第四章光检测器与光接收机

合集下载

光检测器和光接收器ppt课件

光检测器和光接收器ppt课件
d
PD
d
L
4.1.2 APD光检测器 APD光检测器也称为雪崩光电二极管 (Avalanche Photodiode),其工作机理如下:入射信 号光在光电二极管中产生最初的电子-空穴对,由于光 电二极管上加了较高的反向偏置电压,电子-空穴对在 该电场作用下加速运动,获得很大动能,当它们与中性 原子碰撞时,会使中性原子价带上的电子获得能量后跃 迁到导带上去,于是就产生新的电子-空穴对,新产生 的电子-空穴对称为二次电子-空穴对。这些二次载流子 同样能在强电场作用下,碰撞别的中性原子进而产生新 的电子-空穴对,这样就引起了产生新载流子的雪崩过 程。也就是说,一个光子最终产生了许多的载流子,使 得光信号在光电二极管内部就获得了放大。 从结构来看,APD与PIN的不同在于增加了一 个附加层P,如图4.1.3所示。在反向偏置时,夹在I层 与N+层间的PN+结中存在着强电场,一旦入射信号光 从左侧P+区进入I区后,在I区被吸收产生电子-空穴对, 其中的电子迅速漂移到PN+结区,PN+结中的强电场便 使得电子产生雪崩效应。
图4.1.3 APD光电二极管

与PIN光检测器比较起来,光电流在器件内部就得到了放大,从而避免了由外部电子 线路放大光电流所带来的噪声。我们从统计平均的角度设一个光子产生M个载流子, 它等于APD光电二极管雪崩后输出的光电流 IM与未倍增时的初始光电流IP的比值 I M (4.1.4) I 式中,M称为倍增因子。倍增因子与载流子的电离率有关,电离率是指载流子在漂移 的单位距离内平均产生的电子-空穴对数。电子电离率与空穴电离率是不相同的,分 别 用 和表示,它们与反向偏置电压、耗尽区宽度、掺杂浓度等因素有关,记为 k (4.1.5) k 式中,kA为电离系数,它是光检测器性能的一种度量。对 M的影响可由下式给出,即 1 k M (4.1.6) e k w 1 1 e 当 0 时,仅有电子参与雪崩过程,M , 增益随w指数增长;当 且k 时,由式 (4.1.6)可得,出现雪崩击穿。通常,M值的范围在10~500之间。 APD光电二极管出现雪崩击穿是因为所加的反向偏置电压过大,考虑到M与反向偏置 电压之间的密切关系,常用经验公式描述它们的关系,即 1 M (4.1.7) 1 (V / V ) 式中,n是与温度有关的特性指数,n = 2.5~7;VBR是雪崩击穿电压,对于不同的半 导体材料,该值从70 ~200V 不等;V 为反向偏置电压,一般取其为 VBR 的 80%~90%。 APD管使用时必须注意保持工作电压低于雪崩击穿电压,以免损坏器件。

光纤通信原理第四章光接收机

光纤通信原理第四章光接收机
若两个随机变量的概率分布都是高斯函数,则它 们之和的概率密度函数也是高斯函数,且其方差等于 两个随机变量的方差之和。高斯分布的这一特点使接 收机灵敏度的计算得到简化。
在高斯近似下,放大器和均衡滤波器输出端的总
噪声的概率密度函数依然是高斯函数,且总噪声功率 为
•放大器输出噪声主要由前置级决定,只要第一级的增 益足够大,以后各级引入的噪声可略,
•分析时把所有噪声等效到输入端。
放大器输入端的噪声源
电阻的热噪声和有源器件的噪声,都是由无限
多个统计独立的不规则电子的运动产生的,它们的 总和的统计特性服从正态分布。放大器噪声的概率 密度函数可以表示为高斯函数
f x 21expx2m22
1.光接收机输入端等效电路及噪声源
is(t):光电检测器等效电流源,in(t):光电检测 器的散粒噪声,Cd:光电检测器的结电容。Rb和Cs: 偏置电阻和偏置电路的杂散电容,Ra和Ca:放大 器的输入电阻和电容。
放大器的有源器件会引入噪声。一般将第一 级有源器件的各种噪声源都等效到输入端,分两 种情况:一种是等效为输入端并联的电流噪声源ia, 设它的功率谱密度为sI;另一种是等效为输入端串 联的电压噪声源ea,设它的功率谱密度为SE。
4.2光接收机
4.2.1光接收机简介 4.2.2放大电路及其噪声 4.2.3光接收机灵敏度的计算
4.2.1 光接收机简介
光接收机的组成
光接收机:模拟和数字。模拟光接收机,主要用于 光纤CATV系统;数字光接收机,用于大部分通信系 统。
检测方式:相干和非相干。相干检测,先将接收的 光信号与一个本地振荡光混频,再被光电检测器变换 成中频信号;非相干检测,常用的非相干检测是直接 功率检测,用光电二极管直接将接收的光信号变换成 基带信号。

第04章 光检测器和光接收机

第04章 光检测器和光接收机

(4.1.4)
量子效率定义为通过结区的载流子数与入射的光子数之 比, 即
第4章 光检测器和光接收机
通过结区的光生载流子数(光生电子-空穴对数) 入射到器件上的光子数
η=
(4.1.5)
由物理概念可知 光生载流子数(光生电子-空穴对数)=
Ip e
e为电子电荷量, 其值为1.6×10-19 C。
P0 入射的光子数= hν
第4章 光检测器和光接收机
第 4 章 光检测器和光接收机
4.1 光检测器 4.2 光检测器的分类 光检测器的分类 4.3 PIN光电二极管 光电二极管 4.4 雪崩光电二极管 雪崩光电二极管(APD) 4.5 MSM光检测器 光检测器 光检测器 4.6 光检测器的可靠性和注意事项 4.7 IM/DD模式 模式 4.8 光接收机 习题
第4章 光检测器和光接收机
光生载流子在外加负偏压(P接负, N接正)和内建 电场的作用下, 在外电路中出现光电流, 如图4-1-1所示, 从而在电阻R上有信号电压输出。 这样就实现了输出电压 跟随输入光信号变化的光电转换作用。 图4-1-2所示为PN结及其附近的能带分布图, 要注意 的是能带的高、 低是以电子的电位能为依据的, 电位越 负能带越高。
第4章 光检测器和光接收机
(4) 雪崩倍增建立时间(仅对于APD); (5) RC时间常数。 显然, 一个快速响应的光电检测器, 它的响应时 间一定是短的。 要想具有快速响应的特性, 光电二极 管在结构上首先要减薄零场区, 其次是减小结电容。 采用同轴封装和微带结构可以减小管壳电容, 以进一步 减短响应时间。
第4章 光检测器和光接收机
4.1.2
主要工作特性 主要工作特性
下面介绍衡量光检测器性能的几个主要特性参数。 响应度与量子效率 1. 响应度与量子效率 响应度定义为在一定波长的光照射下, 光电检测 器的平均输出电流Ip与入射的平均光功率P0之比, 表示 I P 如下:

光纤通信4-光检测器与光接收机ppt课件

光纤通信4-光检测器与光接收机ppt课件

hc Eg
hc 1 . 24 E E eV ) g g(
m ) c(
由于吸收系数取决于光波长,因此,特定的半导体材料只能应用在有限的波长 范围内。
3、 雪崩光电二极管(APD) 1 )雪崩光电二极管的的结构
P 高掺杂的 型半导体,为接触层;
I轻掺杂半导体层,为漂移区(光吸收区); P型半导体,为倍增层(或称雪崩区); N+高掺杂的 型半导体,为接触层。
S (f )eI Q p
0 . 9 1 . 3 0 . 94 A / W R 1 . 24 1.24

3、APD 光电二极管中所有载流子产生的倍增因子M
M
IM M Ip

m
V
m
1 1(Vj /VB)n
j
加在PN结的有效电压 雪崩电压 适配因子,与材料 及结构有关
I M 雪崩增益后输出电流的平均值
w耗尽区宽度
产生的光电流
P sw 0 Ip e eP ( 1 e ) hf hf
e w s R ( 1 e ) hc
eP sw 0( 1 e ) hc
I p RP
光吸收系数与波长的关系曲线
s ( )
c
hf
?
Eg
hf Eg
N
光电二极管(PD)
1、半导体光电二极管 光子进入PN结,价带的电子受激吸收将 被激发到导带,产生一对光生载流子, 受内建电场的作用,光生载流子的电子 向 N区漂移,空穴向P区漂移,载流子 移动到外部电路形成光电流。
光生电流包括:
耗尽层 势 垒
漂移电流--耗尽区的光生载流子在电场作用下运动形成的电流扩散电流 扩散电流----P区的光生载流子形成的电流 N区的光生载流子形成的电流

第4章光检测器和光接收机

第4章光检测器和光接收机

第4章 光检测器和光接收机
4.1光检测器的工作原理
作用:将接收到的光信号转换成电信号。 工作原理: 把能量大于Eg的光照射到半导体材料上, 则处于低能带的电子吸收该能量后而被激励跃 迁到高能带,从而产生电子_空穴对。通过在 半导体材料上外加电场,使得电子_空穴对在 半导体材料中渡越,形成光电流(光生电流)。 当入射光变化时,光生电流随之做线性变化, 从而把光信号转换成电信号。
第4章 光检测器和光接收机
(4)动态范围
在保证系统误码率指标要求下,接收机的最 低光功率和最大允许光功率之比
Pmax D 10 lg Pmin
D的单位为dB
第4章 光检测器和光接收机
PIN光电检测器优点 (1)I区的宽度远大于P区和N区宽度,所以I区有
更多的光子被吸收,从而增加了量子效率; (2)扩散电流很小 (3)反向偏压可以取较小值
第4章 光检测器和光接收机
2 APD光检测器 工作机理:
入射光在光电二极管中产生最初的电子_空穴对,由 于光电二极管上加了较高反向偏置电压,电子_空穴对在 该电场作用下加速运动,获得很大动能,当它们与中性原 子碰撞时,会使中性原子价带上的电子获得能量后跃迁到 导带上去,于是产生新的电子_空穴对,新产生的电子_空 穴对称为二次电子_空穴对。这些二次载流子同样能再强 电场作用下,碰撞别的中性原子进而产生新的电子_空穴 对,这样就引起了产生新载流子的雪崩过程。 这样,一个光子最终产生了许多的载流子,使得光信 号在光电二极管内部就获得了放大。
第4章 光检测器和光接收机
4.3 光接收机
光接收机的作用是把光发射机发送并 经光纤传输的携带有信息的光信号转化成 相应的电信号,然后放大并再生恢复为原 始电信号。
第4章 光检测器和光接收机

光检测器和光接收机学习PPT

光检测器和光接收机学习PPT

线性动态范围
01 线性动态范围:指光检测器或光接收机在保持线 性响应时的输入光功率范围。
02 线性动态范围越大,光检测器或光接收机的性能 越好,能够探测到的光信号范围越广。
03 在实际应用中,需要根据具体需求选择合适线性 动态范围的光检测器或光接收机。
04
光检测器和光接收机的技术发展与趋

高速光检测器技术
护和可持续发展提供科学依据。
THANKS
感谢观看
光检测器和光接收机学习
• 光检测器和光接收机概述 • 光检测器和光接收机的分类与比较 • 光检测器和光接收机的性能指标 • 光检测器和光接收机的技术发展与趋
势 • 光检测器和光接收机的应用案例
01
光检测器和光接收机概述
光检测器和光接收机的定义
光检测器
光检测器是一种能够将光信号转 换为电信号的器件,常用于光纤 通信、光电传感器等领域。
应用于粒子探测、光谱分析、激光雷达等领域。
光电导探测器
总结词
光电导探测器是一种基于半导体材料的光电检测器,利用材料电阻随光照变化的 特性实现光信号的检测。
详细描述
光电导探测器利用半导体材料的光电导效应,当光照变化时,材料电阻发生变化 ,从而引起电信号的变化。光电导探测器具有响应速度快、灵敏度高、线性范围 宽等特点,广泛应用于高速光通信、光纤传感、光谱分析等领域。
光电倍增管
总结词
光电倍增管是一种高灵敏度的光电检测器,通过多个级联的 dynode 实现光电流的放 大。
详细描述
光电倍增管由多个 dynode(打拿极)组成,当光子打在光电倍增管的阴极上时,光子 能量转化为电子能量,电子经过各级 dynode 的加速撞击,产生更多的电子-空穴对, 从而实现光电流的放大。光电倍增管具有高灵敏度、低噪声、响应速度快等特点,广泛

《光探测及光接收机》课件

《光探测及光接收机》课件
光电倍增管
光电倍增管是一种高灵敏度的光探测器,它通过多级倍增 系统将微弱的光信号转换为较强的电信号。其特性包括高 灵敏度、低噪声、快速响应等。
光电晶体管
光电晶体管是一种基于晶体管的的光探测器,其特性包括 高响应速度、低噪声、高灵敏度等。
光纤光栅探测器
光纤光栅探测器是一种基于光纤的光探测器,其特性包括 波长选择性、高灵敏度、低噪声等。
安全监控
光探测器可用于安全监控系统 ,如红外热像仪、激光雷达等
,实现远距离探测和监控。
光探测技术的发展趋势与挑战
发展趋势
随着技术的不断发展,光探测器的性能不断提高,响应速度更快、灵敏度更高 、线性范围更广。同时,新型的光探测器不断涌现,如单光子探测器、量子点 探测器等。
挑战
光探测技术面临的挑战主要包括提高探测器的响应速度和灵敏度、降低噪声和 暗电流、减小体积和成本等。此外,新型光探测器的研发和应用也需要解决一 些技术难题,如稳定性、可靠性等。
数据传输。
传感领域
光探测及光接收机还可应用于光学 传感领域,如气体、湿度、温度等 传感器的检测,以及生物传感等。
科学研究
在物理学、化学、生物学等科学研 究中,光探测及光接收机可用于探 测和分析各种光谱信号,为科学研 究提供有力支持。
光探测及光接收机的发展历程与趋势
发展历程
自20世纪60年代以来,随着光纤技术和半导体技术的不断发 展,光探测及光接收机经历了从低速到高速、从低灵敏度到 高灵敏度的发展历程。
工作原理
光探测及光接收机通过光电效应将光信号转换为电信号。当光信号照射到光探测器的表面时,光子与探测器材料 相互作用,产生电子-空穴对。在电场的作用下,电子和空穴分别向相反方向移动,形成电信号。

通工专业-光纤通信技术-第四章-光探测器与光接收机

通工专业-光纤通信技术-第四章-光探测器与光接收机

光纤通信系统对光探测器的要求
(1)灵敏度高:灵敏度高表示探测器把 光功率转变为电流的效率高。在实际的光接 收机中,光纤传来的信号极其微弱,有时只 有1nw左右。为了得到较大的信号电流,人 们希望灵敏度尽可能的高。
(2)响应速度快:指射入光信号后,马上就有 电信号输出;光信号一停,电信号也停止输出, 不要延迟。这样才能重现入射信号。实际上电信 号完全不延迟是不可能的,但是应该限制在一个 范围之内。随着光纤通信系统的传输速率的不断 提高,超高速的传输对光电检测器的响应速度的 要求越来越高,对其制造技术提出了更高的要求。
RC 2.2RT CT (4.6)
式中,CT为电路的总电容,RT为电路的总电阻。
考虑上述三个因素的影响,总的上升时间为
(
2 RC
2 d
2 i
)1/ 2
PIN-PD特性参数(3)噪声
•噪声
噪声直接影响光接收机的灵敏度。
散粒噪声(信号电流和暗电流产生)
暗电流是器件在反偏压0.9UB条件下,没有入射光时 产生的反向电流,与光电二极管的材料和结构有关
I层较厚,几乎占据了整个耗 尽区。绝大部分的入射光在I层 内被吸收并产生大量的电子-空 穴对。在I层两侧是掺杂浓度很 高的P型和N型半导体,P层和 N层很薄,吸收入射光的比例 很小。因而光产生电流中漂移 分量占了主导地位,这就大大 加快了响应速度。另外,可通 过控制耗尽层的宽度w,来改 变器件的响应速度。
4.1 光探测器
4.1.1光电检测原理——PN结的光电效应
光电二极管(PD)把光信号转换为电信号的功能, 是由半导 体PN结的光电效应实现的。
当光照射到光电二极管的光敏面 上时,能量大于或等于带隙能量 Eg的光子将激励价带上的电子吸 收光子的能量而跃迁到导带上 (受激吸收),可以产生自由电 子-空穴对(称为光生载流子)。 在耗尽层,由于内部电场的作用, 电子向N区运动,空穴向P区运动, 形成漂移电流。

光检测器与光接收机课件

光检测器与光接收机课件

光接收机的应用实例
01
光纤通信系统
在光纤通信系统中,光接收机用于接收远端发送的光信号,并将其转换
为电信号进行进一步处理。
02
激光雷达
激光雷达通过发射激光束并接收反射回来的光信号来测量目标距离、速
度和角度等信息。光接收机在激光雷达中负责接收反射回来的光信号。
03
生物医学成像
在生物医学成像领域,如荧光显微镜和共聚焦显微镜中,光接收机用于
工作原理
光检测器通过光电效应将光信号 转换为电信号,而光接收机则对 电信号进行处理,以便后续的信 号处理和传输。
分类与特点
பைடு நூலகம்分类
光检测器和光接收机有多种分类方式, 如按工作波长、响应速度、噪声性能 等。
特点
不同类型的光检测器和光接收机具有 不同的特点,如响应速度、灵敏度、 带宽等,适用于不同的应用场景。
光接收机的性能参数
灵敏度
光接收机的灵敏度是指其能够检测到的最小光功率。灵敏度越高, 光接收机在低光功率条件下也能正常工作。
带宽
光接收机的带宽是指其响应频率范围。带宽越宽,光接收机能够传 输的数据速率越高。
线性范 围
线性范围是指光接收机正常工作范围内,输出信号与输入光功率之间 的线性关系。线性范围越大,光接收机对光功率变化的响应越准确。
详细描述
光检测器和光接收机能够检测到环境中特定波长的光线,并将其转换为可用于监 测的电信号。在环境监测中,它们被广泛应用于水质检测、空气质量监测、温室 气体测量等领域,以帮助环境保护和治理。
THANKS
感谢观看
捕捉荧光信号或反射光信号,以获得高分辨率的图像。
PART 04
光检测器与光接收机的比 较与选择
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P(W ) P0 1 e ()W
式中:P0为入射光功率;α(λ)为材料吸收系数, 其大小与材料性质有关,且是波长的函数。
半导体材料的吸收作用随波长减小而迅速增强, 即α随波长减小而变大。
下图为光纤通信中用作光检测器的几种材料的 吸收系数随波长的变化情况。
吸 收 系数(cm- 1) In0.70Ga0.30As 0.64P0.36
第4章 光检测器与光接收机
半导体中的光发射 (e)反向偏置的pn结
第4章 光检测器与光接收机
在耗尽区,在内建电场的作用下电子向N区漂移, 空穴向P区漂移,如果PN结外电路构成回路,就会形 成光电流。当入射光功率变化时,光电流也随之线性 变化,从而把光信号转换成电信号。当入射光子能量 小于Eg时,不论入射光有多强,光电效应也不会发生, 即产生光电效应必须满足:
第二节 光检测器
光纤通信系统对光检测器的要求: ➢在工作波长上光电转换效率高,即对一定的入射光功 率,能够输出尽可能大的光电流; ➢响应速度快,线性好及频带宽,使信号失真尽量小。; ➢噪声低,器件本身对信号的影响小; ➢体积小、寿命长、高可靠、工作电压低等。
在光纤通信中,满足上述要求的光检测器有两种: PIN光电二极管和雪崩二极管(APD)
2)动态范围 在实际的系统中,由于中继距离、光纤损耗、连
接器及熔接头损耗不同,发送功率随温度的变化及老 化原因,接收光功率有一定的范围。 定义:
最大允许的接收光功率与最小可接收光功率之差 为光接收机的动态范围。
最大光功率决定于非线性失真及前置放大器的饱 和电平。
最小光功率则决定于接受灵敏度。
第4章 光检测器与光接收机
其余电路则对信号进行进一步的处理、整形,以 提高系统的性能,最后解调出发送信息。
衡量接收机性能的主要指标是接收灵敏度及动态 范围。 1)接受灵敏度
接受灵敏度是指达到指定误码率或信噪比时的最 小接收信号光功率,通常用dBm表示。
影响接受灵敏度的主要因素是光信号检测过程及 前置放大器中的各种噪声。
第4章 光检测器与光接收机
第4章 光检测器与光接收机
2)PIN光电二极管 a、PIN光电二极管的结构
PIN光电二极管是在掺杂浓度很高的P型、N型半 导体之间,生成一层掺杂极低的本征材料,称为I层。 在外加反向偏置电压作用下,I层中形成很宽的耗尽层。
结构如下图:
由于I层吸收系数很小,入射光可以很容易地进入 材料内部被充分吸收而产生大量的电子—空穴对,因此 大幅度提高了光电转换效率。另外,I层两侧的P层、N 层很薄,光生载流子的漂移时间很短,大大提高了器 件的响应速度。
不同半导体材料存在着上限波长即截止波长。当 入射波长远远小于截止波长时,光电转换效率会大大 降低。
因此,半导体光电检测器只可以对一定波长范围 的光信号进行有效的光电转换,这一波长范围就是波 长响应范围。
第4章 光检测器与光接收机
由于半导体材料对光的吸收,光在材料中按 指数率衰减,因此在厚度W的材料内被吸收的光功 率为:
第4章 光检测器与光接收机
第四章 光检测器与光接收机
在光纤通信系统中,光接收机的任务是以最小的 附加噪声及失真,恢复出光纤传输后由光载波所携带 的信息,因此光接收机的输出特性综合反映了整个光 纤通信系统的性能。
本章首先介绍光检测器的原理与特性,然后以数 字接收机为例对光接收机进行详细说明。
第4章 光检测器与光接收机
第4章 光检测器与光接收机
增透膜 光
P I PN+
(a)
电极 电极
PIN光电二极管结构
电极 (b )
第4章 光检测器与光接收机
动 画 演 示
PIN光电二极管及能带图
第4章 光检测器与光接收机
b、PIN光电二极管的特性 PIN光电二极管的主要特性包括波长响应范围、
响应度、量子效率、响应速度及噪声特性等。 波长响应范围
第4章 光检测器与光接收机
一、光检测器的工作原理
1) PN结的光电效应 光电二极管(PD)是一个工作在反向偏压下的
PN结二极管,如下图。由光电二极管作成的光检测器 的核心是PN结的光电效应。
当PN结加反向偏压时,外加电场方向与PN结的 内建电场方向一致,势垒加强,在PN结界面附近载流 子基本上耗尽形成耗尽区。当光束入射到PN结上,且 光子能量hv大于半导体材料的带隙Eg时,价带上的电 子吸收光子能量跃迁到导带上,形成一个电子—空穴 对。
第一节:概述 第二节:光检测器 第三节:数字接收机
第4章 光检测器与光接收机
第一节 概述 光接收机可分两类:模拟接收机和数字接收机, 如下图。
它们均由光检测器、低噪声前置放大器及其他信 号处理电路组成。
数字接收机比较复杂,在主放大器后还有均衡滤 波、定时提取与判决再生、峰值检波与AGC放大等电 路。
In 0. Ge
104 GaA s
103
102 Si
101 0.4
0.6 0.8 1.0 1.2 波 长 /m
1.4 1.6 1.8
材料吸收系数随波长的变化情况
第4章 光检测器与光接收机
从图中可以看出,当波长很短时,材料的吸收 系数很大,这样,光在半导体材料表层即被吸收殆 尽。在表层产生的光生载流子要扩散到耗尽层才能 产生光生电流,而在表层为零电场扩散区,扩散速 度很慢,在光生载流子还没有到达耗尽层时就大量 被复合掉了,使得光电转换效率在波长很短时大大 下降。
光检测器的作用是把接收到的光信号转换成光电 流。
前置放大器的作用是对光检测器生成的光电流进 行低噪声放大。
第4章 光检测器与光接收机
光纤通信接收机框图 (a)模拟接收机; (b)数字接收机
第4章 光检测器与光接收机
光检测器和低噪声放大器构成接收机前端,其性 能的优劣是决定接收灵敏度的主要因素。
主放大器的作用是把前端输出的毫伏级信号放大 到后面信号处理电路所需的电平(1-3V(峰-峰))。
h Eg
即存在
c
hc Eg
第4章 光检测器与光接收机
λc为产生光电效应的入射光的最大波长,称为截 止波长。
以Si为材料的光电二极管,λc=1.06μm;以Ge为材料 的光电二极管,λc=1.60μm。
利用光电效应可以制造出简单的PN结光电二极 管。但这种光电二极管结构简单,无法降低暗电流和 提高响应度,器件的稳定度也比较差,实际上不适合 做光纤通信的检测器。
相关文档
最新文档