矩阵的逆及其求法

合集下载

矩阵求逆方法大全

矩阵求逆方法大全

矩阵求逆方法大全矩阵的逆在线性代数中是一个非常重要且常用的概念。

逆矩阵存在的前提是矩阵必须是方阵且可逆。

逆矩阵的定义可以简单地表述为:对于一个方阵A,如果存在一个矩阵B,使得AB=BA=I,其中I为单位矩阵,那么B就是A的逆矩阵,记作A^-1下面将介绍几种求解矩阵逆的方法。

1.初等变换法:初等变换法是一种最常用的求解矩阵逆的方法。

基本思想是通过一系列初等行变换将原矩阵A转化为单位矩阵I,同时对单位矩阵进行相同的初等变换,得到A的逆矩阵。

具体步骤为:(1)将原矩阵A与单位矩阵I进行横向拼接,形成增广矩阵[A,I];(2)通过初等行变换将增广矩阵[A,I]变换为[I,B],其中B即为矩阵A的逆矩阵。

这种方法比较直观,但计算量较大,特别是对于大型矩阵很不方便。

2.列主元消去法:列主元消去法是一种改进的初等变换法,其目的是选取主元的位置,使得计算量减少。

具体步骤为:(1)将原矩阵A与单位矩阵I进行横向拼接,形成增广矩阵[A,I];(2)选取增广矩阵中当前列中绝对值最大的元素作为主元,通过交换行使主元出现在当前处理行的位置;(3)用主元所在行将其他行消元,使得主元所在列的其他元素都为0;(4)重复以上步骤,直到增广矩阵[A,I]经过一系列的行变换变为[I,B],其中B即为矩阵A的逆矩阵。

列主元消去法相对于初等变换法来说,计算量会更小,但仍然对于大型矩阵的操作不够高效。

3.公式法:对于一个二阶方阵A,其逆矩阵可以通过以下公式求得:A^-1 = (1/,A,) * adj(A),其中,A,为A的行列式,adj(A)为A的伴随矩阵。

对于更高阶的矩阵,也可以通过类似的公式求解,但行列式和伴随矩阵的计算相对较为复杂,不太适用于实际操作。

4.LU分解法:LU分解也是一种常用的矩阵求解方法,其将原矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。

逆矩阵的计算可以通过LU分解来完成。

具体步骤为:(1)对原矩阵A进行LU分解,得到下三角矩阵L和上三角矩阵U;(2)分别求解方程LY=I和UX=Y,其中Y为未知矩阵;(3)得到Y后,再将方程UX=Y带入,求解方程UX=I,得到逆矩阵X。

求矩阵的逆矩阵的方法

求矩阵的逆矩阵的方法

求矩阵的逆矩阵的方法矩阵的逆是一个在线性代数中非常重要的概念。

逆矩阵是一个方阵(A)的伴随矩阵(ad(A))除以该方阵的行列式(det(A))的结果,即逆矩阵(A-1) = ad(A) / det(A)。

要找到一个矩阵的逆矩阵,首先需要确保矩阵是可逆的。

矩阵可逆的充分必要条件是矩阵的行列式不等于零,即det(A) ≠0。

只有当行列式不等于零时,才能找到逆矩阵。

如果行列式等于零,该矩阵就被称为奇异矩阵,它没有逆矩阵。

接下来,我将详细介绍两种常见的方法来计算矩阵的逆。

方法一:伴随矩阵法伴随矩阵法是一种直接计算矩阵的逆矩阵的方法。

首先,我们计算出原始矩阵的伴随矩阵,然后再除以矩阵的行列式即可得到逆矩阵。

步骤如下:1. 计算原始矩阵的伴随矩阵(ad(A))。

伴随矩阵的每个元素(ad(A)ij)等于原始矩阵(A)的代数余子式(Aij)的代数余子式(Aij)。

其中,代数余子式(Aij)是矩阵中去掉第i行和第j列的部分矩阵的行列式(det(Aij))乘以(-1)^(i+j)。

2. 计算原始矩阵的行列式(det(A))。

3. 计算逆矩阵(A-1)。

逆矩阵的每个元素(A-1)ij等于伴随矩阵(ad(A))的每个元素(ad(A)ij)除以原始矩阵的行列式(det(A))。

伴随矩阵法的优点是直接,可以一步得到逆矩阵。

然而,该方法在求解大型矩阵时计算量较大。

方法二:初等行变换法初等行变换法是通过一系列的初等行变换来得到一个单位矩阵,然后通过对单位矩阵进行相同的初等行变换得到逆矩阵。

步骤如下:1. 将原始矩阵(A)写在左侧,单位矩阵(I)写在右侧,构成一个增广矩阵[A I]。

2. 通过一系列的行变换,将左侧矩阵变成单位矩阵。

在每一步行变换时,同样地对右侧的单位矩阵做相同的变换。

3. 当左侧的矩阵完全变成单位矩阵时,右侧的矩阵就是原始矩阵的逆矩阵。

初等行变换法的优点是对于大型矩阵来说,计算量较小。

然而,该方法需要一定的手工计算和整数运算,可能会产生较大的误差。

求逆矩阵的四种方法

求逆矩阵的四种方法

求逆矩阵的四种方法逆矩阵是指一个矩阵与其逆矩阵相乘得到单位矩阵,也是线性代数中的重要概念之一。

但是,在实际应用中,需要对矩阵求逆的情况并不多,因为矩阵求逆的时间复杂度很高。

下面介绍四种求逆矩阵的方法:1. 初等变换法:采用列主元消去法(高斯-约旦消元法)进行初等变换,即将一个矩阵通过行变换,转化为一个行阶梯矩阵,其中行阶梯矩阵的左下方的元素均为零。

而这样一个变换后得到的矩阵实际上就是原矩阵的逆矩阵。

2. 伴随矩阵法:如果一个矩阵 A 可逆,则求它的逆矩阵等价于求它的伴随矩阵 AT 的结果除以 A 的行列式。

伴随矩阵的计算式为:adj(A)= COF(A)T,其中 COF(A) 为 A 的代数余子式组成的矩阵,它的每个元素满足 COF(A)ij = (-1)^(i+j) det(Aij),其中 det(Aij) 表示将第 i 行和第 j 列去掉后得到的子矩阵的行列式。

3. LU 分解法:LU 分解法是将矩阵分解为一个下三角矩阵 L 和一个上三角矩阵 U 的乘积,即 A = LU,其中 L 的对角线元素均为 1。

当矩阵 A 可逆时,可用 LU 分解求解其逆矩阵。

假设 L 和 U 都是方阵,则A 的逆矩阵为:A^(-1) = (LU)^(-1) = U^(-1)L^(-1)。

4. 奇异值分解(SVD)方法:当矩阵 A 是非方阵时可以采用奇异值分解法,将矩阵 A 分解为A = UΣV^T,其中 U 为一个m×m 的正交矩阵,V 为一个n×n 的正交矩阵,Σ 为一个m×n 的矩形对角矩阵,若r 是 A 的秩,则Σ左上角的 r 个元素不为 0,其余元素为 0,即Σ有 r 个非零奇异值。

当A 可逆时,Σ 中的非零元素都存在逆元,逆矩阵为:A^(-1) = VΣ^(-1)U^T。

综上所述,求逆矩阵的四种方法各有特点,应根据实际情况选择合适的方法进行求解。

初等变换法适合较小规模的矩阵,伴随矩阵法适用于计算代数余子式较容易的矩阵,LU 分解法适合较大规模的矩阵,而SVD 方法则适用于非方阵或奇异矩阵的情况。

矩阵的逆和行列式的计算

矩阵的逆和行列式的计算

矩阵的逆和行列式的计算矩阵是线性代数中的重要工具,而矩阵的逆和行列式的计算是矩阵运算中常见的操作。

本文将通过介绍矩阵的逆和行列式的定义、计算方法以及其应用,来深入解析这两个概念。

一、矩阵的逆逆矩阵是指对于一个给定的方阵A,存在一个矩阵B,使得AB=BA=I,其中I为单位矩阵。

方阵A存在逆矩阵的条件是其行列式不为零,即|A|≠0。

逆矩阵的计算可以通过伴随矩阵和行列式的关系来实现。

1. 伴随矩阵的计算伴随矩阵是指将方阵A的每个元素的代数余子式矩阵取转置得到的矩阵,记作adj(A)。

其中,代数余子式是指将矩阵元素A(i,j)所在的行和列删去后,剩余元素构成的行列式。

2. 逆矩阵的计算方阵A的逆矩阵可以通过以下公式来计算:A^(-1) = (1/|A|) * adj(A),其中|A|为A的行列式。

通过计算伴随矩阵并乘以行列式的倒数,可以得到方阵A的逆矩阵。

3. 逆矩阵的意义矩阵的逆可以理解为它的倒数,类似于实数的倒数。

在矩阵运算中,逆矩阵在求解线性方程组、矩阵方程和求解变换等问题中具有重要的作用。

二、行列式的计算行列式是矩阵的一个标量值,用于判断矩阵的性质以及计算矩阵的逆等。

行列式的计算方法有很多种,常用的有拉普拉斯展开和三角形法则。

1. 拉普拉斯展开拉普拉斯展开是一种基于代数余子式逐步化简的计算方法。

对于一个给定的n阶方阵A,其行列式的计算可以通过以下公式进行展开:det(A) = a(1,1) * A(1,1) + a(1,2) * A(1,2) + ... + a(1,n) * A(1,n),其中A(i,j)为A的代数余子式。

2. 三角形法则三角形法则是一种通过矩阵的初等变换将矩阵化为上三角矩阵或下三角矩阵,然后计算矩阵对角线元素之积得到行列式的计算方法。

三、应用案例逆矩阵和行列式的计算在实际应用中有着广泛的应用。

以下是一些典型的应用案例。

1. 线性方程组的求解当给定一个n个未知数的线性方程组时,可以通过计算系数矩阵的逆矩阵,然后与常数矩阵相乘,得到方程组的解。

高等代数3-3矩阵的逆

高等代数3-3矩阵的逆

... 0 A En ... A
A A
*
A11 A12 A 1n
A21 A22 A2 n
... An1 a11 ... An 2 a 21 ... Ann a n1
a12 a 22 an2
即矩阵A的逆矩阵是唯一的 .
B1 B1 E B1 ( AB2 ) ( B1 A )B2 EB2 B2
由于A的逆矩阵是唯一的,将A的唯一的逆矩阵记为 A1
则有
AA1 A1 A E
3. 单位矩阵E是可逆矩阵,且E 1 E .
4. 零矩阵O不是可逆矩阵.
a1 0 ... 0 0 a2 ... 0 例A 0 0 ... a n 其中 a1a2 ...an 0 a1 0 0 a2 0 0
可逆
1 0 3 0 1 A 1 2 3 1 2 3 3
1
1 3 A 2 6
A 0
不可逆
用公式法求二阶矩阵的 逆矩阵非常方便 .
a b 1 d d 1 若A , 且 A 0, 则 A . A c a c d
已知方阵A满足A3 A2 4 A 5 E O ,则( A 2 E )1 ________.
A2 A 2 E
1 2 0 已知AB B A , 其中B 2 1 0 ,则( A E )1 __________. 0 0 2
( A E )( B E ) E ( A E )1 B E
1 ( A 2E ) 2 1 例5 已知方阵A满足A A 4 E O ,则( A E ) __________. 2

2.6 矩阵的逆和求法

2.6  矩阵的逆和求法
第六节
第二章
矩阵逆及其求法
一、逆矩阵的概念
二、方阵可逆的判别定理
三、逆矩阵的基本性质
四、用矩阵的初等变换求逆矩阵
1
线性方程组的矩阵表示法
设 A (aij )mn X (xi )n1 B (bi )m1
a11x1 a12x2 a1n xn b1
n 元线性方程组 a21x1 a22x2 a2n xn b2
8
( A E)1 1 ( A2 A E) 8
31
例14若 A3 A 2E 0 ,判别 A 及 ( A 2E) 可逆,
并求其逆。
解 (1)
A( A2 E) 2E ,
A2 E
A
E,
A 可逆 且 A1 1 (E A2 ) 2
2
(2) A2 ( A 2E) 2A( A 2E) 3( A 2E) 8E 0
1 2
4 1
2 1
n
1 0
0 2n
An 11
2 4
1 0
0 2n
1 2
4 1
2 1
2 2n 2 2n1
22nn111
21
二、逆矩阵求解方法二——初等变换法 初等变换是矩阵的一种十分重要的运算,为了
充分发挥其作用,有必要对它进一步探讨。
定理3 A可逆 A 行 E Pm P2P1A E
Pm P2P1E A1 E 行 A1
0 2 8 3 0 1 0 0 12 7 2 1
23
1 ~ 0
0
0 1 0
1 2 12
1 2 7
0 1 2
0 0 1
~
1 0 0
0 1 0
1 2 1
1
2 7
12
0

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容矩阵是线性代数的主要内容,,很多实际问题用矩阵的思想去解既简单又快捷很多实际问题用矩阵的思想去解既简单又快捷..逆矩阵又是矩阵理论的很重要的内容矩阵又是矩阵理论的很重要的内容, , , 逆矩阵的求法自然也就成为线性代数研究的主逆矩阵的求法自然也就成为线性代数研究的主要内容之一要内容之一..本文将给出几种求逆矩阵的方法本文将给出几种求逆矩阵的方法..1.利用定义求逆矩阵定义定义: : : 设设A 、B B 都是都是都是n n n 阶方阵阶方阵阶方阵, , , 如果存在如果存在如果存在n n n 阶方阵阶方阵阶方阵B B B 使得使得使得AB= BA = E, AB= BA = E, AB= BA = E, 则称则称则称A A 为可逆矩阵可逆矩阵, , , 而称而称而称B B 为A A 的逆矩阵的逆矩阵的逆矩阵..下面举例说明这种方法的应用下面举例说明这种方法的应用. .例1 求证求证: : : 如果方阵如果方阵如果方阵A A A 满足满足满足A k= 0, A k= 0, A k= 0, 那么那么那么EA EA EA是可逆矩阵是可逆矩阵是可逆矩阵, , , 且且(E-A E-A))1-= E + A + A 2+…+A 1-K证明 因为因为E E E 与与A A 可以交换可以交换可以交换, , , 所以所以所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,= 0 ,于是得于是得于是得(E-A)(E-A)((E+A+A 2+…+…+A +A 1-K )=E =E,,同理可得(同理可得(E + A + A E + A + A 2+…+A 1-K )(E-A)=E (E-A)=E,,因此因此E-A E-A E-A是可逆矩阵是可逆矩阵是可逆矩阵,,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明同理可以证明(E+ A)(E+ A)(E+ A)也可逆也可逆也可逆,,且(E+ A)1-= E -A + A 2+…+(+…+(-1-1-1))1-K A 1-K .由此可知由此可知, , , 只要满足只要满足只要满足A A K =0=0,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵E E ±A 的逆矩阵的逆矩阵. .例2 设 A =úúúúûùêêêêëé0000300000200010,求 E-A E-A的逆矩阵的逆矩阵的逆矩阵. .分析 由于由于由于A A 中有许多元素为零中有许多元素为零, , , 考虑考虑考虑A A K 是否为零矩阵是否为零矩阵, , , 若为零矩阵若为零矩阵若为零矩阵, , , 则可以则可以采用例采用例2 2 2 的方法求的方法求的方法求E-A E-A E-A的逆矩阵的逆矩阵的逆矩阵. .解 容易验证容易验证容易验证A 2=úúúúûùêêêêëé0000000060000200, A 3=úúúúûùêêêêëé0000000000006000, A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,)=E,所以所以所以(E-A)1-= E+A+ A 2+ A 3=úúúûùêêêëé1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,求元素为具体数字的矩阵的逆矩阵,常用初等变换法常用初等变换法常用初等变换法..如果如果A A 可逆,则A 可通过初等变换,化为单位矩阵等变换,化为单位矩阵I I ,即存在初等矩阵S P P P ,,21 使(1)s pp p 21A=I A=I,用,用,用A A 1-右乘上式两端,得:右乘上式两端,得: ((2)s p p p 21I= A 1- 比较(比较(11()(22)两式,可以看到当)两式,可以看到当A A 通过初等变换化为单位矩阵的同时,对单位矩阵矩阵I I 作同样的初等变换,就化为作同样的初等变换,就化为A A 的逆矩阵的逆矩阵A A 1-.用矩阵表示(用矩阵表示(A I A I A I))¾¾¾®¾初等行变换为(为(I A I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法它是实际应用中比较简单的一种方法..需要注意的是,在作初等变换时只允许作行初等变换等变换..同样,只用列初等变换也可以求逆矩阵同样,只用列初等变换也可以求逆矩阵. .例1 求矩阵求矩阵A A 的逆矩阵的逆矩阵..已知已知A=A=úúúûùêêêëé521310132.解 [A I]®úúúûùêêêëé100521010310001132®úúúûùêêêëé001132010310100521® úúúûùêêêëé--3/16/16/1100010310100521®úúúûùêêêëé-----3/16/16/110012/32/10103/46/136/1001故 A 1-=úúúûùêêêëé-----3/16/16/112/32/13/46/136/1. 在事先不知道在事先不知道n n 阶矩阵是否可逆的情况下,也可以直接用此方法阶矩阵是否可逆的情况下,也可以直接用此方法..如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着则意味着A A 不可逆,因为此时表明A =0=0,,则A 1-不存在不存在. .例2 求A=úúúûùêêêëé987654321.解 [A E]=úúûùêêëé100987010654001321®úúûùêêëé------1071260014630001321® úúúûùêêêëé----121000014630001321. 由于左端矩阵中有一行元素全为由于左端矩阵中有一行元素全为00,于是它不可逆,因此,于是它不可逆,因此A A 不可逆不可逆. .3.伴随阵法定理 n n阶矩阵阶矩阵阶矩阵A=[a A=[a ij ]为可逆的充分必要条件是为可逆的充分必要条件是A A 非奇异非奇异..且A 1-=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A ............ (212221212111)其中其中A A ij 是A 中元素中元素a a ij 的代数余子式的代数余子式. .矩阵úúúúûùêêêêëénn nn n n A A A A A A A A A (2122212)12111称为矩阵称为矩阵A A 的伴随矩阵,记作的伴随矩阵,记作A A 3,于是有,于是有A A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I =I,,有1-AA =I ,则A 1-A =I ,所以A ¹0,即A 为非奇异为非奇异. .充分性:充分性: 设A 为非奇异,存在矩阵为非奇异,存在矩阵B=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A (21222)1212111, 其中其中AB=úúúûùêêêëénn n n n n a a a a a aa a a ............... (2)12222111211´A 1úúúûùêêêëénn nnn n A A A A A A A A A ............... (212)221212111=A 1úúúúûùêêêêëéA A A A ...00.........0...00...0=úúúúûùêêêêëé1...00...1......0...100 (01)=I同理可证同理可证BA=I. BA=I.由此可知,若由此可知,若A A 可逆,则可逆,则A A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循规律可循..因为二阶可逆矩阵的伴随矩阵,因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,次对次对角线的元素变号即可角线的元素变号即可. .若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或个或99个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错出现符号及计算的差错..对于求出的逆矩阵是否正确,一般要通过AA 1-=I =I来检验来检验来检验..一旦发现错误,必须对每一计算逐一排查旦发现错误,必须对每一计算逐一排查. .4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设设A 11、A 22都是非奇异矩阵,且都是非奇异矩阵,且A A 11为n 阶方阵,阶方阵,A A 22为m 阶方阵阶方阵úûùêëé22110A A úûùêëé--12211100AA 证明 因为A =22110A A =11A 22A ¹0, 0, 所以所以所以A A 可逆可逆. . 设A 1-=úûùêëéW ZY X,于是有úûùêëéW ZY X úûùêëé22110A A =úûùêëém nI I 00,其中其中 X A X A 11=I n , Y A 22=0=0,,Z A 11=0=0,,W A 22=I m .又因为又因为A A 11、A 22都可逆,用都可逆,用A A 111-、A 122-分别右乘上面左右两组等式得:分别右乘上面左右两组等式得:X= A 111-,Y=0Y=0,,Z=0Z=0,,W= A 122-故 A 21= úûùêëé--1221110A A把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-úúúúûùêêêêëék A A A =úúúúúûùêêêêêëé---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有都是非奇异矩阵,则有1221211-úûùêëéA A A =úûùêëé-----122122121111110A A A A A证明 因为因为úûùêëé2212110A A A úûùêëé--I A A I 012111=úûùêëé22110A A两边求逆得两边求逆得1121110--úûùêëé-I A A I 12212110-úûùêëéA A A =úûùêëé--12211100A A 所以所以 1221211-úûùêëéA A A =úûùêëé--I A A I 012111úûùêëé--12211100A A=úûùêëé-----122122121111110A A A A A同理可证同理可证12221110-úûùêëéA A A =úûùêëé-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. . . 是特殊方阵求逆的是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E =E,把题目中的逆矩阵化简掉。

(完整版)逆矩阵的几种求法与解析(很全很经典)

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。

矩阵求逆矩阵的方法

矩阵求逆矩阵的方法

矩阵求逆矩阵的方法矩阵求逆矩阵是线性代数中的一个重要问题,对于矩阵的逆的求解方法有多种,下面我们将介绍几种常见的方法。

1. 初等变换法。

对于一个可逆矩阵A,我们可以通过初等变换将其变为单位矩阵I,这时候A经过一系列的初等变换得到I,而I经过同样的一系列初等变换得到A的逆矩阵。

这种方法的优点是简单直观,容易理解,但对于大型矩阵来说计算量较大。

2. 克拉默法则。

对于n阶方阵A,如果A是可逆的,那么它的逆矩阵可以通过克拉默法则来求解。

克拉默法则利用矩阵的行列式和代数余子式的概念,将矩阵A的逆矩阵表示为A的伴随矩阵的转置除以A的行列式。

这种方法的优点是不需要对矩阵进行初等变换,但计算量也比较大。

3. 初等行变换法。

初等行变换法是通过对矩阵进行一系列的初等行变换,将矩阵A变为单位矩阵I,然后将I变为A的逆矩阵。

这种方法与初等变换法类似,但是更加注重矩阵的行变换,适合于对行变换较为熟悉的人来说。

4. 矩阵的分块法。

对于特定结构的矩阵,我们可以通过矩阵的分块来求解逆矩阵。

例如对角矩阵、上三角矩阵、下三角矩阵等,通过分块的方法可以简化逆矩阵的求解过程。

5. LU分解法。

LU分解是将一个矩阵分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过LU分解可以求解矩阵的逆。

这种方法适用于对矩阵分解比较熟悉的人来说,可以简化逆矩阵的求解过程。

总结:矩阵求逆矩阵的方法有多种,每种方法都有其适用的场景和计算复杂度。

在实际应用中,我们可以根据矩阵的特点和问题的需求来选择合适的方法。

希望本文介绍的方法可以帮助读者更好地理解矩阵求逆矩阵的过程,提高解决实际问题的能力。

矩阵逆矩阵的求法

矩阵逆矩阵的求法

矩阵逆矩阵的求法One 、矩阵的逆的定义矩阵的逆,又叫做逆矩阵,是指一个方阵在乘积中具有反作用的转换矩阵,它被定义为:存在一个转换矩阵A,使得它和定矩阵相乘等于单位矩阵I,且称A为定矩阵的逆,标记为A⁻¹。

其定义如下:ªA⁻¹A=AA⁻¹=I了解到矩阵逆的定义后,很容易想到,如果有一种新的矩阵,它可以被乘以一个矩阵就得到一个单位矩阵的话,那么这个新的矩阵就是这个矩阵的逆,这个新的矩阵称为全逆矩阵。

全逆矩阵的求法是将单位矩阵放入原始矩阵的右边,然后将单位矩阵的列进行相应的变换,直到变换出等价行阶梯型矩阵。

最后,再将此行阶梯型矩阵变换回与原始矩阵有相同行列数的矩阵,这就是原始矩阵的逆矩阵了。

2、矩阵的逆求法:使用秩当矩阵的行数和列数不相等时,使用全逆矩阵求解矩阵逆比较困难,通常可以使用矩阵的秩来求解矩阵逆。

准确地说,该方法是求解方程Ax=b求解矩阵A的逆矩阵A⁻¹。

方法是,先求出该方程的秩r,如果r=m,m指的是A的行数,则A为可逆矩阵,否则A为不可逆矩阵,而其逆矩阵为不存在状态。

此后可采用Gauss-Jordan方法来求出A的逆矩阵A⁻¹。

三、矩阵的逆的求解实例下面通过一个实例来详细地介绍矩阵逆的求解方法:我们现在考虑如下矩阵A:A =\begin{pmatrix}2 & -1 & 3\\1 & -1 & 0\\1 & 4 & 2\end{pmatrix}首先,我们应求出A的逆A⁻¹:来证明A的矩阵逆的求解结果的正确性,我们将A和A⁻¹相乘:从结果可以看出,A和A⁻¹相乘得到结果是单位矩阵,说明经过求解,A的矩阵是正确的。

逆矩阵及其求法-PPT

逆矩阵及其求法-PPT

4
15 1
15 2
15
1 2 3
1 0 0
x1 1
x2
0
x3
0
A22
An
2
A2n
Ann
| A | 0 0
1 0 0
|
1 A
|Leabharlann 0 | A| 0
|
1 A
|
|
A
|
0
1
0
0
0 | A |
0
0
1
=E
同样 ( 1 A* )A 1 | A | E E
| A|
| A|
由逆阵得定义有: A1 1 A* | A|
注: AA*=A*A=|A|E
1 2 3 x1 1
其中A 2
2
5, X
x2
,
B
2
3 5 1 x3 3
∵|A|=150
A可逆
求得 A1 112353
13
15 8
4
15 1
,
15 15 15
4 15
1 15
2 15
X=A1B
X
x1
x
2
x3
112353 15 4
15
13
15 8
15 1
15
0 1 5 2 1 1
例3 设方阵A满足A2A2E=0,证明:A, A+2E 都可逆,并求它们得逆阵、
[证] A2A2E=0 A(AE)=2E
A A E E 2
A A E 1 2
|A|0 A可逆, A1 1 ( A E )
2
A2A2E=0 (A+2E)(A3E)+4E=0 ( A 2E)[ 1 ( A 3E)] E 4 A 2E 1 (A 3E) 1 4

求矩阵逆的方法

求矩阵逆的方法

求矩阵逆的方法
方法一,伴随矩阵法。

对于一个n阶矩阵A,如果其行列式不为0,那么A就是可逆的。

我们可以通过求解伴随矩阵来得到A的逆矩阵。

首先,我们计算A的伴随矩阵Adj(A),然后用行列式的倒数乘以伴随矩阵即可得到A的逆矩阵。

方法二,初等变换法。

初等变换法是通过一系列的行变换将原矩阵变换为单位矩阵,然后将单位矩阵变换为A的逆矩阵。

这种方法在计算机求解中比较常见,可以通过高斯消元法来实现。

方法三,分块矩阵法。

对于某些特殊的矩阵,我们可以通过将其分解成若干个子矩阵,从而简化逆矩阵的求解过程。

例如,对角矩阵、上三角矩阵、下三角矩阵等都有相对简单的逆矩阵求解方法。

方法四,特征值分解法。

对于对称正定矩阵,我们可以通过其特征值和特征向量来求解其逆矩阵。

通过特征值分解和特征向量矩阵的转置,我们可以得到原矩阵的逆矩阵。

方法五,数值逼近法。

对于大型矩阵或者特殊结构的矩阵,有时候我们无法通过解析的方法求解其逆矩阵,这时可以通过数值逼近的方法来计算其逆矩阵。

例如,利用迭代法或者矩阵分解等方法来近似求解逆矩阵。

总结:
以上是几种常见的求解矩阵逆的方法,不同的方法适用于不同类型的矩阵。

在实际问题中,我们需要根据具体情况选择合适的方法来求解矩阵的逆,以便更好地解决实际问题。

希望本文能够对您有所帮助,谢谢阅读!。

矩阵求逆的几种方法

矩阵求逆的几种方法

矩阵求逆的几种方法矩阵求逆是线性代数学习的重要内容,给出一个矩阵A,要求求矩阵A的逆矩阵存在时,可以通过几种方法来解决这个问题。

本文对这几种求逆方法进行了总结,一起来学习一下。

一、矩阵求逆的2x2特例2x2矩阵求逆是求矩阵逆最为基础的方法,下面以A为例,计算A的逆矩阵。

A=begin{pmatrix}a&bc&dend{pmatrix}则A的逆矩阵为:A^{-1}=frac{1}{ad-bc}begin{pmatrix}d&-b-c&aend{pmatrix}二、增广矩阵的方法用增广矩阵的方法,可以求任意阶的方阵的逆矩阵。

由A增广矩阵B:B=begin{pmatrix}a&b&e_1c&d&e_2e_3&e_4&e_5end{pmatrix} 其中,$e_i$是单位矩阵的元素。

用行列式计算法求出$Delta_B$由$Delta_B=ad-bceq 0$可以判断行列式不等于0,即矩阵A可逆。

计算A的逆矩阵:A^{-1}=frac 1{Delta_B}begin{pmatrix}d&-b&e_3-c&a&e_4e_1&e_2&e_5end{pmatr ix}其中,$e_i$为求解此增广矩阵过程中得到的单位矩阵的元素。

三、分块矩阵的求逆分块矩阵的方法是求解大型矩阵的另一种简便方法,假设A为4阶矩阵:A=begin{pmatrix}A_{11}&A_{12}A_{21}&A_{22}end{pmatrix} 它的逆矩阵为:A^{-1}=begin{pmatrix}A_{11}^{-1}&-A_{11}^{-1}A_{12}-A_{21}A _{11}^{-1}&A_{22}-A_{21}A_{11}^{-1}A_{12}end{pmatrix} 以上三种矩阵求逆的方法在实际应用中都有不同的作用,但是本质都是同一种方法,以上三种方法矩阵求逆的数学原理是一样的,只不过实现过程和求解结果有所不同而已。

矩阵的逆的求法

矩阵的逆的求法

矩阵的逆的求法
矩阵的逆的求法主要有以下几种方法:
1.利用定义求逆矩阵:如果矩阵A是可逆的,那么存在一个矩阵B,使得
AB=BA=E,其中E为单位矩阵。

利用这个定义,可以通过特定的算法计算出矩阵A的逆矩阵B。

2.初等变换法:对于元素为具体数字的矩阵,可以利用初等行变换化为单位
矩阵的方法来求逆矩阵。

如果A可逆,则A可通过初等行变换化为单位矩阵I,即存在初等矩阵使(1)式成立。

同时,用右乘上式两端,得到(2)式。

比较(1)、(2)两式,可以看到当A通过初等行变换化为单位处阵的同时,对单位矩阵I作同样的初等行变换,就化为A的逆矩阵。

这种方法在实际应用中比较简单。

3.伴随阵法:如果A是n阶可逆矩阵,那么A的伴随矩阵A也是可逆的,且
(A)-1=A*/|A|。

利用这个公式可以方便地计算出A的逆矩阵。

4.恒等变形法:利用恒等式的变形规律来求逆矩阵。

例如,利用行列式的性
质和展开定理,可以计算出矩阵的行列式值,从而得到逆矩阵。

需要注意的是,不同的方法适用于不同类型的矩阵和问题,因此在选择方法时应根据具体情况进行选择。

同时,在实际应用中还需注意计算的精度和稳定性等问题。

矩阵逆的定义

矩阵逆的定义

矩阵逆的定义1 矩阵逆的定义矩阵逆是一个非常重要的数学概念,它通常被用于线性代数和高等数学中。

在矩阵运算中,逆矩阵的概念是非常重要的,因为它允许我们解出线性方程组、求解极限、计算曲面面积等多个数学应用问题。

因此,本文将详细介绍矩阵逆的定义及相关知识。

在数学中,如果一个矩阵A与另一个矩阵B相乘后得到一个单位矩阵I,则我们称B是A的逆矩阵。

用数学符号表示为:AB=BA=I。

通俗来说,一个矩阵有逆矩阵,只有当它可以通过乘以另一个矩阵得到单位矩阵时才成立。

而且,只有方矩阵才能有逆矩阵。

例如,下面这个3*3的矩阵A:1 2 34 5 67 8 9如果我们找到另一个3*3的矩阵B,使得AB=BA=I,则我们称B是A的逆矩阵。

但是,我们可以很容易地证明,这个矩阵没有逆矩阵。

因为它的行列式为0,而行列式为0的矩阵是没有逆矩阵的。

因此,只要行列式不为0,就可以得知矩阵是否有逆矩阵。

2 矩阵的行列式和逆矩阵的性质矩阵逆的概念与矩阵的行列式密切相关。

因此,在介绍矩阵逆的基本知识之前,我们需要先来了解一下矩阵的行列式。

在代数学中,矩阵的行列式是一个重要的概念,它代表了一个矩阵的特征值和特征向量。

换句话说,一个矩阵的行列式描述了矩阵线性变换对面积或体积的影响。

矩阵的行列式通常用符号“det(A)”表示,其中A是一个n×n的矩阵。

矩阵的行列式和逆矩阵之间存在一些重要的性质。

这些性质如下:- 如果一个矩阵的行列式不等于0,则它有唯一的逆矩阵。

- 如果一个矩阵的行列式等于0,则它没有逆矩阵。

- 两个矩阵的逆矩阵的乘积等于它们的乘积的逆矩阵,即(A·B)⁻¹ = B⁻¹·A⁻¹ 。

- 矩阵的逆矩阵是一个方阵的行列式的倒数,即A⁻¹ =(det(A))⁻¹ 。

- 对于一个n×n的矩阵,如果它的n个列向量都是线性无关的,则它有唯一的逆矩阵,且其行列式不为0。

矩阵的逆及其求法

矩阵的逆及其求法
A A1 E 1 0, 因此 A 0 .
充分性.设 A 0 , 由定理 2.1 知
AA A A A E.
故有 A( 1 A* ) ( 1 A* )A E .
A
A
10
由逆矩阵定义知,A 可逆,且其逆为
A1 1 A* . A
定理 2.2 不仅给出了判断矩阵可逆的方法, 还给出了求解逆矩阵的一种方法 .
•A是满秩矩阵 A是非奇异矩阵 A可逆 A 0
11
逆矩阵的求法一:伴随矩阵法
例 2.15 设
1 2
A
3
4
,
判断 A 是否可逆,如果可逆,求出其逆矩阵 .

因为
1 A
2 4 6 2 0 , 故 A 可逆,且
34
A1
1
2 3 2
1
1 2
.
12
推论 若方阵 A、B 有 AB = E,则 A、B 均可逆. 证明 因为
逆矩阵的问题。
代数方程 a x b 的解 x a1b
问矩阵方程 AX B 的解是否为 X A1B ? 若可以,那么 A1 的含义是什么呢?
3
一、逆矩阵的概念
定义1 设 A 为 n 阶方阵,如有 n 阶方阵 B ,使 AB = BA = E .
则称 A 为可逆阵,B 为 A 的逆阵,记作B A1 .
17
2 1 1
例 2.18

A
2
6
4
,
AB
A B ,

A+B
.
2 1 3
解 由于 AB = A + B ,于是 ( A – E ) B = A ,
所以逆矩阵唯一.
➢单位矩阵的逆为其本身。

逆矩阵的求法及逆矩阵的应用

逆矩阵的求法及逆矩阵的应用

逆矩阵的求法及逆矩阵的应用1. 前言在矩阵运算中,逆矩阵是一个重要的概念。

一个矩阵的逆矩阵是指,如果一个矩阵A乘上它的逆矩阵A^-1等于单位矩阵I,那么A就有逆矩阵。

逆矩阵经常用于解线性方程组、计算行列式和计算矩阵的特征值等方面。

本文将介绍逆矩阵的求法和逆矩阵的应用。

2. 求逆矩阵的方法要求一个矩阵的逆矩阵,需要满足两个条件:该矩阵是方阵且它的行列式不等于零。

下面介绍两种求逆矩阵的方法。

2.1. 初等变换法采用初等变换法求逆矩阵,需要构造一个n阶矩阵[AB],其中A 为待求矩阵,B为单位矩阵,即:[AB]=[A I_n]然后,对矩阵[AB]进行初等行变换,一直到[AB]变为[IBA']的形式,其中A'为A的逆矩阵。

由于[AB]=[A I_n],所以[IBA']=[I_n A^-1],即A的逆矩阵就构造出来了。

2.2. 公式法另一种求逆矩阵的方法是采用公式法。

设A为一个n阶矩阵,若它的行列式为D,那么它的伴随矩阵记为adj(A),则逆矩阵为A^-1=(1/D)adj(A)。

其中,adj(A)表示矩阵A的伴随矩阵,它的第i行第j列元素A_ij的代数余子式与(-1)^(i+j)的乘积。

3. 逆矩阵的应用逆矩阵在数学中有多种应用,这里只介绍几个典型的应用。

3.1. 解线性方程组逆矩阵可以用于求解线性方程组,解法如下:假设有n个未知数,n个方程,可将方程组表示为AX=B的形式,其中X为未知数向量,B为常数向量,A为系数矩阵。

如果系数矩阵A有逆矩阵,那么可以将方程组A^-1AX=A^-1B简化为X=A^-1B,即可求得未知数向量X。

3.2. 计算行列式和矩阵的特征值逆矩阵还可以用于计算行列式和矩阵的特征值。

设A为n阶方阵,它的逆矩阵为A^-1,则有:det(A)=det(A^-1)^-1λ是A的特征值,那么A的逆矩阵的特征值就是λ^-1。

3.3. 计算数据的逆矩阵逆矩阵也可以用于计算数据的逆矩阵。

矩阵的逆计算方法

矩阵的逆计算方法

矩阵的逆计算方法全文共四篇示例,供读者参考第一篇示例:矩阵是线性代数中非常重要的一个概念,它在各个领域中都有着广泛的应用。

而矩阵的逆是矩阵理论中一个核心的概念,它在很多问题的解决过程中起着非常关键的作用。

在这篇文章中,我们将会介绍矩阵的逆的计算方法,以及一些相关的概念和定理。

矩阵的逆是指对于一个方阵A,如果存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵,那么B就是A的逆矩阵,记作A^{-1}。

逆矩阵的存在性是一个非常重要的问题,因为只有存在逆矩阵的矩阵才能称之为可逆矩阵,可逆矩阵的性质非常重要。

在实际计算中,如何求一个矩阵的逆是一个比较复杂的问题。

下面我们将介绍几种常见的计算方法:1. 初等变换法:这是求逆矩阵最常用的方法之一。

首先将矩阵A与单位矩阵I组合成一个增广矩阵[A|I],然后通过一系列的初等行变换将左侧的矩阵变为单位矩阵,那么矩阵A就会变成逆矩阵。

2. 初等矩阵法:利用初等矩阵与原矩阵的乘积来求逆矩阵。

首先将矩阵A分解成一系列的初等矩阵的乘积,然后分别求每一个初等矩阵的逆矩阵,最后把它们逆序相乘,就能得到矩阵A的逆矩阵。

3. 行列式法:对于一个方阵A,如果det(A)不为0,那么就可以通过公式A^{-1} = \frac{1}{det(A)}\text{adj}(A)来求得A的逆矩阵,其中adj(A)是A的伴随矩阵。

除了这些常见的方法之外,还有一些特殊的矩阵,如对称矩阵、正交矩阵等,它们的逆矩阵的求解方法可能会有一些特殊的性质和技巧。

在实际的计算过程中,可以根据矩阵的具体性质和条件来选择最合适的方法来求解逆矩阵。

在矩阵逆的计算过程中还有一些需要注意的细节和注意事项,比如矩阵的秩、行列式、伴随矩阵等概念。

我们需要保证矩阵是方阵,而且行列式不为0,才能保证逆矩阵的存在性。

在实际的计算中,可能会遇到矩阵奇异的情况,求不出逆矩阵,这时候需要进行特殊处理。

矩阵的逆是线性代数中一个非常重要的概念,它在很多问题的解决过程中都起着非常关键的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六节
第二章
矩阵逆及其求法
一、逆矩阵的概念
二、方阵可逆的判别定理
三、逆矩阵的基本性质
四、用矩阵的初等变换求逆矩阵
1
线性方程组的矩阵表示法
设 A (aij )mn X (xi )n1 B (bi )m1
a11x1 a12x2 a1n xn b1
n 元线性方程组
a21x1
a22 x2
A A1 E 1 0, 因此 A 0 .
充分性.设 A 0 , 由定理 2.1 知
AA A A A E.
故有 A( 1 A* ) ( 1 A* )A E .
A
A
10
由逆矩阵定义知,A 可逆,且其逆为
A1 1 A* . A
定理 2.2 不仅给出了判断矩阵可逆的方法, 还给出了求解逆矩阵的一种方法 .
A21 a12 ,
所以
A*
a22 a12
a21
a11
8
定理2.1 AA A A A E.
a11
证明:AA*
an1
a1n A11
ann A1n
An1
Ann
a11 A11
an1 A11
a1n A1n ann A1n
a11 An1 an1 An1
2 , 2
于是
2 6 4
A1
1 A
A
1 2
3 2
6 2
5 2
,
2 6 4 2 9
x
1 2
3 2
6 2
5 2
1 4
10 3
.
3 4 ,
1
16
利用方阵的逆矩阵及矩阵的乘法给出了求解变量 个数等于方程个数的一种方法 ( 第一章给出了行列式 法 ) ,但对于 n 较大时,两种方法都不适用 .我们将 在余下的章节讨论第三种方法 .
逆矩阵的问题。
代数方程 a x b 的解 x a1b
问矩阵方程 AX B 的解是否为 X A1B ? 若可以,那么 A1 的含义是什么呢?
3
一、逆矩阵的概念
定义1 设 A 为 n 阶方阵,如有 n 阶方阵 B ,使 AB = BA = E .
则称 A 为可逆阵,B 为 A 的逆阵,记作B A1 .
343
4 43
123
12
D2 2 1 1 20 , D3 2 2
343
34
于是有 x1 9 , x2 10 , x3 3 .
2 1 6 , 4
14
方法二 ( 逆阵法 ) 因为方程可写成矩阵形式 Ax = b,其中
1 2 3 2 x1
A
2
2
1
,
b
1
,
x
x2
.
3 4 3
AB A B E 1 , 故
A 0, B 0, 于是 A、B 均可逆 .
13
x1 2 x2 3 x3 2 ,
例 2.17
求解线性方程组
2
x1
2 x2
x3
1 ,
3
x1
4 x2
3 x3
4
.
解 方法一 ( Cramer 法则 )
由于 1 2 3
2 23
D 2 2 1 2 , D1 1 2 1 18 ,
a22
an1 an2
中元素 aij 的代数余子式 Aij ,
a1n
a2n
ann
A11 A21
A*
A12
A22
A1n A2n
An1
An2
Ann
称为 A 的伴随矩阵.
7
例 2.16 求二阶方阵
A
a11 a21
a12
a22
的伴随矩阵.
解 A11 a22 , A22 a11 , A12 a21 ,
又称可逆阵为非奇异阵,不可逆阵为奇异阵 . 例 设 A 1 1, B 1 2 1 2,
1 1 1 2 1 2 因为 AB = BA = E . 所以 B 是 A 的一个逆矩阵。
4
若方阵 A 可逆,则其逆矩阵唯一 .
证明 设 B 和 C 都是 A 的逆矩阵,则由定义 有 AB = BA = E,AC = CA = E, B = BE = B( AC ) = ( BA )C = EC = C .
•A是满秩矩阵 A是非奇异矩阵 A可逆 A 0
11
逆矩阵的求法一:伴随矩阵法
例 2.15 设
1 2
A
3
4
,
判断 A 是否可逆,如果可逆,求出其逆矩阵 .

因为
1 A
2 4 6 2 0 , 故 A 可逆,且
34
A1
1 A
A*
1 2
4 3
2
1
2 3 2
1
1 2
.
12
推论 若方阵 A、B 有 AB = E,则 A、B 均可逆. 证明 因为nn Ann
由第一章行列式展开定理及其推论知
A
AA*
A
0
0
A
E.
A
类似有 A A A E.
9
定理2. 2 矩阵 A 可逆充分必要条件是 A 0 .
且当 A 0 时,A1 1 A* . A
证明:必要性.设 A 可逆,于是有 AA1 E ,
两边取行列式有,
(4) ( AT )1 ( A1 )T .
证明 只证 (3) 和 (4) .
(3) (AB)(B-1A-1) = A(BB-1)A-1 =AEA-1 =AA-1
= E. (4) AT(A-1)T = (A-1A)T = (E)T = E,
6
矩阵可逆的条件: a11 a12
定义
设 矩阵
A
a21
所以逆矩阵唯一.
➢单位矩阵的逆为其本身。
➢对角矩阵的逆为(如果它可逆的话)
1
2
0
0 1
1 1
1 2
n
0
0
.
1 n
5
方阵的可逆满足性质:
(1) ( A1 )1 A;
(2) (kA)1 1 A1 (k 0) ; k
(3) A、B 均是同阶可逆阵,则 ( AB)1 B1 A1 ;
17
2 1 1
例 2.18

A
2
6
4
,
AB
A B ,

A+B
.
2 1 3
解 由于 AB = A + B ,于是 ( A – E ) B = A ,
a2n
xn
b2
1
am1x1 am2x2 amn xn bm
a11
a21
a12
a22
a1n
a2n
x1 b1
x2
b2
am1
am2
amn
mn
xn
bm
AX B
(2)
2
则求(1)的解的问题归结为求(2)的解矢量问题,
而后者即求 AX B 中未知矩阵X的问题。这需要用到
4
x3
由于 A 2 0 , 故 A 可逆,因此 x A1b ,
其中
21
21
A11 4
2, 3
A12 3
3 , 3
22
23
A13 3
2, 4
A21 4
6, 3
15
13
12
2
A22 3 3 6 , A23 3 4 2 , A31 2
13
12
A32 2
1 5 , A33 2
相关文档
最新文档