知识点 函数的零点 方程的根 个数的讨论
函数的零点与方程的根
函数与方程及函数的应用1.函数的零点与方程的根(1)函数的零点对于函数f(x),我们把使f(x)=0的实数x叫做函数f(x)的零点.(2)函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.(3)零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c 也就是方程f(x)=0的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点.(4)二分法求函数零点的近似值,二分法求方程的近似解.2.函数模型解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.考点一函数的零点例1 (1)(2013·重庆)若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x -a)的两个零点分别位于区间( )A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内(2)函数f (x )=⎩⎪⎨⎪⎧ ln x -x 2+2x x >0,2x +1x ≤0,的零点个数是( )A .0B .1C .2D .3答案 (1)A (2)D解析 (1)由于a <b <c ,所以f (a )=0+(a -b )(a -c )+0>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.因此有f (a )·f (b )<0,f (b )·f (c )<0,又因f (x )是关于x 的二次函数,函数的图象是连续不断的曲线,因此函数f (x )的两零点分别位于区间(a ,b )和(b ,c )内,故选A.(2)依题意,当x >0时,在同一个直角坐标系中分别作出y =ln x 和y =x 2-2x =(x -1)2-1的图象,可知它们有两个交点;当x ≤0时,作出y =2x +1的图象,可知它和x 轴有一个交点.综合知,函数y =f (x )有三个零点.(1)函数零点(即方程的根)的确定问题,常见的有①函数零点值大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同的方程多以数形结合求解.(2)提醒:函数的零点不是点,是方程f (x )=0的根,即当函数的自变量取这个实数时,其函数值等于零.函数的零点也就是函数y =f (x )的图象与x 轴的交点的横坐标.(1)(2012·天津)函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是 ( )A .0B .1C .2D .3 (2)已知函数f (x )=a x +x -b 的零点x 0∈(n ,n +1)(n ∈Z ),其中常数a 、b 满足2a =3,3b =2,则n =________.答案 (1)B (2)-1解析 (1)先判断函数的单调性,再确定零点.因为f ′(x )=2x ln 2+3x 2>0,所以函数f (x )=2x +x 3-2在(0,1)上递增,且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0,所以有1个零点.(2)f (x )=a x +x -b 的零点x 0就是方程a x =-x +b 的根.设y 1=a x ,y 2=-x +b ,故x 0就是两函数交点的横坐标,如图,当x =-1时,y 1=1a=log 32<y 2=1+b =1+log 32, ∴-1<x 0<0,∴n =-1.考点二 与函数有关的自定义问题例2 若对于定义在R 上的函数f (x ),其图象是连续不断的,且存在常数λ(λ∈R )使得f (x+λ)+λf (x )=0对任意实数都成立,则称f (x )是一个“λ-伴随函数”.有下列关于“λ-伴随函数”的结论:①f (x )=0是常数函数中唯一一个“λ-伴随函数”;②f (x )=x 是“λ-伴随函数”;③f (x )=x 2是“λ-伴随函数”;④“12-伴随函数”至少有一个零点.其中正确结论的个数是( ) A .1 B .2 C .3 D .4先理解新定义“λ-伴随函数”的意义,然后对给出的函数逐一用定义检验,从而判断所给命题的正确性.答案 A解析 对于①,若f (x )=c ≠0,取λ=-1,则f (x -1)-f (x )=c -c =0,即f (x )=c ≠0是一个“λ-伴随函数”,故①不正确.对于②,若f (x )=x 是一个“λ-伴随函数”,则(x +λ)+λx =0,求得λ=0且λ=-1,矛盾,故②不正确.对于③,若f (x )=x 2是一个“λ-伴随函数”,则(x +λ)2+λx 2=0,求得λ=0且λ=-1,矛盾,故③不正确.对于④,若f (x )是“12-伴随函数”, 则f (x +12)+12f (x )=0,取x =0, 则f (12)+12f (0)=0, 若f (0),f (12)任意一个为0,函数f (x )有零点;若f (0),f (12)均不为0, 则f (0),f (12)异号,由零点存在性定理, 知f (x )在(0,12)内存在零点x 0, 所以④正确.故选A. 函数的创新命题是高考命题的一个亮点,此类题型是用数学符号、文字叙述给出一个教材之外的新定义,如本题中的“λ-伴随函数”,要求在短时间内通过阅读、理解后,解决题目给出的问题.解决这类问题的关键是准确把握新定义的含义,把从定义和题目中获取的新信息进行有效的整合,并转化为熟悉的知识加以解决,即检验f (x +λ)+λf (x )=0对任意实数都成立.若平面直角坐标系内两点P ,Q 满足条件:①P ,Q 都在函数f (x )的图象上;②P ,Q 关于y 轴对称,则称点对(P ,Q )是函数f (x )的图象上的一个“镜像点对”(点对(P ,Q )与点对(Q ,P )看作同一个“镜像点对”).已知函数f (x )=⎩⎪⎨⎪⎧ cos πx x <0,log 3x x >0,则f (x )的图象上的“镜像点对”有( )A .1对B .2对C .3对D .4对 答案 C解析 依题意,设点P (x 0,y 0),Q (-x 0,y 0)(其中x 0>0),若点对(P ,Q )是函数f (x )的图象上的一个“镜像点对”,则有⎩⎪⎨⎪⎧ y 0=log 3x 0,y 0=cos π-x 0=cos πx 0,所以log 3x 0=cos πx 0,即x 0是方程log 3x =cos πx 的根.在同一个直角坐标系中画出函数y =log 3x 与y =cos πx 的图象,可知这两个图象共有3个交点,即函数f (x )的图象的“镜像点对”共有3对.故选C.考点三 函数模型及其应用例3 省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f (x )与时刻x (时)的关系为f (x )=|xx 2+1-a |+2a +23,x ∈[0,24],其中a 是与气象有关的参数,且a ∈[0,12],若用每天f (x )的最大值为当天的综合放射性污染指数,并记作M (a ).(1)令t =xx 2+1,x ∈[0,24],求t 的取值范围;(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?(1)分x =0和x ≠0两种情况,当x ≠0时变形使用基本不等式求解.(2)利用换元法把函数f (x )转化成g (t )=|t -a |+2a +23,再把函数g (t )写成分段函数后求M (a ).解 (1)当x =0时,t =0;当0<x ≤24时,x +1x≥2(当x =1时取等号), ∴t =x x 2+1=1x +1x∈(0,12],即t 的取值范围是[0,12]. (2)当a ∈[0,12]时,记g (t )=|t -a |+2a +23, 则g (t )=⎩⎪⎨⎪⎧ -t +3a +23,0≤t ≤a ,t +a +23,a <t ≤12.∵g (t )在[0,a ]上单调递减,在(a ,12]上单调递增, 且g (0)=3a +23,g (12)=a +76, g (0)-g (12)=2(a -14).故M (a )=⎩⎪⎨⎪⎧ g12,0≤a ≤14,g 0,14<a ≤12.即M (a )=⎩⎪⎨⎪⎧ a +76,0≤a ≤14,3a +23,14<a ≤12. 当0≤a ≤14时,M (a )=a +76<2显然成立; 由⎩⎪⎨⎪⎧ 3a +23≤2,14<a ≤12,得14<a ≤49, ∴当且仅当0≤a ≤49时,M (a )≤2. 故当0≤a ≤49时不超标,当49<a ≤12时超标. (1)解答函数应用题的关键将实际问题中的数量关系转化为函数模型,常见模型有:一次或二次函数模型;分式函数模型;指数式函数模型等.(2)对函数模型求最值的常用方法单调性法、基本不等式法及导数法.(3)本题中的函数与方程思想:①在求t 的范围时,把t 看作是x 的函数,在求M (a )时,把综合放射性污染指数看作是t 的函数.②在确定综合放射性污染指数是否超标时,用到了方程的思想.某地发生地质灾害,使当地的自来水受到了污染,某部门对水质检测后,决定在水中投放一种药剂来净化水质,已知每投放质量为m 的药剂后,经过x 天该药剂在水中释放的浓度y (毫克/升)满足y =mf (x ),其中f (x )=⎩⎪⎨⎪⎧ x 216+2,0<x ≤4,x +142x -2,x >4,当药剂在水中的浓度不低于4(毫克/升)时称为有效净化;当药剂在水中释放的浓度不低于4(毫克/升)且不高于10(毫克/升)时称为最佳净化.(1)如果投放的药剂质量为m =4,试问自来水达到有效净化一共可持续几天?(2)如果投放药剂质量为m ,为了使在7天(从投放药剂算起包括7天)之内的自来水达到最佳净化,试确定应该投放的药剂质量m 的最小值.解 (1)由题意,得当药剂质量m =4时,y =⎩⎪⎨⎪⎧ x 24+80<x ≤4,2x +28x -1x >4.当0<x ≤4时x 24+8≥4,显然符合题意. 当x >4时2x +28x -1≥4,解得4<x ≤16. 综上0<x ≤16.所以自来水达到有效净化一共可持续16天.(2)由y =m ·f (x )=⎩⎪⎨⎪⎧ mx 216+2m 0<x ≤4,m x +142x -2x >4,得 当0<x ≤4时,y =mx 216+2m 在区间(0,4]上单调递增,即2m <y ≤3m ;当x >4时,y ′=-30m 2x -22<0, ∴函数在区间(4,7]上单调递减,即7m 4≤y <3m , 综上知,7m 4≤y ≤3m , 为使4≤y ≤10恒成立,只要7m 4≥4且3m ≤10即可, 即167≤m ≤103.。
1.函数的零点与方程的根
定义证明.(2)因在 为增函数, 解:(1)定义证明 因在 ( −1,+∞ ) 为增函数 定义证明 为增,又 故在 (0,+∞ ) 为增 又 f(0)= -1<0,f(1)=2.5,所 所 以在(0,1)有且只有一个正根 下用二分法 有且只有一个正根.下用二分法 以在 有且只有一个正根 列表,区间 中点,中点函数值 约为 0.28(列表 区间 中点 中点函数值 列表 区间,中点 中点函数值)
一、一元二次函数与一元二次方程 内容复习
知识归纳: 一元二次函数、不等式、 知识归纳:、一元二次函数、不等式、方程的关系 1、
∆ = 0
∆ = 0
∆ < 0
二次函数
y = ax
2
+ bx + c
( a > 0 )的 图象
一元二次方程 有两相异实根 有两相等实根
(a
ax
2
> 0) 的根
+ bx + c = 0
3.方程有一正根一负根 ⇔ ac < 0
如果两根都大于2乍办? 如果两根都大于 乍办? 乍办
2.方程有两个不相等的负实数根 ⇔
∆ = b − 4 ac > 0 b x1 + x 2 = − > 0 a c x1 x 2 = > 0 a
导数与函数的零点知识点讲解+例题讲解(含解析)
导数与函数的零点一、知识梳理1.利用导数确定函数零点或方程根个数的常用方法(1)构建函数g(x)(要求g′(x)易求,g′(x)=0可解),转化确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数.(2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.二、例题精讲 + 随堂练习考点一判断零点的个数【例1】(2019·青岛期中)已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.(1)求函数f(x)的解析式;(2)求函数g(x)=f(x)x-4ln x的零点个数.解(1)∵f(x)是二次函数,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R},∴设f(x)=a(x+1)(x-3)=ax2-2ax-3a,且a>0. ∴f(x)min=f(1)=-4a=-4,a =1.故函数f(x)的解析式为f(x)=x2-2x-3.(2)由(1)知g(x)=x2-2x-3x-4ln x=x-3x-4ln x-2,∴g(x)的定义域为(0,+∞),g′(x)=1+3x2-4x=(x-1)(x-3)x2,令g′(x)=0,得x1=1,x2=3.当x变化时,g′(x),g(x)的取值变化情况如下表:当0<x≤3时,g(x)≤g(1)=-4<0,当x>3时,g(e5)=e5-3e5-20-2>25-1-22=9>0.又因为g(x)在(3,+∞)上单调递增,因而g(x)在(3,+∞)上只有1个零点,故g(x)仅有1个零点.【训练1】已知函数f(x)=e x-1,g(x)=x+x,其中e是自然对数的底数,e=2.718 28….(1)证明:函数h(x)=f(x)-g(x)在区间(1,2)上有零点;(2)求方程f(x)=g(x)的根的个数,并说明理由.(1)证明由题意可得h(x)=f(x)-g(x)=e x-1-x-x,所以h(1)=e-3<0,h(2)=e2-3-2>0,所以h(1)h(2)<0,所以函数h(x)在区间(1,2)上有零点.(2)解由(1)可知h(x)=f(x)-g(x)=e x-1-x-x.由g(x)=x+x知x∈[0,+∞),而h(0)=0,则x=0为h(x)的一个零点.又h(x)在(1,2)内有零点,因此h(x)在[0,+∞)上至少有两个零点.h′(x)=e x-12x-12-1,记φ(x)=e x-12x-12-1,则φ′(x)=e x+14x-32.当x∈(0,+∞)时,φ′(x)>0,因此φ(x)在(0,+∞)上单调递增,易知φ(x)在(0,+∞)内至多有一个零点,即h(x)在[0,+∞)内至多有两个零点,则h(x)在[0,+∞)上有且只有两个零点,所以方程f(x)=g(x)的根的个数为2.考点二已知函数零点个数求参数的取值范围【例2】函数f(x)=ax+x ln x在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.解(1)函数f(x)=ax+x ln x的定义域为(0,+∞).f′(x)=a+ln x+1,因为f′(1)=a+1=0,解得a=-1,当a=-1时,f(x)=-x+x ln x,即f′(x)=ln x,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.所以f(x)在x=1处取得极小值,f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,可转化为y=f(x)与y=m+1图象有两个不同的交点.由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,由题意得,m+1>-1,即m>-2,①当0<x<e时,f(x)=x(-1+ln x)<0;当x>e时,f(x)>0.当x>0且x→0时,f(x)→0;当x→+∞时,显然f(x)→+∞.由图象可知,m+1<0,即m<-1,②由①②可得-2<m<-1.所以m的取值范围是(-2,-1).【训练2】 已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若f (0)=2,求实数a 的值,并求此时f (x )在[-2,1]上的最小值; (2)若函数f (x )不存在零点,求实数a 的取值范围. 解 (1)由题意知,函数f (x )的定义域为R , 又f (0)=1-a =2,得a =-1,所以f (x )=e x -x +1,求导得f ′(x )=e x -1.易知f (x )在[-2,0]上单调递减,在[0,1]上单调递增, 所以当x =0时,f (x )在[-2,1]上取得最小值2. (2)由(1)知f ′(x )=e x +a ,由于e x >0, ①当a >0时,f ′(x )>0,f (x )在R 上是增函数, 当x >1时,f (x )=e x +a (x -1)>0; 当x <0时,取x =-1a , 则f ⎝ ⎛⎭⎪⎫-1a <1+a ⎝ ⎛⎭⎪⎫-1a -1=-a <0. 所以函数f (x )存在零点,不满足题意. ②当a <0时,令f ′(x )=0,得x =ln(-a ). 在(-∞,ln(-a ))上,f ′(x )<0,f (x )单调递减, 在(ln (-a ),+∞)上,f ′(x )>0,f (x )单调递增, 所以当x =ln(-a )时,f (x )取最小值.函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是(-e 2,0).考点三 函数零点的综合问题 【例3】 设函数f (x )=e 2x -a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a .(1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -ax (x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点;当a >0时,因为y =e 2x 单调递增,y =-ax 单调递增, 所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,假设存在b 满足0<b <a 4时,且b <14,f ′(b )<0, 故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0, 当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0. 故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x =x 0时,f (x )取得最小值,最小值为f (x 0). 由于2e2x 0-ax 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a .故当a >0时,f (x )≥2a +a ln 2a .【训练3】 (2019·天津和平区调研)已知函数f (x )=ln x -x -m (m <-2,m 为常数). (1)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 的最小值;(2)设x 1,x 2是函数f (x )的两个零点,且x 1<x 2,证明:x 1·x 2<1.(1)解 f (x )=ln x -x -m (m <-2)的定义域为(0,+∞),且f ′(x )=1-xx =0, ∴x =1.当x ∈(0,1)时,f ′(x )>0,所以y =f (x )在(0,1)递增; 当x ∈(1,+∞)时,f ′(x )<0,所以y =f (x )在(1,+∞)上递减.且f ⎝ ⎛⎭⎪⎫1e =-1-1e -m ,f (e)=1-e -m , 因为f ⎝ ⎛⎭⎪⎫1e -f (e)=-2-1e +e>0, 函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 的最小值为1-e -m .(2)证明 由(1)知x 1,x 2满足ln x -x -m =0,且0<x 1<1,x 2>1, ln x 1-x 1-m =ln x 2-x 2-m =0, 由题意可知ln x 2-x 2=m <-2<ln 2-2. 又由(1)可知f (x )=ln x -x 在(1,+∞)递减,故x 2>2, 所以0<x 1,1x 2<1.则f (x 1)-f ⎝ ⎛⎭⎪⎫1x 2=ln x 1-x 1-⎝ ⎛⎭⎪⎫ln 1x 2-1x 2 =ln x 2-x 2-⎝ ⎛⎭⎪⎫ln 1x 2-1x 2 =-x 2+1x 2+2ln x 2.令g (x )=-x +1x +2ln x (x >2),则g ′(x )=-1-1x 2+2x =-x 2+2x -1x 2=-(x -1)2x 2≤0,当x >2时,g (x )是减函数,所以g (x )<g (2)=-32+ln 4.因32-ln 4=ln e 324>ln 2.56324=ln (1.62)324=ln 1.634=ln4.0964>ln 1=0,∴g (x )<0,所以当x >2时,f (x 1)-f ⎝ ⎛⎭⎪⎫1x 2<0, 即f (x 1)<f ⎝ ⎛⎭⎪⎫1x 2.因为0<x 1,1x 2<1,f (x )在(0,+∞)上单调递增. 所以x 1<1x 2,故x 1x 2<1.三、课后练习1.直线x =t 分别与函数f (x )=e x +1的图象及g (x )=2x -1的图象相交于点A 和点B ,则|AB |的最小值为________. 解析 由题意得,|AB |=|e t +1-(2t -1)| =|e t -2t +2|,令h (t )=e t -2t +2,则h ′(t )=e t -2,所以h (t )在(-∞,ln 2)上单调递减, 在(ln 2,+∞)上单调递增, 所以h (t )min =h (ln 2)=4-2ln 2>0, 即|AB |的最小值是4-2ln 2. 答案 4-2ln 22.若函数f (x )=ax -ae x +1(a <0)没有零点,则实数a 的取值范围为________.解析 f ′(x )=a e x -(ax -a )e x e 2x =-a (x -2)e x (a <0).当x <2时,f ′(x )<0;当x >2时,f ′(x )>0, ∴当x =2时,f (x )有极小值f (2)=ae 2+1.若使函数f (x )没有零点,当且仅当f (2)=ae 2+1>0, 解之得a >-e 2,因此-e 2<a <0. 答案 (-e 2,0)3.(2019·保定调研)已知函数f (x )=a 6x 3-a 4x 2-ax -2的图象过点A ⎝ ⎛⎭⎪⎫4,103.(1)求函数f (x )的单调递增区间;(2)若函数g (x )=f (x )-2m +3有3个零点,求m 的取值范围. 解 (1)因为函数f (x )=a 6x 3-a 4x 2-ax -2的图象过点A ⎝ ⎛⎭⎪⎫4,103, 所以32a 3-4a -4a -2=103,解得a =2,即f (x )=13x 3-12x 2-2x -2, 所以f ′(x )=x 2-x -2. 由f ′(x )>0,得x <-1或x >2.所以函数f (x )的单调递增区间是(-∞,-1),(2,+∞). (2)由(1)知f (x )极大值=f (-1)=-13-12+2-2=-56, f (x )极小值=f (2)=83-2-4-2=-163,由数形结合,可知要使函数g (x )=f (x )-2m +3有三个零点, 则-163<2m -3<-56,解得-76<m <1312.所以m 的取值范围为⎝ ⎛⎭⎪⎫-76,1312.4.已知函数f (x )的定义域为[-1,4],部分对应值如下表:f (x )的导函数y =f ′(x )的图象如图所示.当1<a <2时,函数y =f (x )-a 的零点的个数为( )A.1B.2C.3D.4解析 根据导函数图象,知2是函数的极小值点,函数y =f (x )的大致图象如图所示.由于f (0)=f (3)=2,1<a <2,所以y =f (x )-a 的零点个数为4. 答案 D5.设函数f (x )=ln x +m x (m >0),讨论函数g (x )=f ′(x )-x3零点的个数. 解 函数g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0), 令g (x )=0,得m =-13x 3+x (x >0). 设h (x )=-13x 3+x (x >0),所以h ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,h ′(x )>0,此时h (x )在(0,1)内单调递增;当x ∈(1,+∞)时,h ′(x )<0,此时h (x )在(1,+∞)内单调递减.所以当x =1时,h (x )取得极大值h (1)=-13+1=23. 令h (x )=0,即-13x 3+x =0,解得x =0(舍去)或x = 3. 作出函数h (x )的大致图象(如图),结合图象知:①当m >23时,函数y =m 和函数y =h (x )的图象无交点.②当m =23时,函数y =m 和函数y =h (x )的图象有且仅有一个交点. ③当0<m <23时,函数y =m 和函数y =h (x )的图象有两个交点.综上所述,当m >23时,函数g (x )无零点;当m =23时,函数g (x )有且仅有一个零点;当0<m <23时,函数g (x )有两个零点.6.(2018·江苏卷改编)若函数f (x )=2x 3-ax 2+1(a ∈R )在区间(0,+∞)内有且只有一个零点,求f (x )在[-1,1]上的最大值与最小值的和. 解 f ′(x )=6x 2-2ax =2x (3x -a )(a ∈R ), 当a ≤0时,f ′(x )>0在(0,+∞)上恒成立, 则f (x )在(0,+∞)上单调递增,又f (0)=1, 所以此时f (x )在(0,+∞)内无零点,不满足题意. 当a >0时,由f ′(x )>0得x >a 3,由f ′(x )<0得0<x <a3,则f (x )在⎝ ⎛⎭⎪⎫0,a 3上单调递减,在⎝ ⎛⎭⎪⎫a 3,+∞上单调递增,又f (x )在(0,+∞)内有且只有一个零点,所以f ⎝ ⎛⎭⎪⎫a 3=-a 327+1=0,得a =3,所以f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1), 当x ∈(-1,0)时,f ′(x )>0,f (x )单调递增, 当x ∈(0,1)时,f ′(x )<0,f (x )单调递减. 则f (x )max =f (0)=1,f (-1)=-4,f (1)=0,则f (x )min =-4,所以f (x )在[-1,1]上的最大值与最小值的和为-3.7.已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的单调递增区间;(2)当0<-1a <e 时,若f (x )在区间(0,e)上的最大值为-3,求a 的值; (3)当a =-1时,试推断方程|f (x )|=ln x x +12是否有实数根. 解 (1)由已知可知函数f (x )的定义域为{x |x >0}, 当a =-1时,f (x )=-x +ln x (x >0),f ′(x )=1-xx (x >0); 当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0. 所以f (x )的单调递增区间为(0,1).(2)因为f ′(x )=a +1x (x >0),令f ′(x )=0,解得x =-1a ; 由f ′(x )>0,解得0<x <-1a ;由f ′(x )<0,解得-1a <x <e.从而f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,递减区间为⎝ ⎛⎭⎪⎫-1a ,e ,所以,f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a =-3.解得a =-e 2.(3)由(1)知当a =-1时,f (x )max =f (1)=-1, 所以|f (x )|≥1.令g (x )=ln x x +12,则g ′(x )=1-ln x x 2. 当0<x <e 时,g ′(x )>0; 当x >e 时,g ′(x )<0.从而g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减. 所以g (x )max =g (e)=1e +12<1, 所以,|f (x )|>g (x ),即|f (x )|>ln x x +12,所以,方程|f (x )|=ln x x +12没有实数根.。
方程的根与函数的零点(精选7篇)
方程的根与函数的零点(精选7篇)方程的根与函数的零点篇1第一课时: 3.1.1教学要求:结合二次函数的图象,推断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;把握零点存在的判定条件.教学重点:体会函数的零点与方程根之间的联系,把握零点存在的判定条件.教学难点:恰当的使用信息工具,探讨函数零点个数.教学过程:一、复习预备:思索:一元二次方程 +bx+c=o(a 0)的根与二次函数y=ax +bx+c的图象之间有什么关系?.二、讲授新课:1、探讨函数零点与方程的根的关系:① 探讨:方程x -2x-3=o 的根是什么?函数y= x -2x-3的图象与x轴的交点?方程x -2x+1=0的根是什么?函数y= x -2x+1的图象与x轴的交点?方程x -2x+3=0的根是什么?函数y= x -2x+3的图象与x轴有几个交点?② 依据以上探讨,让同学自己归纳并发觉得出结论:→推广到y=f(x)呢?一元二次方程 +bx+c=o(a 0)的根就是相应二次函数y=ax +bx+c的图象与x轴交点横坐标.③ 定义零点:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.④ 争论:y=f(x)的零点、方程f(x)=0的实数根、函数y=f(x) 的图象与x 轴交点的横坐标的关系?结论:方程f(x)=0有实数根函数y=f(x) 的图象与x轴有交点函数y=f(x)有零点⑤ 练习:求下列函数的零点;→ 小结:二次函数零点状况2、教学零点存在性定理及应用:① 探究:作出的图象,让同学们求出f(2),f(1)和f(0)的值, 观看f(2)和f(0)的符号②观看下面函数的图象,在区间上______(有/无)零点; _____0(<或>). 在区间上______(有/无)零点; _____0(<或>). 在区间上______(有/无)零点; _____0(<或>).③定理:假如函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.④ 应用:求函数f(x)=lnx+2x-6的零点的个数. (试争论一些函数值→分别用代数法、几何法)⑤小结:函数零点的求法代数法:求方程的实数根;几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.⑥ 练习:求函数的零点所在区间.3、小结:零点概念;零点、与x轴交点、方程的根的关系;零点存在性定理三、巩固练习:1. p97, 1,题 2,题(老师计算机演示,同学回答)2. 求函数的零点所在区间,并画出它的大致图象.3. 求下列函数的零点:;;;.4.已知:(1)为何值时,函数的图象与轴有两个零点;(2)假如函数至少有一个零点在原点右侧,求的值.5. 作业:p102, 2题;p125 1题其次课时: 3.1.2用二分法求方程的近似解教学要求:依据详细函数图象,能够借助计算器用二分法求相应方程的近似解. 通过用二分法求方程的近似解,使同学体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.教学重点:用二分法求方程的近似解.教学重点:恰当的使用信息工具.教学过程:一、复习预备:1. 提问:什么叫零点?零点的等价性?零点存在性定理?零点概念:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.方程f(x)=0有实数根函数y=f(x) 的图象与x轴有交点函数y=f(x)有零点假如函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2. 探究:一元二次方程求根公式?三次方程?四次方程?材料:高次多项式方程公式解的探究史料:在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却始终没有胜利,到了十九世纪,依据阿贝尔(abel)和伽罗瓦(galois)的讨论,人们熟悉到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当简单,一般来讲并不相宜作详细计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中非常重要的课题二、讲授新课:1. 教学二分法的思想及步骤:① 出示例:有12个小球,质量匀称,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好. (让同学们自由发言,找出最好的方法)解:第一次,两端各放六个球,低的那一端肯定有重球其次次,两端各放三个球,低的那一端肯定有重球第三次,两端各放一个球,假如平衡,剩下的就是重球,否则,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?② 探究:的零点所在区间?如何找出这个零点?→ 师生用二分法探究③ 定义二分法的概念:对于在区间[a,b]上连续不断且f(a).f(b)0的函数y=f(x),通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步靠近零点,进而得到零点近似值的方法叫二分法(bisection)④ 探究:给定精度ε,用二分法求函数的零点近似值的步骤如下:a.确定区间,验证,给定精度ε;b. 求区间的中点;c. 计算:若,则就是函数的零点;若,则令(此时零点);若,则令(此时零点);d. 推断是否达到精度ε;即若,则得到零点零点值a(或b);否则重复步骤2~4.2. 教学例题:① 出示例:借助计算器或计算机用二分法求方程2 +3x=7的近似解. (师生共练)② 练习:求函数的一个正数零点(精确到)3. 小结:二分法的概念, 二分法的步骤;注意二分法思想三、巩固练习:1. p100, 1,题 2,题; 2. 求方程的解的个数及其大致所在区间.3. 用二分法求的近似值;4. 求方程的实数解个数:;5. 作业:p102 3,4题,阅读p105框图方程的根与函数的零点篇2一、教学内容解析本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。
高中数学常见题型解法归纳 函数的零点个数问题的求解方法
高中数学常见题型解法归纳 函数的零点个数问题的求解方法【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步.三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景 一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.【例2】(2017全国高考新课标I 理科数学)已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(2) ①若0,a ≤由(1)知()f x 至多有一个零点.②若0a >,由(1)知当ln x a =-时,()f x 取得最小值,1(ln )1ln f a a a-=-+. (i )当1a =时,(ln )f a -=0,故()f x 只有一个零点. (ii )当(1,)a ∈+∞时,由于11ln a a-+>0,即(ln )0f a ->,故()f x 没有零点. (iii )当0,1a ∈()时,11ln 0a a-+<,即(ln )0f a -<. 422(2)(2)2220,f ae a e e ----=+-+>-+>故()f x 在(,ln )a -∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln ,()n n n n n n f n e ae a n e n n aa f x a>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a 的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a ∈()时,要先判断(,ln )a -∞的零点的个数,此时考查了函数的零点定理,(ln )0f a -<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f aea e e ----=+-+>-+>要说明(2)0f ->,这里利用了放缩法,丢掉了42ae ae --+.(3) 当0,1a ∈()时,要判断(ln ,)a -+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax=+,其中a 为实数,常数 2.718e =.(1) 若1 3x=是函数()f x的一个极值点,求a的值;(2) 当4a=-时,求函数()f x的单调区间;(3) 当a取正实数时,若存在实数m,使得关于x的方程()f x m=有三个实数根,求a的取值范围.方法三方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x=,重新构造方程()()g x h x=,再画函数(),()y g x y h x==的图像分析解答.【例4】函数()lg cosf x x x=-的零点有()A.4 个 B.3 个 C.2个 D.1个【点评】调性不是很方便,所以先令()lg cos0f x x x=-=,可化为lg cosx x=,再在同一直角坐标系下画出lgy x=和cosy x=的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln,1,02f x x m xg x x m x m=-=-+>.(1)求函数()f x的单调区间;(2)当1m≥时,讨论函数()f x与()g x图象的交点个数.422510152025oy=cosxy=lgxyx参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+ 因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x极小值极大值因此()f x 的单调增区间是51(1,)22-,15(,1)22+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1,)++∞; 【反馈检测3答案】(1)单调递增区间是),m +∞, 单调递减区间是(m ;(2)1.【反馈检测3详细解析】(1)函数()f x 的定义域为()()(0,,'x m x m f x x+∞=.当0x m <<()'0f x <,函数()f x 单调递减,当x m >时,()'0f x >函数()f x 单调递增,综上,函数()f x 的单调递增区间是),m +∞, 单调递减区间是(m .(2)令()()()()211ln ,02F x f x g x x m x m x x =-=-++->,问题等价于求函数()F x 的零点个数,()()()1'x x m F x x--=-,当1m =时,()'0F x ≤,函数()F x 为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。
方程的根与函数的零点
函数 y =f (x) 有零点
3、零点存在性定理
如果函数y f ( x)在区间[a, b]上的图象是连续不断的 一条曲线,并且有f (a) f (b) 0, 那么,函数y f ( x)在 区间(a, b)内有零点,即存在c (a, b),使得f (c) 0, 这个 c也就是方程f ( x) 0的根.
3.1.1 方程的根与函数的零点
第1课时
中外历史上的方程求解
《九章算术》给出了一次方程、二次方程和正系数 三次方程的求根方法。
19世纪挪威数学家阿贝尔证明了五次及五次以上一 般方程没有根式解。
一、基上础述知方识程讲的解不相等的根的个数和对应的函数图象与
x 轴交点的个数0相同。 0
0
方程方程xf2(x)=20x的 3实数0根就x2是相2x应函1 数0图象x与2 x2轴x的交3 点0
y A、
B、 y
O 1 2 345 x
O 1 2 345 x
C、 y
D、 y
O 1 2 345 x
O 1 2 345 x
例3、已知f ( x) x2 7 x 12,求该函数的零点个数. 解:令f ( x) 0得 即 x2 7 x 12 ( x 3)( x 4) 0 方程x2 7x 12 0有两个不相等的实数根:3, 4; 函数有两个零点,分别是3, 4. 法2: (7)2 4 12 1 0 方程x2 7x 12 0有两个不相等的实数根;
零点不是
点,是数
5 4 O
45 x
三、基础知识讲解
函数 y = x2- 2x - 3
图象
区间 (a,b)
y
(-2 , 0)
(0 , 2)
方程的根与函数的零点 课件
此判定方法经常考,要注意条件一定要完备,缺一不可. 反之,若函数 y=f(x)在(a,b)内有零点,则 f(a)·f(b)<0 不一定 成立. 因为 f(x)在(a,b)内的零点可能为不变号零点,也可能不止一个 零点.
(2)应用零点存在性定理应注意以下问题: ①并非函数所有的零点都能用该定理找到,当函数值在零点左 右不变号时就不能应用该定理,如函数 y=x2 在零点 x0=0 左右 的函数值都是正值,显然不能使用定理判断,只有函数值在零 点的左右两侧异号时才能用这种方法. ②利用零点存在性定理只能判别函数 y=f(x)在区间(a,b)上零 点的存在性,但不能确定零点的个数.
2.解决有关根的分布问题应注意以下几点: (1)首先画出符合题意的草图,转化为函数问题. (2)结合草图考虑四个方面:①Δ 与 0 的大小;②对称轴与所给 端点值的关系;③端点的函数值与零的关系;④开口方向. (3)写出由题意得到的不等式. (4)由得到的不等式去验证图象是否符合题意,这类问题充分体 现了函数与方程的思想,也体现了方程的根就是函数的零点.在 写不等式时要注意条件的完备性.
方程的根与函数的零点
自学导引 1.函数的零点 对于函数 y=f(x),把 使f(x)=0的实数x 叫做函数 y=f(x)的零点. 想一想:函数的零点是函数 y=f(x)与 x 轴的交点吗? 提示 函数的零点不是函数 y=f(x)与 x 轴的交点,而是 y=f(x) 与 x 轴交点的横坐标,也就是说函数的零点不是一个点,而是 一个实数.
如 f(x)=ax2+bx+c(a>0)的两个零点为
x1,x2(x1≤x2)且 k1<x1≤x2<k2.
Δ≥0, 则k1<-2ba<k2,
ffkk12> >00, ,
题型一 求函数的零点 【例 1】 判断下列函数是否存在零点,如果存在,请求出. (1)f(x)=xx+;3 (2)f(x)=x2+2x+4; (3)f(x)=2x-3; (4)f(x)=1-log3x; [思路探索] 利用解方程的方法求相应方程的根即可.
高考数学《函数零点的个数问题》知识点讲解与分析
高考数学《函数零点的个数问题》知识点讲解与分析一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。
(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提(2)零点存在性定理中的几个“不一定”(假设()f x 连续)① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =−,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。
由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。
(详见方法技巧)二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。
例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f ⎛⎫>< ⎪⎝⎭即可判定其零点必在1,12⎛⎫ ⎪⎝⎭中 2、函数的零点,方程的根,两函数的交点在零点问题中的作用(1)函数的零点:工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。
函数的零点与方程根的关系-高中数学知识点讲解
函数的零点与方程根的关系
3.函数的零点与方程根的关系
【函数的零点与方程根的关系】
函数的零点表示的是函数与x 轴的交点,方程的根表示的是方程的解,他们的含义是不一样的.但是,他们的解法其实质是一样的.
【解法】
求方程的根就是解方程,把所有的解求出来,一般要求的是二次函数或者方程组,这里不多讲了.我们重点来探讨一下函数零点的求法(配方法).
例题:求函数f(x)=x4+5x3﹣27x2﹣101x﹣70 的零点.
解:∵f(x)=x4+5x3﹣27x2﹣101x﹣70
=(x﹣5)•(x+7)•(x+2)•(x+1)
∴函数f(x)=x4+5x3﹣27x2﹣101x﹣70 的零点是:5、﹣7、﹣2、﹣1.
通过这个题,我们发现求函数的零点常用的方法就是配方法,把他配成若干个一次函数的乘积或者是二次函数的乘积,最后把它转化为求基本函数的零点或者说求基本函数等于 0 时的解即可.
【考查趋势】
考的比较少,了解相关的概念和基本的求法即可.
1/ 1。
高中数学高一必修第三章《方程的根与函数的零点》教育教学课件
反思与感悟
判断函数零点的个数的方法主要有:(1)可以利用零点存在性定理来 确定零点的存在性,然后借助于函数的单调性判断零点的个数.(2)利用 函数图象交点的个数判定函数零点的个数.
反思与感悟
函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的 图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点. 在写函数零点时,所写的一定是一个数字,而不是一个坐标.
跟踪训练1 函数f(x)=(x2-1)(x+2)2(x2-2x-3)的零点个数是____4____. 解析 f(x)=(x+1)(x-1)(x+2)2(x-3)(x+1) =(x+1)2(x-1)(x+2)2(x-3). 可知零点为±1,-2,3,共4个.
4.下列各图象表示的函数中没有零点的是( D )
函数 = - 的零点个数是 B
个
个
个
无数个
则f(-1)=0.37-1<0,f(0)=1-2<0,f(1)=2.72-3<0,f(2)=7.40-4
=3.40>0.由于f(1)·f(2)<0,
∴方程ex-(x+2)=0的一个根在(1,2)内.
反思与感悟
在函数图象连续的前提下,f(a)·f(b)<0,能判断在区间(a,b)内有 零点,但不一定只有一个;而f(a)·f(b)>0,却不能判断在区间(a,b)内 无零点.
3.1.1 方程的根与函数的零点
主讲老师:
CONTENTS
1 • PART 01学习目标 2 • PART 02问题导学
3 • PART 03题型探究
4.4.1方程的根与函数的零点课件高一上学期数学
2≤m<16,
f(x)= ,
2
y=0,y= 共有
2
6个
规律方法
已知函数有零点(方程有根)求参数的方法
(1)直接法:根据题设条件构建关于参数的不等式(组),通过解不等式(组)确
定参数的取值范围.
(2)数形结合法:先对f(x)的解析式变形,将f(x)=0转化为h(x)=g(x)[h(x),g(x)的
y2=h(x)的图象,则两个图象公共点的个数就是函数y=f(x)零点的个数.
(4)若证明一个函数的零点唯一,也可先由零点存在定理判断出函数有零点,
再证明该函数在定义域内单调.
变式训练2
(1)若函数f(x)=x2+2x+a没有零点,则实数a的取值范围是( B )
A.(-∞,1)
B.(1,+∞)
C.(-∞,1]
2 -2, ≤ 0,
3.已知函数 f(x)=
则函数 y=f(x)+3x 的零点个数是( C )
1
1 + , > 0,
A.0
B.1
C.2
D.3
解析 根据题意,令x2-2x+3x=0,
解得x1=0,x2=-1,当x≤0时,符合题意;
1
令1+ +3x=0,无解,故函数y只有两个零点,故选C.
所以函数y=log2(-2x+1)的零点为0.
探究点二
函数零点个数的判断
【例2】 判断下列函数零点的个数:
(1)f(x)=(x2-4)log2x;
解 令f(x)=0,得(x2-4)log2x=0,因此x2-4=0或log2x=0,解得x=±2或x=1.
又因为函数定义域为(0,+∞),所以x=-2不是函数的零点,
方程的根与函数的零点
即12a 2 0
a 1
小结
函数的零点定义:
对于函数y=f(x), 使f(x)=0的实数x 叫做函数 y=f(x)的零点。
等价关系
方程f(x)=0有实数根
函数y=f(x)的图象与x轴有交点 函数y=f(x)有零点
零点的求法
代数法
图像法
函数零点存在性原理
如果函数 y f (x)在区间a,b上的图象是连续不断的一条曲线,
y
0a
bx
思考:若函数y=f(x) 在区间(a, b)内有零 点,一定能得出f(a)·f(b)<0的结论吗?
y
bbb bb
b
0 a b b bb bb x
例 2:若方程2ax2 x 1 0在0,1内
恰有一解,则a的取值范围( )
A.a 1 B.a 1 C.1 a 1 D.0 a 1
典错:令 f (x) 2ax2 x 1在0,1内恰有一解,则 f (0) f (1) 0。
y
函数 y f (x) x1 0
方程
x
2 x f (x) 0
一元二次方程与相应二次函数图像的关系
判别式△ = b2-4ac
△>0
△=0
△<0
方程ax2 +bx+c=0 (a>0)的根
两个不相等 有两个相等的 的实数根x1 、x2 实数根x1 = x2
没有实数根
函数y= ax2 +bx +c(a>0)的图象
y
x1 0
x2 x
y 0 x1 x
y
0
x
函数的图象 与 x 轴的交点
(x1,0) , (x2,0)
(x1,0)
没有交点
方程的的零点根与函数
表格法是用表格的形式来表示 函数,通过输入值和对应的输 出值来展示函数的对应关系。
图象法是用图象来表示函数, 通过绘制函数的图像来直观地
展示函数的对应关系。
函数的性质
函数的性质包括奇偶性、单调性、周期性和对称性等。
奇偶性是指函数图像关于原点对称还是关于y轴对称;单调性是指函数在某个区 间内是递增还是递减;周期性是指函数图像是否具有周期性;对称性是指函数图 像是否具有对称性。
03
函数与零点、根的关系
函数零点的求法
定义法
根据函数零点的定义,如果 $f(x)=0$的解为$x=a$,则称$a$
为函数$f(x)$的零点。
图像法
通过观察函数的图像,找到与$x$ 轴交点的横坐标即为函数的零点。
迭代法
通过不断迭代函数,找到满足 $f(x)=0$的解。
函数根的求法
01
02
03
代数法
解决实际问题
在解决一些实际问题时, 可以通过寻找函数的零点 或根来找到问题的解。
数学建模
在数学建模中,函数的零 点或根可以作为模型中的 参数或变量,用于描述和 解决实际问题。
04
方程的零点、根与函数的实例 分析
一元二次方程的零点与根
01
一元二次方程的零点
一元二次方程 $ax^2 + bx + c = 0$ 的零点是 $x_1, x_2$,其中 $x_1,
未来研究方向
深入理论研究
01
随着数学和其他学科的发展,需要进一步深入研究和探索零点、
根与函数的理论基础和应用范围。
跨学科研究
02
加强与其他学科的交叉研究,探索这些概念在不同领域的应用
高三数学函数的零点与方程根的联系知识点
高三数学函数的零点与方程根的联系知识点一函数的零点与方程根的联系函数零点的定义:一般地,如果函数y =fx在实数a处的值等于零,即fa=o,则a叫做这个函数的零点,有时我们把一个函数的图象与x轴的交点的横坐标,也叫做这个函数的零点。
函数零点具有的性质:对于任意函数y=x只要它的图象是连续不间断的,则有:1当它通过零点时不是二重零点,函数值变号.如函数fx=x2-2x -3的图象在零点-1的左边时,函数值取正号,当它通过第一个零点-1时,函数值由正变为负,在通过第二个零点3时,函数值又由负变为正.2在相邻两个零点之间所有的函数值保持同号,方程的根与函数的零点的联系:方程fx=0有实根函数y=fx的图像与x轴有交点函数y=fx有零点二1.对数1对数的定义:如果ab=Na>0,a≠1,那么b叫做以a为底N的对数,记作logaN=b.2指数式与对数式的关系:ab=NlogaN=ba>0,a≠1,N>0.两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.3对数运算性质:①logaMN=logaM+logaN.②logaM/N=logaM-logaN.③logaMn=nlogaM.M>0,N>0,a>0,a≠1④对数换底公式:logbN=logab/logaNa>0,a≠1,b>0,b≠1,N>0.2.对数函数1对数函数的定义函数y=logaxa>0,a≠1叫做对数函数,其中x是自变量,函数的定义域是0,+∞.注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b的值的。
但是,根据对数定义: logaa=1;如果a=1或=0那么logaa就可以等于一切实数比如log1 1也可以等于2,3,4,5,等等第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立比如,log-2 4^-2 就不等于-2*log-24;一个等于1/16,另一个等于-1/162对数函数的性质:①定义域:0,+∞.②值域:R.③过点1,0,即当x=1时,y=0.④当a>1时,在0,+∞上是增函数感谢您的阅读,祝您生活愉快。
函数的零点与方程的解(基础知识+基本题型)(含解析)
4.5.1函数的零点与方程的解(基础知识+基本题型)知识点一 函数的零点1.函数零点的概念对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点.2.函数零点与方程的根之间的关系方程()0f x =有零点⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点.由此可知,求()0f x =的实数根,就是确定函数()y f x =的零点,一般地,对于不能用公式求根的方程()0f x =来说,我们可以将它与函数()y f x =联系起来,利用函数的性质找出零点,从而求出方程的根. 提示:(1)并不是所有的函数都有零点,如函数1()f x x=就没有零点. (2)方程不同实数根的个数⇔函数图象与x 轴交点的个数⇔函数零点的个数.(3)函数的零点不是点:我们把使()0f x =的实数x 叫做函数()y f x =的零点,因此,函数的零点不是点,是函数()y f x =的图象与x 轴交点的横坐标,即零点是一个实数.当函数的自变量取这一实数时,其函数值为零.知识点二 函数零点存在性定理1. 零点存在性定理如果函数()y f x =在区间[,]a b 上的图象是一条连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使得()0f c =,这个c 也是方程()0f x =的根.2. 零点存在性定理的适用条件(1)判断零点是否存在是存在闭区间[,]a b 上进行的.(2)函数()y f x =在[,]a b 上的图象应是连续无间断的一条曲线.(3)()()0f a f b ⋅<是关键条件,即两端点的函数值必须异号.(4)如果函数()y f x =在两端点处的函数值(),()f a f b 异号,则函数()y f x =的图象至少穿过x 轴一次,即方程()0f x =在区间(,)a b 内至少有一个实根c .3. 零点存在性定理的使用范围(1)此定理只能判断出零点的存在性,而不能判断出零点的个数。
方程的根与函数的零点
(1)函数 y=2x-6 的零点是______. (2)函数 f(x)=x2-1x的零点个数是______. 解析:(1)∵2x-6=0,∴x=3. (2)f(x)零点的个数就是方程 x2 -1x=0 根的个数,也就是 y=x2 与 y=1x两函数图象交点的个数,如图. 答案:(1)3 (2)1
判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”. 1.函数f(x)的零点就是函数y=f(x)的图象与x轴的交点.( ) 2.在闭区间[a,b]上连续的曲线y=f(x),若f(a)·f(b)<0,则函数y=f(x)在区
方法二:在同一坐标系下作出 h(x)=2-2x 和 g(x)=lg(x+ 1)的草图.由图象知 g(x)=lg(x+1)的图象和 h(x)=2-2x 的图象 有且只有一个交点,即 f(x)=2x+lg(x+1)-2 有且只有一个零 点.
【互动探究】 将本例中函数解析式改为f(x)=x-3+ln x呢? 解:方法一:令f(x)=x-3+ln x=0, 则ln x=3-x, 在同一平面直角坐标系内画出函数y=ln x与y=-x+3的图象,
2.判断函数零点所在区间的三个步骤
(1)代:将区间端点代入函数求出函数的值.
(2)判:把所得函数值相乘,并进行符号判断.
(3)结:若符号为正且函数在该区间内是单调函数,则在该区间 内无零点,若符号为负且函数连续,则在该区间内至少有一 个零点.
2.(1)使得函数 f(x)=ln x+12x-2 有零点的一个区间是
(2)解析:构造函数 f(x)=ex+x-2,由 f(0)=-1,f(1)=e -1>0,显然函数 f(x)是单调函数,有且只有一个零点,则函数 f(x)的零点在区间(0,1)上,所以方程 ex+x=2 的解在区间(0,1) 上.
方程的根与函数的零点(第一课时)
结论:方程 x2 2 x 3 0 的根是函数 y x2 2x 3 的图象与 x 轴的交点的坐标。 总结: (1)当∆>0 时,一元二次方程有两个不等的实数根 x1,x2,相应的二次函数的 图象与 x 轴有两个交点(x1,0) , (x2,0) ; (2)当∆=0 时,一元二次方程有两个相等的实数根 x1=x2,相应的二次函数的图 象与 x 轴有唯一的交点(x1,0) ; (3)当∆<0 时,一元二次方程没有实数根,相应的二次函数的图象与 x 轴没有 交点。 零点概念:对于函数 y f ( x) ,我们把使的实数 x 叫做函数 y f ( x) 的零点。 思考:函数 y f ( x) 的零点、方程 f ( x) 0 的实数根、函数 y f ( x) 的图象与 x 轴 交点的横坐标,三者有什么关系? 小结:方程 f ( x) 0 有实数根 函数 y f ( x) 的图象与 x 轴有交点 函数 y f ( x) 有零点. 探究任务二:零点存在性定理 问题:观察下面函数 y f ( x) 的图象, 在区间 [a, b] 上零点; f (a)f (b) 0; 在区间 [b, c] 上零点; f (b)f (c) 0; 在区间 [c, d ] 上零点; f (c)f (d ) 0. 总结: (零点存在定理)
方程的根与函数的零点(第一课时) 一、学习目标 1. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而 了解函数的零点与方程根的联系; 2. 掌握零点存在的判定条件. 二、学习重难点: 方程的根与函数的零点的关系,求函数零点的个数问题 三、学习过程 探究任务一:函数图象与 x 轴的交点和相应的一元二次方程的根的关系 比较下列两组表格,回答后面的问题: 表格一: 函数 与 x 轴交点个数方程的根的个数 判别式∆ 方程 2 y=x —2x—3 x2—2x—3=0 y=x2—2x+1 x2—2x+1=0 Y=x2—2x+3 x2—2x+3=0 结论: 方程 x2 2 x 3 0 的根的个数与函数 y x2 2x 3 的图象与 x 轴的交点个数。 表格二: 函数 与 x 轴交点坐标 2 y=x —2x—3 y=x2—2x+1 Y=x2—2x+3 方程的根 方程 x2—2x—3=0 x2—2x+1=0 x2—2x+3=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科:高等数学第三章 微分中值定理知识点35 函数的零点(方程的根)个数的讨论相关概念、公式定理或结论●定义 **● 定理 **● 结论 **考频:3知识点35 配套习题例35.1(难度系数0.2) 证明方程恰有两个实根.44arctan 03x x π-+=解析:只需证明函数恰有两个零点即可.领用零点4()4arctan 3f x x x π=-+定理证明零点的存在性,利用单调性判断零点的个数证明:令则,4()4arctan 3f x x x π=-+22243()111x f x x x-'=-=++令,得在上单调.且()0f x '=x =()f x (,)-∞+∞,,,.由零点定理可知lim ()x f x →-∞=+∞(0f =803f π=->lim ()x f x →+∞=-∞,在上各有一个零点.即方程恰有()f x (,)-∞+∞44arctan 03x x π-+=两个实根.例35.2(难度系数0.4)求证:在内只有两个不同的实根.0ln x x x e=-⎰(0,)+∞解析:同例35.1证明:令,则,故当时0()ln x f x x x eπ=-+⎰11'()f x x e=-0x e <<,,()0f x '>时,,又,则存在,使得x e >()0,f x '<0lim (),lim ()x x f x f x +→+∞→=-∞=-∞1(0,)x e ∈1()0,f x <且存在使得且,则由零点定理可知,在2(,),x e ∈+∞2()0,f x <()0f e >()f x 内至少各有一个零点.12(,),(,)x e e x 又在上单调递增,在上单调减少,所以在上()f x (0,)e (,)e +∞()f x (0,),(,)e e +∞分别只有一个零点,即方程在内只有两个不同的实0ln xx x e=-⎰(0,)+∞根.例35.3(难度系数0.6) 确定方程实根的个数.ln (0)x ax a =>解析:要确定方程的实根个数,即判定函数的零点个数,利用()ln f x x ax =-单调性进行讨论即可.注意结合图像进行讨论.解:令,讨论在有几个零点.考察单调性,由于()ln f x x ax =-()f x (0,)+∞ ,10,011()0,10,x a f x a x x a x a ⎧><<⎪⎪⎪⎛⎫'=-==⎨ ⎪⎝⎭⎪⎪<>⎪⎩则在处取得最大值,又因为,因此的图()f x 1x a =11()ln 1f a a =-21()0f x x''=-<()f x 像可分为下列图35.1中的三种情形.图35.1因此方程的实根个数有下列三种情形:()0f x =(1),即,恒有,无实根.11(ln 10f aa=-<1a e>()0f x <(2),即,由于,当时,,故只有11(ln 10f aa =-=1a e =(0,)x ∈+∞x e ≠()0f x <一个实根,即.1x e a ==(3),即,因为,故方程11(ln 10f a a =->10a e<<0lim (),lim ()x x f x f x +→+∞→=-∞=-∞在各只有一个实根,因此方程在恰有两个实根.11(0,),(,)a a+∞(0,)+∞例35.4(难度系数0.4) 就的不同取值情况,确定方程在开区间k sin 2x x k π-=内根的个数,并证明之.(0,)2π解析:构造辅助函数,利用驻点、极值和最值的求解,判定出()sin 2f x x x π=-函数的取值范围为,然后再讨论与的关系即可.()f x 0[,0)y k 0[,0)y 解:设,则在上连续.()sin 2f x x x π=-()f x [0,2π由得在内的唯一驻点.由于当()1cos 0,2f x x π'=-=()f x (0,)2π02arccos x π=时,当时,所以在上单调减少,在0(0,)x x ∈()0,f x '<0(,2x x π∈()0.f x '>()f x 0[0,]x 上单调增加,因此是在内的唯一的最小值点,最小值为0[,]2x π0x ()f x (0,2π0000()sin 2y f x x x π==-又因为,故在内,的取值范围为 当(0)()02f f π==(0,2π()f x 0[,0).y 即0(,0),k y ∉或时,原方程在内没有实根;0k y <0k ≥(0,)2π当时,原方程在内有唯一实根;0k y =(0,)2π0x 当时,原方程在与内各恰有一实根,即原方程在0(,0)k y ∈0(0,)x 0(,)2x π(0,2π内恰有两个不同的实根.例35.5(难度系数0.4) 讨论曲线与的交点个数.4ln y x k =+44ln y x x =+解析:本题为函数交点个数问题,只要讨论方程的实根个44ln 4ln x k x x +=+数即可,可通过讨论函数的零点个数来求解.4()4ln 4ln f x x k x x =+--解:令,则4()4ln 4ln f x x k x x =+--.33414()44ln (1ln )f x x x x x x x'=--⋅=--令,,当时,,单调减少3()1ln g x x x =--21()13ln g x x x'=--⋅0x >()0g x '<()g x ,只有唯一零点,故只有唯一驻点,则在,上单()g x 1x =()f x 1x =()f x (0,1][1,)+∞调,又,,.0lim ()x f x +→=-∞44ln ln lim ()lim (4x x x k xf x x x x x→+∞→+∞=+--=-∞(1)4f k =-当,即时,方程无实根.(1)0f <4k <当,即时,方程有唯一实根.(1)0f =4k =当,即时,方程有两个实根.(1)40f k =->4k >故当时,两条曲线无交点;当时,两条曲线有一个交点;当时,4k <4k =4k >两条曲线有两个交点.例35.6(难度系数0.2)在区间内,方程有几个实根?(,)-∞+∞1142cos 0x x x +-=解析:本题是零点个数问题,根据对应函数为偶函数,缩小讨论零点的范围,可以简化解题过程.解:令,此函数为偶函数,且时有,故只要1142()cos f x x x x =+-1x >()0f x >讨论在内有几个实根即可.()f x [0,1]时,,在上连续,且,[0,1]x ∈1142()cos f x x x x =+-()f x [0,1](0)10f =-<,而,由零点定理可知,在(1)2cos10f =->314211()sin 042f x x x x --'=++>()f x (0,1)内有且仅有一个实根.所以在区间内,方程有两个实根.(,)-∞+∞1142cos 0x x x +-=例35.7(难度系数0.4) 设在内二阶可导,且对于任意有()f x (,)a b (,)x a b ∈.存在使得.又知,求证()0f x ''<0(,)x a b ∈00()0,()0f x f x '=>lim ()lim ()x ax bf x f x +-→→==-∞:在内恰有两个零点.()f x (,)a b 解析:由可据极限的保号性找到,lim ()lim (),x a x b f x f x +-→→==-∞10(,)x a x ∈20(,)x x b ∈,使得,,利用零点定理证明两个零点的存在性,再利用单调性1()0f x <2()0f x <来分析恰有两个零点.证明:因为,则存在,,使得lim ()lim ()x a x b f x f x +-→→==-∞10(,)x a x ∈20(,)x x b ∈,,且,则由零点定理可知,在与内各1()0f x <2()0f x <0()0f x >()f x 10(,)x x 02(,)x x 存在一个零点.因为,所以单调递减.因为,则对于任意的有()0f x ''<()f x '0()0f x '=0(,)x a x ∈,所以在上单调增加;对于任意的有0()()0f x f x ''>=()f x 0(,)a x 0(,)x x b ∈,所以在上单调减少.因此在内恰有两个零点.0()()0f x f x ''<=()f x 0(,)x b ()f x (,)a b 例35.8(难度系数0.2) 设在上可导,,,()f x [,]a b ()0f a +'>()0f b -'>,求证:在至少有两个零点.()()f a f b ≥()f x '(,)a b 解析:利用闭区间上连续函数的最值性质以及费马引理来分析即可.证明:因为在上可导,所以必连续,故在上必有最大值和最小()f x [,]a b [,]a b 值.又因为,若的最大值在端点获得,则必在达到,可知()()f a f b ≥()f x x a =,这与已知条件矛盾,所以必在内达到最大、最小值,()0f a +'≤()0f a +'>()f x (,)a b 由费马引理可知,在至少有两个零点.()f x '(,)a b 例35.9 (难度系数0.4) 证明:方程的根最多不超过三个.2x e ax bx c =++ 解析令.根据此函数的特点以及它含有三个参数,不方便直接判2()()x f x e ax bx c =-++断它的单调性.大家可以用反证法,假如方程含有超过三个的根(即最少四个根)会怎么样?据罗尔定理,至少有三个零点,同理至少有两个零点,'()f x ''()f x至少有一个零点.事实上,求三阶导后容易判断无零点.因此得到矛(3)()f x (3)()f x 盾.证明令.用反证法,假设原方程有四个根,即函数有四个零2()()x f x e ax bx c =-++()f x 点.可设的零点分别为.()f x 12341234,,,()x a a a a a a a a =<<< 在闭区间上均满足罗尔定理的条件,因此分别存在122334[,],[,],[,]a a a a a a ()f x ,,,满足112(,)a a ξ∈223(,)a a ξ∈334(,)a a ξ∈123'()'()'()0.f f f ξξξ===的导函数在两个闭区间上均满足罗尔定理的条件,因此可()f x '()f x 1223[,],[,]ξξξξ得有两个零点.同理可得仅有一个零点."()f x (3)()f x 实际情形下,对函数逐阶求导得,,()f x '()2x f x e ax b =--''()2x f x e a =-.可见无零点,与上面的结果矛盾,因此原假设不成立,即原(3)()0x f x e =>(3)()f x 方程最多只有三个根.。