半导体的生产工艺流程(精)
半导体生产工艺流程
![半导体生产工艺流程](https://img.taocdn.com/s3/m/7762258ddb38376baf1ffc4ffe4733687e21fc15.png)
半导体生产工艺流程1.原材料准备:半导体生产的原材料主要包括硅、氮化镓、砷化镓、硒化镉等。
首先需要对原材料进行加工和准备,以确保其质量和纯度。
2.原料制备:原材料通过熔炼、混合等工艺制备成为用于生产半导体的原料。
3.单晶生长:利用单晶生长技术,在高温下将原料转化为单晶硅或其他单晶半导体材料。
这一步骤是半导体生产的核心步骤,决定了半导体器件的质量和性能。
4.切割:将生长的单晶材料切割成片,通常为几毫米到几十毫米的薄片。
这些切割片将用于制造半导体器件。
5.清洗:将切割后的半导体片进行清洗,以去除表面的杂质和污染物。
6.晶圆制备:将清洗后的半导体片进行研磨和打磨,使其表面光滑均匀,并进行化学处理,以增强半导体片的表面特性。
7.掺杂和扩散:将半导体片通过高温处理,将掺杂剂引入其表面,使其在特定区域具有特定的电子特性。
8.晶圆涂覆:在半导体片表面涂覆保护层,以防止金属和氧气等杂质的侵入。
9.制造半导体器件:在半导体片上通过光刻、蒸发等工艺制造半导体器件的结构和元件。
这些器件可能包括晶体管、二极管、集成电路等。
10.清洗和测试:对制造完成的半导体器件进行清洗和测试,以验证其质量和性能。
11.封装和封装测试:将半导体器件封装在塑料或陶瓷封装中,并进行封装测试,以确保器件的可靠性和稳定性。
12.探针测试:将封装好的器件进行探针测试,以验证其电性能和功耗等指标。
13.成品测试和筛选:对探针测试合格的器件进行成品测试和筛选,以确保其质量符合要求。
14.包装和成品测试:将成品封装好,并进行最终的成品测试和筛选,以确保其质量和性能。
15.成品存储和交付:将符合要求的成品进行分类、存储和交付,以供后续使用或销售。
以上是半导体生产工艺流程的主要步骤,其中涉及多种专业技术和设备的应用。
这些步骤的顺序和细节可能会因不同的半导体产品而有所不同,但总体流程是大致相似的。
半导体生产工艺的不断改进和创新,是推动半导体产业发展和技术进步的重要驱动力量。
半导体的生产工艺流程
![半导体的生产工艺流程](https://img.taocdn.com/s3/m/9028d63603768e9951e79b89680203d8ce2f6a3b.png)
半导体的生产工艺流程1.晶圆制备:晶圆制备是半导体生产的第一步,通常从硅片开始。
首先,取一块纯度高达99.9999%的单晶硅,然后经过脱氧、精炼、单晶生长和棒状晶圆切割等步骤,制备出硅片。
这些步骤的目的是获得高纯度、无杂质的单晶硅片。
2.晶圆加工:晶圆加工是将硅片加工成具有特定电子器件的过程。
首先,通过化学机械抛光(CMP)去除硅片上的表面缺陷。
然后,利用光刻技术将特定图案投射到硅片上,并使用光刻胶保护未被刻蚀的区域。
接下来,使用等离子刻蚀技术去除未被保护的硅片区域。
这些步骤的目的是在硅片上形成特定的电子器件结构。
3.器件制造:器件制造是将晶圆上的电子器件形成完整的制造流程。
首先,通过高温扩散或离子注入方法向硅片中掺杂特定的杂质,以形成PN结。
然后,使用化学气相沉积技术在硅片表面沉积氧化层,形成绝缘层。
接下来,使用物理气相沉积技术沉积金属薄膜,形成电压、电流等电子元件。
这些步骤的目的是在硅片上形成具有特定功能的电子器件。
4.封装测试:封装测试是将器件封装成实际可使用的电子产品。
首先,将器件倒装到封装盒中,并连接到封装基板上。
然后,通过线缆或焊接技术将封装基板连接到主板或其他电路板上。
接下来,进行电极焊接、塑料封装封装,形成具有特定外形尺寸和保护功能的半导体芯片。
最后,对封装好的半导体芯片进行功能性测试和质量检查,以确保其性能和可靠性。
总结起来,半导体的生产工艺流程包括晶圆制备、晶圆加工、器件制造和封装测试几个主要步骤。
这些步骤的有机组合使得我们能够生产出高性能、高效能的半导体器件,广泛应用于电子产品和信息技术领域。
半导体制造工艺流程大全
![半导体制造工艺流程大全](https://img.taocdn.com/s3/m/2e27538288eb172ded630b1c59eef8c75fbf9502.png)
半导体制造工艺流程大全首先是晶圆切割。
晶圆是通过单晶片生长得到的,为了制造半导体器件,需要将晶圆划分成小块。
切割过程通常使用钻孔或锯片进行,切割后需要将晶圆边缘进行光刻处理。
接下来是晶圆清洗。
切割后的晶圆上会附着一些杂质和残留物,需要通过化学溶液进行清洗,以确保表面的纯净度。
然后是研磨抛光。
为了使晶圆表面更加平整和光滑,需要进行研磨和抛光处理。
通过旋转研磨盘和特殊磨料进行处理,可以去除晶圆表面的不平整和杂质。
接下来是掩膜光刻。
在晶圆上制作电路图案,需要使用掩膜光刻技术。
将铬掩膜覆盖在晶圆表面,通过紫外光和化学反应来形成图案。
掩膜光刻是制造半导体器件中最为关键的步骤之一然后是化学气相沉积。
掩膜光刻后需要进行一层绝缘层的沉积,以保护电路。
接下来是扩散。
为了控制晶体电阻,需要在晶圆表面扩散一层掺杂物。
将晶圆放入炉内,在高温下进行热扩散,使掺杂物渗入到晶圆表面。
然后是离子注入。
离子注入是制造器件的关键步骤之一,通过注入高能粒子改变晶圆表面的材料特性。
注入的离子种类和剂量会对晶圆的电学性质产生重要影响。
接下来是金属薄膜制备。
为了制造金属电极和连线,需要在晶圆表面蒸镀一层金属薄膜。
这层金属薄膜主要用于电子连接和传导。
最后是封装测试。
将制造好的晶圆进行封装,以保护器件免受环境和机械损坏。
通过测试和筛选,可以保证器件的质量和性能。
总结以上所述,半导体制造工艺流程包括晶圆切割、晶圆清洗、研磨抛光、掩膜光刻、化学气相沉积、扩散、离子注入、金属薄膜制备等多个关键步骤。
这些步骤不仅要求高度精确和耐心,而且需要高科技设备和专业技能的支持。
半导体制造工艺的不断改进和创新将推动半导体技术的进一步发展和应用。
半导体制造工艺流程
![半导体制造工艺流程](https://img.taocdn.com/s3/m/3b85a6a9b9f67c1cfad6195f312b3169a451eae1.png)
半导体制造工艺流程半导体制造工艺是半导体芯片制造的基础流程,也是一项复杂且精细的工艺。
下面是一份大致的半导体制造工艺流程,仅供参考。
1. 半导体材料的准备:半导体材料通常是硅,需要经过精细的提纯过程,将杂质降低到一定程度,以确保半导体器件的性能。
还需要进行晶体生长、切割和抛光等工艺,以制备出适用于制造芯片的晶片。
2. 晶片清洗和处理:经过前面的准备步骤后,晶片需要进行清洗,以去除表面的杂质和污染物。
清洗包括化学溶液浸泡和超声波清洗等步骤。
之后,通过化学气相沉积等工艺,在晶片上形成氧化层或氮化层,以保护晶片表面。
3. 光刻和光刻胶涂布:在晶片表面涂布一层光刻胶,然后通过光刻机将设计好的芯片图案投射在胶涂层上,形成光刻胶图案。
光刻胶图案将成为制作芯片电路的模板。
4. 蚀刻:将光刻胶图案转移到晶片上,通过干式或湿式蚀刻工艺,将未被光刻胶保护的部分材料去除,形成电路图案。
蚀刻可以通过化学溶液或高能离子束等方式进行。
5. 激光刻蚀:对于一些特殊材料或细微的电路结构,可以使用激光刻蚀来实现更高精度的图案形成。
激光刻蚀可以通过激光束对材料进行精确的去除。
6. 金属薄膜沉积:在晶片表面沉积金属薄膜,以形成电路中的金属导线和连接器。
金属薄膜通常是铝、铜等材料,通过物理气相沉积或化学气相沉积等工艺进行。
7. 金属薄膜刻蚀和清洗:对金属薄膜进行蚀刻和清洗,以去除多余的金属,留下需要的导线和连接器。
8. 测量和测试:对制造好的芯片进行电学性能的测试和测量,以确保其符合设计要求。
9. 封装和封装测试:将芯片封装在外部环境中,通常采用芯片封装材料进行密封,然后进行封装测试,以验证封装后芯片的性能和可靠性。
10. 最终测试:对封装好的芯片进行最终的功能和性能测试,以确保其满足市场需求和客户要求。
以上是半导体制造的基本流程,其中每个步骤都需要高度的精确性和专业技术。
半导体制造工艺的不断改进和创新,是推动半导体技术不断进步和发展的重要驱动力。
半导体制造流程及生产工艺流程
![半导体制造流程及生产工艺流程](https://img.taocdn.com/s3/m/a2ecda565e0e7cd184254b35eefdc8d377ee146f.png)
半导体制造流程及生产工艺流程半导体是一种电子材料,具有可变电阻和电子传导性的特性,是现代电子器件的基础。
半导体的制造流程分为两个主要阶段:前端工艺(制造芯片)和后端工艺(封装)。
前端工艺负责在硅片上制造原始的电子元件,而后端工艺则将芯片封装为最终的电子器件。
下面是半导体制造流程及封装的主要工艺流程:前端工艺(制造芯片):1.晶片设计:半导体芯片的设计人员根据特定应用的需求,在计算机辅助设计(CAD)软件中进行晶片设计,包括电路结构、布局和路线规划。
2.掩膜制作:根据芯片设计,使用光刻技术将电路结构图转化为光刻掩膜。
掩膜通过特殊化学处理制作成玻璃或石英板。
3.芯片切割:将晶圆切割成单个的芯片,通常使用钻孔机或锯片切割。
4.清洗和化学机械抛光(CMP):芯片表面进行化学清洗,以去除表面杂质和污染物。
然后使用CMP技术平整芯片表面,以消除切割痕迹。
5.纳米技术:在芯片表面制造纳米结构,如纳米线或纳米点。
6.沉积:通过化学气相沉积或物理气相沉积,将不同材料层沉积在芯片表面,如金属、绝缘体或半导体层。
7.重复沉积和刻蚀:通过多次沉积和刻蚀的循环,制造多层电路元件。
8.清洗和干燥:在制造过程的各个阶段,对芯片进行清洗和干燥处理,以去除残留的化学物质。
9.磊晶:通过化学气相沉积,制造晶圆上的单晶层,通常为外延层。
10.接触制作:通过光刻和金属沉积技术,在芯片表面创建电阻或连接电路。
11.温度处理:在高温下对芯片进行退火和焙烧,以改善电子器件的性能。
12.筛选和测试:对芯片进行电学和物理测试,以确认是否符合规格。
后端工艺(封装):1.芯片粘接:将芯片粘接在支架上,通常使用导电粘合剂。
2.导线焊接:使用焊锡或焊金线将芯片上的引脚和触点连接到封装支架上的焊盘。
3.封装材料:将芯片用封装材料进行保护和隔离。
常见的封装材料有塑料、陶瓷和金属。
4.引脚连接:在封装中添加引脚,以便在电子设备中连接芯片。
5.印刷和测量:在封装上印刷标识和芯片参数,然后测量并确认封装后的器件性能。
半导体生产工艺流程
![半导体生产工艺流程](https://img.taocdn.com/s3/m/5ee4092ddcccda38376baf1ffc4ffe473268fd45.png)
半导体生产工艺流程
《半导体生产工艺流程》
半导体生产是一项极其精密和复杂的工艺流程,通常包括数十个步骤。
在半导体生产工艺中,最常见的材料是硅,因为硅具有优良的半导体特性,可以被用来制造微型电子器件。
下面是一个简单的半导体生产工艺流程的概要:
1. 清洗和去除杂质:首先,硅片需要经过严格的清洗和去除杂质的步骤,以确保表面的纯净度和平整度。
2. 氧化:接下来,硅片需要进行氧化处理,将表面形成一层氧化膜,以提高硅片的电气性能和机械强度。
3. 光刻:在光刻过程中,通过光刻胶和紫外光的照射,将所需的图案形成在硅片表面上,从而准确地定义出电子器件的结构。
4. 蚀刻:使用化学液体或等离子体等方法,将光刻所定义的图案蚀刻到硅片表面上,形成所需的微型结构。
5. 沉积:在沉积过程中,通过化学气相沉积或物理气相沉积等方法,将金属或其他材料沉积到硅片表面上,形成导线、电极等部分。
6. 腐蚀:在腐蚀步骤中,通过化学或物理方法,将不需要的材料层去除,从而形成日后需要的电子器件结构。
7. 打孔和导线铺设:最后,通过打孔和导线铺设的步骤,连接各个电子器件,形成完整的电路。
整个工艺流程中,每一个步骤都需要极其严格的控制和精密的操作,以确保最终的产品质量。
同时,半导体生产工艺也需要不断的创新和改进,以应对日益复杂和高性能的电子器件需求。
随着技术的不断进步,半导体生产工艺也在不断演进,将为人类带来更多的科技进步和便利。
半导体制造工艺流程简介
![半导体制造工艺流程简介](https://img.taocdn.com/s3/m/f603ee94d0f34693daef5ef7ba0d4a7303766c7a.png)
半导体制造工艺流程简介导言:一、晶圆加工晶圆加工是制造集成电路的第一步。
它包括以下过程:1.晶圆生长:通过化学气相沉积或金属有机化学气相沉积等方法,在硅片基底上生长单晶硅。
这个过程需要非常高的温度和压力。
2.剥离:将生长的单晶硅从基底上剥离下来,并校正其表面的缺陷。
3.磨削和抛光:使用机械研磨和化学力学抛光等方法,使晶圆的表面非常光滑。
二、晶圆清洗晶圆清洗是为了去除晶圆表面的杂质和污染物,以保证后续工艺的顺利进行。
清洗过程包括以下步骤:1.热酸洗:利用强酸(如硝酸和氢氟酸)将晶圆浸泡,以去除表面的金属杂质。
2.高温氧化:在高温下将晶圆暴露在氧气中,通过热氧化去除有机杂质和表面缺陷。
3.金属清洗:使用氢氟酸和硝酸等强酸,去除金属杂质和有机污染物。
4.DI水清洗:用去离子水清洗晶圆,以去除化学清洗剂的残留。
三、晶圆制备晶圆制备是将晶圆上的材料和元件结构形成的过程。
它包括以下过程:1.掩膜制作:将光敏材料涂覆在晶圆表面,通过光刻技术进行曝光和显影,形成图案化的光刻胶掩膜。
2.沉积:通过物理气相沉积或化学气相沉积等方法,在晶圆上沉积材料层,如金属、氧化物、硅等。
3.腐蚀:采用湿法或干法腐蚀等技术,去除晶圆上不需要的材料,形成所需的结构。
4.清洗:再次进行一系列清洗步骤,以去除腐蚀产物和掩膜残留物,保证材料层的质量。
四、材料获取材料获取是指在晶圆上制造晶体管、电阻器、电容器等器件结构的过程。
它包括以下步骤:1.掺杂:通过离子注入或扩散等方法,在晶圆上引入有选择性的杂质,以改变材料的导电性或断电性能。
2.退火:通过高温热处理,消除杂质引入过程中的晶格缺陷,并使掺杂的材料达到稳定状态。
3.金属-绝缘体-金属(MIM)沉积:在晶圆上沉积金属、绝缘体和金属三层结构,用于制造电容器。
4.金属-绝缘体(MIS)沉积:在晶圆上沉积金属和绝缘体两层结构,用于制造晶体管的栅极。
五、封装和测试封装是将晶圆上制造的芯片放在封装底座上,并封装成可插入其他设备的集成电路。
半导体生产工艺流程
![半导体生产工艺流程](https://img.taocdn.com/s3/m/f510ba4aeef9aef8941ea76e58fafab069dc4422.png)
半导体生产工艺流程半导体生产工艺是一项复杂而精密的过程,它涉及到许多工艺步骤和技术要求。
在半导体生产工艺流程中,主要包括晶圆加工、光刻、薄膜沉积、离子注入、退火、化学机械抛光等环节。
下面将逐一介绍这些工艺步骤及其在半导体生产中的作用。
首先是晶圆加工。
晶圆加工是半导体生产的第一步,它主要包括晶圆切割、清洗、去除氧化层等工艺。
晶圆切割是将单晶硅锭切割成薄片,然后对其进行清洗和去除氧化层处理,以便后续工艺的进行。
接下来是光刻工艺。
光刻工艺是通过光刻胶和掩模板,将图形影像转移到晶圆表面的工艺。
它的主要作用是定义芯片上的电路图形和结构,为后续的薄膜沉积和离子注入提供图形依据。
然后是薄膜沉积。
薄膜沉积是将各种材料的薄膜沉积到晶圆表面,以实现半导体器件的功能。
常见的薄膜沉积工艺包括化学气相沉积(CVD)、物理气相沉积(PVD)等,它们可以实现对材料的精确控制和沉积。
离子注入是半导体工艺中的重要步骤。
离子注入是通过加速器将掺杂原子注入到晶体中,改变其导电性能和器件特性。
离子注入工艺可以实现对晶体材料中杂质原子的控制,从而实现对半导体器件性能的调控。
退火是半导体生产中的一个重要环节。
退火工艺是将晶圆在高温条件下进行热处理,以消除材料内部的应力和缺陷,提高晶体的结晶质量和电学性能。
最后是化学机械抛光。
化学机械抛光是将晶圆表面的氧化层和残留杂质去除,使晶圆表面变得光滑平整,以便后续的工艺步骤和器件制作。
总的来说,半导体生产工艺流程是一个复杂而精密的过程,它涉及到多个工艺步骤和技术要求。
每一个工艺步骤都对半导体器件的性能和质量有着重要的影响,需要严格控制和优化。
只有在严格遵循工艺流程和技术要求的前提下,才能生产出高性能、高可靠性的半导体器件。
半导体制造流程及生产工艺流程
![半导体制造流程及生产工艺流程](https://img.taocdn.com/s3/m/0a1d8a773868011ca300a6c30c2259010202f323.png)
半导体制造流程及生产工艺流程1.原料准备:半导体制造的原料主要是硅(Si),通过提取和纯化的方式获得高纯度的硅单晶。
2. 晶圆制备:将高纯度的硅原料通过Czochralski或者Float Zone方法,使其形成大型硅单晶圆(晶圆直径一般为200mm或300mm)。
3.表面处理:进行化学机械抛光(CMP)和去杂质处理,以去除晶圆表面的污染物和粗糙度。
4.晶圆清洗:使用化学溶液进行清洗,以去除晶圆表面的有机和无机污染物。
5.硅片扩散:通过高温反应,将所需的杂质(如磷或硼)掺杂到硅片中,以改变其电子性质。
6.光刻:在硅片上涂覆光刻胶,并使用掩模板上的图案进行曝光。
然后将光刻胶显影,形成图案。
7.蚀刻:使用化学溶液进行蚀刻,以去除未被光刻胶所保护的区域,暴露出下面的硅片。
8.金属蒸镀:在硅片表面沉积金属层,用于连接电路的不同部分。
9.氧化和陶瓷:在硅片表面形成氧化层,用于隔离不同的电路元件。
10.电极制备:在硅片上形成金属电极,用于与其他电路元件连接。
11.测试和封装:将晶圆切割成单个芯片,然后对其进行测试和封装,以确保其性能符合要求。
以上是半导体制造的主要步骤,不同的半导体产品可能还涉及到其他特定的工艺流程。
此外,半导体制造过程还需要严格的质量控制和环境控制,以确保产品的可靠性和性能。
不同的半导体生产流程会有所不同,但大致上都包含以下几个关键的工艺流程:1. 前端制程(Front-end Process):包括晶圆清洗、来料检测、扩散、光刻、蚀刻、沉积等步骤。
这些步骤主要用于在硅片上形成电子元件的结构。
2. 中端制程(Middle-end Process):包括溅射、化学机械抛光、化学物理蚀刻、金属蒸镀等步骤。
这些步骤主要用于在晶圆上形成连接电子元件的金属线路。
3. 后端制程(Back-end Process):包括划片、电极制备、测试、封装等步骤。
这些步骤主要用于将芯片进行切割、封装,以及测试芯片的性能。
半导体制造工艺流程大全
![半导体制造工艺流程大全](https://img.taocdn.com/s3/m/89e68045e97101f69e3143323968011ca300f7b4.png)
半导体制造工艺流程大全1.半导体材料准备:制造过程的第一步是准备半导体材料。
常用的半导体材料包括硅、砷化镓和磷化镓等。
这些材料需要通过晶体生长技术来制备出高纯度的单晶硅片或外延片。
2.掩膜制备:接下来,需要在半导体材料上制备一层掩膜。
掩膜是一种特殊的光刻胶,能够帮助定义出待制造的电子器件结构。
通过光刻技术,在掩膜上曝光并使用化学溶解剂去除暴露区域的光刻胶,从而形成所需的图案。
3.制造掩模:根据所需的器件结构,需要制造掩模。
掩模通常由透明的石英板和掩模背面涂上的金属膜组成。
使用电子束或激光刻蚀技术将所需的图案转移到金属膜上,然后再去除背面的掩膜光刻胶。
4.器件制造:将制造好的掩模放在准备好的半导体材料上,通过离子注入、物理气相沉积或化学气相沉积等技术,在材料上制备出所需的器件结构和电路连接电路。
5.清洗和拷贝:在制造过程中,需要定期清洗掉不需要的杂质和残留物,以确保器件性能的稳定。
此外,对于大规模集成电路制造,还需要使用光刻和蚀刻等技术进行电路拷贝。
6.热处理和退火:在器件制造的后期,还需要进行一系列的热处理和退火工艺。
这些工艺可以改变器件的电学和结构特性,以提高性能和可靠性。
7.电极制造:最后一步是制造电极。
使用金属薄膜沉积技术,在器件上制备出电极连接电路。
这些电极可以用于对器件进行电压和电流的刺激和测量。
半导体制造是一个高度精密和复杂的过程,需要使用多种材料和技术。
根据所制备器件的不同,工艺流程也会有所不同。
此外,随着科技的发展,新的材料和工艺技术也在不断涌现,使半导体制造工艺变得更加多样化和复杂化。
以上只是半导体制造工艺流程的一个简要概述,实际的制造过程会更加复杂和详细。
不同的半导体制造公司和研发机构可能会有特定的流程和工艺参数。
因此,在实际应用中,需要根据具体需求和材料特性来设计和优化制造工艺流程。
半导体生产工艺流程
![半导体生产工艺流程](https://img.taocdn.com/s3/m/218a1210f11dc281e53a580216fc700abb6852c5.png)
半导体生产工艺流程半导体生产工艺流程主要包括晶片制备、刻蚀、离子注入、金属沉积、封装等多个环节。
下面就来具体介绍一下这些环节的工艺流程。
首先是晶片制备。
晶片制备是整个半导体生产工艺流程的第一步,主要包括硅片清洗、切割、抛光和制程控制等环节。
首先,将硅单晶进行清洗,去除表面的杂质和氧化层。
然后,将单晶硅锯割成薄片,通常为几十微米至几百微米的厚度。
接下来,将薄片进行抛光,使其表面更加光滑。
最后,对晶片进行制程控制,包括清洗、添加掺杂剂和涂覆光刻胶等步骤,以便之后的刻蚀和离子注入工艺。
接下来是刻蚀。
刻蚀是将光刻胶和表面杂质进行精确刻蚀的过程。
首先,将光刻胶涂覆在晶片上,并利用光刻机对光刻胶进行曝光处理,形成所需的图案。
然后,将光刻胶暴露的部分进行刻蚀,暴露出晶片表面的部分。
最后,通过清洗将光刻胶残留物去除,完成刻蚀过程。
然后是离子注入。
离子注入主要用于掺杂半导体材料,改变半导体材料的导电性质。
首先,将晶片放置在注入机器中,然后加热晶片以提高其表面活性。
接下来,通过注射器向晶片上注入所需的掺杂剂,如硼、磷或砷等。
注入过程中,通过控制注射时间和注射剂量,可以实现精确的掺杂。
接下来是金属沉积。
金属沉积是将金属层覆盖在晶片表面的过程,用于电极的形成和电连接。
首先,将晶片放置在涂膜机中,然后将金属薄膜沉积在晶片表面。
金属薄膜的沉积可以通过物理气相沉积或化学气相沉积等方法实现。
接下来,通过光刻和刻蚀等工艺,将金属膜制成所需的形状和尺寸,形成电极和电连接。
最后是封装。
封装是将晶片封装在塑料壳体中,以保护晶片并提供外部电连接。
首先,将晶片固定在封装基板上。
然后,通过焊接或固化剂将晶片与基板连接。
接下来,将封装壳体放置在基板上,并使用胶水或焊接等方式密封。
最后,安装焊脚和引线等外部连接部件,完成封装过程。
以上就是半导体生产工艺流程的一般步骤。
当然,具体的工艺流程和步骤可能因产品类型和制造厂家而有所不同,但总体上都包括晶片制备、刻蚀、离子注入、金属沉积和封装等环节,每个环节都需要严格控制工艺参数和质量要求,以确保制造出高质量的半导体产品。
半导体的生产工艺流程(精)
![半导体的生产工艺流程(精)](https://img.taocdn.com/s3/m/5b8fec63182e453610661ed9ad51f01dc28157b8.png)
半导体的生产工艺流程(精)什么是半导体半导体是一种电子特性介于导体和绝缘体之间的固体材料。
它具备一部分导体材料的性质,如可对电流进行某种程度上的控制,同时又保留了部分绝缘材料的性质,如电阻值较高。
由于半导体具备这些特性,它成为了现代电子工业中不可或缺的材料之一。
半导体生产的基本流程半导体的生产工艺流程日趋复杂,但基本的工艺流程依然是从硅田采购到成品的集成电路,一般包含以下几个基本步骤:1.半导体材料生长2.晶圆加工3.掩膜制作4.晶圆刻蚀5.金属化6.化学机械研磨7.微影光刻8.其他工序如离子注入、退火等半导体材料生长半导体材料生长是制造半导体器件的第一步。
硅材料生长主要采用CVD或单晶生长法,CVD是一种化学气相沉积方法,通过反应气体在衬底表面沉积。
而锗的生长则使用另一种方法——分子束外延法,将纯净的气态的锗芯片熔化以后喷到介质上,并通过化学反应来沉积到介质表面。
相比之下,单晶生长法是生长单晶硅的主要方法,它使铸锭通过高温坩埚中的液体硅进行熔硅石化学反应,得到单晶硅,并通过磨削和切割等多个工艺步骤得到晶圆。
晶圆加工晶圆加工是将生长出的单晶硅切成薄片(通常厚度为0.3~0.75mm),通过化学改性等方式得到半导体材料。
该过程中硅片会被加热,然后用钨丝切成薄片,一般需要晶片翻转,重复切削,直至得到标准的直径200mm或更大的薄片。
掩膜制作光刻技术是制造集成电路的核心工艺之一。
它通过将光刻胶覆盖在晶圆表面,然后将加工好的掩膜对准涂有光刻胶的晶片,利用紫外线照射胶层,然后用化学方法去除未凝固的光刻胶,实现对半导体片的局部改性。
晶圆刻蚀刻蚀是制造半导体器件的另一个核心工艺之一。
该工艺主要通过使用化学液体或离子束等方法进行化学或物理改性,以清除不需要的表面材料,留下所需形状的导电区域和非导电区域。
通常包括干法刻蚀、湿法刻蚀和离子束刻蚀等方法。
金属化金属化是将晶圆表面金属化来保护芯片和连接电路,通常采用电子束蒸发或物理气相沉积等方式将金属材料加热,使其蒸发后再沉积在晶圆表面。
半导体的生产工艺流程
![半导体的生产工艺流程](https://img.taocdn.com/s3/m/6c5d88b3aff8941ea76e58fafab069dc502247f4.png)
半导体的生产工艺流程引言半导体是现代电子技术中不可或缺的关键元件,其广泛应用于计算机、通信、汽车等领域。
半导体的生产工艺流程决定了最终产品的质量和性能。
本文将介绍半导体的生产工艺流程,包括晶圆加工、化学蚀刻、光刻、扩散等过程。
1. 晶圆加工半导体生产的第一步是进行晶圆加工。
晶圆是由高纯度的硅材料制成的圆片,通常直径为200mm或300mm。
晶圆加工主要包括以下几个步骤:1.1 清洗晶圆清洗晶圆是为了去除表面的污染物,以确保后续工艺的顺利进行。
清洗晶圆通常使用化学溶液浸泡、超声波清洗或喷洗等方法。
1.2 氧化处理氧化处理是将晶圆表面形成一层氧化硅薄膜,以保护晶圆表面不被污染。
氧化处理可以使用干法或湿法进行。
1.3 溅射镀膜溅射镀膜是将金属或其他材料溅射到晶圆表面,形成一层薄膜。
溅射镀膜可以用于制作金属导线、保护层、隔离层等。
1.4 蚀刻蚀刻是将晶圆表面的材料部分去除,以形成所需的结构。
蚀刻可以使用干法或湿法进行。
2. 化学蚀刻化学蚀刻是半导体生产过程中的重要步骤之一,用于精确控制半导体材料的形状和尺寸。
化学蚀刻包括以下几个步骤:2.1 掩膜制备掩膜是用于保护半导体材料不被蚀刻的薄膜。
掩膜制备通常采用光刻技术,即在掩膜上通过曝光和显影得到所需的图案。
2.2 蚀刻液制备蚀刻液是用于将未被掩膜保护的半导体材料腐蚀的溶液。
常用的蚀刻液包括酸性溶液、碱性溶液和氧化物溶液等。
2.3 蚀刻过程蚀刻过程是将晶圆浸泡在蚀刻液中,使未被掩膜保护的半导体材料被腐蚀掉。
蚀刻过程需要控制时间、温度和浓度等参数,以保证蚀刻的精确性和一致性。
3. 光刻光刻是半导体生产流程中的重要环节,用于在晶圆上制作微小的图案。
光刻主要包括以下几个步骤:3.1 光刻胶涂覆光刻胶是一种高精度的感光材料,用于记录图案。
光刻胶通过旋涂在晶圆表面形成一层薄膜。
3.2 曝光曝光是将光刻胶暴露于紫外光下,通过光刻机上的掩膜将所需的图案投射到光刻胶上。
3.3 显影显影是将显像剂涂敷在已暴露过的光刻胶上,通过化学反应将未暴露的部分溶解掉,从而形成所需的图案。
半导体的生产工艺流程
![半导体的生产工艺流程](https://img.taocdn.com/s3/m/06dd3c795b8102d276a20029bd64783e08127d54.png)
半导体的生产工艺流程1. 原料准备:首先,需要准备用于半导体生产的原料,包括硅锭、气体、化学物质等。
这些原料需要经过严格的检验和处理,确保其质量符合要求。
2. 晶圆生产:将硅锭切割成薄薄的晶圆,然后使用化学气相沉积(CVD)或物理气相沉积(PVD)等技术在晶圆表面形成氧化层,并进行光刻、蚀刻等步骤,以形成芯片的结构和电路图案。
3. 接合和封装:将芯片与封装材料(例如塑料或陶瓷)结合起来,形成芯片封装。
这个过程中还需要进行焊接、测试等步骤,确保芯片的功能正常。
4. 整体测试:将封装好的芯片进行整体测试,检查其性能和可靠性。
5. 制程改进:根据测试结果对生产工艺进行改进,以提高芯片的质量和产量。
以上是一个简化的半导体生产工艺流程,实际情况可能要复杂得多。
随着科技的不断发展,半导体生产工艺也在不断地改进和演进,以满足市场对高性能、低功耗和小尺寸芯片的需求。
半导体生产工艺流程是一个综合性极强的技术过程。
在此简要介绍的过程背后,涉及着大量的物理、化学以及工程技术。
下面将深入探讨这些流程的一些关键步骤及其技术背后的原理。
首先,我们将深入研究晶圆生产过程。
硅锭在切割成晶圆之后,需要经历一系列的表面处理,以便在其表面上形成氧化层,并对其进行光刻和蚀刻。
光刻是将图案影射到光敏涂层的过程,这通常是通过使用光刻胶及曝光的方式完成的。
而蚀刻则是通过化学腐蚀的方式,将不需要的部分去除,从而形成芯片的结构和电路图案。
在这一系列加工之后,晶圆需要进行清洗和检验,以确保其表面的质量和纯净度符合要求。
这一过程需要借助于化学溶液和超纯水,以确保晶圆表面不含有任何杂质和污染。
接下来,我们将讨论芯片封装的过程。
在芯片封装的过程中,芯片需要与封装材料结合在一起。
这通常是通过焊接来实现的,而焊接的质量和精度对于芯片的性能和稳定性有着重要的影响。
同时,封装材料的选择也是一个复杂的工程问题,需要考虑到其对于电子器件的保护性能、散热性能以及成本等多个因素。
半导体生产工艺流程
![半导体生产工艺流程](https://img.taocdn.com/s3/m/d98e2095c0c708a1284ac850ad02de80d5d8067b.png)
半导体生产工艺流程半导体生产工艺流程半导体是一种特殊的材料,具有介于导体和绝缘体之间的导电性质。
在现代科技中广泛应用,如电子器件、计算机芯片、光电子器件等。
半导体生产的工艺流程复杂且精细,下面将介绍一般半导体生产的工艺流程。
1. 半导体材料的制备:半导体材料主要有硅(Si)和化合物半导体,首先需要将原材料进行精细加工处理,包括净化、溶解、混合等步骤。
随后,将制得的造粒体放入炉中进行热处理,在高温下使材料再结晶,得到高纯度的半导体单晶体。
2. 晶圆制备:将单晶体切割成薄片,厚度约为0.5毫米左右,称为晶圆。
这些晶圆通常是圆形的,并且经过高温处理,表面变得平滑均匀。
3. 清洗:将晶圆放入清洗液中进行清洗,去除表面的杂质和污染物。
清洗液中一般会添加一些化学试剂,如酸碱溶液,以帮助去除污染物。
4. 薄膜生长:将晶圆放入腔体中进行薄膜生长。
薄膜可以是各种材料,如氮化硅、氧化硅等。
生长薄膜的方法有物理气相沉积、化学气相沉积等。
5. 光刻:将需要制作的图形和结构传输到薄膜上。
这个过程需要使用光刻胶和光刻机进行。
将光刻胶涂覆在晶圆上,然后使用光刻机照射光刻胶,光刻胶在此过程中会发生化学反应,形成所需要的图形。
6. 电子束蒸发:通过电子束蒸发器将金属材料蒸发到晶圆表面。
电子束蒸发器通过电子束加热金属材料,使其蒸发并在晶圆上形成金属薄膜。
7. 化学腐蚀:使用化学试剂将晶圆表面的金属薄膜剥离,以形成所需的图案。
化学腐蚀的方法有湿法腐蚀和干法腐蚀等。
8. 清洗与检验:清洗剥离后的晶圆并进行光学检验。
晶圆要经过严格的品质检验,以确保产品的质量和性能。
9. 封装封装:对晶圆进行封装,将其安装在塑料封装中,并与导线相连。
封装的目的是保护晶圆,同时提供与其他电路或设备的连接。
以上是一般半导体生产的工艺流程,不同的半导体制造商可能会有所不同,但总的来说,这个流程是一个基本的框架。
半导体生产的工艺流程需要高度的精确性和严格的控制,以确保产品的质量和性能。
半导体制造工艺流程
![半导体制造工艺流程](https://img.taocdn.com/s3/m/029e82793868011ca300a6c30c2259010202f3aa.png)
半导体制造工艺流程1、晶片生长:通过化学气相沉积或者其他方法,在硅片上生长晶体层。
2、切片:将晶片切割成适当尺寸的小片。
3、清洗:对切割好的硅片进行清洗,去除表面的杂质和污渍。
4、扩散:在硅片表面扩散掺杂剂,形成P-N结。
5、光刻:使用光刻胶覆盖在硅片表面,然后通过光刻机进行曝光和显影,形成芯片图案。
6、腐蚀:利用化学腐蚀或者等离子腐蚀技术,去除不需要的硅片部分。
7、离子注入:将掺杂剂通过离子注入技术,导入芯片内部,形成电子器件。
8、金属化:在芯片表面镀上金属膜,用于导电或者连接。
9、封装:将芯片封装在塑料封装中,以保护芯片不受外界环境影响。
以上是一般的半导体制造工艺流程,实际操作中还会有更多的细节和环节需要考虑。
半导体制造工艺流程的精密和复杂性要求操作人员具备高超的技术和严谨的态度,以确保产品的质量和稳定性。
半导体制造工艺流程是一项非常复杂的过程,需要经过多个严格的步骤和专业设备的加工。
在半导体工艺流程中,硅片的处理和加工是至关重要的环节。
一般来说,半导体制造工艺流程包括晶片生长、切片、清洗、扩散、光刻、腐蚀、离子注入、金属化和封装等环节。
晶片的生长是半导体制造的第一步。
常用的方法包括化学气相沉积(CVD)和分子束外延生长(MBE)。
CVD是将各种气态化合物通过化学反应在基板表面沉积形成晶体层。
而MBE则通过熔融金属制备的原子蒸气束外延到基板表面形成晶体。
不同的生长方法具有不同的特点和适用范围,根据具体的工艺需求来选择适当的生长方法。
切片是将生长好的晶片切割成适当尺寸的小片。
切割时需要保证切片的平整度和表面质量,以确保后续加工步骤的精度。
切片工艺要求切削设备的控制精度和稳定性都非常高。
清洗是将切割好的硅片进行清洗,去除表面的杂质和污渍。
清洗是非常重要的步骤,因为杂质和污渍的存在会对后续的加工造成干扰,影响产品的质量。
扩散是将掺杂剂通过高温加热的方法扩散到硅片表面,形成P-N结。
这一步骤对产品的性能起着决定性的影响,需要严格控制加热温度和时间,以确保掺杂物均匀扩散到硅片内部。
半导体六大制造工艺流程
![半导体六大制造工艺流程](https://img.taocdn.com/s3/m/6f2d07775627a5e9856a561252d380eb629423f8.png)
半导体六大制造工艺流程
半导体制造通常涉及六大制造工艺流程,它们是晶体生长、晶
圆加工、器件加工、器件封装、测试和最终组装。
让我逐一详细解
释这些工艺流程。
首先是晶体生长。
在这一阶段,晶体生长炉中的硅原料被加热
至高温,然后通过化学反应使其结晶成为硅单晶棒。
这些单晶棒随
后被切割成薄片,即晶圆。
接下来是晶圆加工。
在这个阶段,晶圆表面被涂覆上光敏树脂,并通过光刻技术进行图案转移,然后进行腐蚀、沉积和离子注入等
步骤,以形成电路图案和器件结构。
第三个阶段是器件加工。
在这个阶段,晶圆上的器件结构被形成,包括晶体管、二极管和其他电子元件。
这一过程通常包括清洗、光刻、腐蚀、沉积和离子注入等步骤。
接下来是器件封装。
在这一阶段,芯片被封装在塑料或陶瓷封
装中,并连接到外部引脚。
这一过程旨在保护芯片并为其提供连接
到电路板的手段。
第五个阶段是测试。
在这一阶段,封装的芯片将被测试以确保
其功能正常。
这可能涉及电学测试、可靠性测试和其他类型的测试。
最后一个阶段是最终组装。
在这一阶段,封装的芯片被安装到
电路板上,并连接到其他组件,如电源、散热器等。
这一阶段也包
括整个产品的最终组装和包装。
总的来说,半导体制造的六大工艺流程涵盖了从原材料到最终
产品的整个生产过程,每个阶段都至关重要,对最终产品的质量和
性能都有着重要的影响。
半导体制造的工艺流程
![半导体制造的工艺流程](https://img.taocdn.com/s3/m/2d5c0297185f312b3169a45177232f60ddcce7d3.png)
半导体制造的工艺流程1.晶圆加工:在半导体制造中最常使用的晶片基体是由硅材料制成的晶圆。
在晶圆加工过程中,首先会使用切割机将硅原料切割成薄片。
然后,薄片经过抛光和清洗等步骤,形成平整且无瑕疵的晶圆。
2.晶圆清洗:清洗是制造过程中十分重要的一步。
晶圆必须经过多道清洗程序,以去除杂质和污染物,从而确保在后续步骤中获得高质量的晶片。
3.沉积:在沉积步骤中,通过化学气相沉积(CVD)或物理气相沉积(PVD)等技术,将薄膜材料沉积在晶圆上。
这些薄膜通常用于电容器、电阻器、导线等电子组件的制备。
4.薄膜制备:薄膜制备步骤中,会使用半导体材料或者金属材料制备电路的各个层次。
这些薄膜通常通过化学反应或物理沉积得到。
5.光刻:光刻是半导体制造过程中至关重要的一步,它用于将设计好的电路图案投射到晶圆上。
先将光刻胶施于晶圆表面,然后通过光刻机将图案投射到胶层上。
随后,使用化学方法来去除旧的胶层,并在未暴露区域保留胶层,形成电路图案。
6.电镀:电镀是半导体制造过程中的重要一环,用于为电路图案进行加固。
电镀工艺中,首先在光刻形成的电路图案上喷涂一层金属化学物质,然后通过电流控制将金属沉积在电路图案上。
7.划线:划线是用于形成电路进一步连接的过程。
通过化学方法去除非关键的薄膜层,从而在晶圆上形成电路的连线。
8.成品检测:在制造过程的每个步骤中,都需要进行成品检测以确保产品的质量。
这包括对晶圆的尺寸、上面薄膜的质量以及电路图案的正确性等进行检查。
9.封装:在完成半导体器件的加工后,需要进行封装,以保护器件免受损坏,并方便连接到其他系统。
封装通常包括芯片连接、封装材料施加、外部引脚连接及封装密封等步骤。
半导体制造的工艺流程如上所述,涵盖了从晶圆加工到封装的多个重要步骤。
每个步骤都需要高精度和高度控制,以确保最终的半导体产品具有卓越的质量和性能。
随着科技的进步,半导体制造工艺也在不断发展,以满足不断增长的需求和技术挑战。
半导体生产工艺流程
![半导体生产工艺流程](https://img.taocdn.com/s3/m/32e6526a0166f5335a8102d276a20029bd6463d2.png)
半导体生产工艺流程
晶圆制备是半导体生产的第一步。
通常使用硅作为基板材料,通过切割多晶硅棒制备成形圆片,再经过去除背面多余杂质和平整表面等加工步骤得到整洁的硅晶圆。
掩膜形成是半导体生产的第二步。
在硅晶圆表面涂覆一个光刻胶层,并使用掩膜对胶层进行光刻,形成图案。
掩膜主要用于定义集成电路的结构和布局。
光刻是半导体生产的第三步。
利用光刻机,将掩膜上的图案转移到光刻胶上,形成图案的阴阳性结构。
通过光刻机上的曝光、显影、硬化等工艺步骤,可以实现精确的图案传递。
蚀刻是半导体生产的第四步。
利用蚀刻设备对未被光刻胶覆盖的部分进行蚀刻,以形成所需的结构。
常用的蚀刻方法有湿蚀刻和干蚀刻两种,分别通过溶液和气体来进行。
沉积是半导体生产的第五步。
使用化学气相沉积法(CVD)或物理气相沉积法(PVD)等技术,将金属、氧化物、多层膜等材料沉积在硅晶圆上,以满足电路定义和功能要求。
扩散与注入是半导体生产的第六步。
利用热扩散或离子注入技术,将所需的杂质离子(如硼、磷等)掺入硅晶圆中,改变硅晶圆的导电性能,形成np或pn结构,以实现电路的功能。
装配是半导体生产的第七步。
通过将芯片与封装底座进行焊接,完成芯片封装,以保护芯片和为芯片提供电路连接。
常见的封装形式有DIP、SOP、BGA、QFN等。
测试是半导体生产的最后一步。
通过测试设备对芯片进行性能测试,以保证芯片的质量和功能。
测试内容包括静态测试、动态测试、温度测试等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体的生产工艺流程微机电制作技术,尤其是最大宗以硅半导体为基础的微细加工技术(silicon- based micromachining,原本就肇源于半导体组件的制程技术,所以必须先介绍清楚这类制程,以免沦于夏虫语冰的窘态。
一、洁净室一般的机械加工是不需要洁净室(clean room的,因为加工分辨率在数十微米以上,远比日常环境的微尘颗粒为大。
但进入半导体组件或微细加工的世界,空间单位都是以微米计算,因此微尘颗粒沾附在制作半导体组件的晶圆上,便有可能影响到其上精密导线布局的样式,造成电性短路或断路的严重后果。
为此,所有半导体制程设备,都必须安置在隔绝粉尘进入的密闭空间中,这就是洁净室的来由。
洁净室的洁净等级,有一公认的标准,以class 10为例,意谓在单位立方英呎的洁净室空间内,平均只有粒径0.5微米以上的粉尘10粒。
所以class后头数字越小,洁净度越佳,当然其造价也越昂贵(参见图2-1。
为营造洁净室的环境,有专业的建造厂家,及其相关的技术与使用管理办法如下:1、内部要保持大于一大气压的环境,以确保粉尘只出不进。
所以需要大型鼓风机,将经滤网的空气源源不绝地打入洁净室中。
2、为保持温度与湿度的恒定,大型空调设备须搭配于前述之鼓风加压系统中。
换言之,鼓风机加压多久,冷气空调也开多久。
3、所有气流方向均由上往下为主,尽量减少突兀之室内空间设计或机台摆放调配,使粉尘在洁净室内回旋停滞的机会与时间减至最低程度。
4、所有建材均以不易产生静电吸附的材质为主。
5、所有人事物进出,都必须经过空气吹浴 (air shower 的程序,将表面粉尘先行去除。
6、人体及衣物的毛屑是一项主要粉尘来源,为此务必严格要求进出使用人员穿戴无尘衣,除了眼睛部位外,均需与外界隔绝接触 (在次微米制程技术的工厂内,工作人员几乎穿戴得像航天员一样。
当然,化妆是在禁绝之内,铅笔等也禁止使用。
7、除了空气外,水的使用也只能限用去离子水 (DI water, de-ionized water。
一则防止水中粉粒污染晶圆,二则防止水中重金属离子,如钾、钠离子污染金氧半(MOS 晶体管结构之带电载子信道 (carrier channel,影响半导体组件的工作特性。
去离子水以电阻率 (resistivity 来定义好坏,一般要求至17.5MΩ-cm以上才算合格;为此需动用多重离子交换树脂、RO逆渗透、与UV紫外线杀菌等重重关卡,才能放行使用。
由于去离子水是最佳的溶剂与清洁剂,其在半导体工业之使用量极为惊人!8、洁净室所有用得到的气源,包括吹干晶圆及机台空压所需要的,都得使用氮气(98%,吹干晶圆的氮气甚至要求99.8%以上的高纯氮!以上八点说明是最基本的要求,另还有污水处理、废气排放的环保问题,再再需要大笔大笔的建造与维护费用!二、晶圆制作硅晶圆 (silicon wafer 是一切集成电路芯片的制作母材。
既然说到晶体,显然是经过纯炼与结晶的程序。
目前晶体化的制程,大多是采「柴可拉斯基」(Czycrasky 拉晶法 (CZ法。
拉晶时,将特定晶向 (orientation 的晶种 (seed,浸入过饱和的纯硅熔汤 (Melt 中,并同时旋转拉出,硅原子便依照晶种晶向,乖乖地一层层成长上去,而得出所谓的晶棒 (ingot。
晶棒的阻值如果太低,代表其中导电杂质 (impurity dopant 太多,还需经过FZ 法 (floating-zone 的再结晶 (re-crystallization,将杂质逐出,提高纯度与阻值。
辅拉出的晶棒,外缘像椰子树干般,外径不甚一致,需予以机械加工修边,然后以X 光绕射法,定出主切面 (primary flat 的所在,磨出该平面;再以内刃环锯,削下一片片的硅晶圆。
最后经过粗磨 (lapping、化学蚀平 (chemical etching 与拋光 (polishing 等程序,得出具表面粗糙度在0.3微米以下拋光面之晶圆。
(至于晶圆厚度,与其外径有关。
刚才题及的晶向,与硅晶体的原子结构有关。
硅晶体结构是所谓「钻石结构」(diamond-structure,系由两组面心结构 (FCC,相距 (1/4,1/4,1/4 晶格常数 (lattice constant;即立方晶格边长叠合而成。
我们依米勒指针法 (Miller index,可定义出诸如:{100}、{111}、{110} 等晶面。
所以晶圆也因之有 {100}、{111}、{110}等之分野。
有关常用硅晶圆之切边方向等信息,请参考图2-2。
现今半导体业所使用之硅晶圆,大多以 {100} 硅晶圆为主。
其可依导电杂质之种类,再分为p型 (周期表III族与n型 (周期表V族。
由于硅晶外貌完全相同,晶圆制造厂因此在制作过程中,加工了供辨识的记号:亦即以是否有次要切面 (secondary flat 来分辨。
该次切面与主切面垂直,p型晶圆有之,而n型则阙如。
{100}硅晶圆循平行或垂直主切面方向而断裂整齐的特性,所以很容易切成矩形碎块,这是早期晶圆切割时,可用刮晶机 (scriber 的原因 (它并无真正切断芯片,而只在表面刮出裂痕,再加以外力而整齐断开之。
事实上,硅晶的自然断裂面是{111},所以虽然得到矩形的碎芯片,但断裂面却不与{100}晶面垂直!以下是订购硅晶圆时,所需说明的规格:项目说明晶面{100}、{111}、{110} ± 1o外径(吋 3 4 5 6厚度(微米 300~450 450~600 550~650 600~750(±25杂质p型、n型阻值(Ω-cm 0.01 (低阻值 ~ 100 (高阻值制作方式CZ、FZ (高阻值拋光面单面、双面平坦度(埃 300 ~ 3,000三、半导体制程设备半导体制程概分为三类:(1薄膜成长,(2微影罩幕,(3蚀刻成型。
设备也跟着分为四类: (a高温炉管,(b微影机台,(c化学清洗蚀刻台,(d电浆真空腔室。
其中(a~(c机台依序对应(1~(3制程,而新近发展的第(d项机台,则分别应用于制程(1与(3。
由于坊间不乏介绍半导体制程及设备的中文书籍,故本文不刻意锦上添花,谨就笔者认为较有趣的观点,描绘一二!(一氧化(炉(Oxidation对硅半导体而言,只要在高于或等于1050℃的炉管中,如图2-3所示,通入氧气或水汽,自然可以将硅晶的表面予以氧化,生长所谓干氧层(dryz/gate oxide或湿氧层(wet /field oxide,当作电子组件电性绝缘或制程掩膜之用。
氧化是半导体制程中,最干净、单纯的一种;这也是硅晶材料能够取得优势的特性之一(他种半导体,如砷化镓GaAs,便无法用此法成长绝缘层,因为在550℃左右,砷化镓已解离释放出砷!硅氧化层耐得住850℃ ~ 1050℃的后续制程环境,系因为该氧化层是在前述更高的温度成长;不过每生长出1 微米厚的氧化层,硅晶表面也要消耗掉0.44微米的厚度。
以下是氧化制程的一些要点:(1氧化层的成长速率不是一直维持恒定的趋势,制程时间与成长厚度之重复性是较为重要之考量。
(2后长的氧化层会穿透先前长的氧化层而堆积于上;换言之,氧化所需之氧或水汽,势必也要穿透先前成长的氧化层到硅质层。
故要生长更厚的氧化层,遇到的阻碍也越大。
一般而言,很少成长2微米厚以上之氧化层。
(3干氧层主要用于制作金氧半(MOS晶体管的载子信道(channel;而湿氧层则用于其它较不严格讲究的电性阻绝或制程罩幕(masking。
前者厚度远小于后者,1000~ 1500埃已然足够。
(4对不同晶面走向的晶圆而言,氧化速率有异:通常在相同成长温度、条件、及时间下,{111}厚度≧{110}厚度>{100}厚度。
(5导电性佳的硅晶氧化速率较快。
(6适度加入氯化氢(HCl氧化层质地较佳;但因容易腐蚀管路,已渐少用。
(7氧化层厚度的量测,可分破坏性与非破坏性两类。
前者是在光阻定义阻绝下,泡入缓冲过的氢氟酸(BOE,Buffered Oxide Etch,系 HF与NH4F以1:6的比例混合而成的腐蚀剂将显露出来的氧化层去除,露出不沾水的硅晶表面,然后去掉光阻,利用表面深浅量测仪(surface profiler or alpha step,得到有无氧化层之高度差,即其厚度。
(8非破坏性的测厚法,以椭偏仪 (ellipsometer 或是毫微仪(nano-spec最为普遍及准确,前者能同时输出折射率(refractive index;用以评估薄膜品质之好坏及起始厚度b 与跳阶厚度a (总厚度 t = ma + b,实际厚度 (需确定m之整数值,仍需与制程经验配合以判读之。
后者则还必须事先知道折射率来反推厚度值。
(9不同厚度的氧化层会显现不同的颜色,且有2000埃左右厚度即循环一次的特性。
有经验者也可单凭颜色而判断出大约的氧化层厚度。
不过若超过1.5微米以上的厚度时,氧化层颜色便渐不明显。
(二扩散(炉 (diffusion1、扩散搀杂半导体材料可搀杂n型或p型导电杂质来调变阻值,却不影响其机械物理性质的特点,是进一步创造出p-n接合面(p-n junction、二极管(diode、晶体管(transistor、以至于大千婆娑之集成电路(IC世界之基础。
而扩散是达成导电杂质搀染的初期重要制程。
众所周知,扩散即大自然之输送现象 (transport phenomena;质量传输(mass transfer、热传递(heat transfer、与动量传输 (momentum transfer;即摩擦拖曳皆是其实然的三种已知现象。
本杂质扩散即属于质量传输之一种,唯需要在850oC以上的高温环境下,效应才够明显。
由于是扩散现象,杂质浓度C (concentration;每单位体积具有多少数目的导电杂质或载子服从扩散方程式如下:这是一条拋物线型偏微分方程式,同时与扩散时间t及扩散深度x有关。
换言之,在某扩散瞬间 (t固定,杂质浓度会由最高浓度的表面位置,往深度方向作递减变化,而形成一随深度x变化的浓度曲线;另一方面,这条浓度曲线,却又随着扩散时间之增加而改变样式,往时间无穷大时,平坦一致的扩散浓度分布前进!既然是扩散微分方程式,不同的边界条件(boundary conditions施予,会产生不同之浓度分布外形。
固定表面浓度 (constant surface concentration 与固定表面搀杂量(constant surface dosage,是两种常被讨论的具有解析精确解的扩散边界条件(参见图2-4: 2、前扩散 (pre-deposition第一种定浓度边界条件的浓度解析解是所谓的互补误差函数(complementary error function,其对应之扩散步骤称为「前扩散」,即我们一般了解之扩散制程;当高温炉管升至工作温度后,把待扩散晶圆推入炉中,然后开始释放扩散源 (p型扩散源通常是固体呈晶圆状之氮化硼【boron-nitride】芯片,n型则为液态POCl3之加热蒸气进行扩散。