.则由定理1,0x 的某去心邻域,使在该邻域内,0)(<x f 与已知所以假设不真, .0≥A (同样可证0)(≤x f 的情形)思考:若定理2 中的条件改为,0)(>x f 是否必有?0>A 不能!lim 2=→x x 存在如假设A < 0, 条件矛盾,故时,当0)(≥x fyX-xX直线y= A为曲线的水平渐近线.第一章二、无穷大三、无穷小与无穷大的关系一、无穷小第四节无穷小与无穷大第一章二、极限的四则运算法则三、复合函数的极限运算法则一、无穷小运算法则第五节极限运算法则二、极限的四则运算法则,)(lim ,)(lim B x g A x f ==则有=±)]()(lim[x g x f )(lim )(lim x g x f ±证: 因,)(lim ,)(lim B x g A x f ==则有βα+=+=B x g A x f )(,)((其中βα,为无穷小)于是)()()()(βα+±+=±B A x g x f )()(βα±+±=B A 由定理1 可知βα±也是无穷小,再利用极限与无穷小BA ±=的关系定理, 知定理结论成立.定理3 .若推论:若,)(lim ,)(lim B x g A x f ==且),()(x g x f ≥则.B A ≥( P46 定理5 ))()()(x g x f x -=ϕ利用保号性定理证明.说明:定理3 可推广到有限个函数相加、减的情形.提示:令定理4. 若,)(lim ,)(lim B x g A x f ==则有=)]()(lim[x g x f )(lim )(lim x g x f 提示:利用极限与无穷小关系定理及本节定理2 证明.说明:定理4 可推广到有限个函数相乘的情形.推论1 .)(lim )](lim[x f C x f C =( C 为常数)推论2 .nnx f x f ])(lim [)](lim[=( n 为正整数)例2.设n 次多项式,)(10nn n x a x a a x P +++= 试证).()(lim 00x P x P n n x x =→证:=→)(lim 0x P n x x 0a x a x x 0lim 1→+++ nx x n xa 0lim →)(0x P n =BA =。

同济大学高等数学第六版上册总复习PPT

同济大学高等数学第六版上册总复习PPT

y f ( x 0 x ) f ( x 0 ) A x o( x )
则称函数
y f ( x ) 在点 x 0 可微 , 记 dy
x x0
A x
定理
函数f ( x )在点x 0 可微的充要条件是函数 f ( x )
在点x 0 处可导, 且 A f ( x 0 ).
定理1(最大值和最小值定理) 闭区间上的连续函数
y
一定有最大值和最小值.
f ( x 1 ) min f m f ( x 2 ) max f M
M
y f ( x)
a
o
x1
x2
b
x
m
推论(有界性定理) 在闭区间上连续的函数一定 在该区间上有界.
定理 2 (零点定理)
且 f ( a ) 与 f ( b ) 异号(即 f ( a )
f x0
,
f x 0 0
x0
(2)、罗尔中值定理
如果函数 f ( x )
(1)在闭区间[a , b]上连续,
(2)在开区间 ( a , b ) 内可导,
(3)在区间端点的函数值相等,即 f ( a ) f ( b ) ,
那末在 ( a , b ) 内至少有一点 ( a b ) ,
应用 (如果下列各极限存在) 1.若 则
~ ,

lim
lim


lim

lim

2 .若
lim c 0

lim

lim
c

lim

lim
c
~ c

高等数学第六版上下册(同济大学出版社)课件

高等数学第六版上下册(同济大学出版社)课件
具有重要的作用。
不定积分的几何意义
不定积分表示的是一种曲线族 ,每一条曲线都有一个与之对
应的方程。
积分的应用场景
01
物理应用
积分在物理中有广泛的应用,例 如计算物体的质量、重心、转动 惯量等。
工程应用
02
03
经济应用
积分在工程中有广泛的应用,例 如计算曲线的长度、面积、体积 等。
积分在经济中有广泛的应用,例 如计算总成本、总收益、总利润 等。
05
多重积分与向量分析
二重积分的概念与性质
二重积分的定义
二重积分是定积分在二维平面上的推广,表示一个二元函数在某个区域上的累积值。
二重积分的性质
二重积分具有可加性、可减性、可交换性等性质,这些性质使得二重积分在解决实际问题中具有广泛的应用。
三重积分的概念与性质
三重积分的定义
三重积分是定积分在三维空间上的推广 ,表示一个三元函数在某个区域上的累 积值。
03
导数与微分
导数的概念与性质
导数的定义
导数描述了函数在某一点附近的变化率,是函数局部 性质的一种体现。
导数的几何意义
导数在几何上表示函数图像在某一点的切线的斜率。
导数的性质
导数具有一些基本的性质,如线性性质、乘积法则、 商的导数法则等。
微分的概念与性质
微分的定义
01
微分是函数在某一点附近的小变化量,用于近似计算函数的值
求函数的最值
导数可以用于求函数在一定区间内的最大值和最小值,这在优化问题中具有广泛的应用。
04
积分
定积分的概念与性质
01
定积分的定义
定积分是积分的一种,是函数在区间上与区间的乘积在区间的两个端点

高等数学(同济第六版)课件 第一章 2.数列的极限

高等数学(同济第六版)课件  第一章  2.数列的极限

得: n g ( ) 取 N [ g ( )]
n 1 ( lim 用定义证明: 1) n 2 n 1 2 1 n (2) lim 2 sin 0 n n 3
lim xn a
n
0,
自然数N
lim 一般地:若数列{yn}有界, xn 0 n

结(二)
3.数列极限的性质: (1)唯一性 (2)有界性 (3)不等式性质 (4)有界数列与无穷小量的乘积还是无穷小量
4.常用的结论:
( lim C C 1)
n
(其中C为常数)
1 (2) lim p 0, (其中p为大于零的常数) n n
(3) q n 0, 其中 q 1. lim
重要极限Ⅱ
(e 2.71828)
例4 求下列极限
1 n (1) lim(1 ) n n 2 1 ( n 2 ) 2 lim(1 ) n n 2
1 n 2 (1 ) n 2 lim n 1 2 (1 ) n 2
1 n 2 lim(1 ) e n n 2 e 1 2 1 lim(1 ) n n 2
1 n ( 2) lim(1 ) n n n1 n n n 1 lim( ) lim( ) n n n 1 n n n lim ( ) n n 1 1 1 1 n 1 n 1 1 lim(1 ) lim(1 ) lim(1 ) n n n n1 n1 n1 1 e
n sin n! (4) lim 2 n n 1
n 1 3 n 4 ( 3) lim( ) n n
6n n (5) lim n ( n cos ) n 7 5 2

高等数学(同济版)第六版上 册知识点总结复习课件.ppt

高等数学(同济版)第六版上    册知识点总结复习课件.ppt

演示课件
演示课件
演示课件
第三章知识点总结
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
第四章知识点总结
演示课件
演示课件
演示课件
演示课件
演示课件
第五章知识点总结
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件演示课件源自演示课件演示课件第一章知识点总结
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
第二章知识点总结
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
演示课件
第六章知识点总结
演示课件
演示课件
演示课件
演示课件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)在开区间 ( a , b ) 内可导,且 F ' ( x ) 在 ( a , b ) 内每一点处
均不为零,
那末在( a , b ) 内至少有一点 ( a b ),使等式
f (a ) f (b) f ( ) ' 成立. F (a ) F (b) F ( )
'
2、洛必达法则
使得函数 f ( x )在该点的导数等于零, y C f ' ( ) 0 即
y f ( x)
o a
1
2 b
x
(3)、拉格朗日中值定理
如果函数 f ( x )
(1)在闭区间[a , b]上连续,
(2)在开区间( a , b ) 内可导,
那末在(a , b ) 内至少有一点 (a b ),
x f x f x 可导 f
2. 微分: 若 y f ( x0 x ) f ( x0 ) A x o( x )
则称函数y f ( x )在点x 0 可微, 记dy A x
x x0
定理
函数f ( x )在点x0 可微的充要条件是函数 f ( x )
f x 0 0
f x 0 0
x0
(2)、罗尔中值定理 如果函数 f ( x )
(1)在闭区间[a , b]上连续, (2)在开区间 ( a , b ) 内可导, (3)在区间端点的函数值相等,即 f (a ) f (b ) ,
那末在( a , b ) 内至少有一点 ( a b ) ,
2. 曲线的凹凸与拐点
如果 f ( x ) 在 a , b 上连续, 在 (a , b) 内具有
二阶导数 , 若在 (a , b) 内
(1) f ( x ) 0, 则 f ( x ) 在 a , b上的图形是凹的; ( 2) f ( x ) 0, 则 f ( x ) 在 a , b 上的图形是凸的.
高等数学(上)期末复习
1、两个重要极限
(1)
sin x lim 1 x 0 x
u( x ) 0
sin u( x ) 应用 : lim 1. u( x ) 0 u( x )
(2)
1 x lim (1 ) e x x lim(1 x ) e
x 0 1 x
应用 : lim (1 u( x ))
2.若 lim c 0

c lim lim

lim lim c
~ c
常用的等价无穷小替换
sin x arcsin x tan x arctan x ex 1 ln1 x
x2 1 cos x ~ 2
定理 1( 最大值和最小值定理 ) 闭区间上的连续函数
y
M
一定有最大值和最小值 .
f ( x1 ) min f m f ( x2 ) max f M
y f ( x)
o
m
a
x1
x2 b
x
推论 (有界性定理 ) 在闭区间上连续的函数一定 在该区间上有界.
定理 2 (零点定理)
且 f (a ) 与 f (b ) 异号(即 f (a ) f (b ) 0 ),
或 f x0 x f x0 f x0 x f x0 df x0
第三章 中值定理和导数的应用
洛必达法则 Cauchy 中值定理
F ( x) x
0 0 ,1 , 0 型
0 型 0 型
令y f 取对数
g
型 f g
连续曲线上凹凸的分界点称为曲线的拐点.
0 1. 型及 型未定式 0
0
f ( x) f ( x ) lim lim . x F ( x ) x F ( x )
20.
0 , ,00 ,1 , 0型未定式
f x lim f x g x lim 1 g x
0 型
在几何上是曲线 y f x 的切线斜率。
2 st 是直线运动的位移函数 , 则 s t v t 是它的
速度函数, 而v t st at 是它的加速度函数 。
3 近似计算 :
则有
f x 在 x0 点可导,
f x 0 f x 0 x f x 0 f x 0 x df x 0
那末在开区间 a , b 内至少有函数 f ( x )的一个零点,
即至少有一点(实根) (a b ),使得 f ( ) 0 .
y
y f ( x)
a o
1 2
3
b x
定理 3(介值定理) 设函数 f ( x )在闭区间 a , b 上连续, 并且不是常数, 函数的最大最小值分别为:
导数的应用 1 函数单调性的判定法
设函数y f ( x )在[a , b]上连续,在(a , b)内可导.
10 如果在(a , b)内f ( x ) 0,
那么函数y f ( x)在[a, b]上单调增加;
2 0 如果在(a , b)内f ( x ) 0,
那么函数y f ( x)在[a, b]上单调减少.
使等式
f ( b ) f ( a ) f ' ( )(b a ) 成立. y f (b) f (a ) 或 f ( ) ba
f (b ) f (a ) f ( ). ba
C
y f ( x)
B
A
D
o a
1
2 b
x
(4)、柯西中值定理
(1)如果函数 f ( x )及 F ( x ) 在闭区间[a , b]上连续,

lim( f x g x )
0 0 0 1 1 通分 0 0 00 0
0 ,1 , 型
0

0
lim f x
g x
lim e g ( x ) ln f ( x )
lim g x ln f x
在点x 0 处可导, 且 A f ( x 0 ).
dy f ( x )dx
充分必要关系:
函数 f x 可微 可导 连续 有极限
3. 高阶导数
( n 1) d n f ( x) df ( n) 函数f ( x )的n阶导数 f ( x) n dx dx 1 x 的n阶导数公式 x , a , sin x , cos x , ln x , x n 的莱布尼兹公式 u x v x
4.(1)隐函数求导法则
dy d 2 y 由方程:F x , y 0 求导数 , 2 dx dx
dy d 2 y 两边对x求导, 解出 , . 2 dx dx
(2)参数函数求导法则

x t
y t
y y( xห้องสมุดไป่ตู้)
~ c
~
x
x 0
(1 x ) 1 ~ x
二 函数的连续性 1、连续的定义
x x0
lim f ( x ) f ( x0 )
2、单侧连续
左连续 lim f ( x ) f ( x0 ) f ( x0 )
x x0
右连续 lim f ( x ) f ( x0 ) f ( x0 )
0 型
f g f 1g
Lagrange f (a ) f (b) Rolle 中值定理 定理
n0
Taylor 中值定理
常用的 泰勒公式
导数的应用 单调性,极值与最值, 凹凸性,拐点,函数 图形的描绘; 曲率;求根方法.
1、中值定理
(1)费马(Fermat)引理
在U x0 , 上, 若f x f x0 或f x f x0 , f x0 存在, 则
x x n x sin x x ( 1) o( x 2n 1 ) 3! 5! ( 2n 1)!
3
5
2n 1
x x x n x 2n cos x 1 ( 1) o( x ) 2! 4! 6! ( 2n)!
x x x ln(1 x ) x ( 1) o( x ) 2 3 n1
a xb
max f ( x ) M ,
a xb
min f ( x ) m ,
那末,对于 m 与 M 之间的任意一个数 C ,
在 a , b 内至少存在一点 ,
使得
f ( ) C ( a b ) .
y
M C
y f ( x)
a
x1
o
m
1
2 3 x2 b
有直到( n 1)阶的导数,
则当 x 在 ( a , b ) 内时,
f ( x 0 ) f ( x ) f ( x 0 ) f ( x 0 )( x x 0 ) ( x x0 ) 2 2!
f ( n) ( x0 ) ( x x 0 ) n Rn ( x ) n!
u( x ) 0
1 u( x )
e
等价无穷小替换
设 ~ , ~ 且 lim 存在, 则 lim lim .
应用 (如果下列各极限存在) 1.若 则
~ ,
lim lim

lim lim
dy ( t ) dx ( t )
d2y
d ( t ) dt ( ) 2 dt ( t ) dx dx

( t ) ( t ) ( t ) ( t ) 3 (t )
相关文档
最新文档