酶的固定化讲解

合集下载

酶与细胞的固定化

酶与细胞的固定化
变化少,因而酶活力损失很少。 参与交联的基团有: a-氨基, -NH2(Lys), -SH(cys),咪唑基(His),酚基(Tyr),等
发酵液中含菌体少,有利于产品的分离纯化,提高产品质量等
第五节 固定化酶和固定化细胞的表征
• 缺点:酶与载体相互作用力弱,酶易脱落等 1)引入功能团和间隔臂;
第五节 固定化酶和固定化细胞的表征
酶被物理吸附于不溶性载体的一种固定化方 固定化后酶的哪些主要性质发生了变化?变化的趋势及原因分析.
常见非共价法?常见共价法?
法。 少量的持续不断的配基的脱落;
交联法由于不需要活化基团,所以条件比较温和,酶活的回收率比较高? 活力回收:指固定化后固定化酶(或细胞)所显示的活力占被固定的等当量游离酶(细胞)总活力的百分比. 第五节 固定化酶和固定化细胞的表征
颗粒、线条、薄膜和酶管等形状。颗粒状占 绝大多数,它和线条主要用于工业发酵生产 ,薄膜主要用于酶电极。酶管机械强度较大 ,主要用于工业生产。
固定化酶的优势:
① 极易将固定化酶与底物、产物分开;产物溶 液中没有酶的残留,简化了提纯工艺;
② 可以在较长时间内进行反复分批反应和装柱 连续反应
③ 酶反应过程能够加以严格控制; ④ 较游离酶更适合于多酶反应; ⑤ 在大多数情况下,能够提高酶的稳定性; ⑥ 可以增加产物的收率,提高产物的质量; ⑦ 酶的使用效率提高、成本降低。
在中性pH下优先与a-氨基反应,因此有一定的选择性 缺点:在包埋过程发生的化学反应同样会导致酶的失活。
• 优点:酶活性中心不易被破坏,酶高级结构 二、载体活化程度和固定化配基密度的测定
固定化过程中,酶分子空间构象会有所变化,甚至影响了活性中心的氨基酸;
用此法制备的固定化酶有蛋白酶、脲酶、核糖核酸酶等。

简介酶的固定化详解

简介酶的固定化详解
生化制药
固定化酶的另一个巨大市场是 用来生产工业、医学等领 域的一些纯度要求较高的制剂。
固定化酶在环境保护中的应用
废水处理
生活污水和工业废水中有害成分主 要是氯酚,将过氧化物酶大量吸附在磁石 上,可以保证其100%的活力,并且比粗酶 有了20倍以上的净化效果。因为可以对 水中的氯酚选择性吸附。
酶的固定化研究展望
固定化的酸 性蛋白酶可 以将废胶卷 上的明胶溶 解,回收上面 的银颗粒。
固定化碱性蛋 白酶可以高效 去除丝织品和 棉织品纤维上 的多余蛋白, 使织物柔软光 滑。
固定化淀粉 酶用于淀粉 的糖化,可 作为酒精和 酿造发酵中 原料的糖化 剂。
固定化酶在生化制药中的应用
核酸 蛋白质抗体
抗生素 氨基酸
高纯度的 蛋白酶
? 固定化酶不仅在化学、生物学及生物工程、医学及生命科
学等学科领域的研究异常活跃,得到迅速发展和广泛的应 用,而且因为具有节省资源与能源、减少或防治污染的生 态环境效应而符合可持续发展的战略要求。
固定化酶的制备方法
酶的固定方法的介绍 固定方法优缺点的比较 酶的固定化的载体材料
固定化酶的 制备方法
酶的固定方法
的活性功能基团形成化学共价健实现 不可逆结合的酶固定方法。
固定化酶的制备方法优缺点比较
优点:酶不参加化学反应,整体结构保持不变,酶的催 化活性得到很好保留。 物理法 缺点:由于包埋物或半透膜具有一定的空间或立体 阻碍作用,因此对一些反应不适用。而且固定化酶的 稳 定性相对较低,容易脱落。
优点:稳定性高,不易脱落 。
LOGO
? 目前,固定化酶技术已成为酶工程研究的重点和热点之一。
? 研究探索新的酶固定化技术 (如流体聚合包埋技术、纳米

酶与细胞的固定化课件.ppt

酶与细胞的固定化课件.ppt

采用明胶作载体,戊二醛作交联剂 制备固定化果胶酯酶(焦云鹏,2005)
固定化果胶酯酶的热稳定性
固定化果胶酯酶的pH稳定性
采用明胶作载体,戊二醛作交联剂 制备固定化果胶酯酶(焦云鹏,2005)
固定化果胶酯酶作用的最适温度
固定化果胶酯酶作用的最适pH值
5、酶的动力学特征 固定化酶的表观米氏常数Km随载体的带电性能变化。 二者电荷不同,因静电作用,固定化酶的表观Km值低于溶液的Km值; 电荷相同,由于亲和力降低,固定化酶的表观Km值显著增加。
Cefaclor(R1=H,R3=Cl) Cephalexin(R1=H,R3=Me) Cefadroxil(R1=OH,R3=Me)
酶促合成头孢类抗生素
CHCOOCH3 + H2N
NH2
O
S
Synthetase
N CH3
COOH
Esterase
CHCOOH +
NH2
CHCONH
NH2 O
S
N CH3
交联法有2种形式即酶直接交联法和酶辅助蛋白交联法。
酶直接交联法:在酶液中加入适量多功能试剂,使其形成不溶性衍生物。 固定化依赖酶与试剂的浓度、溶液pH和离子强度、温度和反应时间之间 的平衡。
酶辅助蛋白交联法:为避免分子内交联和在交联过程中因化学修饰而引起 酶失活,可使用第二个"载体"蛋白质(即辅助蛋白质,如白蛋白、明胶、 血红蛋白等)来增加蛋白质浓度,使酶与惰性蛋白质共交联。
二、固定化酶和固定化细胞的性质与表征 (一)固定化酶的性质 1、酶的活性 多数情况下固定化酶的活力常低于天然酶。原因:酶结构变化与空间
位阻。
2、酶的稳定性 大多数固定化酶具有较高的稳定性、较长的操作寿命和保存寿命。

酶的固定化

酶的固定化

酶的固定化
酶的固定化是将活性酶和不溶性物质或其他支架结合到一起,使酶的活性能够稳定地保持,并且具有较高的活性。

酶的固定化主要应用于分子生物学、生物工程和生物分析等多个领域,具有提高效率、方便操作的优势。

常用的酶固定化方法包括疏水键结合、静电结合、covalent bond结合和特异性结合等。

疏水键结合可以将酶和支架表面上带有疏水基团的物质结合起来,当改变温度、pH、离子浓度和复杂度时,这种结合可能会发生改变。

静电结合将酶和带有电荷的支架结合起来,它的稳定性受温度、pH、离子浓度和复杂度的影响较小。

而covalent bond结合则是将酶和支架通过有机化学反应结合起来,结合强度较大,但同时又比较复杂。

特异性结合则是将酶和特异性结合剂结合起来,这种结合可以确保酶的稳定性。

酶的固定化

酶的固定化

固定化技术
一、固定化酶的概念
固定化酶是指固定在一定载体上并在一定 的空间范围内进行催化反应的酶。 水溶性酶 水不溶性载体
固定化技术 水不溶性酶 ( 固相酶)
酶的固定化技术和固定化酶
酶 可溶 间歇 固定化
吸附
包埋
间歇
交联
连续
结合
固定化酶与游离酶相比,具有下列优点:
1.极易将固定化酶与底物、产物分开; 2.可以在较长时间内进行反复分批反应和装柱连续反应; 3.在大多数情况下,能够提高酶的稳定性; 4.酶反应过程能够加以严格控制; 5.产物溶液中没有酶的残留,简化了提纯工艺; 6.较游离酶更适合于多酶反应; 7.可以增加产物的收率,提高产物的质量; 8.酶的使用效率提高,成本降低。
吸附法
常用的固体吸附剂:活性炭、氧化铝、 硅藻土、羟基磷灰石等。 优点:操作简便,条件温和,不引起 酶失活,载体廉价,而且可反复使用。 缺点:结合力弱,易解吸附由于靠物 理吸附作用,结合力较弱,酶与载体 结合不牢固而容易脱落,所以使用受 到一定的限制。
吸附法
(1)常用载体
无机物
活性炭、白陶土、 氧化铝、多孔玻璃、 硅胶、碳酸钙凝胶 有机物 高分子化合物 淀粉麸质、大孔树脂、 DEAE纤维素、 DEAE葡聚糖凝胶
共价键结合法
酶与不溶于水的载体以共价键形式结合制备 固定化酶的方法。即,通过化学共价键,把与酶 蛋白活性无关的氨基酸功能基团连接在不溶于水 的载体上。
(1)酶与载体反应的主要功能基团
游离羟基:肽链C-末端的α –羧基,天门冬酰氨酸 ,谷氨酸的β-γ羧基 游离氨基:肽链N-末端的δ -氨基, 赖氨酸ε -氨基 巯基:半胱氨酸 羟基:丝氨酸,苏氨酸 酚基:酪氨酸 咪唑基:组氨酸

《酶的固定化》课件

《酶的固定化》课件
稳定性等
稳定性评估可 以帮助选择合 适的固定化方 法,提高酶的
固定化效果
稳定性评估还 可以帮助优化 固定化酶的生 产工艺,降低
生产成本
固定化酶的使用寿命
固定化酶的稳定性:在固定化过程中,酶的活性和稳定性得到提高
固定化酶的寿命:固定化酶的寿命通常比游离酶长,可以延长酶的使用寿命
固定化酶的再生:固定化酶可以通过再生技术恢复活性,延长使用寿命
添加标题
酶的固定化可以减少污染,提高环 保性能
酶的固定化可以简化生产工艺,提 高生产效率
酶的固定化未来 发展展望
新技术的开发与应用
酶固定化技术的发展:从传统的物理吸附到新型的化学键合 新型酶固定化技术的应用:在生物催化、生物制药、环境保护等领域的应用 酶固定化技术的挑战:如何提高酶的活性和稳定性,降低成本 酶固定化技术的未来:开发新型酶固定化材料,提高酶的固定化效率和稳定性,拓展应用领域
酶的固定化应用
环境保护:酶的固定化可以用 于污水处理、废气处理等领域
生物催化:酶的固定化可以 提高反应速率和选择性
食品加工:酶的固定化可以用 于食品加工,如酿酒、制糖等
医药工业:酶的固定化可以用 于药物合成、药物分析等领域
酶的固定化技术
吸附法
原理:利用酶与载体之间的物理或化学作用力,使酶固定在载体上 优点:操作简单,成本低,固定化效果好 缺点:酶活性易受载体影响,固定化后酶活性降低 应用:广泛应用于生物催化、生物制药等领域
提高固定化酶的稳定性与活性
改进固定化技术:提高酶的固 定化效率和稳定性
优化酶分子结构:提高酶的活 性和稳定性
筛选和优化固定化载体:提高 酶的固定化效率和稳定性
研究酶的固定化机制:为提高 酶的稳定性与活性提供理论支 持

固定化酶的方法和应用

固定化酶的方法和应用

固定化酶是将酶固定在载体上,形成固定化酶催化系统的过程。

通过固定化,可使酶的活性和稳定性得到提高,并能够重复使用。

常用的固定化酶方法包括吸附法、共价连接法、包埋法和交联法等。

1. 吸附法:利用载体表面与酶相互吸附的原理将酶固定在载体表面。

常用的载体包括硅胶、纤维素、聚丙烯酰胺凝胶等。

2. 共价连接法:通过将酶分子与载体分子之间的化学键共价连接,在载体表面上固定酶。

常用的共价连接剂包括辛二酸二酐、戊二酸二酐等。

3. 包埋法:将酶包裹在聚合物中,在聚合物内部形成微观环境,保护酶免受外界环境的影响。

常用的包埋材料包括明胶、蛋白质和聚乙烯醇等。

4. 交联法:将酶和载体分子之间形成交联结构,将酶牢固地固定在载体表面上。

常用的交联剂包括戊二醛、葡萄糖等。

固定化酶在生物技术、食品工业、医药工业等领域有着广泛的应用。

其中,利用固定化酶在生物技术领域中最为突出。

例如,固定化酶可以应用于产生大量纯度高的特定酶,用于DNA重组、制备抗体和识别特定分子等。

此外,在医药工业中也广泛使用固定化酶,如利用固定化酶制备药物、检测生物标志物等方面。

在食品工业中,固定化酶可用于生产乳制品、果汁、啤酒等食品中。

总之,固定化酶是一种重要的生物技术手段,具有广泛应用前景,可推动生物技术、食品工业、医药工业等领域的发展。

第五章-固定化酶

第五章-固定化酶

2.离子结合法 酶通过离子键结合于具有离子交换剂的水不溶 性载体的固定化方法。 • 常用载体:各种阴、阳离子交换剂。 如CM-纤
维素、DEAE-纤维素、DEAE-葡聚糖凝胶等
• 优点:操作简单,酶活性中心不易被破坏和酶
高级结构变化少,酶活力损失很少。
• 缺点:载体和酶的结合力 比较弱,酶易脱落。
3.共价结合法
• 相对活力:固定化酶活力与同量蛋白量
的溶液酶活力的比值
固定化酶活力 相对活力 100% 溶液酶总活力 残留酶活力
四、固定化酶(细胞)的半衰期
• t1/2 :固定化酶(细胞)的活力下降为最 初活力1/2所经历的连续工作时间;衡量 操作稳定性的指标。
Fig. 2. Kinetic of ROL adsorption on the silica aerogels. The activity was measured using olive oil emulsion as substrate at pH 8.5 and 37 °C.
第五章 固定化酶与固定化细胞
第一节 酶的固定化
一、固定化酶(immobilized enzyme):是 指在一定空间内呈闭锁状态存在的酶,能 连续进行反应,反应后的酶可以回收重复 使用。
优点:
①极易将固定化酶与底物、产物分开,简 化了提纯工艺,提高酶的使用效率; ②在大多数情况下,能够提高酶的稳定;
(五)固定化酶的米氏常数(Km)变化 • 中性载体:固定化酶的表观Km值上升。
• 载体与底物电荷相同:表观Km值显著 上升; • 载体与底物电荷相反:Km

四、影响固定化酶性能的因素
1.构象改变、立体屏蔽
• 构象改变:指固定化过程及酶和载体的 相互作用,引起了酶的活性中心构象发 生改变,从而导致酶活性改变的—种效 应。

《酶的固定化》课件

《酶的固定化》课件
01
02
03
酶的固定化步骤:
实验 木瓜蛋白酶的固定化
取出尼龙布,用0.1mol/L 磷酸缓冲液(pH值7.8)反复洗涤,洗去多余的戊二醛,吸干之后,立即用酶液(0.5~1mg/mL)在4℃下固定3.5h(酶液用量每块尼龙布不宜超过0.8mL)。
从酶液中取出尼龙布(保留残余酶液作测定用),用0.5mol/L NaCl溶液(用0.1mol/L磷酸缓冲液(pH值7.2)配制),洗去多余的酶蛋白,即为尼龙固定化酶。
热处理法只适用于热稳定性较好的酶的固定化,在热处理时,要严格控制好加热温度和时间,以免引起酶的变性失活。
(4)热处理法
步骤step
总体积Volume(ml)
总活力Total activity(u)
总蛋白Total protein(mg)
比活力Specific activity(u/mg)
纯化倍数Purification(fold)
缺点
(2)固定化(增殖)细胞的优点和缺点
(3)固定化细胞的制备(P169-178)
一般说,对于一步和两步反应的转化过程,用固定化酶较合适;对多步转化,采用整体细胞有利。
合成聚合物(聚酯、聚胺、尼龙等)
ⅰ.优点:酶与载体结合牢固,一般不会因底物浓度高或存在盐类等原因而轻易脱落。 ⅱ.缺点:反应条件苛刻,操作条件复杂; 酶蛋白高级结构变化,破坏活性中心,活力降低。
1
2
3
4
5
6
1
重氮法
2
叠氮法
3
烷基化反应法
4
溴化氰法
⑤载体活化方法
A.重氮法
反应示意式
NH2
NaNO2/HCl
.缩短发酵周期,提高生产能力(产率);

酶固定化的原理

酶固定化的原理

酶固定化的原理
酶固定化是指将酶固定在载体上,形成酶固定化系统,用于生物催化反应。

其原理是将酶与载体通过物理或化学方法结合在一起,形成稳定的酶固定化系统,以提高酶的稳定性、重复使用性和操作性。

酶固定化的原理主要包括以下几个方面:
1. 物理方法:通过吸附、离子交换和包埋等物理方法将酶固定在载体上。

例如,将酶溶液与载体接触,通过物理吸附作用使酶附着在载体表面,形成酶固定化系统。

2. 化学方法:通过共价结合、交联和胶束等化学方法将酶固定在载体上。

例如,将酶与载体表面的功能基团发生共价键结合,形成稳定的酶固定化系统。

3. 复合方法:物理和化学方法可以结合使用,形成更稳定的酶固定化系统。

例如,先用物理方法将酶吸附在载体上,然后再进行化学修饰,增强固定效果。

酶固定化的原理主要是利用载体提供的稳定性和大面积接触酶的功能,从而增强酶的稳定性和重复使用性。

载体可以是天然的(如纤维素、凝胶等)或人工合成的(如高分子材料、纳米材料等)。

通过固定化酶,可以将其应用于工业生产中,提高反应效率,降低成本。

酶固定化

酶固定化
分子的游离氨基反应,形成Schiff碱,从而使酶或菌体蛋白交联,
制成固定化酶或固定化菌体。
醛基
3、特点
优点:固定化酶或固定化菌体 结 合 牢 固 , 可 以 长时 间 使 用。 缺点:交联反应条件较激烈,
酶分子的多个基团被交联,
致使 酶 活力 损 失 较大 ; 通
过 酶 分 子间 交 联 形成 的 固
米~几百微米,厚约25mm的半透膜)制成的小球内,制成
固定化酶或固定化细胞。
① 常用载体———半透 膜有:聚酰胺膜、火 棉胶膜 ② 制备方法:将酶液滴 分散在与水互不相溶 的有机溶剂中,再在 酶液滴表面形成半透 膜,将酶包埋在微胶 囊之中。
例:以尼龙膜包埋酶时,将酶液及亲水性单体 (如己二胺)溶于水制成水溶液。另外,将疏水性 单体(癸二酰氯等)溶于氯仿或甲苯等与水混溶的 有机溶剂。然后,将这两种互不相溶的液体混和在 一起。加入乳化剂乳化,使酶液分散成小液滴。此 时,亲水性的已二胺与疏水性的癸二酰氯就在二相 界面聚合成半透膜,将酶包埋在小球内。再加 Tween—20,使乳化破坏,用离心分离即可得用半透 膜包埋的微囊型固定化酶。
①载体:DEAE纤维素、TEAE纤维素、
DEAE葡聚糖凝胶、 ……
+ + + + -+ + + ++ + + -+ - -+ ++ + ++ + - - - +
(1)离子结合法:
②制备方法: 在一定PH、温度、离子强度等条件下,将酶液与载体 混和搅拌几个小时,或将酶液缓慢流过处理好的离子交换柱, 使酶结合于离子交换剂上ห้องสมุดไป่ตู้制得。

酶固定化名词解释

酶固定化名词解释

酶固定化名词解释酶固定化,这可是个在生物化学领域里相当重要的概念呢!您知道吗?酶就像一群活跃的小精灵,在生物体内忙忙碌碌,发挥着各种神奇的作用。

但这些小精灵有时候不太听话,不太稳定,难以掌控。

这可咋办?于是,聪明的科学家们就想出了酶固定化这个妙招!那啥是酶固定化呢?简单来说,就是把这些调皮的酶小精灵给“抓”住,让它们老老实实地待在一个地方,好好干活。

打个比方,酶就像是一群到处乱跑的小孩子,精力无限但难以管理。

而酶固定化呢,就像是给这些孩子建了一个游乐场,让他们只能在这个特定的区域里玩耍,这样既方便看着他们,又能让他们的精力得到充分利用。

咱们具体来聊聊酶固定化的方法。

有一种叫做吸附法,这就好比是用一块有魔力的磁铁,把酶给吸住,让它们乖乖待在那里。

还有一种叫共价结合法,这就好像是给酶和载体之间系上了一条牢固的绳子,怎么都挣脱不开。

酶固定化有啥好处呢?这可多了去了!它能让酶重复使用,就像一把耐用的好工具,用了一次还能用第二次、第三次,多划算啊!而且还能提高酶的稳定性,让酶不再那么“娇气”,经得起各种环境的考验。

这就好比是给酶穿上了一层坚固的铠甲,让它们能在恶劣的条件下依然英勇作战。

再想想,如果没有酶固定化,那在工业生产中,得费多大的劲儿去不断获取新的酶,成本得多高啊!有了酶固定化,生产效率大大提高,产品质量也更有保障,这难道不是一件大好事吗?酶固定化在很多领域都发挥着重要作用。

在食品工业中,它能让食品加工更高效、更安全;在医药领域,能帮助生产更有效的药物;在环境保护中,能助力处理各种污染物。

所以说,酶固定化可真是个了不起的技术!它让酶变得更听话、更有用,为我们的生活带来了诸多便利和好处。

您说,这是不是很神奇呢?。

酶的固定化方法及优缺点

酶的固定化方法及优缺点

酶的固定化方法及优缺点以酶的固定化方法及优缺点为标题,本文将详细介绍酶的固定化方法以及各种方法的优缺点。

一、酶的固定化方法1. 物理吸附法:将酶直接吸附在固体载体表面,如活性炭、硅胶等。

这种方法简单易行,不需要化学反应,但酶容易失活和流失。

2. 共价键结合法:通过化学手段将酶共价键结合在载体表面,常用的方法包括交联、酯化、酰胺化等。

这种方法能够稳定地固定酶,但可能会影响酶的活性和稳定性。

3. 包埋法:将酶包裹在多孔载体中,如凝胶、微胶囊等。

这种方法能够保护酶免受外界环境的影响,但可能会降低酶的反应速率。

4. 共聚物法:利用聚合物将酶固定在载体上,如聚丙烯酰胺凝胶、聚乙烯醇等。

这种方法可以提高酶的稳定性和反应速率,但可能会影响酶的活性。

二、各种固定化方法的优缺点1. 物理吸附法的优点是操作简单、成本低廉,但缺点是酶容易失活和流失,固定效果不稳定。

2. 共价键结合法的优点是能够稳定地固定酶,固定效果较好,但缺点是可能会影响酶的活性和稳定性。

3. 包埋法的优点是能够保护酶免受外界环境的影响,固定效果较稳定,但缺点是可能会降低酶的反应速率。

4. 共聚物法的优点是可以提高酶的稳定性和反应速率,固定效果较好,但缺点是可能会影响酶的活性。

在实际应用中,选择适合的固定化方法需要考虑多个因素,如酶的特性、反应条件、载体的稳定性和成本等。

不同的固定化方法适用于不同的酶和反应条件。

例如,对于温度敏感的酶,可以选择物理吸附法或包埋法;对于活性较强的酶,可以选择共价键结合法或共聚物法。

总结起来,酶的固定化方法有物理吸附法、共价键结合法、包埋法和共聚物法等。

每种方法都有其优缺点,选择适合的固定化方法需要综合考虑多个因素。

通过固定化方法,可以提高酶的稳定性、反应速率和重复使用性,从而在酶工业和生物催化领域具有广泛的应用前景。

酶生物传感器中酶的固定化技术

酶生物传感器中酶的固定化技术

酶生物传感器中酶的固定化技术
酶生物传感器中的酶固定化技术是一种利用酶作为生物传感器的关键技术,可以将酶固定在传感器上,使得检测信号可以被有效地检测。

这一技术可以大大减少传感器中应用酶的成本,提升检测精度和灵敏度。

酶固定化技术是用来把酶固定在传感器上的一种技术,它使酶能够更加稳定的存在,也能够更好的发挥它的功能。

主要的酶固定化技术有以下几种:
1、固定化技术:通常使用交联剂、硅胶涂层等技术将酶固定在传感器表面上,这样可以有效地保护酶的活性,从而提高检测灵敏度。

2、基因工程技术:利用基因工程技术,可以将所需的酶基因组合到一起,形成一个新的基因,然后将这个新基因植入到传感器中,从而使得酶能够被固定在传感器中。

3 、纳米技术:纳米技术可以将酶固定在纳米粒子表面上,这样可以使得酶在纳米粒子表面上能够更好地展开功能,也能够显著提高检测灵敏度。

4、膜定向技术:膜定向技术的原理是将酶固定在膜的一侧,从而可以使得酶只能够通过膜的一侧进入传感器内部,这样可以大大提高检测效率。

酶生物传感器中的酶固定化技术可以让酶保持稳定的活性,从而提高检测灵敏度,减少成本。

不同的酶固定化技术都有其各自的优势,诸如交联剂可以显著提高检测精度,基因工程技术可以更好地控制酶的活性,纳米技术可以让酶发挥更强的活性,而膜定向技术可以提高检测的效率。

所以,酶生物传感器中的酶固定化技术是目前提升检测精度和灵敏度的重要技术,也是生物传感器的重要组成部分。

第三节酶的固定化

第三节酶的固定化

第三节酶的固定化随着酶学研究的深入和酶工程的发展,酶的应用越来越广泛。

将酶用物理或化学的方法固定在不溶于水的载体上,形成一种可以重复使用的酶,叫固定化酶。

固定化酶既保持了酶的催化特性,又克服了游离酶的不稳定性,具有可反复或连续使用、易与反应产物分离等显著优点,广泛应用于医药、轻工、食品等行业。

一、固定化酶的制备方法制备固定化酶的方法很多,有包埋法、吸附法、共价偶联法,以及交联法等(图2-3)。

1.包埋法将酶或含酶菌体包埋在多孔载体中,使酶固定化的方法称为包埋法。

包埋法根据载体材料和方法的不同,可以分为凝胶包埋法和微胶囊包埋法。

凝胶包埋法是将酶和含酶菌体包埋在各种凝胶内部的微孔中,制成一定形状的固定化酶的方法。

最常用的凝胶有琼脂、琼脂糖、海藻酸钙、卡拉胶、聚丙烯酰胺等。

微胶囊包埋法是将酶包埋在高分子半透膜中,制成微胶囊固定化酶的方法。

常用的半透膜有尼龙膜、醋酸纤维膜等。

2.吸附法利用各种固体吸附剂将酶或含酶菌体吸附在其表面而使酶固定化的方法称为吸附法。

吸附法常用的吸附剂有活性炭、氧化铝、硅藻土、多孔陶瓷、多孔玻璃、硅胶、羧基磷灰石等。

吸附法制备固定化酶,操作简便、条件温和,不会引起酶的变性失活,载体价廉易得,而且可反复使用。

但由于是靠物理吸附作用,结合力较弱,酶与载体结合不太牢固而易脱落。

3.共价偶联法利用酶活性中心外的非必需基团与固相载体上的基团共价结合而制成固定化酶的方法叫共价偶联法,也叫共价结合法。

这种方法的优点是酶与载体牢固,制得的固定化酶稳定性好。

缺点是制备过程中反应条件较为强烈,难以控制,易使酶变性失活。

共价偶联法常用的载体有纤维素、葡聚糖、琼脂糖、甲壳素等。

4.交联法交联法是采用双功能试剂使酶分子之间或酶分子与固相载体之间发生交联作用而制成固定化酶的方法。

常用的双功能试剂有戊二醛、己二胺、顺丁烯二酸酐、双偶氮苯等。

其中应用最广泛的是戊二醛。

用交联法制备的固定化酶结合牢固,可长时使用。

酶的固定化

酶的固定化

(2)离子交换吸附法: 这是将酶与含有离予交换基的 水不溶载体相结合而达到固定化的一种方法。酶吸附 较牢,在工业上颇具广泛的用途。常用的载体有阴离 子交换剂,如二乙基氨基乙基(DEAE)-纤维素、混合胺 类(ECTEDLA)—纤维素、四乙氨基乙基(TEAE)—纤维 素、DEAE—葡聚糖凝胶、Amberlite IRA—93、410、 900等。阳离子交换剂基,如羧甲基(CM)—纤维素、纤 维素柠檬酸盐、Amberlite CG50、IRC—50、IR—200、 Dowex—50等。
载体的选择
载体直接关系到固定化酶的性质和形成。对载体的一般 要求是: ①一般亲水载体在蛋白质结合量和固定化酶活力及其稳定 性上都优于疏水载体。 ②载体结构疏松,表面积大,有一定的机械强度。 ③载体必须含有在温和条件与酶共价结合的功能基团。 ④载休没有或很少有非专一性吸附。 ⑤载体来源容易、便易、并能反复使用。
E.多孔玻璃的氨基硅烷衍生物。 玻璃的化学改造物多孔玻璃在丙酮中与Y—氨基丙基三氧 乙烷硅回流加热,生成烷基胺玻璃:
烷基氨玻璃用对硝基苯酚氯处理后,再还原,转变为芳香基衍 生物:
此芳香基衍生物经重氮化后与酶结合.产生固定化酶。
取代反应 具有卤素取代的高聚物以及含有卤乙酰基的高聚物,在 碱性条件下,与酶分子上的氨基、酚基、巯基等反应,如: 将纤维素在二恶烷(Diaxanc)-溴乙酸中与嗅乙酰溴反应,形成溴 乙酰纤维素,可供胰蛋白酶、糜蛋白酶和核糖核酸酶之固定化:
His
Lys
A. 多糖类的芳香族氨基衍生物。我国独创的使用对-β-硫酸脂 乙砜基胺(ABSE—)多糖(纤维素,葡聚糖,文联琼脂糖,交联琼 脂及淀粉) 载体。在碱性条件下用对-β-硫酸脂乙砜基胺活化多 糖,制得的醚键连接的乙砜基苯胺衍生物,经重氮化后偶联酶:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

间歇
固定化
交联
结合
连续
固定化酶与游离酶相比,具有下列优点:
1.极易将固定化酶与底物、产物分开; 2.可以在较长时间内进行反复分批反应和装柱连续反应; 3.在大多数情况下,能够提高酶的稳定性; 4.酶反应过程能够加以严格控制; 5.产物溶液中没有酶的残留,简化了提纯工艺; 6.较游离酶更适合于多酶反应; 7.可以增加产物的收率,提高产物的质量; 8.酶的使用效率提高,成本降低。
吸附法
性炭、白陶土、 氧化铝、多孔玻璃、 硅胶、碳酸钙凝胶
淀粉麸质、大孔树脂、 DEAE纤维素、 DEAE葡聚糖凝胶
(2)固定化酶的制备机理
所用载体具有活性,可将酶吸附到载体上。
(3)优缺点
优点:酶蛋白活性中心不易被破坏,完整保持酶的 高级结构;方法简单,成本低。
第四章 酶的固定化
酶应用过程中的一些不足
酶的稳定性较差:除了某些耐高温的酶,如α-淀粉酶等; 和胃蛋白酶等可以耐受较低的pH条件以外,大多数的酶在 高温、强酸、强碱和重金属离子等外界因素影响下,都容 易变性失活。
酶的一次性使用:酶一般都是在溶液中与底物反应,这样 酶在反应系统中,与底物和产物混在一起,反应结束后, 即使酶仍有很高的活力,也难于回收利用。这种一次性使 用酶的方式,不仅使生产成本提高,而且难于连续化生产。
(4)酶与载体必须结合牢固,从而使固定化酶能 回收贮藏,利于重复使用。
(5)固定化酶应有最大的稳定性,所选载体不与 废物、产物或反应液发生化学反应。
(6)固定化酶成本要低,以利于工业使用。
四、酶的固定化方法
酶的固定化方法很多,但对任何酶都适用的方 法是没有的。酶的固定化方法通常按照用于结 合的化学反应的类型进行分类,大体可概括为 四种类型:
1.吸附法; 2.结合法; 3.交联法; 4.包埋法
1.吸附法
利用各种固体吸附剂将酶或含酶 菌体吸附在其表面上,而使酶固定化 的方法称为物理吸附法。
吸附法
常用的固体吸附剂:活性炭、氧化铝、 硅藻土、羟基磷灰石等。
优点:操作简便,条件温和,不引起 酶失活,载体廉价,而且可反复使用。
缺点:结合力弱,易解吸附由于靠物 理吸附作用,结合力较弱,酶与载体 结合不牢固而容易脱落,所以使用受 到一定的限制。
缺点:
1.由于多一步固定化操作,存在酶固定化过程中的活性收率损 失;
2.多了固定化载体成本费用及固定化操作费用,并且固定化酶 颗粒的扩散阻力作用会使酶的反应速率下降;
3.比较适用于水溶性的底物和小分子底物。
二、固定化酶的研究历史
固定化酶的研究从50年代开始,1953年德国的 Grubhofer 和Schleith采用聚氨基苯乙烯树脂为载体与羧肽酶、淀粉 酶、胃蛋白酶、核糖核酸酶等结合,制成固定化酶。
Β-淀粉液化酶 磷酸化酶
2.结合法
选择适宜的载体,使之通过共价键或离子键与酶结合在一 起的固定化方法称为结合法。
根据酶与载体结合的化学键不同,可分为共价结合法和离 子结合法。
离子键结合法:通过离子键使酶与载体结合的固定化方法 称为离子键结合法。离子键结合法所使用的载体是某些不 溶于水的离子交换剂。常用的有DEAE-纤维素、TEAE-纤 维素、DEAE-葡聚糖凝胶等。 共价键结合法:通过共价键将酶与载体结合的固定化方法 称为共价键结合法。共价键结合法所采用的载体主要有: 纤维素、琼脂糖凝胶、葡聚糖凝胶、甲壳质、氨基酸共聚 物、甲基丙稀醇共聚物等。 酶分子中可以形成共价键的基团主要有:氨基、羧基、巯 基、羟基、酚基和咪唑基等。要使载体与酶形成共价键, 必须首先使载体活化。
三、酶的固定化方法原则和注意事项
1)、固定化酶操作的注意事项
活性中心:保护酶的催化作用,并使酶的活性中心的 氨基酸基团固有的高级结构不受到损害,在制备固定 化酶时,需要在非常严密的条件下进行。
功能基团:如游离的氨基、羧基、半胱氨酸的巯基、 组氨酸的咪唑基、酪氨酸的酚基、丝氨酸和苏氨酸的 羟基等,当这些功能基团位于酶的活性中心时,要求 不参与酶的固定化结合。
产物的分离纯化较困难:酶反应后成为杂质与产物混在一 起,无疑给产物的进一步的分离纯化带来一定的困难。
固定化技术
一、固定化酶的概念
固定化酶是指固定在一定载体上并在一定 的空间范围内进行催化反应的酶。
水溶性酶
水不溶性载体
固定化技术
水不溶性酶 ( 固相酶)
酶的固定化技术和固定化酶

可溶
间歇
吸附
包埋
酶的高级结构:要避免用高温、强酸、强碱等处理, 而且有机溶剂、高浓度的盐也会使酶变性、失活,因 此,操作应尽量在非常温和的条件下进行。
2)、制备固定化酶遵循基本原则:
(1)必须注意维持酶的催化活性及专一性。
(2)固定化应该有利于生产自动化、连续化。 (3)固定化酶应有最小的空间位阻,尽可能不妨 碍酶与底物的接近,以提高产品的产量。
60年代后期,固定化技术迅速发展起来。1969年,日本的 千烟一郎首次在工业上生产应用固定化氨基酰化酶从DL氨基酸连续生产L-氨基酸,实现了酶应用史上的一大变革。
在1971年召开的第一次国际酶工程学术会议上,确定固定 化酶的统一英文名称为Immobilized enzyme。
随着固定化技术的发展,出现固定化菌体 。1973年,日 本首次在工业上应用固定化大肠杆菌菌体中的天门冬氨酸 酶,由反丁烯二酸连续生产L-天门冬氨酸。
缺点:酶吸附不牢固,易脱落; 防止吸附酶的蛋白质与载体发生变性反应
吸附法固定化酶举例
载体 活性炭
多孔玻璃
氧化铝 碳酸钙凝胶 纤维素 麸素 硅胶
固定化酶
α -淀粉酶、β -淀粉酶 蔗糖转化酶、葡萄糖淀粉酶 核糖核酸酶、木瓜蛋白酶 脂肪酶、葡萄糖氧化酶 葡萄糖氧化酶 亮氨酸氨肽酶 胰蛋白酶、核糖核酸酶
在固定化酶和固定化菌体的基础上,70年代后期出现了固 定化细胞技术。 1976年,法国首次用固定化酵母细胞生 产啤酒和酒精,1978年日本用固定化枯草杆菌生产淀粉酶, 开始了用固定化细胞生产酶的先例。
1982年,日本首次研究用固定化原生质体生产谷氨酸,取 得进展。固定化原生质体由于解除了细胞壁的障碍,更有 利于胞内物质的分泌,这为胞内酶生产技术路线的变革提 供了新的方向。
相关文档
最新文档