非线性电路分析方法共38页

合集下载

第2章 非线性电路的分析

第2章  非线性电路的分析
(1)由于元器件的非线性作用, (1)由于元器件的非线性作用,输出电流中产生了输入电压中不曾 由于元器件的非线性作用 有的新频率成分, 有的新频率成分,如输入频率的谐波 2w1和2w2、3w1和3w2;输 入频率及其谐波所形成的各种组合频率w1+w2、w1–w2、w1±2w2、 ;(所有组合频率分量均是成对出现 所有组合频率分量均是成对出现。) 2w1±w2 ;(所有组合频率分量均是成对出现。) (2)各倍频分量和各组合频率分量的振幅与幂级数展开式中同次幂 (2)各倍频分量和各组合频率分量的振幅与幂级数展开式中同次幂 项的系数有关,例如,2w1、2w2、w1+w2、 1–w2等分量的振 项的系数有关,例如,2w1、2w2、w1+w2、w 1–w2等分量的振 幅与a2有关, a2有关 1、 2、 2w1+w2、2w1–w2、w1+2w2、 幅与a2有关,而3w 1、3w 2、 2w1+w2、2w1–w2、w1+2w2、 w1–2w2等分量的振幅与a3有关 等分量的振幅与a3有关, w1–2w2等分量的振幅与a3有关,即高次谐波项的振幅与高次幂 有关。 项的系数 a 有关。
第2章 非线性电路的分析方法 章
线性放大电路的特点是其输出信号与输入信号具有 时域上讲, 输出信号波形与输 某种特定的线性关系。从时域 时域 入信号波形相同, 只是在幅度上进行了放大; 从频域 频域 上讲, 输出信号的频率分量与输入信号的频率分量相 同。 然而, 在通信系统和其它一些电子设备中, 需要 一些能实现频率变换 频率变换的电路。这些电路的特点是其输出 频率变换 信号的频谱中产生 产生了一些输入信号频谱中没有的频率分 产生 输入信号频谱中没有的频率分 频率分量的变换, 量 , 即发生了频率分量的变换 故称为频率变换电路。 频率分量的变换

非线性电路分析解析ppt课件

非线性电路分析解析ppt课件
则称函数关系f所描述的系统为线性系统。
5
非线性电路中至少包含
一个非线性元件,它的输出 输入关系用非线性函数方程 v + 或非线性微分方程表示,右 –
图所示是一个线性电阻与二
极管组成的非线性电路。
Di
i
ZL
0
V0 v
二极管电路及其伏安特性
二极管是非线性器件,ZL为负载,V是所加信号 源,幅度不大。设非线性元件的函数关系为i = f
所表征的电流。如果根据叠加原理,电流i应该是v1和 v2分别单独作用时所产生的电流之和,即
i
kv
2 1
kv
2 2
kV12m
sin2 1t
kV22m
sin2 2t
(6)
i kV12m sin2 1t kV22m sin2 2t 2kV1mV2m sin1t sin2t
(4)
18
i
kv
2 1
kv
28
(4) m次谐波(直流成分可视作零次、基波可 视作一次)以及系数之和等于m的各组合频 率成分,其振幅只与幂级数中等于及高于 m次的各项系数有关。例:直流成分与b0 、 b2都有关,而二次谐波及组合频率为1 + 2与1 - 2的各成分其振幅只与b2有关, 而与b0无关。
29
(5) 因为幂级数展开式中含有两个信号的相 乘项,起到乘法器的作用,因此,所有 组合频率分量都是成对出现的,如有1 + 2就一定有1 – 2,有21 – 2,就 一定有21 + 2,等等。
31
信号较大时,所有实际的非
线性元件,几乎都会进入饱和
ic
如右图所示半导体二 i
i
极管的伏安特性曲线。当 (a)
某一频率的正弦电压作

非线性电路分析法

非线性电路分析法
20
1)半流通角 电流流通时间所对应的相角叫流通角,用
叫做半流通角或截止角。有 c
2c 表示,
上式来自以下推导:
vB VBB Vbm cost
iC gc (vB VBZ )
gc (VBB Vbm cos t VBZ )
当wt=θc时,iC=0。代入上式即得。
21
2)集电极电流脉冲
iC gc (VBB Vbm cos t VBZ )
式 sin cos 1 sin( ) 1 sin( )
2Hale Waihona Puke 2cos sin 1 sin( ) 1 sin( )
2
2
9
3,幂级数分析法的具体应用举例 设非线性元件的静态特性用三次多项式表示
i b0 b1 (v V0 ) b2 (v V0 )2 b3 (v V0 )3
工作范围尿限于特性曲线得起始弯曲部分因此可以用幂级数的前三项来近似3结合输入电压的时间函数求电流写出静态特性的幂级数表示式后将输入电压的时间函数代入然后用三角恒等式展开并加以整理即可得到电流的傅立叶级数展开式从而求出电流的各频谱成分
非线性电路分析法
变系数线性微分方程、非线性微分方程的求解问题:
1 困难
3)电流中的直流成分、偶次谐波以及组合频率系数之和为偶数的各种组合频率成 分,振幅只与幂级数的偶次项(包括常数项)有关;奇次谐波等的组合频率成分, 振幅则只与幂级数的奇次项有关。
14
4)m次谐波以及系数之和等于m的各个组合频率成分,振幅只与幂级数中等于及 高于m次的各项系数有关。
5)所有组合频率都是成对出现的。 掌握这些规律很重要。 可以利用这些规律,根据不同的要求,选用具有适当特性的非线性元 件,或者选择合适的工作范围,以得到所需的频率成分,而尽量减弱 甚至消除不需要的频率成分。

第5章 非线性电路的一般的分析方法

第5章 非线性电路的一般的分析方法

三次谐波及组合频率: 1 22 , 1 22 ,21 2 ,21 2
b 的振幅均只与 b3 有关,而与 b0 、 2无关。 b b 直流成分均只与 b0 、 2有关,而与 b1、 3 无关。
二次谐波以及组合频率1 2 , 1 2 的振幅均只与 b2 有关, 而与 b1 、b3无关。
2 3
该幂级数各系数分别由下式确定,即:
b0 b 1 b2 b n f (U Q ) I 0 di u U Q g du 1 d 2i u U Q 2 du 2 1 d ni n! du n
i
Io
Q
0
UQ
u
u U Q
b0 I 0为静态工作点电流,b1 g是静态工作点处的电导, 即动态电阻r的倒数。
ex 1 x 若 则
i Is[

1 U Q U s cosst n ] n!U T
频率分析:
输入信号频率分量:直 流、s 输出信号频率分量: s,n=0,2, n 1,
2、幂级数分析法
将非线性电阻电路的输出输入特性用一个N阶幂级数近 似表示,借助幂级数的性质,实现对电路的解析分析。
四)、非线性元件的特征
1、特点(与线性电路比较) 非线性,不满足叠加定理,具有频率变换功能。 2、几个概念 A、伏安特性曲线 B、直流电阻 C、动态电阻或交流电阻
3、非线性元件的频率变换作用
非线性器件的频率变换作用
i k 2
1 2 V1m sin1 t V2m sin 2 t
n 1

可求得:ic I 00 I 0 n cosn1t [ g 0 g n cos n1t ]U m 2 cos2t

非线性电路特性及分析方法

非线性电路特性及分析方法
iC
ic
gC
ICEO
uห้องสมุดไป่ตู้E
O
uCE
范围很大, 例:(以晶体管三极管 转移特性为例)当晶体 管的转移特性曲线运用 范围很大, :(以晶体管三极管 转移特性为例) 来近似, 如图示的 AOC ,可用 AB 和 BC 两直线段所构成的折线 来近似, ( i = 0 v B < V BZ ) 折线的数学表达式为: c 折线的数学表达式为: ic = g c ( v B − V BZ ) B > V BZ ) (v 式中, 截止电压; 跨导, 的斜率。 式中, V BZ-特性曲线折线化后的 截止电压; g c-跨导,即直线 BC 的斜率。 设基极输入端加入反向 直流偏置电压 − V BB 及余弦信号 Vbm cos ω t,则 基极输入电压为: 基极输入电压为: v B = −V BB + Vbm cos ω t 此时, 时三极管导通, 此时,只有 v B > V BZ 时三极管导通,其余时 间 截止, 变成余弦脉冲波形。 截止,即 ic变成余弦脉冲波形。电 流流通时间 对应的相角以 2θ c 表示, θ c简称导通角。 表示, 简称导通角。
3、折线法:大信号作用下 、折线法:
大信号作用下,所有实际的非线性元件几乎都会进入饱和或截止状态, 大信号作用下,所有实际的非线性元件几乎都会进入饱和或截止状态, 此时元件的非特性的突出表现是截止、导通、 此时元件的非特性的突出表现是截止、导通、饱和几种不同状态之间的 轮换,特性曲线上一些局部弯曲的非线性影响可忽略, 轮换,特性曲线上一些局部弯曲的非线性影响可忽略,元件的伏安特性 可用分段折线逼近(折线特性本质是一种开关特性) 可用分段折线逼近(折线特性本质是一种开关特性)
第5章 非线性电路特性及分析方法

1.4 非线性电路的分析方法

1.4 非线性电路的分析方法
模拟电子技术基础
1.4 非线性电路的分析方法
2020/5/28
1
非线性电路的分析方法
1. 三种分析方法 (1)解析分析法
求解方程组,得出待求的电流和电压值。 (2)图解分析法
在非线性器件的伏安特性曲线上作图分析。 (3)等效电路分析法
建立线性模型
直流等效模型
微变等效模型
确定Q点坐标,
计算交流指标,
弥补“图解法”不足
如 、R i、Ro
2020/5/28
2
非线性电路的分析方法
2. 分析方法的应用 (1)图解法
回路电压方程
该式确定的直线与二极管伏安曲线交点为Q。
图解法避免“解析法”求解超越方程 确定Q点的困难。
2020/5/28
3
非线性电路的分析方法
(通
截止
2020/5/28
6
理想开关 正向导通UD = 0 反向截止 Is = 0
正向导通 硅管:0.7V 锗管:0.2或0.3V
反向截止 Is = 0
4
非线性电路的分析方法 ② 微变等效模型
可用一个动态电阻rd来等效。
式中,(T=300K时) UT 26mV ,IDQ为Q点处的 静态电流值。
2020/5/28
5
非线性电路的分析方法

第十七章 非线性电路的分析(免费下载)

第十七章 非线性电路的分析(免费下载)

17.1 非线性电阻元件
1 非线性元件的分类
元件性质( 的伏安特性、 的韦安特性 的韦安特性、 的库伏特 元件性质(R的伏安特性、L的韦安特性、C的库伏特 的伏安特性 不再是线性关系, 性)不再是线性关系,即参数不再是常量的元件称为非线性 元件。含有非线性元件的电路称为非线性电路。 元件。含有非线性元件的电路称为非线性电路。 非线性电阻
如可将某非线性电阻的伏安特性( 如可将某非线性电阻的伏安特性(见 中的实线)分为三段, (a)中的实线)分为三段,用1、2、3 三条直线段来代替。 三条直线段来代替。 每一个区段内可用一线性电路来等效。 每一个区段内可用一线性电路来等效。
(a)
对于右图所示的S形曲线, 对于右图所示的S形曲线,用三段折线近似 等效,每段折线的表达式可写成: 等效,每段折线的表达式可写成:
第十七章 非线性电路的分析
重点:掌握依据非线性电阻特点, 重点:掌握依据非线性电阻特点,分析非线性 直流电路的一般方法。 直流电路的一般方法。
只含电阻元件的电路称为电阻电路,如果电 阻元件都是线性的,则称为线性电路,否则便是 非线性电阻电路。 分析非线性电阻电路的基本依据仍然是KVL KCL和元件伏安关系。
线性 部分
a + I U − b
a Ri U OC b I + U −
非线性电阻特性 含源一端口特性 含源一端口特性 Q
例:设图中电压源US=9V,非线性电阻特性曲线如图所示。 设图中电压源 ,非线性电阻特性曲线如图所示。 若电阻R=1.5k ,求此时非线性电阻电压 U 和电流 I。 若电阻 。 解:线性部分的特性方程为: 线性部分的特性方程为:
a-b段:U = 段
2 −1 ≈ 4.44V为 行 ; 可 解 0.2 + 0.025

《非线性电路》课件

《非线性电路》课件

状态空间法
通过建立和求解状态方程,分析系统的动态 行为和稳定性。
05
非线性电路的仿真 技术
电路仿真软件介绍
Multisim
一款功能强大的电路仿真软件, 适用于模拟和数字电路的仿真, 特别适合非线性电路的仿真。
PSPICE
由MicroSim公司开发的一款电路 仿真软件,适用于模拟和混合信 号电路的仿真。
LTSpice
一款专门用于模拟电路仿真的软 件,具有强大的分析功能和直观 的用户界面。
仿真步骤与技巧
建立电路模型
根据非线性电路的原理图,在仿真软件中建立相应的电路模型。
设置仿真参数
根据需要,设置适当的仿真参数,如时间步长、仿真类型(稳态或瞬态)等。
运行仿真
设置好参数后,运行仿真,观察仿真结果。
分析仿真数据
04
非线性电路的稳定 性分析
稳定性定义
稳定性定义
一个电路在受到扰动后能够回到原来的平衡状态,则称该电路是 稳定的。
平衡状态
电路中各元件的电压、电流和功率达到一种相对静止的状态。
扰动
任何能使电路状态发生变化的外部作用,如电源电压波动、元件参 数变化等。
稳定性判据
1 2
劳斯稳定判据
通过计算系统的传递函数,确定系统稳定性的判 据。
非线性电路在各领域的应用前景
在通信领域,非线性电路可用于信号 处理、调制解调和光通信等方面,提 高通信系统的性能和稳定性。
在生物医学领域,非线性电路可用于 生理信号处理、医学影像和生物信息 等方面,为生物医学研究和临床应用 提供新的工具和方法。
在能源领域,非线性电路可用于电力 电子、电机控制和可再生能源转换等 方面,提高能源利用效率和系统稳定 性。

非线性电路分析法

非线性电路分析法

1 dn f (v ) an n! dv n
1 n!
f
(n) (V0 )
v V0
实际运用中常常只取级数的若干项就够了。
5.3 非线性电路分析法 返回1 返回2 返回3
ib0Leabharlann 1 2b1V12m
1 2
b2V22m
直流 分量
基波 分量
谐波 分量
b1V1m
3 4
b3V13m
3 2
b3V1mV22m
c
5.3 非线性电路分析法
2. 折线分析法(broken line method) 信号较大时,所有实际的非线性元件几乎都会进入饱和或截止状态。此时,
元件的非线性特性的突出表现是截止、导通、饱和等几种不同状态之间的转换。
晶体 三极 管的 转移 特性 曲线 用折 线来 近似
折线分析法的适用场 合:输入信号足够大 (使非线性元件进入 饱和和截止状态)
c os21
2
t
3 4
b3V12mV2m
c os21
2
t
3 4
b3V1mV22m
c os1
2 2
t
3 4
b3V1mV22m
c os1
2 2
t
组合频率 分量
由于特性曲线的非线性,输出电流中产生了输入电压中不曾有的新的频
率成份:输入频率的谐波 21和
2,2
31

3
形;成的各种组合频率:
2
1 2 ,1 2 ,1 22 ,1 22 ,21 2 ,21 2
5.3 非线性电路分析法
直流 分量
n最高次数为3的多项式的频谱结构图
b0
b2 2
(V12m

非线性电路分析方法

非线性电路分析方法
基尔霍夫定律的应用
在非线性电路中,基尔霍夫电流定律(KCL)和基尔霍夫 电压定律(KVL)仍然适用,用于建立节点电流方程和回 路电压方程。
状态变量的引入
对于含有记忆元件(如电容、电感)的非线性电路,需要 引入状态变量,建立状态方程。
数值求解方法
迭代法
有限差分法
有限元法
通过设定初值,采用迭代算法(如牛 顿-拉夫逊法、雅可比迭代法等)逐 步逼近方程的解。
实验设计思路及步骤
实验目的
01
明确实验的目标和意义,如验证非线性电路模型的正确性、探
究非线性电路的特性等。
实验器材
02
列出进行实验所需的设备和器材,如信号发生器、示波器、电
阻、电容、电感等。
实验步骤
03
详细阐述实验的操作过程,包括搭建电路、设置实验参数、记
录实验数据等。
实验结果分析与讨论
数据处理
描述函数法
通过描述函数将非线性元件的特性线性化,构造一个等效的线性化模型,再根据奈奎斯特稳定判据等方法判断稳 定性。
大信号稳定性分析方法
相平面法
在相平面上绘制非线性电路的状态轨迹,通过观察轨迹的形状和趋势来判断电 路的稳定性。
李雅普诺夫法
利用李雅普诺夫稳定性定理及其推论,构造适当的李雅普诺夫函数,通过分析 函数的性质来判断非线性电路的稳定性。
非线性电路分析方法
• 引言 • 非线性元件特性 • 非线性电路方程的建立与求解 • 非线性电路的时域分析 • 非线性电路的频域分析 • 非线性电路的稳定性分析 • 非线性电路仿真与实验验证
01
引言
非线性电路的定义与特点
定义:非线性电路是指电路中至少有一 个元件的电压与电流之间呈现非线性关 系的电路。

笫4章非线性电路及其分析方法ppt课件

笫4章非线性电路及其分析方法ppt课件

I0
1
2
i(t) cos )
I1
1
i(t
)
costdt
I
m
sin (1
cos cos )
In
1
i(t) cos ntdt
Im
2(sin
n cos n cos n n (n2 1)(1 cos
sin )
)
2、折线分析法(续4)
上图
▪ 各式等号右边部分除电流峰值 I m 外,其余为流通角
非线性电阻电路的近似解析分析
1、幂级数分析法(输入为小信号)
▪ 将非线性电阻电路的输出输入特性用一个N阶幂级数近似表 示,借助幂级数的性质,实现对电路的解析分析。
例如,设非线性元件的特性用非线性函数i f (v) 来描述。
• 如果 f (v) 的各阶导数存在,则该函数可以展开成以下幂
级数: i a0 a1v a2v2 a3v3
非线性电路与线性电路分析方法的异同点
▪ 基尔霍夫电流和电压定律对非线性电路和线性电路均适用。
▪ 线性电路具有叠加性和均匀性。 非线性电路不具有叠加性和均匀性。
▪ 线性系统传输特性只由系统本身决定,与激励信号无关。 而非线性电路的输出输入特性则不仅与系统本身有关, 而且与激励信号有关。
▪ 线性电路可以用线性微分方程求解并可以方便地进行电路 的频域分析。 而非线性电路要用非线性微分方程表示,因此对 非线性电路进行频域分析与是比较困难的。 ▪对非线性电路(非线性电阻电路)工程上一般采用近似 分析手段--图解法和解析法。
i b0 b2vi2 b3vi3
加在该元件上的电压为:
vi 5cos1t 2 cos2t
(v)
电流 i 中所包含的频谱成份中含有下述频率中的那

非线性电路的工程分析方法

非线性电路的工程分析方法

2.2.1 非线性电路的工程分析方法
(1)幂级数分析法
①外加一个电压信号时
设电压为,则
设电压为,且,则
2.2.1 非线性电路的工程分析方法
(2)折线近似分析法
用一组直线段来代替实际特性曲线。

放大区()截止区()
①转移特性曲线

输出特性曲线
2.2.1 非线性电路的工程分析方法
(3)线性时变电路分析法
假设,,且。

泰勒级数:
将在时变工作点
处展开为
减少组合频率分量,加大频率分量的间隔,易于选频。

假设,,且。

2.2.1 非线性电路的工程分析方法
式中,为回路电导。

无用组合频率分量进一步减少,有用信号的能量相对集中。

非线性电路分析方法

非线性电路分析方法

非线性电路分析方法摘要:我要将电路元件的范围及其相应的分析方法进行拓展,引入对非线性二端元件的分析和总结。

非线性二端元件就是接线端自变量和接线端的函数具有非线性关系的元件。

下面对非线性电路的分析方法进行分类和总结:关键词:非线性电路 直接分析法 数值分析法 图形分析法 分段线性分析法 小信号分析法0.引言到目前为止,我们已经学习过若干种线性元件的电路,也学习过这些元件构成的线性电路分析法。

本文将就非线性问题进行分类和归纳总结。

1.直接分析法此方法一般应用于对非线性二端元件的函数关系较简单时使用,结合并运用线性元件电路的分析方法和一些定理,同时列写出非线性的补充方程,最后通过求解数学问题并结合电路实际解答的方法。

我们首先用直接分析法求解图1.1所示的简单非线性电阻电路。

假设图中非线性电阻的特性可表示为下列v-i 关系:2,00,0D D D DKv v i v ⎧>=⎨≤⎩常熟K 大于零。

D i图1.1该电路的求解过程:(D v -E )/R +D i = 0 (1.1) 补充方程: D i = K D v 2 (1.2) 注意该元件在D v 大于零的时候才能工作。

如果D v <0 则 D i = 0用原件的非线性v-i 关系替换式(1.1)中的D i 就得到了用节点电压表示的节点方程: (D v -E )/R + Kv D 2 = 0 (1.3)化简式(1.3),得到下列二次方程:RK D v 2 + D v – E = 0 求出D v 并选择正解,即:12D v RK-+=(1.4)对应的i D 表达式可通过将上式替换式(1.2)得到,即:D i= 12K RK ⎛- ⎝⎭小结:这类分析方法很有局限性,通常只适用于函数关系较简单的非线性求解问题,对于较复杂的问题,下面我将讨论到。

2.数值分析法当所求非线性的函数关系不是简单的函数关系时,已经不能用已有的公式去求解,这是就需要在误差精度允许的范围内,运用计算方法学的知识寻求所需的解,下面介绍常用到的计算方法:《电路基理论础》中给出的3种方法: ① 前向欧拉法(Forward Euler method ):(以后本论文均以(,)dy f y x dx =表示dy dx) 1k y + = k y + h f (k y , k x )其中h 为积分步长② 后向欧拉法 (Backward Euler method )1k y + = k y + h f ( 1k y + , 1k x + )③ 梯形法(trapezoidal method )1k y += k y + 0.5[f (k y , k x ) + f ( 1k y + , 1k x +) ] 也就是我们所熟悉的梯形公式 还有几种常用的计算方法:④ 辛普森公式(Simpson )也作抛物线公式: 1k y += k y +16{f ( k y , k x )+ 4f [0.5(k y + y k+1) ,0.5(k x + 1k x +)] +f (1k y + , 1k x + )} ⑤ 牛顿(Newton )法 (也作切线迭代法):该公式多用于复杂的函数的求根运算,设()y f x =1n x += n x -()()n n f x f x '⑥ 拉格朗日差值n 次型对于无法求出具体表达式的非线性函数,在已知图像上若干点的情况时,可以用n 次多项式进行近似的拟合,我所学过的有牛顿型差值公式和拉格朗日型差值,下面只介绍拉格朗日型差值公式,牛顿型差值比较类似。

第10讲非线性电路分析方法

第10讲非线性电路分析方法

非线性电路分析方法
g(t)与u1的乘积也会产生频率组合,
nω2±ω1,n=0,1,2,…。
特别的, u1当为低频信号时,频率组 合中频差加大,便于滤波。
注意 线性时变分析的关键是u1足够小。
非线性电路分析方法
10.4 单向开关函数
VD
iD


u1

+ u2
uD u1 u2
H(j)
uo


图10-2 单二极管电路
f ( EQ u2 )
an
u 2n 2
n0
unan u2n 1
n 1
f (时E变Q 系数u2 ) 2!
时C变nm参 2量an u2n 2
n2
非线性电路分析方法
i I0(t) g(t)u1
I0(t):u1 =0时的电流,
称时变静态电流。
g(t):增量电导在u1 =0时的数值
(2n+1)ω2±ω1,n=0,1,2,…。
非线性电路分析方法
减少输出信号中无用的组合频率分量
思路 (1)从非线性器件的特性考虑。 (2)从电路结构考虑。 (3)从输入信号的大小考虑。
非线性电路分析方法
① 采用具有平方律特性的场效应管代替晶体管。 ② 采用多个晶体管组成平衡电路。 ③ 使晶体管工作在线性时变状态或开关状态,
1 2
2
cos2t
2
3
cos 32t
2
5
cos 52t
(1)n1
(2n
2
1)
cos(2n
1)2t
iD
gD[
1 2
2
cos2t
2
3
cos
32t

非线性电路分析法

非线性电路分析法
第三节 小信号分析法
工程上,非线性电阻电路除了作用有直流电源外,往往同时作用有时变电源,因此在非线性电阻的响应中除了有直流分量外,还有时变分量。例如:半导体放大电路中,直流电源是其工作电源,时变电源是要放大的信号,它的有效值相对于直流电源小得多(10-3),一般称之为小信号(small-sigal)。对含有小信号的非线性电阻电路的分析在工程上是经常遇到的。
第六章 非线性电路
非线性电路:电路中元件性质(R的伏安特性、L的韦安特性、C的库伏特性)不再是线性关系,即其参数不再是常量。含有非线性元件的电路称为非线性电路。
第一节 非线性元件
一、电阻元件:VAR不符合欧姆定律的电阻元件。
①流控型电阻(CCR):电阻两端的电压是通过其电流的单值函数。VAR如图。
②压控型电阻(VCR):通过电阻的电流是其两端电压的单值函数。VAR如图。
例:用图解法示求电路中的电流i
+-
2)DP图法和TC图法
① DP图法:若某非线性一端口网络的端口伏安关系也称为驱动点(drive point)特性曲线DP确定,则已知端口的激励波形,通过图解法可求得响应的波形。
t
②TC图法:输入与输出是不同端口的电压、电流,其关系曲线称为转移特性(transmission character )TC曲线。已知TC曲线和激励波形,通过图解法可求得响应的波形。见P170
将其在工作点处展开为泰勒级数:
在小信号作用时非线性电阻可看作线性电阻,参数为其在工作点处的动态电阻。
画出小信号等效电路如图:

据线性电路的分析方法求出非线性电阻的电压电流增量。
总结以上过程的小信号法步骤:
①只有直流电源作用求解非线性元件的电压电流即静态工作点Q( UQ,IQ)

非线性电路及其分析方法

非线性电路及其分析方法

非线性元件的基本特性
非线性电阻 :二极管、三极管、场效应管
非线性元件
非线性电抗 :磁芯电感、钛酸钡介质电容
这里以非线性电阻(半导体二极管)为例,讨论非线性元件的特性
非线性元件的基本特性
非线性元件的工作特性
线性电阻的伏安特性曲线
半导体二极管的伏安特性曲线
与线性电阻不同,非线性电阻的伏安特性曲线不是直线。
非线性电路的分析方法
分析原则:
对于电路的分析,应当基于其所包含的电子元器件的基本物 理特性及其相互作用关系
在电路的分析与计算中,基尔霍夫定律对于线性电路和非线 性电路均适用,对于非线性电路的求解最终要归结于求应用 基尔霍夫定律得到的非线性方程或方程组的解的问题
非线性电路的分析方法
分析方法:
对非线性电路的分析没有统一的方法。对非线性电路的分析 只能针对某一类型的非线性电路采用适合这种电路的分析方 法。 常见的非线性电路分析方法有:直接分析法、数值分析法、 图解分析法、微变等效电路分析法、分段线性分析法、小信 号分析法等
非线性元件的基本特性
非线性元件的频率变换作用
线性电阻上的电压
正弦电压作用于二极管
与电流波形
产生非正弦周期电流
非线性电阻的输出电流与输入电压相比,波形不同,周期相同。
可知,电流中包含电压中没有的频率成分。
非线性元件的基本特性
例:设非线性电阻的伏安特性曲线具有抛物线形状,即:i kv2 ,式中 k 为常数。
非线性电路的分析方法
数值分析法——应用“牛顿法”求解非线性电阻电路
牛顿法: 对于含有一个非线性电阻元件的电路应用基尔霍夫电压定律可 以得到一个一元非线性方程 f( x) = 0, x 为待求解的变量,一 般为电压或者电流。牛顿法是将f( x) = 0 逐步归结为某种线性 方程来求解。设已知方程 f( x) = 0 有近似根 xk, 将 f( x) = 0 在点 xk处泰勒展开:

非线性电路分析方式讲解

非线性电路分析方式讲解

扬 声 器
音频 放大器
解调器
中频放大 与滤波
混频器
高频放大
本地 振荡器
非线性电路分析方式讲解
第5章 频谱的线性搬移电路
FDMA原理
非线性电路分析方式讲解
第5章 频谱的线性搬移电路
两种类型的频谱变换电路
① 频谱线性搬移电路:将输入信号的频谱沿频率轴搬 移。 例:振幅调制、解调、混频电路。
特点:仅频谱搬移,不产生新的频谱分量。
第5章 频谱的线性搬移电路
基本思想:减少单二极管电路中不必要的频率分量
1.原理电路
设 N1=N2,等效电路:
非线性电路分析方式讲解
2 ❖ 忽略输出电压的反作用:
第5章 频谱的线性搬移电路
uD1=u2+u1 uD2=u2-u1
U2>0.5V, U2>>U1,二极管开关主要受u2控制
i1、i2在T2次级产生的电流分别为:
iD gDuD 0
2nππ22t
2nππ 2
2nππ22t
2nπ3π 2
令K(2t)1,
0,
2nππ22t
2nππ 2
2nππ22t
2nπ3π 2
非线性电路分析方式讲解
iD g (t)u D g D K (2 t)u D
其中 g(t)gDK(2t)称为
时变电导
第5章 频谱的线性搬移电路
K(2t)1 2π 2cos2t32πco3 s2t52πco5 s2t 由以上分析可以看出,流过二极

则uo中 包含的频率分量?
iD g D K (2 t)u 1 ( u 2 )
g D 1 2 2 c2 o t 3 2 s c3 o 2 t 5 2 s c5 o 2 t s U 1 c1 o t U 2 s c2 o t

高等电路理论与技术课件非线性电阻电路分析方法

高等电路理论与技术课件非线性电阻电路分析方法

试用分段线性化方法确定隧道二极管的工作点。
i
R0
u
U0

i / mA
4
3 Q1
Q2
2
1
Q3
0
0.1
0.3
解 负载线方程 u 0.6 200i
第1段折线的方程 i 3102u
第2段折线的方程 i 2 102u 5 103
第3段折线的方程 i 102u 1103


UC0=4V,Cd=4 10-6F, uc=1/3(1-e-62.5t) (t) V uc=4.33-0.33e-62.5t V,t>0
例5:已知u1= i13 i12 i1 (单位:V, A), =(10-3/3) il3(Wb, A), q =(10-3/54) uc2(C,V),
R2d

du2 di2
I2 1A

1

6i
2 2
I2 1A
7
R3d

du3 di3
I3 1A

2

3i
2 3
I3 1A
5
画出小信号工作等效电路,求 u , i
I1 2
+
Emsinw_t
I2
I3
7
+ _U2
5
+ _ U3
I1=Emsinw t /(2+35/12)= 0.2033 Emsinw t I2= I1 5/12 =0.0847 Emsinw t I3= I1 7/12 =0.1186 Emsinw t
含有一个非线性电阻元件电路的求解:
先用戴维南等效电路化简,再用图解法求解

5.1非线性电路的分析方法

5.1非线性电路的分析方法
则该式化简为 i ≈ f ( EQ + u2 ) + f ′( EQ + u2 ) u1 式中,f (EQ+u2) 和 f ′(EQ + u2 ) 是与u1无关的系数,但是它
们都随 u2 变化,即随时间变化,因此称为时变系数,或称 为时变参量。
f(EQ+u2)是当输入信号u1=0时的电流,称为时变静态电流或 时变工作点电流(与静态工作点电流相对应),用 I0(t)表示; f ′(EQ + u2 )是增量电导在u1=0时的数值,称为时变增益或 时变电导、时变跨导,用g(t)表示。
(2) 从电路考虑。例如,采用由多个非线性器件组成平衡电路,
抵消一部分无用组合频率分量。
(3) 从输入信号的大小考虑。例如减小u1和u2的振幅,以便有
效地减小高阶相乘项及其产生的组合频率分量的强度。
上面的分析是对非线性函数用泰勒级数展开后完成的, 用其它函数展开,也可以得到上述类似的结果。
11
第5章 频谱的线性搬移电路
1
第5章 频谱的线性搬移电路
在频谱的搬移电路中,根据频谱搬移的不同特点,可以分为频谱的线性搬移 电路和非线性搬移电路:从频域上看
在频谱搬移的过程中,输入信号的频谱结构不发生变化,即搬 移前后各频率分量的比例关系不变,只是在频域上简单的搬移 (允许只取其中的一部分),如图所示,这类搬移电路称为频谱的 线性搬移电路。振幅调制与解调、混频等电路就属于这一类电路。
3
第5章 频谱的线性搬移电路
5.1 非线性电路的分析方法
一 非线性函数的幂级数展开分析法
非线性器件的伏安特性,可用下面的非线性函数来表示:
i = f (u) 式中,u 为加在非线性器件上的电压。
一般情况下,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档